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Health data analysis has emerged as a critical domain with immense poten-

tial to revolutionize healthcare delivery, disease management, and medical research.

However, it is confronted by formidable challenges, including sample bias, data pri-

vacy concerns, and the cost and scarcity of labeled data. These challenges collectively

impede the development of accurate and robust machine learning models for various

healthcare applications, from disease diagnosis to treatment recommendations.

Sample bias and specificity refer to the inherent challenges in working with

health datasets that may not be representative of the broader population or may

exhibit disparities in their distributions. These biases can significantly impact the

generalizability and effectiveness of machine learning models in healthcare, potentially

leading to suboptimal outcomes for certain patient groups. Data privacy and locality

are paramount concerns in the era of digital health records and wearable devices. The

need to protect sensitive patient information while still extracting valuable insights

from these data sources poses a delicate balancing act. Moreover, the geographic and

jurisdictional differences in data regulations further complicate the use of health data

in a global context. Label cost and scarcity pertain to the often labor-intensive and
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expensive process of obtaining ground-truth labels for supervised learning tasks in

healthcare. The limited availability of labeled data can hinder the development and

deployment of machine learning models, particularly in specialized medical domains.

This dissertation mainly focuses on health data analysis and explores ap-

proaches to tackle the above challenges. More specifically, the following three prob-

lems will be studied from different perspective: (1) Sample bias and specificity in

health data. (2) Data privacy and locality in health data. (3) Label cost and scarcity

in health data.

In summary, our major contributions in this dissertation are demonstrated in

the following aspects:

• To tackle data bias and specificity problem, we first conduct a comprehensive

exploration of the twin phenomena in health data with National Readmission

Databases (NRD). We first propose to use imbalanced learning for 30-day hospi-

tal readmission prediction. The main goal is to predict, at the time of a hospital

discharge, whether the patient may return in 30 days or not in the future. We

created a set of features, using simple patient demographics, ICD-10 clinical

modification (CM), and Clinical Classification Software Refined (CCSR) con-

version, to represent each hospital visit. Because patient readmission is only a

small portion of all patient visits, the machine learning task is severely chal-

lenged by the imbalanced class distributions. To solve the challenge, we used

random under sampling (RUS) to create different copies of balanced sample sets.

Ensemble classifiers were trained from balanced sample sets to build classifiers

for readmission prediction. conversion.

Secondly, we carry out systematic studies to understand data statistics for

United States nationwide hospital admission, and further designs a machine

learning framework for disease-specific 30-day hospital readmission prediction.

We identified factors related to three key party of the hospital remissions: pa-

vi



tient, disease, and hospitals, and reported national scale hospital admission

statistic. Based on the data statistics, we created 526 features with five ma-

jor types, including demographics features, admission and discharge features,

clinical features, disease features, and hospital features. We collected six dis-

ease specific readmission datasets, which reflect the top six leading diseases of

death. By using random under sampling and ensemble learning, combined with

soft vs. hard voting and four types of machine learning methods, including

gradient boosting, decision tree, logistic regress, and random forests, our exper-

iments validate three major type of settings: (1) hard voting vs. soft voting,

(2) random under sampling, and (3) disease specific readmission prediction..

• We introduce a unique federated learning approach designed specifically to ad-

dress the data privacy and locality of health data. We propose a dynamic node

matching method for federated learning. We argued that neural networks are

inherently non-transparent and unstable, and the same network structure may

end up with very different weight values, even with the same training data

and same parameter settings. Traditionally, existing methods, such as FedAvg,

force neurons across sites to be matched with predefined order, and use fixed

matching nodes during the FL learning process. Alternatively, we proposed a

dynamic node alignment, FedDNA, approach which dynamically finds matching

nodes across sites, and uses matched nodes to calculate weight for FL learning.

FedDNA represents each neuron as a vector, using their weight values, and cal-

culate distances between neurons to find matching nodes. Meanwhile, because

finding marching nodes are computationally expensive, we proposed a minimum

spanning tree (MST) based approach to speed up the matching, with matched

nodes across all sites being linked by using an MST tree. So the matching

process is simply the MST tree growing process.

• In order to address the labeling challenges in health care data analysis, we pro-
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pose a locality-customized GSA Federated Active Learning (LG-FAL) method

for federated active learning. LG-FAL combines locality-customized active

learning and Gravitational Search Algorithm (GSA) in a collaborative and ef-

fective way. In locality-customized active learning, both the local model as well

as the global model are taken into consideration when annotating local sam-

ples, in which each data’s overall uncertainty is a combination of both the local

model’s prediction entropy and the global model’s prediction entropy. In GSA

federated learning, global model parameter aggregations are achieved by GSA

which is empowered with higher adaptability with a set of parameters to allow

clients to move freely towards areas of high fitness calculated based on their

masses (accuracy).
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CHAPTER 1

INTRODUCTION

In recent years, the field of health data analytics has emerged as a crucial and rapidly

evolving domain in healthcare research and practice. This surge of interest in health

data analytics can be attributed to several key factors, each of which underscores its

growing significance in the healthcare landscape. Firstly, there has been a remarkable

increase in the popularity and accessibility of electronic health data. The digitization

of health records, diagnostic tests, patient histories, and treatment outcomes has

transformed healthcare into a data-rich industry. This shift has been facilitated by

the widespread adoption of electronic health record (EHR) systems in healthcare

institutions worldwide [28, 56, 104]. The wealth of digital health data generated on

a daily basis provides a unique opportunity to harness the power of data analytics

for improving patient care, optimizing healthcare operations, and advancing medical

research.

Secondly, the escalating costs of healthcare systems, particularly in the United

States and across the globe, have spurred a critical need for more efficient, cost-

effective, and data-driven approaches to healthcare delivery. The unsustainable rise

in healthcare expenditures, driven by factors such as an aging population, chronic

diseases, and expensive medical technologies, has necessitated innovative strategies

to reduce costs while maintaining or even enhancing the quality of care. Health data

analytics offers promising solutions to address these challenges by enabling predic-

tive modeling, resource allocation optimization, and the identification of cost-saving

opportunities [64, 86, 91]. Thirdly, the advent of advanced techniques and systems

empowered by data science and analytics has ushered in a new era of possibilities for
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healthcare. Numerous companies, both established healthcare providers and innova-

tive startups, have heavily invested in healthcare data science technologies. These

investments have given rise to cutting-edge tools and platforms for health analytics,

ranging from artificial intelligence and machine learning algorithms to data-driven

decision support systems, as shown in Fig. 1.1. This flourishing ecosystem of data-

driven solutions holds immense potential to revolutionize healthcare delivery, enhance

patient outcomes, and drive evidence-based medical advancements.

Figure 1.1: U.S. Digital Health Funding and Deal Size [18]

The successful analysis and utilization of healthcare data are contingent upon the

integrity and quality of the data itself. Data bias, stemming from factors such as

uneven data collection, skewed representation, and systemic inequalities in health-

care access, can introduce distortions into the analysis, leading to inaccurate predic-

tions and biased decision-making [10, 74, 102]. Simultaneously, the sensitive nature

of healthcare data, laden with personal and confidential information, necessitates

stringent privacy safeguards to protect patient rights. The imperative to strike a

delicate balance between data utility and individual privacy adds complexity to the

already intricate landscape of healthcare data analysis [17, 70, 70, 79]. Furthermore,

data scarcity remains a significant hurdle in healthcare analytics. While the potential

for data-driven advancements is vast, healthcare datasets are often limited in size,

diversity, and quality. This scarcity poses a substantial obstacle to the development
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and validation of robust predictive models and data-driven interventions.

Learning tasks regarding with data bias, data privacy as well as data scarcity in

health care data analysis are fundamental, but challenging, which have also received

continuous attention in the research field. This thesis focuses on health data analysis

and explores approaches to tackle the above challenges. Many researches also pro-

posed to use a variety of prediction models, such as support vector machines [21] and

neural networks [13] to enable better health data analysis. While numerous existing

methods or models excel in this area, they may overlook at least one of the following

challenges or scenarios.

1.1 SAMPLE BIAS AND SPECIFICITY IN HEALTH DATA

Sample bias and specificity within health data have emerged as pivotal concerns

that demand rigorous investigation [87]. Sample bias refers to a phenomenon where

datasets used to train a predictive model have a biased class distribution. In many

health care cases, one type of samples (i.e. positive class) are significantly less than

other types of samples. This is partially caused by the reality that disease samples

are only a small percentage of the whole population, and naturally results in the class

imbalance. Learning models with imbalanced class distributions is defined challenge,

because most algorithms are affected by frequency bias and pay more attention to

majority class samples [43]. Sample bias tends to force the classifier to classify all

samples as normal, in order to satisfy the defined objective function, such as mini-

mizing the classification errors [16]. Common solutions are to re-balance samples in

different classes, by manipulating data populations (sampling approaches) or clas-

sification outcomes (cost-sensitive learning). Sample specificity in health data, on

the other hand, is associated to the sample distributions (or independent variables).

At population level, data analysis might be collected from a local/regional hospital,

where the demographics of the patient body naturally introduce bias. At individual
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level, when collecting data for each patient, the hospital visits used to characterize

the patient may also introduce bias. At the ministration level, regularization also

impose restriction for data sharing across hospitals, making it difficult to learn good

models from local data [68, 96]. The landscape of health data, both in its richness

and complexity, is characterized by the interplay of various factors such as patient

demographics, healthcare access, geographic disparities, and clinical practices. Con-

sequently, the inherent biases and limitations within these datasets can significantly

influence the validity and generalizability of findings derived from them.

While many methods exist to tackle the above challenges in health data analysis,

some major questions in the field still need to be better addressed. (1) First of all,

the the positive class are a small portion of the total hospital visits, representing a

severe class imbalance problem for learning; (2) Secondly, for each type of disease,

their causes are different, leading to variance in disease characteristics. Such distinc-

tions can further result in patient, in-hospital treatment and discharge gap, reflected

by unique patient features for each disease. How will demographic information, such

as gender, age, geographic, impact on disease prediction? Is the prevalence of certain

diseases or conditions vary widely across populations? Many methods are available

for prediction, but no existing research has provided clear answer to the above ques-

tions. (3) Thirdly, health data analysis is a compound outcome of many factors,

including patient, disease, care providers etc. Datasets that do not account for these

factors may fail to capture the full picture of health disparities. (4) Fourthly, health

data analysis is essentially data driven, where features and samples are the key to

ensure model performance. While many methods have been using a wide variety of

patient treatment data, such as patient blood tests, nutritional factors [31], treatment

etc, the data privacy and the Health Insurance Portability and Accountability Act

(HIPAA) [22] limit sensitive features to be used in general analysis setting.

Motivated by the above challenges, in this research, we conduct a comprehensive

4



exploration of the twin phenomena of sample bias and specificity in health data . We

first design an imbalanced learning strategy to predict patient readmission possibility

with National Readmission Databases (NRD). We use a random sampling approach

to balance the sample distributions in the training set. By implementing random

sampling, it helps ensure that our training dataset is representative of the overall

population, which is crucial because biased or non-representative samples can lead to

poor model performance. By randomly selecting data points, we are able to reduce

the risk of introducing bias into our training set. In addition, overfitting can be

reduced which occurs when a model learns to perform well on the training data but

fails to generalize to unseen data. We create features from patient hospital visit,

by combining patient demographic information, ICD-10 clinical modification (CM)

and procedure codes (PCS), and Clinical Classification Software Refined (CCSR)

conversion. Instead of directly using ICD-10- CM/PCS code to characterize patients,

we convert each patient’s visit to CCSR code space with a smaller feature space. To

better capture the sample bias and specificity problem, we use National Readmission

Databases (NRD), with over 15 million hospital visits, as our testbed, and report

national scale hospital admission statistics, including readmission rate differences with

respect to different demographic and hospital factors, such as gender, age, payment

type, hospital profile, and disease types. After that, we create six disease specific

readmission tasks for Cancer, Heart disease, Chronic obstructive pulmonary disease

(COPD), Diabetes, Pneumonia, and Stroke. Random under sampling and ensemble

learning, including hard-voting and soft-voting, are used to train models for disease-

specific readmission prediction.

1.2 DATA PRIVACY AND LOCALITY IN HEALTH DATA

As the healthcare industry reaps the benefits of data revolution from the digitiza-

tion of health records, the proliferation of wearable devices, and the emergence of
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telemedicine etc, it simultaneously faces profound challenges in safeguarding the pri-

vacy, confidentiality and data locality of sensitive health information. Data privacy

and locality in health data refers to the protection of individuals’ personal health

information from unauthorized access, disclosure, or misuse. It encompasses the

principles and practices that ensure the confidentiality, integrity, and security of sen-

sitive health-related data. This type of data includes but not limited to personal

identifiable information, medical records, biometric data. The adoption of electronic

health records enables health care professionals to disseminate knowledge across all

sectors of health care, which in turn helps to reduce medical errors and improve pa-

tient care and satisfaction. However, as mentioned previously, adequate medical data

sets are difficult to obtain. However, in order to capture the subtle relationships

between disease patterns, socioeconomic and genetic factors, and complex and rare

cases, exposing the model to different cases is critical. FL is able to address this

issue by enabling the distributed training of machine learning models using remotely

hosted datasets without the need to accumulate data and therefore compromise the

data privacy [10,17, 70,70,74,79, 102].

FL enables devices to collaboratively learn shared predictive models while keeping

all training data on-device, decoupling the power of machine learning from the need

to store data in the cloud. This goes beyond using native models to make predictions

on mobile devices and also brings model training to the device. Recently, other weight

aggregation methods have also been proposed in FL. For example, anomaly score of

each client is taken into consideration to detect abnormal client behavior, thus, clients

will not contribute equally when global model updates the weight values, the majority

of those novel methods are still based on FedAvg [36, 59]. Even though this method

is widely used and has been proved with good prediction performance [34,90], due to

the nature of hidden layers in deep learning neural networks, we can clearly observe

that this method manually forces weight aggregations between neurons located at
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the exact same location (i.e., same layer and same node index) of two networks.

However, when training two same-structured deep learning networks NA and NB,

even they are given the same input, neurons at the same location of the two networks

do not always give the same update. In other words, certain property of the input

(or the same instance) may trigger the most significant activation to the i-th node of

NA, but same instance may triger the most significant activation to the j-th node of

NB. Meaning that same instance responds differently for the same lactation nodes

between two networks.

In our research, we present a novel federated learning method specifically tai-

lored to the intricacies of health data. We delineate the pressing need for inno-

vative solutions in health data analytics, underscore the limitations of traditional

data-sharing approaches, and provide a glimpse into the potential benefits of our pro-

posed novel federated learning method. We aim to design a dynamic node matching

method, FedDNA, to aggregate weight values in each round based on a neuron-

distance method, in which neuron distances across all the clients are calculated after

each client completes training the model parameters with their own data. After that,

the closest neurons are matched to calculate their average weight values as new pa-

rameter for the global model.

1.3 LABEL COST AND SCARCITY IN HEALTH DATA

To harness the full potential of health data for tasks like disease prediction, drug

discovery, and personalized treatment, robust machine learning models are essential.

However, these models typically demand vast quantities of labeled data for training.

In the field of healthcare, acquiring accurate and high-quality labels is a complex,

resource-intensive, and sometimes elusive endeavor. Label cost and scarcity in health

data refer to the challenges associated with obtaining and using labeled data for ma-

chine learning and data analysis tasks in the healthcare domain. These challenges
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are particularly prominent in the field of healthcare due to the unique characteristics

of health data and the stringent requirements for data quality and privacy. Label

cost refers to the resources, time, and effort required to manually annotate or label

data points. In the context of health data, this process often involves healthcare

professionals or domain experts reviewing and providing accurate labels for medical

records, images, or other health-related information [7, 80, 99]. Labeling can be ex-

pensive, as it may require the expertise of qualified professionals and rigorous quality

control measures to ensure the accuracy and relevance of data. The cost of labeling

can also include considerations related to data privacy and compliance with regula-

tions such as HIPAA (Health Insurance Portability and Accountability Act) in the

United States. In addition, label scarcity arises when there is a limited availability

of labeled data for a specific healthcare task or research problem. This scarcity can

stem from various factors, including the difficulty of obtaining consent from patients

for data usage, the need for domain expertise in labeling, or the sheer volume of data

required for training machine learning models effectively. In many healthcare appli-

cations, labeled data is a precious resource, and there may be insufficient quantities

of labeled examples to build robust and accurate models, especially for rare medical

conditions or emerging diseases [7, 82, 85, 88].

Recently, Active Learning (AL) has emerged as a machine learning method that

can effectively address data annotation workloads [78, 84]. Its main strategy is to

iteratively find the most informative data points to annotate. The annotated data

are then used as part of the training data in the next iteration. With more and

more iterations, the machine learning model’s performance can be more and more

improved. This strategy has been integrated into federated learning and generated

a new paradigm called Federated Active Learning (FAL) [8, 55, 72, 100]. The FAL

framework consists of several clients and one central server. Each client holds one

labeled dataset and one unlabelled dataset, which can not be shared with others.
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The server holds a test dataset that can be shared with all clients. The goal of FAL

is to train a globally optimized model at the server by annotating informative data

samples at the clients. FAL framework is trained in an iterative manner. In one iter-

ation, each client first trains a local model with annotated data. And then, the local

parameters are transmitted to the server. The server synthesizes local parameters

into a global model. With more and more iterations, more and more data will be

annotated and the global model can be improved. However, in most FAL, local un-

labelled samples are annotated by the aggregated global model’s parameters [50]. Its

global model parameter updating is limited to one method, which is called Federated

average (FedAvg) [7, 8, 67, 69].

In order to address the labeling challenges in health care data analysis, we pro-

pose a locality-customized GSA federated active learning (LG-FAL) method which

strategically selects the most informative data points for labeling, holds the potential

to mitigate label cost and scarcity challenges. In this design, the algorithm takes the

local model into consideration aside from the global model when annotating. As for

model parameters update, global model parameter aggregations are achieved by GSA

which draws inspiration from the law of gravity and the interactions between celestial

bodies.

1.4 THESIS ORGANIZATION

Fig. 1.2 shows the thesis organization. Three health data analysis problems are

studied in this thesis which are elaborated in chapters 3, 4, 5 and 6, respectively. For

each research problem, respective data are experimentally studied and experimental

results demonstrate our proposed methods.

More specifically, we organize the thesis as follows. Chapter 2 briefly describes the

background including related work about health data analysis and preliminary knowl-

edge for our proposed methods. Chapter 3 emphasizes the problem of the sample bias

9



Figure 1.2: The studied learning problems and their organization. 1) Chapter 1 gives a

general description of the studied problems with highlighted contributions. 2) Charter

2 introduce relevant backgrounds about related work and preliminary knowledge.

3) Chapter 3 studies the imbalanced learning for hospital readmission prediction

problem. 4) Chapter 4 studies the ensemble learning for disease-specific readmission

prediction problem. 5) Chapter 5 studies federated learning using dynamic node

alignment . 6) Chapter 6 studies active learning using locality-customized GSA. 7)

Finally, chapter 7 concludes the thesis and discusses future directions.

problem for hospital readmission prediction, and proposes a imbalanced learning al-

gorithm as a solution. Chapter 4 emphasizes the sample specificity, formulates the

nationwide hospital disease-specific readmission prediction problem and proposes an

ensemble learning approach. In chapter 5, we focus on the data privacy and locality

challenge and propose a novel federated learning node alignment approach. In chap-

ter 6, we consider the data label cost and scarcity and propose a localized federated

learning method. Finally, we conclude the contribution and discuss future directions

in charter 7.

Chapter 2: Background
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This chapter first presents related work about imbalanced learning for hospital read-

mission prediction. Then, we also present related work about hospital disease-specific

30-day readmission prediction. Finally, preliminary knowledge are briefly described

about federated learning using dynamic node alignment and federated active learning

respectively.

Chapter 3: Imbalanced Learning for Hospital Readmission Prediction

In this chapter, we propose to use imbalanced learning for hospital readmission pre-

diction. The goal is to predict whether a patient, based on his/her current hospital

visit records, is likely going to be re-admitted or not within 30-days after being dis-

charged from the current hospital visit. We design an imbalanced learning strategy to

create features from patient hospital visit, by combining patient demographic infor-

mation, ICD-10 clinical modification (CM) and procedure codes (PCS), and Clinical

Classification Software Refined (CCSR) conversion. Instead of directly using ICD-10-

CM/PCS code to characterize patients, we convert each patient’s visit to CCSR code

space with a smaller feature space. By using random sampling approach to balance

the sample distributions in the training set, our method achieves good performance

to predict patient readmission.

Chapter 4: Ensemble Learning for Disease-specific Readmission Predic-

tion

In this chapter, we use National Readmission Databases (NRD), with over 15 million

hospital visits, as our testbed, and report national scale hospital admission statis-

tics, including readmission rate differences with respect to different demographic and

hospital factors, such as gender, age, payment type, hospital profile, and disease

types. After that, we create six disease specific readmission tasks for Cancer, Heart

disease, Chronic obstructive pulmonary disease (COPD), Diabetes, Pneumonia, and

Stroke. Random under sampling and ensemble learning, including hard-voting and
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soft-voting, are used to train models for disease-specific readmission prediction.

Chapter 5: Federated Learning Using Dynamic Node Alignment

In this chapter, we aim to design a dynamic node matching method, FedDNA, to

aggregate weight values in each round based on a neuron-distance method, in which

neuron distances across all the clients are calculated after each client completes train-

ing the model parameters with their own data. After that, the closest neurons are

matched to calculate their average weight values as new parameter for the global

model. The results show that dynamic node matching provides much smaller weight

variance across all nodes of different networks. The advantage of reducing variance

is that it allows nodes with similar behaviors to be aggregated for weight averaging.

This potentially results in stable and improved federated learning performance.

Chapter 6: Active Learning Using Locality-customized GSA

In this chapter, we propose a locality-customized GSA federated active learning (LG-

FAL) method. We propose a new annotating strategy that considers both local and

global optimization. By doing so, the localization of samples and models can be

considered. We propose to update the global model parameters with GSA, in which

the model is updated in a more interactive and adaptable way. We design extensive

experiments to validate the proposed methods with different parameter settings and

comparisons.

Chapter 7: Conclusion and Future Directions

In this chapter, we summary our contributions for health care data analysis and their

applications. We also discuss some future research directions.
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1.5 DISSERTATION CONTRIBUTION

In summary, our major contributions in this dissertation are demonstrated in the

following aspects:

• To tackle data bias and specificity problem, we first conduct a comprehensive

exploration of the twin phenomena in health data with National Readmission

Databases (NRD). We first propose to use imbalanced learning for 30-day hospi-

tal readmission prediction. The main goal is to predict, at the time of a hospital

discharge, whether the patient may return in 30 days or not in the future. We

created a set of features, using simple patient demographics, ICD-10 clinical

modification (CM), and Clinical Classification Software Refined (CCSR) con-

version, to represent each hospital visit. Because patient readmission is only a

small portion of all patient visits, the machine learning task is severely chal-

lenged by the imbalanced class distributions. To solve the challenge, we used

random under sampling (RUS) to create different copies of balanced sample sets.

Ensemble classifiers were trained from balanced sample sets to build classifiers

for readmission prediction. conversion.

Secondly, we carry out systematic studies to understand data statistics for

United States nationwide hospital admission, and further designs a machine

learning framework for disease-specific 30-day hospital readmission prediction.

We identified factors related to three key party of the hospital remissions: pa-

tient, disease, and hospitals, and reported national scale hospital admission

statistic. Based on the data statistics, we created 526 features with five ma-

jor types, including demographics features, admission and discharge features,

clinical features, disease features, and hospital features. We collected six dis-

ease specific readmission datasets, which reflect the top six leading diseases of

death. By using random under sampling and ensemble learning, combined with
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soft vs. hard voting and four types of machine learning methods, including

gradient boosting, decision tree, logistic regress, and random forests, our exper-

iments validate three major type of settings: (1) hard voting vs. soft voting,

(2) random under sampling, and (3) disease specific readmission prediction..

• We introduce a unique federated learning approach designed specifically to ad-

dress the data privacy and locality of health data. We propose a dynamic node

matching method for federated learning. We argued that neural networks are

inherently non-transparent and unstable, and the same network structure may

end up with very different weight values, even with the same training data

and same parameter settings. Traditionally, existing methods, such as FedAvg,

force neurons across sites to be matched with predefined order, and use fixed

matching nodes during the FL learning process. Alternatively, we proposed a

dynamic node alignment, FedDNA, approach which dynamically finds matching

nodes across sites, and uses matched nodes to calculate weight for FL learning.

FedDNA represents each neuron as a vector, using their weight values, and cal-

culate distances between neurons to find matching nodes. Meanwhile, because

finding marching nodes are computationally expensive, we proposed a minimum

spanning tree (MST) based approach to speed up the matching, with matched

nodes across all sites being linked by using an MST tree. So the matching

process is simply the MST tree growing process.

• In order to address the labeling challenges in health care data analysis, we pro-

pose a locality-customized GSA Federated Active Learning (LG-FAL) method

for federated active learning. LG-FAL combines locality-customized active

learning and Gravitational Search Algorithm (GSA) in a collaborative and ef-

fective way. In locality-customized active learning, both the local model as well

as the global model are taken into consideration when annotating local sam-

ples, in which each data’s overall uncertainty is a combination of both the local
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model’s prediction entropy and the global model’s prediction entropy. In GSA

federated learning, global model parameter aggregations are achieved by GSA

which is empowered with higher adaptability with a set of parameters to allow

clients to move freely towards areas of high fitness calculated based on their

masses (accuracy).
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CHAPTER 2

RELATED WORK

This chapter first presents related work about sample bias and specificity in health

data. Then, we also present related work about health data privacy and locality.

Finally, preliminary knowledge are briefly described about label cost and scarcity for

heath data.

2.1 SAMPLE BIAS AND SPECIFICITY IN HEALTH DATA

Recently there have been many models built through machine learning methods to

tackle data bias as well as specificity and provide corresponding results and sug-

gestions [42, 45, 103]. Logistic Regression is a popular model in medical prediction

fields [87]. In addition, many researches also proposed to use a variety of prediction

models, such as support vector machines [21] and neural networks [13]. Sampling

approaches change data distributions to balance samples in different groups in order

to tackle the data imbalance challenge. Common sampling solutions are to either

drop majority class samples, repeat samples from minority class, or create synthetic

samples for minority class [16, 43]. A research study [52] using Medical Information

Mart for Intensive Care III (MIMIC-III) database [51] shows that, by using undersam-

pling, their model achieves 0.642 AUC score for ICU patient readmission. Another

study [9] investigates RUS sampling and five supervised learning methods, decision

trees, naive bayes, logistic regression, neural networks, and support vector machines

(SVM) for risk modality and hospital readmission prediction. The results show that,

overall, neural networks achieve best performance for both risk modality and hospital
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readmission prediction. A novel approach is introduced to mitigate bias in electronic

health records (EHR) research. The study proposes a cohort design methodology

combined with natural language processing techniques to improve the quality and

reliability of research conducted using EHR data. By systematically addressing is-

sues related to data bias, missing information, and data quality, this approach aims

to enhance the accuracy of insights drawn from EHRs, ultimately contributing to

more robust and unbiased healthcare research, which is crucial for informed decision-

making and improved patient care [54]. Authors examine the impact of COVID-19

victimization distress and racial bias on the mental health of young adults from di-

verse racial backgrounds, including American Indian/Alaska Native (AIAN), Asian,

Black, and Latinx individuals. The study explores how the experiences of distress

related to COVID-19 and racial bias contribute to variations in mental health out-

comes within these communities. The findings of this research provide insights into

the complex interplay between pandemic-related stressors and racial bias, shedding

light on the unique mental health challenges faced by young adults from different

racial and ethnic backgrounds in the context of the COVID-19 pandemic [37].

Racial bias in the patient descriptors within electronic health records (EHRs)is in-

vestigated [89]. The study focuses on identifying the presence of negative descriptors

related to race or ethnicity in these records. The authors analyze a range of pa-

tient characteristics documented in EHRs, highlighting instances where racial bias is

evident. Their findings shed light on the persistence of racial biases in healthcare doc-

umentation, which can contribute to disparities in patient care and outcomes. This

study underscores the need for greater awareness and efforts to address racial bias in

healthcare data to promote equity and fairness in healthcare delivery. In addition,

using AdaBoost to change the weight of instances for learning results in 3% and 6%

improvement for readmission and mortality predictions, respectively. Using SMOTE

to generate synthetic instances to balance positive and negative samples for 30 day
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readmission prediction has been studied [83] by using a UCI hospital readmission

dataset [93]. The experiments show exceptionally higher AUC values (0.974) than

results from other studies (normally around 0.7 AUC range). One possible reason

is that UCI readmission dataset has a relatively balanced sample distributions be-

cause 11.2% samples belong to positive class (readmission), whereas in other dataset,

such as National Readmission Database [5], the positive ratio is much smaller. By

using different sampling approaches, including RUS, ROS, and ROSE, a method [30]

comparatively studies the three methods using UCI readmission dataset [93], using

different classifiers, such as SVM, random forest, gradient boosting, and regression

and partition trees. The results show that ROSE is significantly worse than other ap-

proaches (including original data without any sampling). In addition, RUS and ROS

have comparable performance, and both frequently outperform models trained from

original imbalanced dataset. A readmission prediction algorithm Joint Imbalanced

Classification and Feature Selection (JICFS) is proposed to construct the loss func-

tion and applied sample weight to handle class-imbalance problem [35]. Researchers

propose a novel approach for bearing fault diagnosis. They introduce a multitasking

intelligent system that utilizes representation learning techniques to address the chal-

lenges posed by imbalanced datasets common in real-world bearing fault data. By

integrating multiple tasks into their model, they achieve improved diagnostic accu-

racy and robustness, even in scenarios where data samples for different fault classes

are unevenly distributed. The paper presents a promising advancement in the field of

intelligent fault diagnosis, particularly in situations where imbalanced data is a sig-

nificant concern, offering potential benefits for various industrial applications reliant

on machinery health monitoring and maintenance [106].
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2.2 DATA PRIVACY AND LOCALITY IN HEALTH DATA

Common approaches to tackle data privacy and locality are to employ ensemble learn-

ing or federated learning [60]. The former trains multiple models from local datasets

and combine them for prediction, whereas the latter trains one model from multiple

decentralized/localized datasets. Ensemble learning combines multiple base mod-

els for prediction. Typical approaches include bagging, boosting, and stacking [71].

Bagging trains base models separately (often in parallel), and then combines them

using weighted (or unweighted) majority voting. Boosting, on the other hand, trains

base models in a sequential and progressive manner, so a later trained base model

is improved based on an earlier trained base model. Stacking is a meta learning

approach, which uses base classifiers to generate outputs, and then retrains another

model from the outputs for prediction. In [108], a localized sampling approach is

proposed to allow sampling process to focus on instances difficult to classify. By

using localized sampling to generate balanced datasets, this approach is validated

using data collected from several South Florida regional hospitals. A joint ensemble-

learning model [105] combines weight boosting algorithm with stacking algorithm,

and compares three major baseline (1) the LACE index, (2) RandomForest-Lasso-

SMOTE, and (3) SMOTE (which uses SMOTE to replace bagging for data samping)

on national Hosptial Quality Monitoring System (HQMS) database (including 651,816

records after data processing). The results show that LACE (which is commonly hos-

pital score systems) has the least performance, confirming that machine learning is

useful for hospital readmission prediction. Meanwhile, bagging with weight boosting

and stacking shows clear benefits on high dimensional medical data with imbalance

class distributions and imbalanced misclassification costs.

A research [17] proposes to use federated learning to build a global model to

predict hospitalizations due to heart diseases using patient electronic health records

(whether a patient will be hospitalized within one or two years, prior to the time
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of prediction). A FL-based privacy-aware and resource-saving collaborative learning

protocol was introduced in [40] for an EHR analysis management system working

with multiple hospital institutions and cloud servers, where each hospital runs neu-

ral network models with its own EHR with the help of cloud computing. In ad-

dition, an FL-based approach was proposed to predict hospitalizations in patients

diagnosed with heart disease using their historical EHR. More specifically, health

data from an EHR system consisting of patient smartphones and distributed hospi-

tals is trained locally on demographic information such as age, gender and physical

characteristics [17]. [29] proposed a FLT scheme for wearable health monitoring, in

which smartphones and cloud servers cooperated to train and share CNN model for

the identification of privacy-conscious human activities. A disease prediction method

using FL with a large national health insurance data set of 99 medical sites (such as

hospitals and clinical laboratories) distributed across 34 states in the United States

is studied [61]. The data included EHR for diabetes, psychological disorders, and is-

chemic heart disease. The FL approach achieves competitive performance in terms of

high accuracy and privacy by comparing with traditional methods such as centralized

learning and local training without federation. also builds a FL-based health mon-

itoring solution for analyzing patient outcomes from distributed hospital networks.

Interestingly, each hospital created an entity called the Personalized Treatment Ef-

fect Estimator. Each estimator can be classified in each subgroup, where individual

treatment outcomes include outcomes of patient characteristics, and site indicators

are used to estimate overall treatment outcomes coordination sites [92]. LoAdaBoost

FedAvg is proposed to achieve higher model prediction accuracy on distributed in-

tensive care data, in which local models with a high cross-entropy loss were further

optimized before model averaging on the server [48]. Federated-Autonomous Deep

Learning (FADL) is designed to update global model by training part of the model

using all data sources in a distributed manner while the rest of the model is trained
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with data from specific data sources [62]. When it comes to IID data, Haddadpour

and his colleagues introduce a framework called federated averaging with compression

(FedCOM), which the global model is decided not only by the update by the average

of all clients’ training results, but also determined by the previous global model [39].

2.3 LABEL COST AND SCARCITY IN HEALTH DATA

Recently, Active Learning (AL) has emerged as a machine learning method that

can effectively address data labeling workloads and label scarcity [78, 84]. Its main

strategy is to iteratively find the most informative data points to annotate. The

annotated data are then used as part of the training data in the next iteration. With

more and more iterations, the machine learning model’s performance can be more

and more improved. This strategy has been integrated into federated learning and

generated a new paradigm called Federated Active Learning (FAL) [8,55,72,100]. The

FAL framework consists of several clients and one central server. Each client holds one

labeled dataset and one unlabelled dataset, which can not be shared with others. The

server holds a test dataset that can be shared with all clients. The goal of FAL is to

train a globally optimized model at the server by annotating informative data samples

at the clients. FAL framework is trained in an iterative manner. In one iteration, each

client first trains a local model with annotated data. And then, the local parameters

are transmitted to the server. The server synthesizes local parameters into a global

model. After that, the global model is sent to each client to annotate several unlabeled

data with the highest informativeness. The labeled dataset is extended by merging the

previously labeled dataset and the newly annotated dataset. In the next iteration, new

local models are trained with the new labeled dataset. With more and more iterations,

more and more data will be annotated and the global model can be improved.

A novel approach is designed to improve the classification accuracy of waste and

natural disaster images using a combination of Active learning and Federated learn-
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ing techniques. The approach utilizes Active learning to select the most informative

and relevant data samples for labeling, reducing the labeling workload. These labeled

samples are then utilized in a Federated learning setting, where multiple devices

collaborate to train a shared model without sharing raw data centrally, which effec-

tiveness has been demonstrated in achieving higher classification accuracy compared

to traditional federated learning approaches [7]. A novel annotation strategy to en-

hance Federated Learning (FL) by leveraging the concept of active learning, F-AL,

is proposed. to address the challenge of limited annotated data in FL scenarios. By

incorporating active learning techniques, F-AL aims to intelligently select and query

the most informative data samples from each client’s local dataset, reducing the

annotation burden and improving the performance of the global model. The paper

presents the evaluation of F-AL, highlighting its potential benefits in promoting more

effective and privacy-preserving FL implementations [8]. A semi-supervised and per-

sonalized framework that combines active learning and label propagation techniques

is proposed. In this method, leverages unlabelled data from individual clients in the

federated environment to enhance the activity recognition process. Active learning

is used to intelligently select the most informative samples for labeling, reducing the

labeling effort while improving the model’s accuracy. Label propagation is then em-

ployed to propagate the labeled data across clients, allowing the global model to be

personalized for each client’s unique activity recognition requirements. The results

demonstrate the superiority of the semi-supervised and personalized approach, high-

lighting its potential to achieve more accurate and personalized activity recognition

in a federated setting [73].

Federated Active Learning with a focus on inter-class diversity is explored by

introducing novel methodologies to improve the performance of Active learning in

a Federated learning setting. By taking into account the diversity among different

classes of data, the authors propose innovative techniques that enhance the selection

23



of informative samples for labeling during the active learning process. This approach

is aimed at improving the overall performance of the federated learning model while

reducing the labeling effort required from individual clients [55]. A novel frame-

work for enhancing intrusion detection in Zero-Trust Security Models (ZSM) using

federated learning and semi-supervised active learning techniques is created, which

incorporates semi-supervised active learning to optimize the model by selectively la-

beling the most informative data samples, thus reducing the reliance on fully labeled

data. The paper highlights the effectiveness of this combined approach in improving

intrusion detection performance and addresses challenges related to data privacy and

isolation in ZSM environments [69]. Wu Xing, et al, propose a framework that com-

bines Federated Learning and Active Learning to improve disease diagnosis accuracy

while preserving data privacy in a multi-center scenario. Federated Learning enables

multiple medical centers to collaborate and train a shared model without sharing

raw patient data. Active Learning is incorporated to intelligently select the most

informative and relevant data samples from each center for labeling, reducing the

need for extensive labeled data. It is evaluated on a multi-center dataset, showcas-

ing its effectiveness in achieving higher diagnostic accuracy compared to traditional

methods [100].
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CHAPTER 3

IMBALANCED LEARNING FOR HOSPITAL READMISSION

PREDICTION

A hospital readmission is defined as an admission where a patient previously dis-

charged from a hospital is being admitted to the same or a different hospital, within

a specific time interval such as 30 days or 90 days. The reasons behind a hospital

readmission often differ from patient to patient [57] and the readmission rates between

different medical institutions also vary significantly [107]. A readmission implies extra

costs to the stakeholders, adds financial burden to the patients and deteriorates their

life quality [19,94]. Hospital readmissions are also related to unsatisfying patient out-

comes and heavy financial burden to the healthcare system [11, 41, 58]. Preventable

readmissions can lead to almost $17 billion annual cost reduction [49]. Therefore, in

2012, a national Hospital Readmissions Reduction Program (HRRP) initiative started

to link the health care payment to the quality of hospital care, by reducing payments

to hospitals with excess readmissions and providing hospitals an incentive to improve

their care coordination in post-discharge planning. HRRP is established to penalize

hospitals with readmission rates exceeding the national average by a drop in their pay-

ments. It is expected that by implementing such a penalization, an improvement in

post-discharge communication and care to patients can be implemented by hospitals

and a reduction in readmissions can be expected [66].

Since 2012, many efforts have been taken, by hospitals, caregivers, and aca-

demics [2, 108], to reduce readmission. But unfortunately, after eight years, it is

observed that the “needle has not moved very far” [77]. In 2019, Medicare, under

the HRRP plan, cut payments to 2,853 hospitals. Among the 3,129 general hospitals
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which were evaluated in the HRRP program, 83% of them received a penalty [77].

The reduction of hospital readmission rate is of great significance to Medicare sys-

tem and the effective usage of health care resources. It is meaningful and important

to predict preventable hospital readmission earlier than it really happens. Intuitively,

this problem is equivalent to predicting the likelihood of a patient being readmit-

ted again in the defined time-frame, using patient’s current information, including

demographics, diagnose, treatment, etc.

In order to promote research and analysis of national readmission rates for all pa-

tients, a Federal-State-Industry partnership sponsored by the Agency for Healthcare

Research and Quality (AHRQ) published National Readmission Database (NRD) [4];

including patient level admission information from 2010 to 2017, regardless of the

expected payer for the hospital stay. The NRD database provides a powerful public

data source for readmission analysis, using all cause national scale patient level data

with demographics, hospital, and treatment/procedure information.

Motivated by the above observation, we propose to use imbalanced learning for

hospital readmission prediction. The goal is to predict whether a patient, based on

his/her current hospital visit records, is likely going to be re-admitted or not within

30-days after being discharged from the current hospital visit. The main challenge of

hospital readmission prediction is twofold:

• Challenge 1 : The readmission visits (i.e., the positive class) are a small portion

of the total hospital visits, representing a severe class imbalance problem for

learning

• Challenge 2 : Due to privacy and health regulation, the information available

for patient characterization is limited; and is often only limited to the payment

level information. However, there are over 80,000 procedures code, representing

a high dimensionality and high sparsity problem for learning.
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Motivated by the above challenges, in our research, we design an imbalanced

learning strategy to predict patient readmission possibility. For Challenge 1, we use a

random sampling approach to balance the sample distributions in the training set. By

implementing random sampling, it helps ensure that our training dataset is represen-

tative of the overall population, which is crucial because biased or non-representative

samples can lead to poor model performance. By randomly selecting data points,

we are able to reduce the risk of introducing bias into our training set. In addi-

tion, overfitting can be reduced which occurs when a model learns to perform well

on the training data but fails to generalize to unseen data. For Challenge 2, we

create features from patient hospital visit, by combining patient demographic infor-

mation, ICD-10 clinical modification (CM) and procedure codes (PCS), and Clinical

Classification Software Refined (CCSR) conversion. Instead of directly using ICD-

10- CM/PCS code to characterize patients, we convert each patient’s visit to CCSR

code space with a smaller feature space. Experimental results on NRD validate the

effectiveness of our method. Our contributions can be summarized below:

• We first implement feature engineering on National Readmission Database (NRD)

to create 16 features as a solution.

• We propose a imbalanced learning strategy, to tackle the data imbalance chal-

lenge in 30-day hospital readmission prediction.

• Experiments on NRD datasets demonstrate that our imbalanced learning ap-

proach achieves better performance.

3.1 THE PROPOSED METHOD

In this section, we present our proposed imbalanced learning algorithm for 30-day

hospital readmission prediction. Our learning objectives are to (1) capture the most

relevant and informative input feature by creating new features, modifying existing
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ones, and (2) enable imbalanced learning for 30-day hospital readmission prediction.

We will first present our feature engineering for hospital visit. Then we present our

imbalanced learning for readmission predictions.

3.1.1 Feature Engineering for Hospital Visit

National Readmission Database National Readmission Database (NRD) was first

created by the Agency for Healthcare Research and Quality (AHRQ) in 2015 to pro-

vide data support for analyses of national readmission rates and further promote the

quality of health care [45]. AHRQ is in the family of Healthcare Cost and Utilization

Project (HCUP); where a collection of longitudinal healthcare databases combined

with professional data analysis tools are provided in order to facilitate healthcare-

related policies improvement. The database contains both clinical and nonclinical

elements and collects around 18 million discharges in a year. In order to protect

patient privacy, no patient’s is recorded in a NRD file. The actual admitted date,

discharged date or any other content that may reveal personal information are coded

in a special format for the derivation of the gap between two visits of the same pa-

tient. Both single and repeated visits for patients are captured in the NRD database,

and patient revisits are linked through the “VLink” filed, as shown in Table 3.1. In

2016, the NRD database replaced the International Classification of Diseases, Ninth

Revision, Clinical Modification (ICD-9-CM) applied in version 2015 with the tenth

revision (ICD-10-CM/PCS) codes to represent clinical diagnosed and inpatient pro-

cedures [4]. ICD-10-CM/PCS codes are an American adopted version modified by

Centers for Medicare and Medical Services (CMS) and the National Center for Health

Statistics (NCHS), based on ICD-10, the statistical classification of disease published

by the World Health Organization (WHO). ‘CM’ in ICD-10-CM codes stands for

’Clinical Modification’. There are more than 72,000 ICD-10-CM codes in the 2016

NRD database. Each ICD-10-CM code consists of 3 to 7 characters and the main
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purpose is to enable healthcare institutions to have a better understanding on a pa-

tient’s medical conditions so that a more comprehensive and efficient treatment can

be provided to patients. ICD-10-PCS stands for an inpatient procedural system.

The intention of ICD-10-PCS codes is to provide insurance companies, healthcare

providers with specific and accurate patient medical records.

We chose to use the 2016 NRD database as the data resource for our research.

There are three files in the database. The first file is a Core file, in which every patient

is represented by a unique NRD-Visitlink. Each row encodes visit information for

every single patient visit including patient demographics. The second file, severity

file, contains supplementary data information for condition severity identification and

hospital. The third file, the level file, represents the information about hospitals to

which patients in Core file were admitted. For this paper, we mainly focus on data

analysis using the Core file. There are total 17,197,683 number of visits recorded in

the Core file, with each visit including 103 data elements recorded in 103 columns.

Table 3.1: Example to calculate readmission days

Visit Patient Visitlink LOS NRD DaysToEvent

1 112233 2 days 2679

2 112233 5 days 2691

3 112233 3 days 2789

3.1.1.1 Feature Engineering for NRD Database

The most important steps for successful data analysis are pre-processing data and

extracting critical features [63]. In the clinical field, these steps are especially sig-

nificant because medical data are inherently complex and contain a variety of data

fields with different ranges. For this reason, we first removed patients visit records

with outliers, which are marked as a special value in the database. After that, we
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normalized columns with large range, such as total charges, to a fixed range. This is

helpful to improve the performance of the final result.

In order to extra features for patient readmission prediction, we consider three

types of features, including (1) patient demographics, (2) patient admission and dis-

charge information, and (3) patient clinical information. Table 3.2 summarizes the

features created for readmission prediction.

Table 3.2: Features chosen for prediction

Feature Type Feature Description

Demographics

AGE Patient’s age

FEMALE Patient’s gender (binary, ‘1’ is female)

PAY1 Payment method

PL NCHS Patient’s location (based on NCHS Urban-Rural Code

ZIPINC QRL Estimated median house income in the patient’s zip

code

RESIDENT Patient’s local (binary, ‘1’ is the patient comes from

same state as hospital)

AWEEKEND Patient’s admission Day (binary, ‘1’ means the admis-

sion day is a weekend)

MONTH Patient’s discharge month

QUARTER Patient’s discharge quarter

DISPUNIFORM Disposition of patients

Admission and LOS Length of the hospital stay

Discharge ELECTIVE Binary, ‘1’ represents elective admission

Information REHABTRANSFER Binary, ’1’ is rehab transfer

WEIGHT Weight to discharges in AHA universe

TOTAL CHARGES Patient’s inpatient total charges

1st HOSPITAL VISIT Binary,’1’ means the first hospital visit

Clinical Informa-

tion

CCSR Code Clinical categories
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Patient Demographics and Admission Information For research purposes, the

patient demographics and medical records during patients hospitalization and dis-

charge information are key for readmission prediction. Data provided by demograph-

ics information about each participant, such as age and gender, are crucial in helping

us determine whether individuals in this study are representative samples of the tar-

get population. Analyzing demographics characteristics is a catalyst for exhaustive

medical policy enhancement.

In addition, patient admission and discharge information also play important roles

in determining the likelihood of a readmission visit in the future. For example, the

length of stay (LOS) of the current visit may imply the degree of illness (or severity

of the disease) with respect to the current visit. Take feature ‘DISPUNIFORM’ as

another example. It refers to the place where a patient is discharged, such as a

family with home care or a nursing center. This feature plays an important role in

readmission prevention.

Patient Clinical Information In addition to the patient demographics and admis-

sion information, we also consider patient clinical information which is encoded as

the ICD-10-CM code in the NRD database. For each patient visit, the ICD-10-CM

codes detail the diagnose and treatment carried out during the patient visit. One

essential challenge is that because ICD-10-CM are used for payment purposes and

include all disease types, the total number of unique ICD-10-CM is very large. There

are over 72,000 unique ICD-10-CM codes in the 2016 NRD database, making it highly

ineffective to directly use ICD-10-CM codes as features for learning.

In order to reduce the number of features reflecting the patient clinical informa-

tion, we convert the ICD-10-CM codes into Clinical Classification Software Refined

(CCSR) codes. CCSR is an aggregation version for ICD-10-CM and it can improve

the specificity of ICD-10-CM codes. Its utilization greatly improves the analysis on

health models including healthcare cost, efficiency, outcomes [3]. Figure 3.1 shows
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the distribution of total number of ICD-10-CM codes for each patient visit. The re-

sult indicates that the total amount of ICD-10-CM codes for per visit is concentrated

between 5 and 20. Figure 3.2 and Figure 3.3 represent the frequency distributions of

ICD-10-CM codes and CCSR codes respectively. Where the frequency of the codes

in the dataset are sorted in a log 10 scale descending order and the x-axis stands for

the rank order of the corresponding code. From these two figures, we can tell that

the frequency of both kinds of codes follows a negative exponential function.

After converting ICD-10-CM codes to CCSR codes, the number of features used

for patient clinical information is denoted by less than 500 unique CCSR codes, as

we will soon explain in Section Experiments.

Figure 3.1: Distributions of the number of ICD-10-CM codes in each visit. The x−axis

denotes the number of ICD-10-CM codes in a patient visit. The y−axis denotes that

for each x−axis value, the number of patient visits (frequency) with the specified

number of ICD-10-CM codes.

Readmission Labeling Protocol In order to generate class label for each patient

visit, we label each patient visit as a readmission or not a readmission, by using 30-day

as the criterion. Because our objective is to predict the possibility of a readmission

in the future, we employ the following labeling protocol. For two visits (Va and Vb) of

the same patient, if the admission of Vb happens within 30-day (inclusive) after the
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Figure 3.2: Distributions of ICD-10-CM codes across all patient visits in log-scale.

The x−axis denotes the ICD-10-CM codes ranked in a descending order according to

their frequency. The y−axis denotes the frequency of each code in log-scale.

discharge of Va, we label Va as a readmission visit (denoted by 1). Otherwise, Va is

labeled as not a readmission (denoted by 0). If the patient only have two visits Va

and Vb, then Vb will be labeled as not a readmission, because there is no succeeding

visit following Vb. Intuitively, if the prediction is accurate, for each current patient

visit, we will be able to estimate his/her readmission possibility in the future, when

discharging the patient from the current visit.

Because there is no exact date information for the admission and discharge date of

patient admissions, we need to calculate the gap (time period) between two admitted

dates before labelling. In the NRD database, they use NRD VisitLink to represent

patient, thus, privacy can be protected through this de-identified patient record.

Another feature used for privacy protection is NRD DaysToEvent, where the actual

patient admission date is substituted to a randomly chosen number (the main purpose

is to hide the actual admission/discharge date of each visit for privacy protection).

LOS stands for time duration a patient stays in the hospital after admission. Using

these three features we are able to label which visit is a readmission.

An example to calculate gaps between hospital visits and the corresponding labels
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Figure 3.3: Distributions of CCSR codes across all patient visits in log-scale. The

x−axis denotes the CCSR code ranked in a descending order according to their fre-

quency. The y−axis denotes the frequency of each CCSR code in log-scale.

are shown in Table 3.1 and Figure 3.4. In Table 3.1, a patient has three visit records

in the dataset. The time interval between visit 2 and visit 1 equals to the second

NRD DaysToEvent minus the first NRD DaysToEvent minus the first LOS. This is

2691 - 2679 - 2 = 10. For visit 3 and visit 2, the calculation is 2789 - 2691 - 5 = 93.

For visit links that appear more than once, if the time interval between two visits

is less than 30 days (inclusive), the earlier visit is label as ‘1’, which represents a

readmission. Therefore, we should label the first time visit as readmission and the

second as well as the third visits are labeled as not a readmission as showed in Figure

3.4. The reason why we do not label the second time as readmission is that the

purpose of our research is to predict whether there will be a possibility that a patient

will return to hospital in 30 days or not after being discharged. For those visit links

only appear once in the dataset meaning there exists no readmission for the patients,

the time interval is infinite and they are labelled as ‘0’.
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Figure 3.4: Temporal arrangement of patient visits for re-admission labeling (Based

on visits showing in Table II).

3.1.2 Imbalanced Learning for Readmission Predictions

Using feature engineering and labeling process, we are able to create a training dataset

with both features and labels, where each instance in the dataset represents a hospital

visit. This is a typical supervised learning task. Many leaning algorithms can be

applied to learn classifiers for prediction.

3.1.2.1 Class Imbalance

The final dataset for our research includes 300,000 rows representing 300,000 patient

visits, 498 columns of patient clinical features (CCSR code), 16 columns of patient

admission features, and one additional column denotes the label of the visit. Al-

though the number of features in this dataset is not particularly large, the data is

actually severely imbalanced. There are only 2,926 patients who conducted multi-

ple visits to hospitals, in which 2,851 patients were admitted into hospitals twice,

74 visited hospitals three times and only 1 patient visited 4 times. With respect to

the label part, only 881 visits are labelled as readmission and the rest 299,119 visits

are not readmission. Figure 3.5 and Figure 3.6 show the sample distributions of the

dataset. As a result, the ratio between readmission visits vs. not readmission visits is

around 1:340, meaning that positive samples (readmission visits) are less than 0.3% of

the whole training samples. This represents a well-known imbalanced learning chal-

lenge, because majority learning algorithms prefer an equal percentage of positive vs.
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negative samples for learning accurate classifiers.

Figure 3.5: Distributions of the number of hospital visit(s) of all patients. Out of all

300,000 hospital visits, only 2,851 patients have two more more visits. If a patient

only has one visit, the visit will be labeled as “no a readmission” (0).

Figure 3.6: Class distributions between 30-day re-admission visits (labeled as “1”)

vs. non 30-day re-admission visits (labeled as “0”. Overall, the re-admission visits

are less than 0.3% of the total hospital visits.

3.1.2.2 Imbalanced Learning

Severe class imbalance will deteriorate the performance of the learning algorithms, as

a result, the learning tends to be biased to the majority (negative) class samples, and

36



neglects the minority (positive) class. In our case, the positive samples (readmission

visits) are less than 0.3% of the whole population, so a classifier can predict all

instances to be negative and achieves 99.3% accuracy. This is, unfortunately, not

useful for readmission prediction.

To tackle the class imbalance, we employ a random under sampling based ap-

proach to generate different versions of relatively balanced training set, where each

training set contains a higher percentage of positive samples, compared to the pos-

itive/negative ratio in the original training set. More specifically, we applied a re-

peated k-fold cross-validation data frame in which re-sampling technique Random

Under Sampling was used. Repeated k-fold cross-validation is a re-sampling method

that repeatedly splits the dataset into k groups, and it is usually used to estimate

the general performance of a model. In each fold, a bagging approach combined with

three learning methods is implemented to combine results from multiple sampling.

By doing so, the bias can be lowered and can demonstrate a better estimation in

terms of statistics. The overall imbalanced learning algorithm is presented in Table

3.3.
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Table 3.3: Imbalanced Learning Algorithm

Algorithm: Imbalanced Learning for Hospital Readmission Prediction

Input NRD database;

Output Prediction of a new visit: Test

For features in NRD database:

F ←Extract features as shown in Table I

For each visit ν in NRD database:

Label v as first visit or not

Fν ← Extract features from visit v using selected features F

Label v as Readmission(1) or Not(0)

D ← Created traning set of NRD database

For each sampling repetition i :

Si ← random under sampling to D to create a balanced training set

Cj ← Train a classifier from Si

Test result [j ]← Predict using classifier (Cj, Test)

End

Test Final prediction← Combine results from all sampling repetitions

to make final prediction

3.2 EXPERIMENTS

3.2.1 Experimental Settings

We randomly extracted 300,000 patients visit records from the overall 17,197,683

patient visits and created 16 demographic and admission features, and 498 clinical

features (CCSR codes) as shown in Table I to evaluate the algorithm performance for

readmission prediction. In our experiments, the values in column AGE and TOTAL

CHARGES are normalized through divided by the maximum value in the column to
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range [0,1]. Due to the large number of ICD-10- CM codes in 2016 NRD, instead of

directly using them, we converted them into manageable number of clinical categories.

The CCSR enables a way to identify specific clinical conditions using ICD-10-CM

codes and this helps reduce the number to 498 but still keep the clinical information

of each patient visit. In the experiments, we count the number of each CCSR code

for each visit, and use the numerical values as features for learning. So in total, our

training set contain 300,000 instances (visits), where each instance is represented by

516 features and a class label.

For all experiments, we used a 10 times 10-fold cross validation. Making multiple

10-fold cross validation repeatedly divided the data into 10 blocks for ten times where

every block has equal size. As a result, it will generate 100 re-samples that with

averaged data. For each fold in cross validation, we implemented Random Under

Sampling with different sampling ratios, where the proportion of positive and negative

classes are designed as 1:1, 1:2, 1:5, 1:10. Three learning algorithms are used in the

experiments, including Decision Tree, Random Forest with 500 trees, and Random

Forest with 1000 trees.

3.2.2 Experimental Results

The detailed performance including accuracy, F1 score and Area Under the ROC

Curve (AUC) values for learning method Decision Tree (DT), Random Forest with 500

trees (RF-500), and Random Forest with 1000 trees (RF-1000) using four sampling

ratios are reported in Table 3.4.
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Table 3.4: Performance of imbalanced learning algorithm

Learning Method Performance Positive:Negative Sampling Ration

1:1 1:2 1:5 1:10

DT

Accuracy 0.8491 0.9429 0.9859 0.9933

F1 score 0.4688 0.5003 0.5174 0.5161

AUC 0.6789 0.6236 0.5466 0.5191

RF-500

Accuracy 0.858 0.9824 0.9955 0.9961

F1 score 0.4751 0.5322 0.6106 0.5066

AUC 0.7538 0.6114 0.5085 0.5046

RF-1000

Accuracy 0.8585 0.9824 0.9955 0.9961

F1 score 0.4749 0.5322 0.5060 0.5065

AUC 0.7535 0.6109 0.5080 0.5046

The three line graphs in Figure 3.7 indicate the change trend of three performance

values with respect to different sampling ratios. For accuracy performance, as showed

in Figure 3.7a, the results of RF- 500 and RF-1000 are almost the same except the

value under sampling ratio 1:1. All of the three methods show improved accuracy

using 1:5 or more balanced sampling ratios (such as 1:1 or 1:2). When using more

imbalanced sampling ratios (such as 1:5 or higher), the accuracy will remain stable.

This is possible because that when data are imbalanced in the sampled set, using 1:5

or 1:10 sampling ratios, all positive samples will be misclassified as negative samples.

Therefore, the accuracy will become stable (approaching to the percentage of negative

samples in the test set).

As for the F1 scores, shown in Figure 3.7b, the change shows two opposite trends

at the point of ratio 1:5 for three methods. Overall, RF-500 and RF-1000 demonstrate

a more significant rate of descent than DT. This is, in fact, consistent with the

accuracy showing in Figure 3.7a, where the accuracy remain stable when using 1:10
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(a) Classification Accuracy (b) F1 score (c) AUC values

Figure 3.7: Performance comparisons using different class sampling ratios 1:1, 1:2,

1:5, 1:10

sampling ratio.

Figure 3.7c reports the AUC scores of all three methods with respect to different

sampling ratios. Comparing to the accuracy and F1 score, AUC is much more accu-

rate in evaluating the performance of the classifier with respect to both positive and

negative samples. The results in Figure 3.7c show that as the sampling ratio is be-

coming more imbalanced (from 1:1 to 1:5), the performance of all methods deteriorate

in their AUC scores. After the sampling ratio reach 1:5, using more imbalanced sam-

pling, such as 1:10, does not deteriorate the algorithm performance further, because

all positive samples are classified as negative samples, resulting in 0.5 AUC values.

Figure 3.8 reports performance of three learning methods using different sampling

ratios. For DT, Figure 3.8a, its accuracy and f1 score keep climbing before ratio 1:5

and after it the ascent scope becomes smooth. However, the AUC score decreases for

all the four ratios. RF-500, Figure 3.8b, is consistent with RF-1000, Figure 3.8c, in

respect to accuracy and AUC, which is also the same as DT. The peak for RF-500 is

the point at ratio 1:5 whereas it reaches the maximum at ration 1:2 for RF-1000.
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(a) Decision Tree (b) RF(500 trees) (c) RF (1000 trees)

Figure 3.8: Performance comparisons between decision trees (a), and random forest

with 500 trees (b), and 1,000 trees (c)

3.3 CONCLUSIONS

In this research, we proposed to use imbalanced learning for 30-day hospital read-

mission prediction. The main goal is to predict, at the time of a hospital discharge,

whether the patient may return in 30 days or not in the future. To build a machine

learning task, we used National Readmission Databases (NRD) to extract features

from patient visits. We created a set of features, using simple patient demograph-

ics, ICD-10 clinical modification (CM), and Clinical Classification Software Refined

(CCSR) conversion, to represent each hospital visit. Because patient readmission is

only a small portion of all patient visits, the machine learning task is severely chal-

lenged by the imbalanced class distributions. To solve the challenge, we used random

under sampling (RUS) to create different copies of balanced sample sets. Ensemble

classifiers were trained from balanced sample sets to build classifiers for readmission

prediction. Experiments on the NRD databases confirm that Random Forests, with

1,000 trees, deliver the best AUC scores for 30-day hospital readmission prediction.
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CHAPTER 4

ENSEMBLE LEARNING FOR DISEASE-SPECIFIC READMISSION

PREDICTION

Hospital readmission is a process or episode when a patient discharged from a hospital

is readmitted within a specific time interval, say 30 or 90 days, since the previous dis-

charge [98]. With annual costs reaching $41.3 billion for patients readmitted within 30

days after discharge, readmission is one of the costliest episodes to treat in the United

States [46]. The large annual costs not only imply unsatisfactory hospital quality, but

also hinder resources available for other attention-required government programs and

erode US industrial competitiveness [14]. To minimize the negative impact of high

readmission rate, since 2012, a Hospital Readmissions Reduction Program (HRRP)

has been developed by Centers for Medicare & Medicaid Services (CMS) aiming to

improve the quality of patient care and reduce healthcare expenditures by imposing

fines on hospitals with higher readmission rates than expected rate [26]. Hospitals

across the US are under scrutiny of this program and have increased the investment

in order to enhance their discharge process, resulting in the drop of readmission rate

from 21.5% to 17.5%, from 2007 to 2015 [109]. Despite of this encouraging drop,

the expenses on developing an effective discharge procedure including better med-

ication prescription, patient education, discharge follow-up and so on is extremely

high and time consuming [65]. Development of readmission risk analysis tools has

increased dramatically for accurate identification of high-risk patients. Neverthe-

less, the complexity of in-patient care and discharge process hinders the progress of

building high-sensitivity and precise risk models, which stimulates growing research

focusing on finding potential patterns of readmission and aiming to prevent avoidable
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readmissions.

Machine learning, supervised learning in particular, has the unique strength to

learn patterns from historical data for prediction. Accordingly, many methods have

been proposed to train predictive models to assess readmission risk of individual

patients, using their past visit records combined with other information [42, 68, 103].

For example, logistic regression is a commonly used model, due to its simplicity and

transparency for prediction. In addition, studies also propose to use more advanced

models, such as support vector machines and neural networks, for readmission analysis

[21,81]. Our previous study [98] has systematically reviewed major research challenges

for hospital readmission.

The main contribution of our work, compared to existing research in the field, is

fourfold.

Answers to important questions: With over 15 million hospital visits in national

readmission databases (NRD), we are able to carry out data statistics analysis and

conclude answers for several important questions regarding hospital readmission. To

find out the impact from demographics on hospital readmission, we explored the read-

mission percentage between gender and various age groups, from which an apparent

readmission difference between male and female can be observed with male having

higher readmission rate than female. Also, patients aged over 56 usually have larger

risk to be readmitted into hospital. The second aspect we conclude is that patients

suffering from diseases vary significantly regarding to their readmission rates. For

example, patients with heart diseases have much more readmission rate than patients

with pneumonia. As for hospital, private-owned non-profit hospitals discharged much

more patients than government-owned hospitals and private-own hospitals.

Nationwide Admission Data Statistics: Using National Readmission Databases (NRD),

with over 15 million hospital visits, as our testbed, we summarize nationwide patient

admission data statistics, in related to to demographic, disease types, and hospital
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factors. By separating patient visits into different cohorts, our study directly answers

how demographic, socioeconomic, and diseases are reflected in the readmission. The

data statistics can not only be useful for designing features for readmission predic-

tion, but are also useful for policy and other purposes. For example, our study found

that, even in the same disease group, patients with low incomes do not go/return

to the hospital as the same as populations with higher incomes. These observations

can help design policy to help patients vulnerable to high readmission risk in specific

geographic locations or service areas.

Feature Engineering for Readmission Prediction: In order to design HIPAA compliant

features to characterize patients, diseases, and hospitals, we use feature engineering to

design 526 representative features to model each patient visit. The six demographic

features, ten admission and discharge features, 498 clinical features, three disease

features, and nine hospital features are fully compliant with the HIPAA standard to

support disease-specific readmission prediction.

Disease Specific Readmission Prediction: Our studies found that readmission rates

vary significantly from diseases to diseases. For six diseases studied in our research,

their readmission rates vary from 1.832% (Pneumonia) to 8.761% (Diabetes). The

high variance makes it inaccurate to use one model for all prediction. In addition, the

readmission visits are a small portion of the patient visits, presenting a data imbalance

issue for learning. Accordingly, we propose to use random under sampling, combined

with hard-voting and soft-voting based ensemble leaning. By training different en-

semble models using disease specific datasets, and comparing their performance using

Friedman test and Nemenyi post-hoc test, our study shows the most accurate models

for disease-specific readmission prediction.

45



4.1 THE PROPOSED METHOD

4.1.1 US National Readmission Databases Overview

Due to HIPAA regulations [22], patient data cannot be shared between researches.

This creates a barrier for researchers to obtain hospital data for research study and

designs. Nationwide Readmission Databases (NRD) provide an alternative public

data source for readmission analysis, using all cause national scale patient level data.

The NRD databases were first created by the Agency for Medical Research and Qual-

ity (AHRQ) in 2015 to provide data support for the analysis of national readmission

rates and further improve the quality of medical care. AHRQ belongs to the “Health

Care Cost and Utilization Project (HCUP)” family, which provides a collection of

longitudinal healthcare databases combined with professional data analysis tools to

promote the improvement of healthcare-related policies. The NRD database contains

clinical and non-clinical elements and collects about 18 million unweighted discharges

each year with more than 100 clinical and non-clinical variables per hospitalization.

NRD is a unique and powerful database designed to support various types of analysis

of national readmission rates for all payers and uninsured. The database addresses

a huge gap in healthcare data: the lack of nationally representative information on

hospital readmission rates for all age groups [5].

4.1.1.1 NRD Database Descriptions

The NRD database has three major tables, each includes information about patient,

hospital, and disease, respectively. Each row of the core table represents a hospital

visit, and table has 103 fields, including admission, diagnose, and discharge infor-

mation. The 103 fields in the table can be separated into three main categories:

Demographics, Admission and Discharge information, and Clinical information [97].

Patients’ privacy are protected with de-identified KEY NRD element and the dates
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related to their in-patient treatment are replaced by sequential numbers. For clinical

information, ICD-10-CM code is applied for medical diagnoses (the next subsection

details the ICD diagnose code descriptions).

The hospital table in the NRD databases includes information about hospitals

involved in the core table. The hospitals are across the whole country, with different

types of ownership and teaching status, such as non-profit, government owned, or

for-profit hospitals. In addition, hospitals are also categorized based on their bed

sizes which reflect the scale/capacity of the hospital.

The disease severity table in the NRD databases includes diseases associated to

each hospital visits. The disease information is based on the main reason of each

admission. In addition, the risk of mortality and severity of illness are also encoded

in the disease severity table. The code in the disease severity table is based on

APRDRG (All Patients Refined Diagnosis Related Groups) code associated to each

visit.

4.1.1.2 ICD Diagnose Code

In the NRD database, the diagnose and treatment with respect to each hospital

visit are recorded using ICD-10-CM (International Classification of Diseases) code.

The standardized coding allow stakeholders, including physicians, hospitals, and care

givers, to classify and code all diagnoses, symptoms and procedures, with details nec-

essary for diagnostic specificity and morbidity classification. For each visit, a number

of ICD-10-CM and ICD-10-PCS (procedure coding system) codes are recorded to rep-

resent diagnose and procedures carried out during patient’s visit. ICD-10-CM is the

Clinical Modification of World Health Organization’s International Classification of

Diseases (ICD) 10th version and it is used for medical diagnoses. An example of the

ICD-10-CM code structure is shown in Fig. 4.1. In order to sufficiently serve health

care needs, U.S. made the transition from ICD-9-CM to ICD-10-CM codes [24].
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Figure 4.1: ICD-10-CM code structure. For example, S06.0X1A code means “Con-

cussion with loss of consciousness of 30 minutes or less, initial encounter”.

As shown in Table 4.1, ICD-10-CM codes are very different from ICD-9-CM codes

with nearly 5 times as many diagnoses codes as in ICD-9-CM and it has alphanu-

meric categories instead of numeric ones. ICD-10-CM code sets provide more precise

identification and conditions tracking by including laterality, severity, and complexity

of disease conditions [24,44]. The ICD-10-CM code specification has 21 chapters and

it has a much longer index and tabular list. It uses an indented format for both

the index and tabular list. Categories, subcategories, and codes are contained in the

tabular list [12,27]. ICD-10-CM codes can consist of up to 7 characters with the sev-

enth digit extensions representing visit encounter or sequela for injuries and external

causes compared to five digits in ICD-9-CM codes. Fig.4.1 shows the meanings of

the seven characters: characters 1-3 indicate the category of diagnoses, characters 4-6

indicate etiology, anatomic site, severity, or other clinical detail, and character 7 is

the extension. All ICD-10-CM codes begin with one of the alphas and they are not

case sensitive. Although in the original version, alpha U was excluded, CDC released

COVID-19-guidelines from April 1 2020 to September 30 2020 in which U07.1 is used

to defined a positive COVID-19 test result, or a presumptive positive COVID-19 test

result [23].

4.1.1.3 Readmission Label

In the NRD database, the core table only records each hospital visits (from admission

to discharge). There is no readmission label associated to the visits. Therefore, we

need to derive label to determine whether a visit is a readmission visit or not. For this
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Table 4.1: Comparison between ICD-9-CM and ICD-10-CM Diagnosis Code Sets

ICD-9-CM ICD-10-CM

14,025 codes 69,823 codes

3-5 characters 3-7 characters

First character is alpha or

numeric

First character is alpha, second character

is numeric

Characters 2-5 are nu-

meric

Characters 3-7 can be alpha or numeric

Decimal placed after the

first three characters

Decimal placed after the first three charac-

ters

Lacks detail and lateral-

ity

Very specific and has laterality

purpose, we need to leverage NRD DaysToEvent (a timing variable specifies a number

of days from a random “start date” to the current admission) and LOS (Length of

stay) two fields in each record.

Each hospital visit record in NRD is kept in de-identified format in order to

comply to the HIPAA regulations. As a result, not only patient’s name is represented

using NRD-VisitLink, the exact admission/discharge date are also adjusted using a

specific random number for each patient. For each patient, a random “start date”

is first selected. The admission time (NRD DaysToEvent) of the patient is then

calculated by using difference from the “start date” to the admission day. Starting

from 2009, Centers for Medicare & Medicaid has been reporting each hospital’s 30-

day risk-standardized readmission rate (RSRR) across the U.S to measure unplanned

readmissions that happen within 30 days of discharge from patients’ admission, which

has formed a 30-day readmission rule as a standard for hospital evaluation [57]. Thus,

in our research, we use 30-day criterion for readmission labeling. For two visits (Va
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and Vb), if the interval between Vb admission and Va discharge is less than 30 days,

then visit Va will be labeled as readmission [97]. One example to label patient visit

is demonstrated in Table 4.2, in which the patient has three visits in total. The time

interval between two visit is calculated as the second NRD DaysToEvent minus the

first NRD DaysToEvent and minus the LOS. For visit 2 and visit 1, the result is 1053

- 1034 - 3 = 16, which is less than 30 days, therefore, we label the first visit as 1,

indicating that this is a readmission visit. For visit 3 and visit 2, their difference is

1097 - 1053 - 2 = 42, so visit 2 is labelled as 0, meaning not a readmission. Visit 3 is

also labelled as 0 because there is no more records showing the patient returning to

the hospital after the third visit.

Table 4.2: Example to label patient visit

Patient Vis-

itlink

Visit NRD Days

ToEvent

LOS Readmission Label

863245 1 1034 3 days 1

863245 2 1053 2 days 0

863245 3 1097 4 days 0

By using the above labeling approach, if two consecutive visits are within the

defined interval (30-days in our setting), the first visit is labeled as the readmission

visit. We do not label the second visit as readmission because we want to predict the

possibility of a patient returning back to the hospital after being discharged from the

current visit. By doing so, we can implement the hospital readmission prediction at

the time of patient discharge.
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4.1.2 NRD Data Statistics

4.1.2.1 Demographics Related Statics

Table 4.3 reports the NRD patient admission statistics. The total number of readmis-

sion in NRD is 17,197,683 in which the effective admissions is 15,722,444 excluding

outliers. The number of effective admissions does not equal to the number of unique

patients, because each patient has a unique NRD-VisitLin (global ID) and some pa-

tients will return back to the hospitals for multiple times. Table 4.3 shows that about

80% of patients only have a single visit, so readmissions happen to the rest 20% of

patients. In Fig. 4.2, we further report the readmission percentages between gender

and different age groups. Combining Table 4.3 and Fig. 4.2, we can find that although

female patients are the majority part of hospital visits, the readmission rates of male

population exceed that of female across all the age groups, especially for age group

[18, 35], where the readmission rate of male is more than twice the rate of female.

Table 4.3: A summary of NRD patient admission

Categories Number(%)

Effective Admission Total 15,722,444

30-Day Readmission 1,834,786 (11.67%)

Not 30-Day Readmission 13,887,658 (88.33%)

Unique Patient Total 11,691,620

Patient with single visit 9,335,277 (79.85%)

Patient with multiple visits 2,356,343 (20.15%)

Patient Visit Total 15,722,444

Male patient visits 6,630,005 (42.17%)

Female patient visits 9,092,439 (57.83%)

The NRD databases have three main payment types, Medicare, Medicaid, and Pri-
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Figure 4.2: Gender readmission rate difference with respect to different age groups
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Figure 4.3: Readmission rate comparison with respect to different payment methods

vate insurance, which cover 43.40%, 21.80%, and 28.08% of payments in the database,

respectively. In Fig 4.3, we report the readmission rates comparison between differ-

ent payment groups. The results show that the top two highest readmission rates

are from the Medicare and Medicaid patients, respectively. Fig. 4.2 shows that the

readmission rates increase for older age groups, this partially explains why Fig 4.3

medicare and medicaid patients have higher readmission rates than patients from

other payment groups.
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4.1.2.2 Hospital Related Statistics

NRD hospital table includes information, such as ownership and teaching status, from

about 2,355 hospitals across the US. In our analysis, we categorize hospitals based on

their bed size and ownership. Hospital bed size are presented as numbers 1 to 3, in-

dicating small, medium, and large respectively (this number indicates the capacity of

the hospital). Fig. 4.4 reports the total admissions/discharges in 2016 from hospitals

under different ownership. The results show that private-owned non-profit hospitals

discharged much more patients than government-owned hospitals and private-own

hospitals. Overall, as the hospital capacity increase (from 1 to 3), the mean ad-

mission/discharge numbers also increase. This is quite understandable because large

capacity hospitals can accommodate more patient visits. In order to validate whether

hospital ownership plays any significant roles in readmission, we report the readmis-

sion rates of different types of hospitals on admissions with five and more days during

the visits. The results in Fig. 4.5 show that despite of the large difference in the

total discharge, only a small variance is observed when comparing the percentage of

admissions with Length of Stay (LOS) >= 5 days.

Figure 4.4: Total annual hospital discharge

In order to understand whether hospital ownership and capacity introduce signif-

icant variance to the diagnose and procedures carried out during the patient visits,
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Figure 4.5: Percentage of admission with LOS >= 5 days

we report the average number of ICD-10-CM codes and ICD-10-PCS codes for each

visit in Fig. 4.6 and Fig. 4.7, respectively. The results show that, in general, patients

admitted to non-federal government-owned hospitals have less amount of averaged

ICD-10-CM/PCS codes for their in-patient treatment, compared with patients ad-

mitted to private-owned not-profit hospitals and private-owned investment hospitals.

Meanwhile, hospital bed size (or capacity) also play significant roles, especially in

terms of the ICD-10-PCS. The results show an explicit rising trend, as the bed size

increases for all kinds of hospitals. This is possibly because that large scale hospitals

frequently accommodate patients with more complicated (or severe) disease condi-

tions, and therefore more diagnoses and procedures are carried out on those patients.

Figure 4.6: Average number of ICD-10-CM codes in each visit
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Figure 4.7: Average number of ICD-10-PCS codes in each visit

4.1.2.3 Disease Related Statistics

Disease and the level of severity are the two important factors associated to read-

mission. The disease severity table in the NRD database records the illness measure-

ment of each patient in the core table, where each row is the description of patient’s

classification according to their admission reason, risk of mortality and severity of

illness. One major disease is identified for each admission. The coding is based on

the APRDRG (All Patients Refined Diagnosis Related Groups) code.

In order to understand the readmission difference between different disease specific

patient cohorts, we comparatively study top leading disease to death as well as the

top diseases for admission. There are 320 APRDRG code in total and 38% patients

are diagnosed as “Moderate loss of function”. We extracted the top 10 most frequent

reasons for hospital admission based on the APRDRG code for each visit. In addition,

we also report the top seven leading diseases to death according to CDC [25] to analyse

the readmission rate and revisit rate. Table 4.4 and Table 4.5 report the statistics

of top 10 APRDRG coded diseases/reasons and top seven leading disease of death,

respectively.

The results from Tables 4.4 and 4.5 show that readmission rates of patients suffer-

ing from different diseases vary significantly in their readmission rates. For example,
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Table 4.4: Readmission distributions for the top 10 APRDRG in NRD

Admission reason Readmission

rate

Revisit rate

Vaginal delivery 0.048% 0.168%

Septicemia & disseminated infections 3.983% 9.184%

Neonate birthwt > 2499g, normal

newborn or neonate w other problem

0.848% 0.847%

Cesarean delivery 0.013% 0.062%

Heart disease 8.696% 19.500%

Knee joint replacement 0.392% 5.775%

Other pneumonia 1.800% 4.654%

Chronic obstructive pulmonary dis-

ease(COPD)

6.990% 16.684%

Hip joint replacement 1.088% 5.222%

Cardiac arrhythmia & conduction dis-

orders

3.662% 7.868%

vaginal delivery and cesarean delivery are the two APRDRG coded top reasons for

admissions, but these visits have very small readmission rates. For the top seven

leading diseases to death, their readmission rates also vary significantly, where di-

abetes have the highest readmission rates (8.761%) and pneumonia has the lowest

readmission rates (1.832%). Overall, readmission rates and revisit rates for leading

diseases to death are much higher than the 10 most common admissions. This is due

to the nature of the diseases and their complications.

In order to study the readmission rate variance with respect to socioeconomic

factors, we report the readmission rates of the seven leading diseases of death with

respect to the family incomes, which are coded by ZIP 1 to Zip 4 meaning low to
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Table 4.5: Readmission distributions for the top seven leading diseases of death

Leading diseases Readmission rate Revisit rate

Heart disease 8.092% 17.873%

Stroke 2.448% 3.770%

Pneumonia 1.832% 4.738%

COPD 6.990% 16.684%

Cancer 6.823% 12.275%

Diabetes 8.761% 14.372%

Nephritis & nephrosis 7.019% 10.595%

high incomes. Readmission rates for four ZIP code areas categorized by the estimated

median household income of residents in the patient’s residence for the seven leading

disease are shown in Fig. 4.8. The results show that area gap can be observed

explicitly: for every disease, readmission rates for patients from lower income families

(ZIP 1 and ZIP 2) are higher than those from high-income families (ZIP 3 and ZIP 4).

Table. 4.6 summarizes factors of interest analyzed in this paper as for demographic,

hospital and disease respectively.
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Figure 4.8: Readmission rate for leading diseases of death with respect median house-

hold incomes (ZIP 1 to 4 denotes an increasing level of incomes)
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Table 4.6: Factors of interest analyzed in NRD database

Aspect Factors of interest

Demographic Gender; Age; Payment (Insurance)

Hospital Bed size; Ownership

Disease Disease type; ZIP code (Household income)

4.1.3 Feature Engineering for Disease specific hospital readmission pre-

diction

Based on the nationwide hospital admission data statistics, we design five types of

features, demographics features, admission and discharge features, clinical features,

disease features, and hospital features, and use ensemble learning, combined with

under random sampling, for disease specific readmission prediction.

Table 4.7 lists five types of features created using feature engineering to capture

patient, disease, and hospital information. In the following, we briefly describe each

type of features, and explain why they were chosen for readmission prediction.

4.1.3.1 Demographics Features

Demographic is a combination of population demography and socioeconomic infor-

mation, which includes patient gender, age, average income of the community, patient

medical record and so on. A generalization of a specific geography’s population can

be concluded based on a sampling of people in that geography and profoundly affect

how important decisions are made. In medical institution, statistical results obtained

from the patient allow for the identification of a future patient and the categorization,

such analysis will enhance the development of high pertinence medical policy.
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Table 4.7: Features created for disease specific hospital readmission prediction

Feature Type Feature Description Feature size and domain

AGE Patient’s age R
1 ∈ R+

FEMALE Patient’s gender (binary, ‘1’ is female) N
1 ∈ {0, 1}

Demographics PAY1 Payment method N
1 ∈ {1, 2, 3, 4, 5, 6}

Feature PL NCHS Patient’s location (based on NCHS

Urban-Rural Code

N
1 ∈ {1, 2, 3, 4, 5, 6}

ZIPINC QRL Estimated median house income in the

patient’s zip code

N
1 ∈ {1, 2, 3, 4}

RESIDENT Patient’s location (‘1’: the patient is

from same state as hospital)

N
1 ∈ {0, 1}

AWEEKEND Admission Day (‘1’: the admission day is

a weekend)

N
1 ∈ {0, 1}

MONTH Patient’s discharge month N
1 ∈ {1, 2, 3, · · · , 12}

QUARTER Patient’s discharge quarter N
1 ∈ {1, 2, 3, 4}

Admission and DISPUNIFORM Disposition of patients N
1 ∈ {1, · · · , 7, 20, 21, 99}

Discharge LOS Length of the hospital stay N
1 ∈ N

Feature ELECTIVE Binary, ‘1’ represents elective admission N
1 ∈ {0, 1}

REHAB Binary, ’1’ is rehab transfer N
1 ∈ {0, 1}

WEIGHT Weight to discharges in AHA universe R
1 ∈ R+

CHARGES Patient’s inpatient total charges R
1 ∈ R+

1st VISIT Binary,’1’ means the first hospital visit N
1 ∈ {0, 1}

Clinical Feature CCSR Code Clinical categories N
498 ∈ N

Disease Feature

APR−DRG Patient admission reason N
1 ∈ N

RISK The mortality risk N
1 ∈ {0, 1, 2, 3, 4}

SEVERITY The severity of illness N
1 ∈ {0, 1, 2, 3, 4}

Hospital Feature

BEDSIZE Hospital bed size N
1 ∈ {1, 2, 3}

CONTROL Hospital ownership N
1 ∈ {1, 2, 3}

URU Hospital urban−rural designation N
1 ∈ {1, · · · , 9}

AVE CHARGE Average charge amount per patient visit

of the hospital

R
1 ∈ R+

AVE CM Average number of ICD-CM per patient

visit of the hospital

R
1 ∈ R+

AVE PCS Average number of ICD-PCS per patient

visit of the hospital

R
1 ∈ R+

PER LOS Percentage admission with LOS larger

than 5 days

R
1 ∈ R+

DIS/UNI Sample discharges/Universe discharges

in NRD STRATUM

R
1 ∈ R+

DIS/BED Total hospital discharges/num bed size

of hospital

R
1 ∈ R+

4.1.3.2 Admission and Discharge Features

Informative materials about patient in-hospital activities can be obtained from ad-

mission and discharge information. There are time-related message indicating the

exact time of the patient admission and length of stay (LOS) for treatment, admis-

sion nature-related information such as whether the patient was hospitalized through
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emergency or not and so on. This kind of information offers a comprehensive view

of the procedures a patient received from the healthcare providers, how patient’s

condition improve, and whether the treatment is adequate and effective to prevent

readmission.

4.1.3.3 Clinical Features

Clinical features are used to characterize diagnoses and treatments patient received

during the hospital visit. Because each patient’s medical condition varies and there

are tens of thousands of subcategory disease types, medical treatments, procedures

etc., finding good clinical features to represent patients is a significant challenge.

An essential challenge of using ICD-10-CM codes as clinical features to represent

patients is that the total number of unique ICD-10-CM codes is very large (about

70,000), making it ineffective and computationally expensive for learning. Accord-

ingly, we employ ICD-CCSR transformation [97] to convert ICD-CM code to CCSR

code. CCSR stands for Clinical Classification Software Refined, which is used to ag-

gregate ICD-10-CM/PCS codes into clinically meaningful categories. Fig. 4.9 shows

CCSR code structure, where the first three letters mean the body system category

and the last three numbers are CCSR categories numeric sequence of individual CCSR

category starting at “001” within each body system [6]. In the code assignment, each

CCSR code is designed to match to at least one or multiple ICD-10-CM code cate-

gories. Table 4.8 shows an example of many-to-one CCSR mapping, where multiple

ICD-10-CM codes, corresponding to “displaced fracture of shaft of left clavicle”, are

mapped into one CCSR code [6]. The alphabetic correspondence between ICD-10-CM

code and CCSR code is listed in Table 4.9, where the alphabetic conversion follows

defined rules, and the numeric part also follows the user guide [6]. In Fig. 4.10a and

Fig. 4.10b, we report the ICD-10-CM code distributions for Pneumonia disease and

the mapped CCSR code distributions. In the figure, the y-axis shows the logarithm of
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the code frequency sorted in a descending order, and the index of the corresponding

code is shown in the x-axis. For ICD-10-CM codes, the log scale of the code frequency

still follows a negative exponential function, meaning that ICD-10-CM code frequency

follows an exponential to the power of exponential decay, and a few ICD-10-CM codes

have very high frequency. The converted CCSR code frequency follows an exponential

decay (so the logarithm function is close to a linear line). The ICD-10-CM to CCSR

conversion not only preserves similar node frequency patterns, but also reduces the

clinical feature dimension in our experiments from about 70,000 to around 498 as

shown in “Feature size and domain” in Clinical Feature in Table 4.7. As a result, the

clinically meaningful categories, with respect to each disease, are provided to detail

diagnoses and treatments implemented during patient in-hospital visit.

Figure 4.9: CCSR (Clinical Classification Software Refined) code structure. For

example, INJ008 code indicates Traumatic brain injury (TBI); concussion, initial

encounter.

4.1.3.4 Disease Features

In addition to the CCSR code specified clinical features, three disease-level features

are also added. The first feature is called APR−DRG, which represents the patient

admission reason. Because a disease may include multiple subgroups, we select all

APR-DRG codes related to one disease, and then use a numeral number to encode

the feature value. Table 4.10 lists the APR-DRG codes selected for all six diseases in

our study. For example, “Heart Disease” has six sub-groups (each has one APR-DRG

code). We then use six integers, 10, 11, 12, 13, 14, 15, to encode them. By doing so,
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Table 4.8: An example of ICD-10-CM to CCSR mapping

ICD-10-

CM code

ICD-10-CM code description CCSR category CCSR description

S42022D Displaced fracture of shaft of left

clavicle, subsequent encounter for

fracture with routine healing

INJ041 Fracture of the upper limb;

subsequent encounter

S42022G Displaced fracture of shaft of left

clavicle, subsequent encounter for

fracture with delayed healing

INJ041 Fracture of the upper limb,

subsequent encounter

S42022K Displaced fracture of shaft of left

clavicle, subsequent encounter for

fracture with nonunion

INJ041 Fracture of the upper limb,

subsequent encounter

S42022P Displaced fracture of shaft of left

clavicle, subsequent encounter for

fracture with malunion

INJ041 Fracture of the upper limb,

subsequent encounter

(a) ICD-10-CM (Pneumonia) (b) CCSR (Pneumonia)

Figure 4.10: (a) Distributions of ICD-10-CM code of all Pneumonia disease patient

visits. The x-axis denotes the ICD-10-CM codes ranked in a descending order ac-

cording to their frequency. The y-axis denotes the frequency of each code in log scale.

(b) Distributions of CCSR codes converted from ICD-10-CM codes in (a). The x-axis

shows the CCSR code ranked in a descending order according to their frequency. The

y-axis denotes the frequency in log-scale.

we are encoding APR-DRG codes as numerical values within similar range, allowing

some learning algorithms, such as logistic regression to better leverage the code value.

RISK is the second extracted disease-level feature representing the risk of patient
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Table 4.9: Correspondence between ICD-10-CM and CCSR Categories by Body Sys-

tem

ICD-10-CM Body System Description CCSR

A, B Infectious and Parasitic Diseases INF

C Neoplasma NEO

D Neoplasms, Blood,Blood-forming Organs BLD

E Endocrine, Nutritional, Metabolic END

F Mental and Behavioral Disorders MBD

G Nervous System NVS

H Eye and Adnexa, Ear and Mastoid Process EYE/EAR

I Circulatory System CIR

J Respiratory System RSP

K Digestive System DIG

L Skin and Subcutaneous Tissue SKN

M Musculoskeletal and Connective Tissue MUS

N Genitourinary System GEN

O Pregnancy, Childbirth and the Puerperium PRG

P Certain Conditions Originating in the Perinatal Period PNL

Q Congenital Malformations, Deformations and Chromosomal

Abnormalities

MAL

R Symptoms, Signs and Abnormal Clinical and Lab Findings SYM

S/T Injury, Poisoning, Certain Other Consequences of External

Causes

INJ

U no codes listed, will be used for emergency code additions

V, W, External Causes of Morbidity (home- EXT

X, Y care will only have to code how patient was hurt; other settings

will also code where injury occurred, what activity patient was

doing)

Z Factors Influencing Health Status and Contact with Health Ser-

vices (similar to current ”V-codes”)

FAC

mortality. There are five different levels (0 to 4) indicating patient’s likelihood of

dying where level 4 mortality means the highest risk. The last feature is SEVERITY

standing for the severity of illness and the degree of loss of function. Similar to RISK,

degree zero to extreme severity is represented by number 0 to 4.
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Table 4.10: APR-DRG codes selected for the six studied diseases

Disease Components APR-

DRG

Feature

Heart &/ lung transplant 2 10

Major cardiothoracic repair of heart anomaly 160 11

Heart Cardiac defibrillator & heart assist implant 161 12

Disease Permanent cardiac pacemaker implant w AMI, heart failure

or shock

170 13

Perm cardiac pacemaker implant w/o AMI, heart failure or

shock

171 14

Heart failure 194 15

Nervous system malignancy 41 20

Respiratory malignancy 136 21

Digestive malignancy 240 22

Malignancy of hepatobiliary system & pancreas 281 23

Cancer

Musculoskeletal malignancy & pathol fracture d/t muscskel

malig

343 24

Kidney & urinary tract malignancy 461 25

Malignancy, male reproductive system 500 26

Uterine & adnexa procedures for ovarian & adnexal malig-

nancy

511 27

Female reproductive system malignancy 530 28

Intracranial hemorrhage 44 44

Stroke
CVA & precerebral occlusion w infarct 45 45

Nonspecific CVA & precerebral occlusion w/o infarct 46 46

Pneumonia
Bronchiolitis & RSV pneumonia 138 138

Other pneumonia 139 139

Diabetes Diabetes 420 420

COPD COPD 130 30
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4.1.3.5 Hospital Features

Hospital features are created to characterize hospital ownership, bed size (capacity),

locations, and patient body admitted to the hospitals. For example, hospital bed

size tells us the hospital scale, the ownership represents the control of the hospital,

and the geographic locations of the hospitals specify the patient demographic. In

addition to simple statistics, we also create several statistics features, such as the

average charge amount and the average number of ICD-CM codes for each visit. For

feature DIS/UNI, the universe discharge is the total number of inpatient discharges

in the universe of American Hospital Association (AHA) excluding non-rehabilitation

and Long-Term Acute Care Hospitals (LTAC) for the stratum. These features provide

specific understanding of patient in-hospital treatment in order to discover the effect

of different treatment provided by hospitals towards hospitalized patients’ recovery.

4.1.4 Prediction Framework

Six disease-specific datasets are extracted (we focus on the leading diseases of death as

given in Table 4.11), including cancer, heart disease, chronic obstructive pulmonary

disease (COPD), diabetes, pneumonia, and stroke. All six datasets are imbalanced

due to the nature of the readmission [97].

In the six datasets, the ratios of non-readmission visits (negative samples) to

readmission visits (positive samples) all exceed 10 (with the largest value 53). This

imbalanced distribution causes the machine learning model to be more biased towards

majority (negative) samples, which in our case, non-readmission samples and causes

poor classification of minority (positive) classes. As a result, the model will give a

high false negative value, which means a patient is not considered that he will be

readmitted to the hospital but actually he is. Such classification performance will not

only hinder the application of machine learning models but also will not be able to

detect potential illness in advance, which goes against our intent, because one of the
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Table 4.11: Readmission distributions for the top seven leading diseases of death

Leading diseases Readmission rate Revisit rate

Heart disease 8.092% 17.873%

Stroke 2.448% 3.770%

Pneumonia 1.832% 4.738%

COPD 6.990% 16.684%

Cancer 6.823% 12.275%

Diabetes 8.761% 14.372%

Nephritis & nephrosis 7.019% 10.595%

reasons AI models are applied to healthcare is to anticipate potential risks, to prevent

patients suffering from pain, to reduce the burden on patients and the burden on the

healthcare system [15].

In order to tackle the class imbalance, Random Under Sampling (RUS) is applied

to balance the ratio between positive and negative samples. RUS is employed to

generate various versions of relatively balanced training sets, in which positive samples

have a higher percentage than the original dataset. During this process, the sampling

radio applied to the data is critical, and will impact on the algorithm performance.

In addition, RUS changes the sample distributions, and inevitably introduces bias to

the training data. In order to address the above challenges, we propose to employ

three solutions as follows:

• Sampling Ratios: We will employ different sampling ratios to the random under

sampling to balance the positive vs. negative samples, valid the algorithm

performance, and choose the best sampling ratios for readmission prediction.

• Ensembles: We will carry out random under sampling for multiple times on the

training data. The classifiers trained from each copy of the sampled data are

combined to form an ensemble for prediction. This will alleviate the bias and
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improve the overall performance.

• Soft vs. hard voting: We will validate two ways to combine classifiers trained

from random under sampled data, hard voting vs. soft voting. Assume �t()

denotes a trained classifier in a classifier ensemble E, Eq. (4.1) defines the binary

prediction of the classifier on a test instance x, where Pr�t(c|x) define the class

distribution (i.e., conditional probability) of the classifier predicting instance

x to class c. Hard voting predicts the final class label with the most agreed

votes by summing the predictions for each class label from models, as shown

in Eq. (4.2), where I(�t(x) = c) returns 1 if classifier �t(x) predicts instance x

to be class c, or 0 otherwise. Soft voting, defined in Eq. (4.3), summarizes the

predicted class probabilities for each class from models and predict the classes

with the largest summed probability.

�t(x) = arg max
c∈{P,N}

Pr�t(c|x) (4.1)

ŷx = arg max
c∈{P,N}

|E|∑
t=1

|I(�t(x) = c)| (4.2)

ŷx = arg max
c∈{P,N}

|E|∑
t=1

Pr�t(c|x) (4.3)

4.2 EXPERIMENTS

4.2.1 Experimental settings

We create six disease-specific readmission datasets from NRD databases (2016 ver-

sion). The datasets and their simple statistics are reported in Table 4.12. Using

feature engineering approaches, we created 526 features for each instance (which rep-

resents a hospital visit). The list of features are summarized in in Table 4.7. Among
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Algorithm 1 Disease Specific Hospital Readmission Prediction
Input: (1) Disease specific database: D;

(2) Under Sampling Ratio: r ;

(3) Ensemble size: K

Output: Prediction on a test hospital visit: x

{D+,D−} ← Label pos. (+) and neg. (-) visits in D

F
D ← Create features from D

E ← ∅

for each random under sampling (RUS) round t ∈ K

[D̂−, D̂−] ← RUS with ratio r on D− and D+

D̂ ← {D+ ∪ D̂−}. Create balanced training set

�t(·) ← Train classifier from D̂ using features FD

E ← E ∪ �t(·)

end for

ŷx ← Apply hard voting or soft voting for prediction.

return ŷx.

all features, AGE, TOTAL CHARGES, and AVE CHARGE are normalized to range

[0, 1] by dividing each value by the maximum value in the column.

In order to evaluate the performance between different random under sampling

ratios and different voting approaches, including hard voting vs. soft voting, for

disease-specific readmission prediction, we will need to repeat experiments for a large

number of times. Therefore, for three large datasets (COPD, Heart Disease, and

Pneumonia), we randomly sample 300,000 records from each of them, and use the

sampled datasets to validate the parameter settings. For the remaining experiments,

the whole datasets are used for each disease.

All experiments use 10-fold cross validation. For each fold, RUS is applied to

the training data, using different sampling ratios, where the ratios between negative
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vs. positive classes vary from 0.5:1, 0.7:1, 0.8:1, 0.9:1, 1:1, 1.1:1, 1.2:1, 1.5:1, 2:1,

3:1, 4:1, to 5:1. Instead of using 1:1 balanced sampling, like most existing methods

do, we intentionally vary the class ratios to a large range, to study how will class

distributions impact on the readmission prediction results.

Four learning algorithms are used in the experiments, including Decision Tree,

Random Forest with 500 trees, Logistic Regression. and Gradient Boosting.

Table 4.12: Total sample number and sample ratio in six disease datasets

Datasets Total sample number Negative:positive

sample ratio

COPD 327,269 10.88

Heart disease 582,058 10.16

Cancer 171,495 12.3

Diabetes 183,726 10.4

Pneumonia 358,001 7.38

Stroke 273,395 45

4.2.1.1 Performance Metrics and Statistical Test

Four performance metrics, Accuracy, Balance Accuracy, F1-score, and AUC, are used

in our experiments. The purpose of using other three measures, in addition to accu-

racy, is to take class imbalance into consideration for validation.

We use Friedman test [32] to validate statistical difference between four models

trained on the six datasets. For each measurement, the classifiers are ranked according

to their performance in a descending order. The classifier with the best score is ranked

as 1 and the one with the lowest is ranked as 4. Two classifiers present the same

measurement performance score are ranked with the average rank.
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Assume that Rj denotes the average rank of a classifier j and rji is the rank of

classifier j on dataset i, Eq. (4.4) defines the average ranking.

Rj =
1

N

N∑
i=1

rji (4.4)

The average rankings of the algorithms are compared by the Friedman test. The

Friedman statistic is defined as χ2
F as shown in Eq. (4.5) where N means the number

of datasets and k is the number of classifiers. After the calculation of the Friedamn

test statistic, the χ2
F value is used to calculate the p-value, and decide whether the

null-hypothesis is valid, where the null-hypothesis states that all algorithms are equal,

meaning there is no statistical difference between their ranking Rj.

χ2
F =

12N

k(k + 1)

[∑
j

R2
j −

k(k + 1)2

4

]
(4.5)

A Nemenyi post-hoc test will be performed for performance pairwise comparisons

if the null-hypothesis is rejected. Critical difference (CD) is used to determine the

classifiers’ average ranking difference and Eq. (4.6), in which qα is the Studentized

range statistic divided by
√
2 [32]. In this study, with four classifiers and α =0.05,

qα =2.569, therefore, CD =1.9148. The performance difference between classifiers is

plotted using CD diagrams (detailed in the experiments).

CD = qα

√
k(k + 1)

6N
(4.6)

4.2.2 Experimental Results

4.2.2.1 Hard Voting vs. Soft Voting Results

Fig. 4.11 compare the performance between hard voting and soft voting, with respect

to four measurements, Accuracy, F1-socre, AUC, and Balanced Accuracy, on all six

disease specific datasets. For each plot, the x−axis and y−axis represent the mea-
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surement values of a classifier, trained using one sampling ratio and using soft voting

vs. hard voting, respectively, on all six datasets. Because there are 12 different sam-

pling ratios (from 0.5:1 to 5:1), four classifiers, and six disease datasets, each plot has

12×4×6=288 points. Points below the y = x line are those performing better with

soft voting and points above the line means hard voting outperforming soft voting.

The head-to-head comparison plots allow us to directly compare soft voting vs. hard

voting on all experimental settings and benchmark data.

The Accuracy comparisons in Fig. 4.11a show that the number of data points

above and below the y = x line are 167 and 121, respectively, meaning hard voting

achieves better performance than soft voting, but majority of achievements are from

using Decision Tree classifier. There is no obvious performance difference between

soft voting vs. hard voting with respect to other three classifiers, Gradient Boosting

classifier, Logistic Regression, and Random Forest classifier, in terms of accuracy.

Ensemble models are know to benefit from unstable base classifiers, such as decision

trees. Since decision trees are much more unstable than other three classifiers, the

results in Fig. 4.11a confirm that using decision trees combined with hard voting can

boost the classification accuracy.

The AUC value comparisons in Fig. 4.11c show that majority points (217 points)

are below the y = x line, and additional 68 points are right located on the y = x

line (points on the y = x line mean that soft voting and hard voting deliver the

same prediction performance). There are only three points (288-217-68=3) that hard

voting outperforms soft voting in terms of AUC values. In addition, the point color in

Fig. 4.11c also show that decision trees using soft voting and hard voting have similar

performance, whereas there is a significant AUC performance gain using soft voting

for gradient boosting, logistic regression, and random forest. AUC is calculated by

using posterior probability values of the ensemble classifier on a given test instance.

Hard voting uses 0/1 frequency count to calculates final posterior probability of the
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(a) Accuracy (b) F1-score

(c) AUC (d) Balanced Accuracy

Figure 4.11: Hard voting vs. soft voting performance on all six disease-specific datasets

and 12 sampling ratios. Points are color coded by different classifiers, and shape

coded by different datasets. Points above y = x diagonal lines denote hard voting

outperforming soft voting, and vice versa.

ensemble, whereas soft voting uses average of the base classifier’s posterior probability

as the ensemble classifier’s posterior probability. This observation shows that for

0/1 loss based measures, such as accuracy, hard voting may outperform soft voting,

whereas for continuously loss based measures, soft voting frequently outperforms hard
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voting.

For F1-score and balance accuracy in Fig. 4.11b and Fig. 4.11d, the performance

of soft voting and hard voting do not differ significantly. For F1-score, there are 137

points below the y = x line, 14 less than that above the line. For balanced accuracy,

173 points are below the y = x line, 58 points more than points above the y = x line.

Because soft voting shows better performance majority of times, and for imbalanced

datasets, AUC and balanced accuracy are more objective measures, we choose soft

voting in all remaining experiments.

4.2.2.2 Imbalanced Learning Results

Fig. 4.12 reports the performance of all four classifiers on six disease specific datasets,

using soft voting and different sampling ratios. Each plot in Fig. 4.12 reports per-

formance measure (y−axis) of four classifiers on six datasets (so there are 4×6=24

curves in each plot), by using different sampling ratios (x−axis).

In the accuracy measure plot in Fig.4.12a, the larger the sampling ratio, the higher

the classification accuracy each classifier achieves. This partially demonstrates the

class imbalance challenge. Because sampling ratio denotes the ratio between negative

vs. positive samples, the larger the sampling ratio (e.g. 5:1), the more negative

samples the training set has (the ratio in the original datasets are all more than 10:1,

as show in Table 4.5). Fig.4.12a shows that as negative samples gradually dominate

training set, the trained classifier intends to classify more samples to be negative, in

order to achieve a higher accuracy. The higher accuracy, however, does not assure

useful classification results, as shown in F1-score, AUC, and balance accuracy, where

all three plots show a downward/decreasing trend, after sampling ratios pass certain

ratio values.

Because plots in Fig. 4.12 are color coded by different datasets, and shape coded

by different classifiers, this helps understand the performance trend of each classifiers.
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(a) Accuracy (b) F1-score

(c) AUC (d) Balanced Accuracy

Figure 4.12: Performance comparisons using soft voting and different sampling ratios.

Points are color coded by different datasets, and shape coded by different classifiers.

Each curve denote one classifier’s performance on a specific dataset, using different

sampling ratios.

Overall, decision trees have the worst performance in terms of all four measures. Ran-

dom forest, Logistic regression and Gradient boosting are comparable with relatively

small value variance, and gradient boosting shows relative better performance among

the three classifiers. When comparing results of all six disease types, Diabetes (red-
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colored) receive best prediction results in terms of all four performance measures.

While diabetes also have the highest readmission rates among all six disease types

(meaning less severe class imbalance), stroke (green-colored) has the second lowest

readmission rate (Pneumonia has the lowest readmission rate). The AUC and bal-

anced accuracy in Figs. 4.12c and 4.12d show that they both receive the best and

second best prediction results. This observation indicates that the prediction results

are not directly tied to the class imbalance rate. Our sampling and ensemble learn-

ing framework is effective to tackle the class imbalance. Meanwhile, the readmission

prediction performance of each disease critically depends on the nature and charac-

teristics of the diseases.

Overall, the aforementioned observations for the four measures lead to the con-

clusion that sampling ratio 1.1:1 presents the best performance of all classifiers on

the six disease datasets. Therefore, we use 1.1:1 sampling ratio in the remaining

experiments.

4.2.2.3 Readmission Prediction Results & Statistical Analysis

Table 4.13 reports the hospital readmission prediction results using all samples in

Table 4.12, including four classifiers’ average performances on the six disease specific

datasets. The bold-text denotes the best result for each measure-disease combination.

Overall, the results show that gradient boosting achieves the best performance.

In order to fully understand the four classifiers’ performance, we carry out Fried-

man test for each measure, and report the critical difference diagram plots in Fig. 4.13.

For all measures, we use α = 0.05, the χ2
F and p values corresponding to each measure

are reported as (χ2
F , p) value pair underneath each plot. For ease of comparisons,

in each plot, a horizontal bar is used to group classifiers that are not significantly

different, meaning that their average ranks do not differ by CD).

Fig. 4.13 shows that for all four measures, the largest p value is 0.0129 (which cor-
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Table 4.13: Readmission prediction performance comparisons using all samples (using

soft voting and 1.1:1 sampling ratio). Bold-text denotes best performance on each

measure-disease combination (i.e. each row)

Measure Disease Decision

Tree

Random

Forest

Logistic

Regression

Gradient

Boosting

Accuracy

COPD 0.4659 0.7301 0.7317 0.7300

Cancer 0.5260 0.7509 0.7670 0.7536

Diabetes 0.6898 0.8163 0.8249 0.8070

Heart Disease 0.4631 0.6983 0.7194 0.7025

Pneumonia 0.5705 0.6964 0.7262 0.7192

Stroke 0.6261 0.8318 0.8244 0.8263

F1 score

COPD 0.1791 0.2414 0.2376 0.2415

Cancer 0.1866 0.2700 0.2841 0.2814

Diabetes 0.3173 0.4201 0.4119 0.4152

Heart Disease 0.1889 0.2350 0.2209 0.2370

Pneumonia 0.2941 0.3607 0.3585 0.3648

Stroke 0.0828 0.1574 0.1482 0.1558

AUC

COPD 0.5957 0.6767 0.6604 0.6793

Cancer 0.6568 0.7527 0.7596 0.7692

Diabetes 0.8113 0.8753 0.8543 0.8758

Heart Disease 0.5958 0.6732 0.6406 0.6768

Pneumonia 0.6919 0.7678 0.7542 0.7645

Stroke 0.7594 0.8597 0.8484 0.8667

Balanced Accuracy

COPD 0.5687 0.6303 0.6250 0.6304

Cancer 0.6176 0.6882 0.6979 0.7030

Diabetes 0.7500 0.7906 0.7682 0.7956

Heart Disease 0.5691 0.6168 0.5954 0.6184

Pneumonia 0.6481 0.7057 0.6894 0.7003

Stroke 0.7023 0.7808 0.7672 0.7852
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(a) Accuracy (11.4, 0.0097) (b) F1-score (10.8, 0.0129)

(c) AUC (17.0, 0.0007) (d) Balanced Accuracy (14.6 0.0022)

Figure 4.13: Critical difference diagram of classifiers on the six disease specific hospital

readmission prediction tasks (Based on results from Table 4.9). All plots use α = 0.05.

The two numerical numbers inside the parentheses denote the χ2
F and p values for

each plot, i.e., (χ2
F , p). Classifiers not significantly different, (i.e. their average ranks

do not differ by CD), are grouped together with a horizontal bar.

responds to the F1-score). Because all p values are less than 0.05, the null-hypothesis

(which states that all algorithms are equal and there is no statistical difference be-

tween their ranking) is rejected. This concludes that there is a statistical difference

between different methods in terms of their performance ranking. Meanwhile, the

χ2
F value shows the spread of the classifier performance. The higher the χ2

F value,

the larger the variance of all classifiers (with respect to the current measure) is. For

AUC and balanced accuracy (which are the two measures most frequently used to as-

sess classifier performance under class imbalance), the gradient boosting outperforms,

random forest and logistic regression, with random forest outperforming logistic re-

gression, in terms of their mean rankings. Also, although these three classifiers have

different mean rankings, their performance are not statistically different. In sum-

mary, the critical difference diagrams in Fig. 4.13 concludes that gradient boosting

achieves the best average ranking among all models, whereas decision tree has the
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lowest ranking.

4.3 CONCLUSIONS

This research carries out systematic studies to understand data statistics for United

States nationwide hospital admission, and further designs a machine learning frame-

work for disease-specific 30-day hospital readmission prediction. We argued that

although many methods exist for hospital readmission prediction, answers to some

key questions, such as demographic, disease, and hospital characteristics with respect

to admissions, still remain open. Accordingly, we employed national readmission

databases (NRD), with over 15 million hospital visits, to carry out data statistics

analysis. We identified factors related to three key party of the hospital remissions:

patient, disease, and hospitals, and reported national scale hospital admission statis-

tic. Based on the data statistics, we created 526 features with five major types,

including demographics features, admission and discharge features, clinical features,

disease features, and hospital features. We collected six disease specific readmission

datasets, which reflect the top six leading diseases of death.

By using random under sampling and ensemble learning, combined with soft vs.

hard voting and four types of machine learning methods, including gradient boosting,

decision tree, logistic regress, and random forests, our experiments validate three ma-

jor type of settings: (1) hard voting vs. soft voting, (2) random under sampling, and

(3) disease specific readmission prediction. Experiments and statistical test results

show that soft voting outperforms hard voting on majority results, especially for AUC

and balanced accuracy which are the main measures for imbalanced data. Random

under sampling using 1.1:1 for negative:positive ratio achieves the best performance

for AUC, balanced accuracy, and F1-score. Gradient boosting achieves the best per-

formance for disease specific hospital readmission prediction, and decision trees have

the worst performance.
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CHAPTER 5

FEDERATED LEARNING USING DYNAMIC NODE ALIGNMENT

Federated Learning (FL), originally proposed in 2016 [67], is a learning paradigm

which builds machine learning models based on datasets distributed across multiple

sites/devices in order to protect privacy and prevent data leakage. While traditional

machine learning methods are typically trained based on centralized data, using FL

provides a feasible way to develop models that can keep all the training data on

distributed devices and update model parameters using immediate aggregation.

As data collection and analytics are becoming increasingly popular, protecting

data privacy and safety is becoming a major concern for business, government, and

nearly all sections of human society. By deploying FL, each participant in the model

training process can build one model together without sharing data, naturally results

in data privacy protection. Traditional machine learning methods need to concentrate

training data in a certain machine or a single data center, which means in order to

meet the gradually increasing data level, it is necessary to continuously add machines

and build infrastructure. Such method not only greatly increases the cost but also

hinders the efficiency building models. In contrast, FL allows all the needed data

stay in their local places without the need to build specific data center to aggregate

them, at the same time, each part of the data will be used to develop the model.

Such efficient characteristic enables Federated Learning to be widely used in multiple

areas especially in the healthcare domain.

The shift from written health records to electronic health records has been instru-

mental in driving the use of patient data to improve the healthcare industry. The

adoption of electronic health records enables health care professionals to disseminate
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knowledge across all sectors of health care, which in turn helps to reduce medical

errors and improve patient care and satisfaction. However, as mentioned previously,

adequate medical data sets are difficult to obtain. However, in order to capture the

subtle relationships between disease patterns, socioeconomic and genetic factors, and

complex and rare cases, exposing the model to different cases is critical. FL is able

to address this issue by enabling the distributed training of machine learning models

using remotely hosted datasets without the need to accumulate data and therefore

compromise the data privacy [10,17, 70,70, 74,79,102].

While FL is capable of making use of data across different sites/institutions, there

are still several data acquisition issues which can cause bias during model develop

process. First of all, due to data privacy limitation, the Health Insurance Portability

and Accountability Act (HIPAA) has set up regulations for healthcare organizations

to manage and safeguard personal information and address their risks and legal re-

sponsibilities in relation to processing personal patients data [22]. This leads to strict

data share policies of each healthcare provider, which, limits the amount of available

data source. Another issue is that there exist hospital speciality gaps between differ-

ent hospitals, in other words, healthcare providers might focus on several particular

diseases treatment instead of performing general hospitalization. In this case, there

are big chances where FL models trained across all different disease focus datasets

will perform predictions with certain disease-specific bias. In addition, biases also

exist when patients demographic characteristics differ. Different income groups, age

groups, genders, and geographical locations and living environments will all affect

the overall patient characteristics that admitted to different regional hospitals, thus,

data bias can also be observed in such kind of dissimilarity. Therefore, it is essential

to reduce all the above biases when we try to develop a federated learning model to

make crucial medical predictions. We aim to design a novel federated learning model

that can take this kind of bias into consideration at the first step where node weight
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aggregation takes place.

Despite the fact that use of traditional machine learning techniques (TML) in

combination with electronic health records (EHR) is gaining popularity as a means

to extract knowledge that can improve decision-making processes in healthcare, they

usually require the training of high-quality learning models based on diverse and com-

prehensive datasets that are difficult to obtain due to the sensitivity of medical data

from patients. Meanwhile, although distributed machine learning [95] has addressed

parallel computing in handling large scale data, these methods are often designed

to tackle the data volumes using frequent data exchange. In addition, switch learn-

ing models are often prohibitively expensive/inconvenient, making it difficult for end

users to try/implement different learning algorithms. On the contrast, FL enables

devices to collaboratively learn shared predictive models while keeping all training

data on-device, decoupling the power of machine learning from the need to store data

in the cloud. This goes beyond using native models to make predictions on mobile

devices and also brings model training to the device.

Table 5.1 summarizes the main difference between federated learning, traditional

machine learning methods, and distributed machine learning methods. In summary,

the inherent advantage of federated learning is that is allows flexible modeling training

and continuous learning on end-user devices while ensuring no end-user data leaves

the device.

Fig. 5.1 shows how FL works. Global model M is downloaded from the central

server to each client when it comes to training the model, after which the downloaded

model is trained by each client using their own dataset. Once the training process

is completed, each client needs to update their updated training parameters to the

central server and the central server would aggregate the learnt parameters (parameter

aggregation) and pass the aggregation results to the global model, therefore, one

update for the global model is accomplished and this process is called Global update.
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Table 5.1: Comparison between Federated Learning (FL), traditional machine learn-

ing (TML), and distributed machine learning (DML) algorithms. DML methods are

commonly data driven (DMLd) or computing driven (DMLc). Data driven methods

(DMLd) mainly try to learn from large volume distributed data, whereas computing

driven methods (DMLc) aim to parallelize computing in learning from centralized

data. Computing framework refers to the whole eco-system for learning, and model

switch refers to easiness of switching a new learning model.

Method Data lo-

cation

Main com-

puting

Computing frame-

work

Data exchange Main Challenge Privacy protection Model switch

TML Centralized Data center Very restrictive Yes Model performance Low Very restrictive

DMLc Centralized Data center Restrictive Yes Data volume Low Very restrictive

DMLd Distributed Local Flexible Yes Data volume Medium Restrictive

FL Distributed Local Very flexible Prohibited Data protection High Flexible

Once global update is finished, model parameters will be passed from the global model

to each local model for Local update, where clients’ model parameter will be updated

with the new aggregated model weights to start a new round training. [74].

Figure 5.1: A conceptual view of the FL Framework. The local update (downstream)

and global update (upstream) are carried out iteratively to ensure models trained

using local data are aggregated at central server, and then dispatched to distributed

sites.

Parameter aggregation is one of the most important steps of the federated learning.

Among all existing methods, Federated Averaging (FedAvg) is the most commonly

used method. Eq. 6.13 summarizes the global weight values w updating of FedAvg

in each training round t, in which k is the client index, K means the total number of

82



clients, n is the total number of instances and nk is the local data examples for each

client [67]. Overall, Eq. 6.13 indicates that the global weight vector w is the weighted

average of weight values obtained from local clients. A bold-faced symbol denotes a

vector or a high dimensional vectors (e.g. a matrix).

wt+1 =
K∑
k=1

nk

n
wk

t (5.1)

Recently, other weight aggregation methods have also been proposed in FL. For

example, anomaly score of each client is taken into consideration to detect abnormal

client behavior, thus, clients will not contribute equally when global model updates

the weight values, the majority of those novel methods are still based on FedAvg

[36, 59]. Even though this method is widely used and has been proved with good

prediction performance [34, 90], due to the nature of hidden layers in deep learning

neural networks, we can clearly observe that this method manually forces weight

aggregations between neurons located at the exact same location (i.e., same layer

and same node index) of two networks. However, when training two same-structured

deep learning networks NA and NB, even they are given the same input, neurons at

the same location of the two networks do not always give the same update. In other

words, certain property of the input (or the same instance) may trigger the most

significant activation to the i-th node of NA, but same instance may triger the most

significant activation to the j-th node of NB. Meaning that same instance responds

differently for the same lactation nodes between two networks.

In order to demonstrate the above hypothesis, we create a simple dense neural

network ND with one input layer, two hidden layers and one output layer. One

dataset with 10 features is fed into ND. For the ith node in the first hidden layer

N1
D, there will be 10 weight values {w1

i,0, w
1
i,1, ..., w

1
i,9} corresponding to the 10 input

features (the superscript denotes the first trained network). After we train ND from

scratch for five times with the exactly same dataset, a node e is randomly chosen

from all five networks (with the same node index), from which we will get 10 weight
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vectors of {we,0,we,1, · · · ,we,9} in which we,0 = [w1
i,0, w

2
i,0, w

3
i,0, w

4
i,0, w

5
i,0] represents all

five trained weight values corresponding all five networks’ first indexed node and first

feature dimension as shown in Fig. 5.2. After that, we calculate the variance of we,0,

and repeat the same for all 10 nodes. Fig. 5.3 reports the variance of the weight values

across all five trained network. The high weight variance in Fig. 5.3 concludes that

weight aggregation by static node matching will not only add uncertainty to model

performance, but also will hinder the practical application of Federated Learning in

industry.

Figure 5.2: A conceptual view of node weight variance calculation. Five neural net-

works with the same architecture are trained using same training sample. The first

hidden layer nodes are trained with the same input features and the first node is

chosen to calculate the node variance.

In this research, we aim to design a dynamic node matching method, FedDNA,

to aggregate weight values in each round based on a neuron-distance method, in

which neuron distances across all the clients are calculated after each client completes

training the model parameters with their own data. After that, the closest neurons

are matched to calculate their average weight values as new parameter for the global

model. Fig. 5.3 reports weight variance of the matched nodes trained using same

setting as the static node matching. The results show that dynamic node matching

provides much smaller weight variance across all nodes of different networks. The
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Figure 5.3: Comparisons of weight variance between two weight matching methods,

Static node matching vs. Dynamic node matching (proposed). The x-axis denotes

the neuron node ID of the first hidden layer, consisting of 10 neurons, of a neural

network. The network was trained five times till convergence, using same training

data. The y-axis denotes the variance of the weight values of each of the hidden nodes

(Larger variance mean the neuron weights are more unstable across different training

times, even for the same feature dimension of the same neuron).

advantage of reducing variance is that it allows nodes with similar behaviors to be

aggregated for weight averaging. This potentially results in stable and improved

federated learning performance.

In summary, the main contribution of the proposed research is summarized as

follows:

• Dynamic node alignment: We propose a new dynamic node alignment

framework, FedDNA, for weight aggregation in federated learning. Instead of

using fixed node index to match nodes across different sites, FedDNA finds the

best matching nodes based on node weight values, such that nodes, of the same
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layer, with the most similar response to the input are considered as one new

node for next round training.

• Fast node alignment: To increase node aliment speed, we propose a Minimum

Spanning Tree (MST) based method to find global optimal matching nodes

across all sites.

• Alignment and frozen: In each training process, after finding the matching

nodes at the very beginning, node matching will be frozen and federated average

will be used for the rest of training rounds. By doing this, we can ensure the

matching nodes orders which will not be disturbed by subsequent training.

5.1 THE PROPOSED METHOD

Instead of using fixed node matching, like FedAvg does, we propose to use dynamic

node matching to find matching node between different sites, and then aggregate

weights of matched nodes to calculate weight values of the global model. During the

FL process, the sites will pass their local weight values to the center, so the center

will carry out node matching before aggregating site weight values. Our idea is to

use weight values of each node as a feature vector to find matching nodes. Because

weight values of a neuron are associated to each features, for nodes at the same hidden

layer, they will have same input space. This allows us to use weight values to find

distance/similarity between nodes for matching.

To make sure weight values are aggregated from the most similar nodes crossing all

clients C, at the first step, nodes distances are calculated across all clients as shown

in the distance matrix in Table. 5.2, from which Minimum Spanning Tree (MST)

as shown in Fig. 5.4 is used to ensure that the matching are across all clients. A

minimum spanning tree (MST) or minimum weighting tree is a subset of edges of a

connected edge-weighted undirected graph that joins all vertices together without any
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loops and with the smallest possible total edge weights. That is, it is a spanning tree

with the smallest possible sum of edge weights. More generally, any edge-weighted

undirected graph (not necessarily connected) has a minimum spanning forest, which

is the union of the minimum spanning trees of its connected components [38]. In our

example in Table 5.2, a distance mapping is plotted to demonstrate how the matching

process works. At first node distances are calculated across all sites, in this case, 3

sites. we start the matching process from node a because it has the smallest distance

0.11 across all the nodes. we can observe that node B has the smallest distance with

it, therefore, B will be matched to a. For the next step, we are using MST to find

the next matching node for {a, B}, which in this case, will be node α. This MST

matching process will continue until all the nodes are matched across all clients as

shown in Fig. 5.4.

Figure 5.4: Node matching using MST. Node a is the starting point since it has the

smallest distance 0.11 with node B, therefore, B will be matched to a. Node α will

be matched with a, B with MST. This MST matching process will continue for node

b and c.

5.1.1 Dynamic Neural Network Node Matching

In the proposed method, one key step is to find the closest nodes based on distance

calculation in each round. This step is carried out at the center, and the aggregated

weights are then dispatched to the federated learning site for the next round. The

node matching is applied to one specific hidden layer of all networks, one at a time.
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Table 5.2: An example of pairwise distance tables between three sites where each site

has three nodes: Site1={A,B,C}, Site2={a, b, c}, and Site3={α, β, γ}. Each value in

the table denotes distance between two nodes across two sites.

a b c

A 0.12 0.15 0.16

B 0.11 0.13 0.17

C 0.16 0.14 0.18

A B C

α 0.27 0.13 0.19

β 0.23 0.14 0.18

γ 0.21 0.16 0.21

a b c

α 0.13 0.24 0.18

β 0.14 0.19 0.21

γ 0.21 0.21 0.25

By default, we are referring to nodes in the first hidden layer for ease of explanation.

The same matching process is applicable to any other hidden layers as well. Algorithm

4 outlines the main steps of FedDNA for matching nodes across networks. Overall

definition of the symbols used in our node matching is shown in Table. 5.3.

Table 5.3: Definition for symbols used in node matching

Symbol Definition

S Global model (server)

vs
i Weight vector of the i-th node in global model first hidden layer

C Set of clients

cα Nodes weight vector of client c

vα
i Node weight vector of client cα’s i-th node

wα
i,d Weight values of node vα

i

d(a, b) Distance between node a and node b

T Minimum spanning tree

d(v, T ) Distance between node v and tree T

Denote S = {vs
1,v

s
2, · · · ,vs

n} the global model (server) in which vs
i = [ws

i,0, w
s
i,1, · · · , ws

i,m]

is the weight vector of the i-th node in its first hidden layer. C = {c1, c2, · · · , cΣ}
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means the set of clients c and cα = {vα
1 ,v

α
2 , · · · ,vα

n} is nodes weight vector of client

cα. Node weight vector of client cα’s i-th node is denoted by vα
i = [wα

i,0, w
α
i,1, · · · , wα

i,m].

5.1.1.1 Neuron Matching Distance Calculation

Given two neurons vα
i and vβ

j at the same layer, because they have the same input

dimensions (In this paper, we are using dense network architecture, so neurons at

the same layer are connecting to all inputs/nodes of the preceding layer), we can

represent each nuron as a vector, and calculate distance/similarity between neurons

using the vectors.

Assume for any particular layer, the input dimension ism, and the weight values of

neuron vα
i = [wα

i,0, w
α
i,1, · · · , wα

i,m], weight values of neuron vβ
j = [wβ

j,0, w
β
j,1, · · · , wβ

j,m],

respectively. Node distance between vα
i and vk

i can be calculated with Euclidean

distance defined in Eq. 5.2 or using Manhattan distance defined Eq. 5.3. The

Euclidean distance between two points in Euclidean space is defined as the length

of the line segment between the two points, which essentially represents the shortest

distance between two points. Manhattan distance is a distance measure between two

points in an m-dimensional vector space. It is the sum of the projected lengths of the

line segments between the points on the coordinate axes. In simple terms, it is the

sum of the absolute differences of two points measured in all dimensions.

dEuclidean(v
α
i ,v

β
j ) =

√√√√ m∑
d=1

(wα
i,d − wβ

j,d)
2 (5.2)

dMahattan(v
α
i ,v

β
j ) =

m∑
d=1

|wα
i,d − wβ

j,d| (5.3)

During the node matching process, we will be growing a tree (i.e. a minimum spanning

tree MST) to link matched/aligned nodes across all sites. In this case, a tree T consists

of a set of neurons, i.e., T = {vα
i , · · · ,vβ

j , · · · } where α �= β. We enforce α �= β such

that an MST tree only contains one node from each site (because we are trying to find
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Algorithm 2 FedDNA: Federated learning with dynamic node alignment

Input: The index of the layer to apply node alignment (default first hidden layer); Client models’

node weight values; Chosen node set N={}; Matched node set M={}; Chosen Client set C={}

Output: Aggregated weight values of the global model S

1: C ← Set of federated learning participating clients

2: N ← Node set of the lth hidden layer of participating clients (C)

3: W ← Obtain lth layer’s weight values from participating clients (C)

4: cα ← Randomly select one client from the client set C

5: {vα
1 ,v

α
2 , · · · ,vα

n} ← Obtain client cα’s layer l node weight vectors

6: M ← ∅; R ← N Initialize matched node set (M) and remaining unmatched node set (R)

7: W ← ∅ Initialize set (W) storing mean weight values of matched nodes across all sites

8: while R is not empty loop until all nodes are matched do

9: C′ ← C A temporary set to ensure that each site has one node being matched, one at a time

10: cα ← Randomly select one client from the client set C

11: vα
i ← Randomly select on neuron of cα from remaining node set R

12: T ← {vα
i } Initialize MST tree for matching

13: R ← R \ vα
i Exclude vα

i from remaining node set R

14: C′ ← C \ cα Exclude selected site cα, because its node already in the tree T

15: while C′ is not empty *loop until all sites are matched do

16: [v∗, c∗] ← argmin
v∗∈c∗; c∗∈C′

d(v∗, T ) find node v∗ most closest to the MST tree T

17: T ← T ∪ v∗ Include matched node v∗ to the tree T

18: C′ ← C′ \ c∗ Exclude site c∗

19: R ← R \ v∗ Exclude v∗ from remaining node set R

20: end while

21: w ← Average(vk); ∀vk ∈ T Calculate average weight values of matched notes in T

22: W ← W ∪w Center collects average weights of matched nodes across all sites

23: M ← M∪ T Include all MST tree nodes to the matched set M

24: end while

25: for each client cα ∈ C do

26: W ← ClientUpdate(cα,W) Dispatch mean weight values to each site for next round federated

learning (Alg. 3)

27: end for
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Algorithm 3 ClientUpdate(c,w): Local client weight updating

Input: w: trainable model parameters; Dc: local data at site c; (2) b: batch size; (3) e:

Number of epochs; (4) η: learning rate

Output: w: updated local model parameters

1: B ← split local data Dc into batches of size b

2: for each epoch from 1 to e do

3: for batch b ∈ B do

4: w ← w − η 	 ι(w;b)

5: end for

6: end for

7: Return w

matching nodes across all sites. It does not make sense to have a neuron to match

a node of the same network). The number of nodes in the tree T varies, as the tree

is growing dynamically. However, after the matching, each node only belongs to one

MST tree, and the final number of nodes in the MST tree equals to the number of

sites of the FL learning framework. We do not record edges connecting nodes in the

tree, because our goal is to find matching nodes as a group, and then use their weights

to update center’s node weights. In this case, the pairwise relationship between sites

is not important to us. Also, each tree T records its membership nodes and will

use their weights to calculate the average weights, which will be pass to respective

members of the tree T for next round FL learning.

During node matching, we need to expand the tree T and include matching node to

the tree. Therefore, we define the distance between a node v and Minimum Spanning

Tree T as in Eq. 5.4. The distance from a node to a Minimum Spanning Tree tree

argmin d(v, T ) equals to its distance to its closest node in the tree.

d(v, T ) = arg
vα ∈ T

min d(v,vα) (5.4)
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5.1.1.2 Minimum Spanning Tree for Neuron Alignment across Sites

At the first step, each client downloads the model from central server and train it

with its local data, after which client cα is randomly chosen from C. One node vα
i

will be randomly selected among all the nodes in the first hidden layer of client cα’s

local model. In the second step, another client ck will be chosen at random from {C

- cα}. A distance function explained previously will be used to calculate the distance

d(vk
j ,v

α
i ) between all nodes in the first hidden layer of client ck model and node vα

i .

We can get two nodes matched (vk
j ,v

α
i ) based on the smallest distance.

Now we have two nodes, which are also the start of our MST tree T = {vk
j ,v

α
i },

from which we will start to grow the tree. MST is the one whose cumulative edge

weights have the smallest value, and in our proposed method, it means the one whose

cumulative node distances have the smallest value. In each matching step, we will

randomly pick one client from {C - {cα, ck}}. Node to tree distance Eq. 5.4 will be

applied to find the subsequent matching nodes to join the MST tree T . The MST

tree T will continue growing until {C - {cα, ck,...}} is empty and at the same time, a

complete tree T with new node set {vα
i , v

k
j , v

β
t ,...} will be formed to aggregate their

averaged weight values as a new node weight vs
i for the global model. To illustrated

the above description, for example, one client is randomly chosen in Fig. 5.5, then

in Fig. 5.6, after the first calculation, node {a,B} are matching node, then we

calculate distance d(a, α), d(a, β), d(a, γ), d(a, θ), d(B,α), d(B, β), d(B, γ), d(B, θ),

then choose node α with the smallest distance and node {a,B, α} are the matching

nodes. Weight values {v1
a,v

2
B,v

3
α} will be averaged to be considered as a new node

value for the global model.

5.1.1.3 Dynamic Node Alignment vs. Frozen

In our proposed method, frozen means instead of using dynamic node alignment

through the entire training process, we choose to train the federated learning model
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Figure 5.5: Node matching step 1. after each client finishing training its local model,

client cα is randomly chosen from C and node vα
i will be randomly selected among

all the nodes in the first hidden layer of client cα local mode.

Figure 5.6: Node matching result. node {a, B, α} are matching nodes.

with dynamic node alignment for certain rounds at the very first beginning, then

static node alignment will be applied for the rest training part. By doing so, nodes

with similar response will be paired right after the training process starts and once

all the neurons are matched during the first certain rounds, we believe that the node

pair pattern will discovered and fixed to a certain extend, therefore, using static node

alignment will prevent the pattern from being disturbed from subsequent training

process.

5.1.1.4 Theoretical Analysis

In this subsection, we analyze the time complexity of FedDNA, and compare its com-

plexity with simple global optimal matching search. Denote Σ the number of sites, n

the number of first layer nodes at each site, and m the number of features for each

neuron. Because all sites in FL setting have same network structure, we only focus on

93



first layer, and the same analysis applies to other layers, if dynamic node alignment

is carried out beyond the first layer.

Finding global optimal matching (i.e., the sum of matching distances of all nodes,

across all sites) is a combinatorial problem, because it requires comparisons of all

nodes against all other nodes, across all sites. For two sites, each having n nodes,

the matching complexity is Øn× n×m, because it needs to cross check all pairs

(and each pairs involve m feature dimension comparisons). Adding a third site would

result in Øn× n× n×m complexity because all node pairs between three sites need

to be checked. As a result, for Σ sites the total complexity is ØnΣ ×m, which grows

exponentially with respect to the number of sizes.

For FedDNA, finding matching nodes across all sites for one node requires Ø(Σ− 1)× n×m

complexity because a node needs to search all nodes from other sites and it does not

need to search nodes from the same site. Once the first node is matched (across all

sites) and matched nodes are added to the minimum spanning tree (MST), the next

node matching requires Ø(Σ− 1)× (n− 1)×m complexity because there are n − 1

unmatched nodes remain for each site. As a result, total time complexity for all nodes

(across all sites) is the sum of all individual nodes’ complexity: Ø(Σ− 1)× n×m+

Ø(Σ− 1)× (n− 1)×m+ · · ·+Ø(Σ− 1)× 1×m = ØΣ× n2 ×m. By growing mini-

mum spanning tree (MST) to support the matching, FedDNA reduces the exponential

complexity from ØnΣ ×m (for global optimal matching) to quadratic ØΣ× n2 ×m.

In summary, FedDNA’s complexity is linear with respect to the number of sites,

and quadratic with respect to the number of nodes at each site.
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5.2 EXPERIMENTS

5.2.1 Experimental settings

5.2.1.1 Datasets

We used four benchmark datasets in the experiments. The first one is Diabetes Data

Set which data source are obtained from two main aspects, an automatic electronic

recording device and paper records to predict whether a patient has diabetes or not.

For the automated electronic recording devices, they have an internal clock to mark

events, whereas paper records only provide periods of “logical time” (breakfast, lunch,

dinner, bedtime). For paper records, fixed times are assigned to breakfast (08:00),

lunch (12:00), dinner (18:00) and bedtime (22:00). Therefore, paper records have a

fictional uniform time of recording, while electronic records have a more real time

stamp [53]. The second dataset we used is Spam base Data Set from UCI which

was created by spam emails from postmaster and individuals and non-spam emails

from filed work and personal e-mails in order to construct a personalized spam filter.

In this dataset, The last column indicates whether the email is considered spam (1)

or not (0), that is, unsolicited commercial email. Most properties indicate whether

a particular word or character occurs frequently in emails [47]. Another data set

used in this paper is called Patient Survival Prediction Dataset. It uses knowledge

about patient chronic conditions from Intensive Care Units (ICUs) to inform clinical

decisions about patient care and ultimately predict patient’s survival outcomes [75].

Occupancy Detection Data Set is the last data set we used to verify our model’s

performance. It is a dataset for predicting room occupancy using environmental

factors such as Temperature, Humidity, Light and CO2. Ground-truth occupancy

obtained from time stamped pictures that were taken every minute [20].

Basic descriptions about these four datasets are shown in Table 5.4 from which

we can observe the number of samples in each dataset, diabetes database has 1150
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samples and there are 4601, 91714 instances in the spambase data set and Patient

Survival Prediction data set separately. Patient Survival Prediction set has the most

samples and also the largest attributes while Occupancy detection data set has the

medium size samples with the least number of attributes. Apart from that, data di-

mensions of those four are also different with various feature types such as categorical

features, numerical features. One same point is that there are only two classes in

all the datasets, which means binary classification will be performed in our proposed

model.

Table 5.4: Summary of the benchmark datasets used in the experiments, including

sample amount, attributes amount, data characteristics and class distribution.

Dataset # of instances # of attributes Attribute Characteristics Class Class Distri-

bution

Class set up

Diabetes Database 1,150 19 Categorical, Integer Binary 0.89 0.2; 0.4; 0.5; 0.6; 0.7

Spambase Data Set 4,601 56 Integer, Real Binary 1.54 0.8; 0.6; 0.5; 0.4; 0.2

Patient Survival Prediction 91,714 186 Categorical, Real Binary 11.26 0.5; 1; 3; 5; 7

Occupancy Detection 20,560 7 Real Binary 3.33 0.5; 1; 1.5; 2; 2.5

5.2.1.2 Baseline Methods

To validate the performance of the proposed method, we use deep neural networks

as the training models and employ four baselines for our comparisons. One is plain

neural network (Plain NN) model which has the same structure as our proposed model

which has one input layer, two hidden layers and one output layer.

FedAvg The second baseline is called Federated Average (FedAvg), which also share

the same network structure with our proposed method and use static node matching

to aggregated node weight values for the global model. In FedAvg, each client down-

loads the current model from a central server, improves it by learning from its own

local data, and then aggregates the changes into a small centralized update. Only

updates to the model are sent to the server/cloud using encrypted communication
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and immediately averaged with other user updates to improve the shared model based

on Eq. 6.13. All training data is kept locally and no individual updates are stored in

the cloud.

Federated Average (FedAvg) is a generalization of FedSGD that allows local nodes

to perform multiple batch updates to local data and swap updated weights instead

of gradients. The basic principle behind this generalization is that in FedSGD, if all

local nodes start from the same initialization, the mean gradient is strictly equivalent

to the mean weight itself. Furthermore, averaging adjustment weights from the same

initialization does not necessarily harm the performance of the resulting averaging

model [67, 79].

FedDyn Next baseline is call FedDyn, in which each client learns a unique model

with its own regularization parameter [1]. In this method, each client in the federated

learning system learns a unique model with its own regularization parameter. The

regularization parameter is updated dynamically during the training process based

on the client’s local model performance. This means that clients with more difficult

data can have a higher regularization, while clients with easier data can have a lower

regularization, which improves the convergence speed and accuracy of the federated

learning process.

The objective of FedDyn is to solve Eq. 5.5, where k ∈ [m] consists of Nk training

instances, Lk(θ) is the empirical loss of the kth device and θ are the parameters of the

neural network.

arg min
θ∈Rd

[l(θ)] � 1

m

∑
k∈[m]

Lk(θ) (5.5)

FedDNAfixed Baseline 4 (FedDNAfixed) calculates nodes’ distance based on a fixed

node. This baseline is created because we want to confirm whether the node matching

pattern in dynamic node alignment improve compared with when the node used for
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matching remains the same. At the first step, after each client finishing training its

local model, client cα is randomly chosen from C. Then one node vα
i will be randomly

selected among all the nodes in the first hidden layer of client cα’s local model. In the

next step, one client will be randomly ck picked from {C - cα}, a distance function

explained previously will be used to calculate the distance d(vk
j ,v

α
i ) between all nodes

in the first hidden layer of client ck model and node vα
i . We can get two nodes matched

(vk
j ,v

α
i ) based on the smallest distance.

Now we have two nodes, which are also the start of our MST tree T = {vk
j ,v

α
i },

from which we will start to grow the tree. In each matching step, we will randomly

pick one client from {C - {cα, ck}}. Unlike FedDNA, in this baseline, the distance

between a node to the tree will be calculated with Eq. 5.6, which means that only vα
i

will be used in MST tree T to do the node matching. The MST tree T will continue

growing until {C - {cα, ck,...}} is empty and at the same time, a complete tree T

with new node set {vα
i , v

k
j , v

β
t ,...} will be formed to aggregate their averaged weight

values as a new node weight vs
i for the global model.

d(v, T ) = dEuclidean/Manhattan(v,v
α
i ) (5.6)

For example, in Fig. 5.5, distance for c2 will be d(a,A), d(a,B), d(a, C), d(a,D)

and for c3 the distance will be d(a, α), d(a, β), d(a, γ), d(a, θ). Assume for c2, the

smallest distance is d(a,B) and d(a, α)for c3, then node {v1
a,v

2
B,v

3
α} are the matching

nodes and their weight values will be averaged as one new node weight values for the

global model.

FedDNArandom The last baseline is a modification based on both FedDNA and

FedDNAfixed. Instead of being too static or too dynamic with the node matching,

we cant to confirm the feasibility when the matching node is neither 100% percent

fixed nor using the entire MST tree as a matching node. Settings for baseline 4

(FedDNArandom) is as follows: At the first step, after each client finishing training its
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local model, client cα is randomly chosen from C. Then one node vα
i will be randomly

selected among all the nodes in the first hidden layer of client cα’s local model. In

the next step, one client will be randomly ck picked from {C - cα}, a distance func-

tion explained previously will be used to calculate the distance d(vk
j ,v

α
i ) between all

nodes in the first hidden layer of client ck model and node vα
i . We can get two nodes

matched (vk
j ,v

α
i ) based on the smallest distance.

Now we have two nodes, which are also the start of our MST tree T = {vk
j ,v

α
i },

from which we will start to grow the tree. In our third step, one node will be randomly

chosen from {vα
i , v

k
j } which will be used to match nodes of client {C - {cα, ck}} using

Eq. 5.4. Step 3 will be repeated until {C - {cα, ck,...}}is empty and at the same time,

a new node set {vα
i , v

k
j , v

β
t ,...} will be formed to aggregate their averaged weight

values as a new node weight value for the global model. Assume we randomly choose

c2 in Fig. 5.5 to do the first match, node {a,B} are the matching nodes, then one

node will be randomly chosen from node {a,B} to calculate distance for c3. If node

B is chosen, distance d(B,α), d(B, β), d(B, γ), d(B, θ), will be calculated to choose

the next matching node.

Our overall experiment setting is shown in Table 5.5. We use 10-fold cross val-

idation, under which there will be 10 training rounds for each model to train. For

each dataset, our aim is to predict the corresponding target and 10-fold cross vali-

dation is applied to reduce both bias and variance. Under each cross validation fold

K, same weight values are initialized for all both baseline models and our proposed

models, Plain NN , FedAvg, FedDyn, Baseline3, Baseline4 and FedDNA. For

methods under FL setting, model parameters will be passed to each clients at the

very beginning of training. Training data will be randomly split into 5 sites and dis-

tributed to 5 clients, which is able to training the local model using their own data,

after which weight values will be aggregated based on different FL method and then

send back to the global models. Global models will pass the new calculated parame-
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ters to their local clients to start new round training until the convergence. For our

proposed method FedDNA, there are two experiment settings in this paper. One is

called no-freezing weight update setting, in which weight values of the global model

will be aggregated using FedDNA method for all the 10 rounds while the second type

of setting is called freezing, in other word, we will choose to update the global model

parameters with FedDNA at the first i round and after that FedAvg will be used to

aggregate clients’ model weight values for the rest of rounds. We design this type

of setting because we think the first several rounds of distance calculation will give

use the answer of the closest matching nodes then we can use that match to directly

aggregated the node weight values.

For our experiment dataset settings, we first run our model based on the original

class distributions across all clients in all datasets which is negative : positive = 1.54

in spam database, negative : positive= 0.89 in diabetes data base, negative : positive

= 11.26 in Patient Survival Prediction data set and negative : positive = 3.33 in

Occupancy Detection data set . In the second experiment setting, for each training

process, 2 clients are randomly chosen to exchange 2/3 of their data while the rest 3

clients keep their own data, in this case, our model will be verified on non-IID datasets.

Calculated overall node distance, Accuracy, AUC, F1 score, Balanced accuracy and

Loss are used as performance measurement metrics.

Apart from randomly selecting 2 clients to exchange their data, we decide to

evaluate our proposed model under different class distribution settings. The original

class distribution (negative:positive) of the four datasets are as shown in Table 5.4.

A set of class distributions is set up for the original four data sets to check the model

performance. Since all the datasets have different original class distributions, the

assigned class distributions of the four datasets in this paper are different from each

other.
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Table 5.5: The pseudo code of the experiment settings and comparisons (all methods

are compared based based on same training/test data. The initial network weights

of each site are the same for different methods to avoid discrepancy due to random

weight initialization.

Experiment setting: Node matching Federated Learning

Input (1) Datasets D; (2) Node matching setting: Freeze; No freeze

Output Prediction of the target y

For each cross validation fold K:

Initialize same weight values for all the global models:

Plain NN , FedAvg, FedDyn, (FedDNAfixed), (FedDNArandom)

and FedDNA

Split training data into 5 sites for 5 clients

For Baseline1:

Train model using all the training data

For federated learning models:

Client train their own model using their own data

Match nodes with their distance calculation principle

Aggregated weight values pass to each global model

End For

Evaluate each global models

5.2.2 Experimental Results

Table 5.6 to Table 5.9 show the results for Diabetes dataset, Spam dataset, Occu-

pancy data set and Patient survival data set respectively in our first dataset setting.

Due to page limitation, only the best model performance results are presented in this

paper. For Diabetes database, we can observe that FedDNA, which uses our proposed

method FedDNA is able to find nodes combinations where the total node distance is
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the smallest with value 42.1352 compared with other methods whose final distance

results are greater than 50. At the same time, FedDNA presents better metrics per-

formance. Similarly, the smallest overall node distance and better metric performance

are realized by our FedDNA method for spam database. However, we can also come

to the conclusion that smaller overall node distance and better metrics performance

does not always come with the smallest training loss, especially for FedDNA. For oc-

cupancy and patient survival prediction datasets, FedDNA shows similar performance

as for the previous two datasets. Its overall classification performance outperforms

all the baselines with the smallest node distance 5.7316 and 57.4096 respectively after

matching, which indicates FedDNA is able to pair closest nodes together. We can tell

that overall, for all the four datasets, when class distributions are the same across all

clients, our proposed method performs the best in the freezing setting when the first

two rounds using Manhattan distance to find the matching nodes and the rest using

FedAvg with the smallest overall distance under freeze first two rounds experiment

setting with 42.1352 for diabetes dataset, 730.3930 for the spam data set, 5.7316 for

Occupancy Detection and 57.4096 for Patient Survival Prediction data set.

Table 5.6: Experimental results from Diabetes dataset using Manhattan distance

based matching. For FedDNA, the matching freezes after first two rounds of dynamic

node alignment.

Distance Accuracy AUC F1 score Balanced accuracy Loss

Plain NN 0.6755 0.7529 0.6361 0.6744 3.3221

FedAvg 51.7421 0.7165 0.8044 0.7029 0.7219 1.9016

FedDyn 53.0637 0.7016 0.8012 0.7147 0.7078 1.8932

FedDNAfixed 63.7216 0.7264 0.7961 0.7120 0.7341 1.8354

FedDNArandom 56.3497 0.7298 0.8003 0.7280 0.7396 1.8274

FedDNA 42.1352 0.7381 0.8230 0.7290 0.7434 1.9253
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Table 5.7: Experimental results from Spam dataset using Manhattan distance based

matching. For FedDNA, the matching freezes after first two rounds of dynamic node

alignment.

Distance Accuracy AUC F1 score Balanced accuracy Loss

Plain NN 0.9165 0.9536 0.8905 0.9095 0.5110

FedAvg 824.3761 0.9320 0.9717 0.9120 0.9294 0.4823

FedDyn 792.1406 0.9316 0.9719 0.9136 0.9117 0.4431

FedDNAfixed 798.0362 0.9350 0.9762 0.9187 0.9343 0.6352

FedDNArandom 911.6532 0.9351 0.9772 0.9178 0.9337 0.4521

FedDNA 730.3930 0.9376 0.9781 0.9210 0.9357 0.4841

Table 5.8: Experimental results from Occupancy detection dataset using Manhattan

distance based matching. For FedDNA, the matching freezes after first two rounds

of dynamic node alignment.

Distance Accuracy AUC F1 score Balanced accuracy Loss

Plain NN 0.8327 0.9578 0.5018 0.7021 1.4599

FedAvg 7.8736 0.9225 0.9715 0.8236 0.8910 1.1592

FedDyn 8.5130 0.9135 0.9713 0.8137 0.8862 1.0927

FedDNAfixed 10.4510 0.9346 0.9751 0.8681 0.9179 0.9031

FedDNArandom 9.6437 0.9306 0.9762 0.8699 0.9083 0.8621

FedDNA 5.7316 0.9402 0.9788 0.8710 0.9140 0.8711

5.2.2.1 FedDNA vs. FedAvg with respect to Different Class Distributions

Fig. 5.7 is a box-plot for our second experiment setting’s results. Instead of showing

all the results of all models across all the datasets, since results from the first set-
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Table 5.9: Experimental results from Patient survival prediction dataset using Man-

hattan distance based matching. For FedDNA, the matching freezes after first two

rounds of dynamic node alignment.

Distance Accuracy AUC F1 score Balanced accuracy Loss

Plain NN 0.8201 0.5309 0.0618 0.4998 1.7521

FedAvg 63.2566 0.7913 0.6185 0.0676 0.4942 1.1150

FedDyn 67.9825 0.7740 0.6098 0.0635 0.5099 1.0047

FedDNAfixed 71.2609 0.9083 0.6422 0.0302 0.5024 1.0670

FedDNArandom 75.6094 0.8633 0.6251 0.0232 0.5075 1.0427

FedDNA 57.4096 0.8898 0.6485 0.0297 0.5079 1.4629

ting highlights that FedDNA outperforms FedAvg and FedDyn overall across all the

datasets, only comparisons between FedDNA and FedAvg, FedDyn with the com-

bined results across all the datasets are shown in Fig. 5.7, in which outliers can be

observed for three models but overall we can come to the conclusion that when data

is not evenly distributed across all clients, FedDNA performs the best in the freezing

setting when the first two rounds using Manhattan distance to find the matching

nodes and the rest using FedAvg.

Since under this experiment setting, FedDyn does not deliver better overall per-

formance than FedAvg according to above tables and figure, its detailed comparison

with FedDNA is not demonstrated. Fig. 5.8 to Fig. 5.11 report the performance of

FedDNA and FedAvg, with respt to different class distributions (the class distribu-

tions were adjusted to assess the algorithm performance under different conditions).

The y-axis is the values of each measurement and x-axis is different class distribution

set ups for each dataset as shown in Table 5.4.

For Diabetes Dataset, FedDNA and FedAvg has the largest gap for all the mea-

surements when sampling rate is 0.5 and both models’ performance fluctuate a lot
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Figure 5.7: Overall performance comparisons between FedDNA and FedAvg, Fed-

Dyn.Outliers ca be observed from both methods, overall FedDNA outperforms Fe-

dAvg and FedAvg performs similarly as FedDyn.

Figure 5.8: Performance comparisons between FedDNA and FedAvg with respect to

different class distributions for diabetes dataset.

with the change of class distributions. For Spam Dataset, even though FedDNA and

FedAvg perform similarly when class distribution is smaller, as more and more neg-

ative samples shown in the datasets, FedDNA starts to show more advantages than

FedAvg, especially when negative instances take up more than 40% of the dataset, the

gap between both models become larger with a better performance from FedDNA.
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Figure 5.9: Performance comparisons between FedDNA and FedAvg with respect to

different class distributions for spam dataset.

Figure 5.10: Performance comparisons between FedDNA and FedAvg with respect to

different class distributions for patient survival prediction dataset.

Similarly, for Patient Survival Prediction Dataset, the larger the sampling rate is,

the better FedDNA outperforms FedAvg especially in terms of Fscore and Balanced

accuracy. While for Occupancy dataset, FedDNA does not show much better results

than FedAvg when class distribution is less than 2, after which both models the

performance of the two models tends to be consistent.
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Figure 5.11: Performance comparisons between FedDNA and FedAvg with respect to

different class distributions for occupancy dataset.

5.3 CONCLUSIONS

In this research, we propose a dynamic node matching method for federated learning.

We argued that neural networks are inherently non-transparent and unstable, and

the same network structure may end up with very different weight values, even with

the same training data and same parameter settings. Traditionally, existing methods,

such as FedAvg, force neurons across sites to be matched with predefined order, and

use fixed matching nodes during the FL learning process. Alternatively, we proposed a

dynamic node alignment, FedDNA, approach which dynamically finds matching nodes

across sites, and uses matched nodes to calculate weight for FL learning. FedDNA

represents each neuron as a vector, using their weight values, and calculate distances

between neurons to find matching nodes. Meanwhile, because finding marching nodes

are computationally expensive, we proposed a minimum spanning tree (MST) based

approach to speed up the matching, with matched nodes across all sites being linked

by using an MST tree. So the matching process is simply the MST tree growing pro-

cess. Experiments and comparisons, including biased sample distributions, validate

the performance of the FedDNA, compared to other baseline.

Future study can emphasize on the following three directions. First, we only
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studied dense networks and verified its performance using FedDNA. Future study

can try to explore node matching between different types of network architectures,

such as convectional nueral networks. Second, we only studied the proposed design

using binary classification problems. In the future, multi-class classification problem

will be explored using our proposed FedDNA method. For the last direction, we will

use non-IID datasets to further adjust our model so that it can be applied not only

to binary classification problem but also can achieve good results for datasets with

different settings.
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CHAPTER 6

ACTIVE LEARNING USING LOCALITY-CUSTOMIZED GSA

Federated Learning (FL), represents a novel learning approach that constructs ma-

chine learning models using decentralized datasets distributed across numerous sites/devices.

The primary purpose of this paradigm is to safeguard privacy and avert data leak-

age risks [67]. The feasibility of Federated Learning (FL) as a decentralized machine

learning approach heavily relies on the proficiency of local models in both training

and inference tasks. These local models’ effectiveness is contingent upon the avail-

ability of meaningful and annotated data, which is essential for their successful train-

ing [7,80,99]. However, obtaining such data involves a laborious and time-consuming

annotation process, necessitating manual analysis of the training samples. In the

realm of machine learning, data annotation plays a pivotal role in empowering models

with the capacity to generalize effectively and achieve high-performance levels. How-

ever, The data annotation process presents two significant challenges that researchers

and practitioners must confront. First, it demands meticulous and time-consuming

analysis for each sample, rendering it a laborious endeavor. Second, and perhaps more

critically, the selection of appropriate samples is not always guaranteed, resulting in

potential negative impacts on the overall performance of the model [7, 82, 85, 88].

Recently, Active Learning (AL) has emerged as a machine learning method that

can effectively address data annotation workloads [78, 84]. Its main strategy is to

iteratively find the most informative data points to annotate. The annotated data

are then used as part of the training data in the next iteration. With more and

more iterations, the machine learning model’s performance can be more and more

improved. This strategy has been integrated into federated learning and generated a
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new paradigm called Federated Active Learning (FAL) [8, 55, 72, 100].

The FAL framework consists of several clients and one central server. Each client

holds one labeled dataset and one unlabelled dataset, which can not be shared with

others. The server holds a test dataset that can be shared with all clients. The goal

of FAL is to train a globally optimized model at the server by annotating informative

data samples at the clients. FAL framework is trained in an iterative manner. In one

iteration, each client first trains a local model with annotated data. And then, the lo-

cal parameters are transmitted to the server. The server synthesizes local parameters

into a global model. After that, the global model is sent to each client to annotate sev-

eral unlabeled data with the highest informativeness. The labeled dataset is extended

by merging the previously labeled dataset and the newly annotated dataset. In the

next iteration, new local models are trained with the new labeled dataset. With more

and more iterations, more and more data will be annotated and the global model can

be improved.

However, current FAL has two significant weaknesses: (i) In most FAL, local un-

labelled samples are annotated by the aggregated global model’s parameters, which

totally ignores the localization of the samples, furthermore, the importance of local

models for local sample annotation is completely ignored [50]. (ii) Its global model

parameter updating is limited to one method, which is called Federated average (Fe-

dAvg) [7,8,67,69]. FedAvg relies on a strong assumption that the corresponding nodes

in local neural networks share the same importance when averaging, while different

local models should have different average weight [99].

To tackle the first weakness, we propose a locality-customized annotation strategy,

which takes the local model into consideration aside from the global model when

annotating. There are two reasons to pay attention to the local model: (i) local

models compose the global model; (ii) the annotated data are directly used to train

local models. Specifically, we first predict all unlabeled data’s labels by the local
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model and the global model separately. Then, we calculate the uncertainty of the

prediction by the metric of entropy. Each data’s overall uncertainty is a combination

of both the local model’s prediction entropy and the global model’s prediction entropy.

Finally, we annotate the top K data with the highest informativeness.

To tackle the second weakness, we propose a Gravitational Search Algorithm

(GSA) based FAL framework. Different from FedAvg, global model parameter ag-

gregations are achieved by GSA which draws inspiration from the law of gravity and

the interactions between celestial bodies. GSA allows population diversity as well as

global exploration, which means FL clients can interact with each other based on their

masses (accuracy) and positions (local model parameters), at the same time, GSA

is capable of exploring the solution space globally by allowing clients to move freely

towards areas of high fitness calculated based on their masses (accuracy). Moreover,

it is empowered with higher adaptability with a set of parameters that control the

interaction between clients. Essentially, the GSA method can be viewed as a weighted

averaging strategy where the mass plays the role of weight.

To summarize, in this research, we propose a locality-customized GSA federated

active learning (LG-FAL) method. The main contributions of the proposed research

are: (i) We propose a new annotating strategy that considers both local and global

optimization. By doing so, the localization of samples and models can be considered;

(ii) We propose to update the global model parameters with GSA, in which the

model is updated in a more interactive and adaptable way; (iii) We design extensive

experiments to validate the proposed methods with different parameter settings and

comparisons.

6.1 THE PROPOSED METHOD

We propose to combine Active Learning (AL) and Gravitational Search Algorithm

(GSA) in a federated and collaborative framework to select a small enough subset
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of informative local data and provide an improved trade-off between communication

costs and learning accuracy.

6.1.1 Framework

Our proposed locality-customized GSA Federated Active Learning (LG-FAL) frame-

work includes two phases: local phase and global phase. Inspired by the original ver-

sion of FL algorithm to train the global model in a central server, locality-customized

annotation AL is executed in clients and sends the local parameters to the central

server. Then globally, GSA continues the process in the central server to aggregate

the local model parameters and update the global model. Once the GSA is finished,

new model parameters will be passed down to clients for the next iteration. We

summarize the description of the framework in Fig. 6.1.

Client 1 Client N

1. Train local model M1 with annotated data
5. Annotate unlabelled data by M1 and MFL
6. Go to Step 1

Server

2. Send Mi
 parameters to server

3. Update global
model by GSA

4. Send MFL parameters
 to Mi

4. Send MFL parameters
 to Mi

1. Train local model MN with annotated data
5. Annotate unlabelled data by MN and MFL
6. Go to Step 1

Client i
1. Train local model Mi with annotated data
5. Annotate unlabelled data by Mi and MFL
6. Go to Step 1

Figure 6.1: Framework of LG-FAL. Clients train local models and send them to the

server. The server synthesizes the models and gets a global model. The global model

is sent to each client to help annotate local data.

6.1.2 Locality-customized Annotating

Inspired by the classic AL methods, we introduce a locality-customized annotation

function AL, which is able to find the most informative samples to be labelled for each

local dataset with the combined informativeness from both local model and global

model.
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Local Model For each local client i, model trained using its own local data is defined

as Mi. Local model Mi enables customization and adaptation to specific local device

characteristics and local data patterns to better fit unique local data distributions,

which is able to capture different facets of the local data distribution and localization.

Global Model Global modelMFL is the central model that is shared and iteratively

updated across a network of decentralized Mi in FL. During the training process, lo-

cally trained models Mi send back their parameter updates to a central server, which

aggregates these updates to refine the global model MFL. By combining data infor-

mativeness from both Mi and MFL, we are able to capture the data generalization

while maintain its localization at the same time.

Locality-customized Active Learning In this work, for each local client i, both

local labelled dataset Di as well as newly-annotated dataset Ai by AL will be set up

for the training. We design a score function S(x) to evaluate unlabeled samples. The

strategy is to annotate data samples with the highest score in the unlabelled data as

shown in Eq. 6.1, where z is the sampling number and S(x) is the score function of

x.

ALi = argmax
|Ai|=z,x∈Ui

S(x) (6.1)

To make sure that the score function is able to reflect the localization and potential

informativeness of local unlabelled instances, we introduce the score function as shown

in Eq. 6.2. Global model MFL and local model Mi are allowed to predict on the

labelling possibilities of samples. The most informative query is considered to be

the instances about which they most agree. The sample informativeness from both

global model MFL and local model Mi are integrated to find the average score of an

sample.

S(x) = w1 ∗ Entr(Dis(x|Mi)) + w2 ∗ Entr(Dis(x|MFL)) (6.2)
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whereDis(x|M) denotes the prediction distribution of x under modelM ; Entr(Dis(x|M))

denotes the entropy of the distribution. w1 and w2 are weights between 0 and 1.

The higher the entropy is, the more uncertain the sample under the model will be.

Thus, the active learning strategy prefers to annotate samples with high uncertainty.

AL adopts multiple rounds as the FL goes on for sampling and gradually adds samples

to the labeled local dataset.

6.1.3 GSA Federated Learning

We integrate Gravitational Search Algorithm (GSA) with federated learning to obtain

a globally optimized model from local models. Within GSA’s iterative framework,

each local model is viewed as one object with mass, while its parameters are viewed

as position coordinates. These objects attract each other due to gravity, prompting

their movement towards heavier masses, which correspond to favorable solutions [76].

Fig.6.2 shows the movement of the object.

M1

M3

M2

F21 F31

F1

a1

M1

Figure 6.2: Demonstration of object movement with GSA. Object M1 is attracted by

M2 and M3, with gravity force F21 and F31. The total force F1 results in acceleration

a1 to update the position of M1, which equals to update the parameter vector X1.

Assume there are N clients participating FL, each of whose local model has a D

dimensional parameter vector denoted as Eq. 6.3, where xd
i is the parameter of the

ith agent in dimension d.

Xi = (x1
i , ..., x

d
i , ..., x

D
i ) i = 1, ..., N (6.3)
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First, the gravitational mass of each object using the fitness values is calculated as

in Eq. 6.4 and Eq. 6.5. The gravitational mass is denoted as Mi(t) and fiti(t)

indicates the fitness value of the ith object at iteration t, which, in our method,

client’s predictive accuracy on the test dataset is used as the fitness value.

mi(t) =
fiti(t)− worst(t)

best(t)− worst(t)
(6.4)

Mi(t) =
mi(t)∑N
j=1 mj(t)

(6.5)

In addition, worst(t) and best(t) are the worst and best fitness values obtained in the

collection of objects at t which are defined for maximization problem as in Eq. 6.6

and Eq.6.7 respectively.

worst(t) = min fitj(t) j ∈ {1, ..., N} (6.6)

best(t) = max fitj(t) j ∈ {1, ..., N} (6.7)

The total force that is applied on the ith object from other objects is computed

following the gravity law in Eq. 6.8

F d
i (t) =

∑
j∈Kbest,j �=i

randd
jG(t)

Mj(t)×Mi(t)

Rij × ε
(xd

j (t)− xd
i (t)) (6.8)

in which randd
j is a random number with uniform distribution in the interval [0, 1].

ε denotes a small number close to 0, Rij(t) denotes the Euclidean distance between

clients i and j, and Kbest is a set consisting of the first K objects with the best

fitness values (the largest masses).

K is set as N at the very beginning and reduces linearly with time until it reaches

to 1 in the end. The gravitational constant at iteration t is denoted as G(t) which

is initialized at the first iteration by G0 and decreased by time according to Eq.6.9,

where T is the total number of iterations.

G = G0 exp
−α t

T (6.9)
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Then, the obtained force is used to calculate the acceleration of the object using

the law of motion as in Eq.6.10.

adi (t) =
F d
i (t)

Mi(t)

=
∑

j∈Kbest,j �=i

randjG(t)
Mj(t)

Rij(t)× ε
(xd

j (t)− xd
i (t))

(6.10)

After the above steps, the next movement for ith object can be computed based on

the change of its acceleration as in Eq. 6.12 and this is the end of one GSA iteration.

vdi (t+ 1) = vdi (t) + adi (t), vdi (0) = 0 (6.11)

xd
i (t+ 1) = xd

i (t) + vdi (t+ 1) (6.12)

After a certain number of iterations, all parameter vectors Xi are updated with

other vectors’ information. In other words, all Xi can be viewed as candidates of the

aggregated global model parameters. We test them on the test dataset, and consider

the parameter with the best performance as the parameter of the global model MFL.

Training of a global GSA algorithm is performed in an iterative fashion. It com-

municates with local ones iteratively since the stopping criterion is reached. Each

client initially starts with a randomized model that is the exact same structure as the

central model. The pseudo-code of the LG-FAL is shown in Algorithm 4.

6.2 EXPERIMENTS

6.2.1 Experimental Settings

6.2.1.1 Datasets

We use two benchmark datasets in the experiments. The first one is MNIST Dataset

(Modified National Institute of Standards and Technology database) [33], which con-

sists of a collection of handwritten digits. It contains 60,000 training images and

10,000 testing images. Each image is a grayscale image of size 28x28 pixels, repre-

senting a single digit (0-9). The second dataset is called Fashion MNIST [101]. It is a
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Algorithm 4 Locality-customized GSA Federated Active Learning (LG-FAL)

Input: Number of clients N , number of FAL iteration T , test dataset T , initially labelled

dataset {Di(0)}Ni=1, number of annotated data in each iteration z, initially unlabelled

dataset {Ui(0)}Ni=1

Output: Optimized global model MFL

1: for t = 1 to T do

2: for each client i, i = 1, ..., N do

3: Train local model Mi with annotated data

4: Send Mi parameters to the server

5: end for

6: At the server:

7: Calculate gravitational mass Mi(t) for each client by Eq.6.5

8: Calculate total force F d
i (t) on each client by Eq. 6.8

9: Calculate the acceleration adi (t) of each client by Eq. 6.10

10: Update local model parameters by Eq. 6.12

11: Evaluate all updated local models with test dataset T , define

12: MFL as the best local model

13: Send MFL to each client

14: for each client i, i = 1, ..., N do

15: Annotate z unlabelled data Ai from Ui(t)

16: Update Di(t+ 1) = Di(t) +Ai

17: Update Ui(t+ 1) = Ui(t)−Ai

18: end for

19: end for

variation of the original MNIST dataset, but instead of containing handwritten digits,

it consists of images of various types of clothing and fashion items. This dataset has

10 different categories, which include items like T-shirts, trousers, pullovers, dresses,

coats, sandals, shirts, sneakers, bags, and ankle boots with 60,000 training images
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and 10,000 testing images and each image being a grayscale 28x28 pixel.

6.2.1.2 Baselines

To validate the performance of the proposed method, we use deep neural networks as

the training models and employ two baselines for our comparisons.

The first baseline is called Federated Average (FedAvg) Active Learning, FedAvg-

FAL, which also shares the same network structure with our proposed method. In

FedAvg, each client downloads the current model from a central server, improves it

by learning from its own local data, and then aggregates the changes into a small

centralized update. Eq. 6.13 summarizes the global weight values w updating of

FedAvg in each training round t, in which i is the client index, N means the total

number of clients, D is the total number of instances and Di is the local data examples

for each client [67].

wt+1 =
N∑
i=1

Di

i
wi

t (6.13)

The second baseline S-FAL annotates samples in a single AL way while keep the

same GSA FL model parameter update approach. In this setting, the local instance

informativeness score is only computed based on the updated local model MFL with

local dataset Di as shown in Eq. 6.14.

S(x) = Entr(Dis(x|MFL)) (6.14)

6.2.1.3 Experiment Settings

Our overall experiment setting is as follows. For each dataset, our aim is to predict

the corresponding target. Model parameters will be passed to each clients at the very

beginning of training. Training data will be randomly split into 3 sites and distributed

to 3 clients, which is able to training the local model using their own data. As for

AL part, by default, w1 = w2 = 0.5. For each round, 32 unlabelled samples will

be annotated by different AL approaches and added into local dataset for training.
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For FL part, weight values will be aggregated based on different FL methods and

then send back to the global models. Global models will pass the new calculated

parameters to their local clients to start new round training until the convergence.

In order to explore the effect of various GSA parameter settings, we decided to

evaluate our proposed method with different α and G0 combinations. Additionally,

we conduct experiments to explore the impact of w1 and w2 on out proposed method.

6.2.2 Experimental Results

Table 6.1 and Table 6.2 show the model results for MNIST dataset and Fashion

MNIST dataset respectively. Due to page limitation, only the best model performance

results are presented in this paper. For MNIST dataset, overall, GSA based FAL

methods do a better classification job than FedAvg based FAL approach. For all

the methods, an obvious increase in their predictive accuracy can be observed with

gradually increased samples annotated by AL regardless the GSA parameter settings,

however, we have to admit that there are small accuracy fluctuations for all methods

especially with annotated samples larger than 192. When α = 30 and G0 = 20,

LG-FAL still outperforms FedAvg-AL with a 0.835 accuracy when 320 samples are

annotated, while S-FAL performs the best with a 0.849 accuracy. The superiority of

our proposed method is more significant under α = 30 and G0 = 10 setting and α =

30 and G0 = 50 setting, with 0.842 and 0.855 accuracy respectively. LG-FAL deliver

the highest final predictive accuracy 0.855 when α = 30, G0 = 50.

For Fashion MNIST dataset, similar performance as in MNIST dataset can be

observed for all three methods. S-FAL and LG-FAL demonstrate better model per-

formance with higher predictive accuracy than FedAvg-AL under all three parameter

settings. The advantage of LG-FAL over S-FAL does not show when α = 30, G0 =

10 since both methods achieve 0.73 around accuracy. However, as G0 goes up and

the more annotated samples, the gap between S-FAL and LG-FAL gets more obvious
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Table 6.1: Model accuracy w.r.t different parameter settings for MNIST with grad-

ually increasing annotated samples: FedAvg-AL is the first baseline, S-FAL is the

second baseline, LG-FAL is our proposed method.

GSA Parameter setting Model 32 64 96 128 160 192 224 256 288 320

FedAvg-AL 0.795 0.786 0.819 0.809 0.813 0.816 0.809 0.813 0.809 0.806

α = 30, G0 = 10 S-FAL 0.757 0.793 0.808 0.803 0.814 0.822 0.824 0.82 0.833 0.823

LG-FAL 0.817 0.82 0.823 0.831 0.842 0.846 0.843 0.844 0.842 0.842

FedAvg-AL 0.765 0.812 0.82 0.828 0.829 0.801 0.81 0.821 0.823 0.832

α = 30, G0 = 20 S-FAL 0.783 0.811 0.829 0.814 0.834 0.829 0.836 0.837 0.847 0.849

LG-FAL 0.79 0.8 0.793 0.811 0.821 0.831 0.821 0.829 0.825 0.835

FedAvg-AL 0.756 0.798 0.812 0.8 0.799 0.803 0.808 0.813 0.813 0.814

α = 30, G0 = 50 S-FAL 0.769 0.815 0.823 0.82 0.838 0.834 0.837 0.83 0.822 0.84

LG-FAL 0.816 0.848 0.844 0.854 0.853 0.857 0.861 0.852 0.857 0.855

Table 6.2: Model accuracy w.r.t different parameter settings for Fashion MNIST with

gradually increasing annotated samples: FedAvg-AL is the first baseline, S-FAL is

the second baseline, LG-FAL is our proposed method.

Parameter setting Model 32 64 96 128 160 192 224 256 288 320

FedAvg-AL 0.669 0.677 0.677 0.692 0.694 0.697 0.675 0.708 0.699 0.7

α = 30, G0 = 10 S-FAL 0.692 0.708 0.722 0.715 0.725 0.722 0.714 0.712 0.727 0.733

LG-FAL 0.668 0.7 0.701 0.726 0.713 0.729 0.7 0.718 0.722 0.731

FedAvg-AL 0.602 0.604 0.615 0.598 0.612 0.609 0.602 0.601 0.603 0.612

α = 30, G0 = 20 S-FAL 0.698 0.698 0.698 0.692 0.701 0.68 0.703 0.7 0.703 0.717

LG-FAL 0.718 0.713 0.742 0.717 0.729 0.747 0.749 0.75 0.752 0.757

FedAvg-AL 0.453 0.553 0.601 0.6 0.62 0.67 0.684 0.695 0.699 0.701

α = 30, G0 = 50 S-FAL 0.711 0.715 0.717 0.73 0.734 0.731 0.723 0.724 0.725 0.726

LG-FAL 0.732 0.748 0.755 0.756 0.755 0.736 0.74 0.743 0.762 0.762

with LG-FAL showing a higher accuracy.

Since LG-FAL and S-FAL outperforms FedAvg-AL, we create a figure to further

demonstrate model comparison between LG-FAL and S-FAL with the results from

both MNIST dataset and Fashion MNIST dataset. Regardless the parameter setting,

the average accuracy of two models for both datasets are calculated. Fig. 6.3 report
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the performance of LG-FAL and S-FAL as the increasing of annotated samples. The

y-axis is the values of model accuracy and x-axis shows the increase of annotated

instances. As the number of labeled samples gradually increases, the overall per-

formance of the two models also shows an upward trend. Overall, LG-FAL always

outperforms S-FAL, increasing from 0.755 to 0.795, which is much higher than the

accuracy of S-FAL.

Figure 6.3: Overall performance comparison between LG-FAL and S-FAL with the

increase of annotated samples: y-axis is the model averaged accuracy from MNIST

dataset and Fashion MNIST dataset; x-axis is the gradually increased number of

annotated samples.

The advantages of LG-FAL are able to be verified with the previously shown

results. With the confirmation that LG-FAL is able to outperform our baselines,

especially when α = 30, and G0 = 50, we further conduct a series of experiments

aiming to figure out how the change of proportion of Mi and MFL in Eq. 6.2 effects

the performance of LG-FAL. By default, the values of w1 and w2 are set as 0.5 and

0.5 respectively. Different combinations of w1 and w2 are designed in order to check

how our proposed method will react as follows: w1 = 0.2, w2 = 0.8; w1 = 0.4, w2 =

0.6; w1 = 0.5, w2 = 0.5; w1 = 0.6, w2 = 0.4; w1 = 0.8, w2 = 0.2.

Fig. 6.4 reports the overall predict accuracy trend of LG-FAL on our benchmark

datasets under different w1 and w2 settings. For MNIST dataset, the prediction
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(a) LG-FAL performance on MNIST

dataset

(b) LG-FAL performance on Fashion

MNIST dataset

Figure 6.4: Performance of LG-FAL with different w1 and w2 settings on MNIST

dataset and Fashion MNIST dataset with the increase of annotated samples: y-axis

is LG-FAL accuracy; x-axis is the gradually increased number of annotated samples;

legends are w1 and w2 settings.

accuracy difference of LG-FAL with different w1 and w2 combinations is relatively

clear. We can observe that when prefer the predictive uncertainty from local model

over global model, the performance of LG-FAL drops especially when w1 = 0.8 and

w2 = 0.2. However, the gradual increase of model performance with the increasing

annotated samples can still be validated. LG-FAl demonstrates the best predictive

accuracy on MNIST dataset when local model and global model are equally considered

for annotating the instances. As for Fashion MNIST dataset, similarly, LG-FAL

performs the best when the entropy from local model and global model contribute

equally for the calculation of sample informativeness.

6.3 CONCLUSIONS

In this research, we propose a locality-customized GSA Federated Active Learning

(LG-FAL) method for federated active learning.We argued that in most federated

active learning frameworks, local unlabelled samples are annotated by the aggregated

global model’s parameters, which totally ignores the localization of the samples, lead-

122



ing to the neglect over the importance of local models for local sample annotation.

In addition, current federated active learning approaches usually are limited to one

method, Federated averaging (FedAvg) to update global model parameter. Alterna-

tively, we propose a locality-customized GSA Federated Active Learning method, LG-

FAL, to tackle the aforementioned limitations. LG-FAL combines locality-customized

active learning and Gravitational Search Algorithm (GSA) in a collaborative and ef-

fective way. In locality-customized active learning, both the local model as well as the

global model are taken into consideration when annotating local samples, in which

each data’s overall uncertainty is a combination of both the local model’s predic-

tion entropy and the global model’s prediction entropy. In GSA federated learning,

global model parameter aggregations are achieved by GSA which is empowered with

higher adaptability with a set of parameters to allow clients to move freely towards

areas of high fitness calculated based on their masses (accuracy). Experiments and

comparisons validate the performance of the LG-FAL, compared to other baselines.

Future study can focus on the following directions. First, we only verified the

performance of LG-FAL with dense neural network. Future study can try to explore

LG-FAL between different types of network architectures. Second, we only studied

the proposed design with image datasets. In the future, more data formats will be

explored using our proposed method, such as tabular data.
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CHAPTER 7

CONCLUSION & FUTURE DIRECTIONS

In the rapidly evolving landscape of healthcare, data-driven approaches have emerged

as a cornerstone for advancing medical research, diagnosis, treatment, and overall

healthcare delivery. The potential benefits of harnessing the power of health data

are vast, ranging from early disease detection to personalized treatment recommen-

dations and improved patient outcomes. However, as we embark on this data-driven

healthcare journey, we are confronted with a triad of formidable challenges: data bias,

privacy concerns, and data scarcity.

In this thesis, in order to promote effective and robust health data analysis algo-

rithms, we propose imbalanced learning, ensemble learning to address sample bias and

specificity. We design novel federated learning approaches to better utilize limited

health data resources and protect patient privacy. We implement federated active

learning as a solution for label cost and scarcity in health data. The contributions

and evaluation results of the proposed models are summarized as below.

7.1 CONCLUSION

1. Sample Bias and Specificity in Health Data.

• Contributions. We conduct a comprehensive exploration of the twin phenom-

ena of sample bias and specificity in health data . First, we proposed to use

imbalanced learning for 30-day hospital readmission prediction with National

Readmission Databases (NRD). The main goal is to predict, at the time of a

hospital discharge, whether the patient may return in 30 days or not in the fu-
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ture. We created a set of features, using simple patient demographics, ICD-10

clinical modification (CM), and Clinical Classification Software Refined (CCSR)

conversion, to represent each hospital visit. Because patient readmission is only

a small portion of all patient visits, the machine learning task is severely chal-

lenged by the imbalanced class distributions. To solve the challenge, we used

random under sampling (RUS) to create different copies of balanced sample

sets. Ensemble classifiers were trained from balanced sample sets to build clas-

sifiers for readmission prediction. Secondly, we carry out systematic studies to

understand data statistics for United States nationwide hospital admission, and

further designs a machine learning framework for disease-specific 30-day hospi-

tal readmission prediction. We identified factors related to three key party of

the hospital remissions: patient, disease, and hospitals, and reported national

scale hospital admission statistic. Based on the data statistics, we created 526

features with five major types, including demographics features, admission and

discharge features, clinical features, disease features, and hospital features. We

collected six disease specific readmission datasets, which reflect the top six lead-

ing diseases of death. By using random under sampling and ensemble learning,

combined with soft vs. hard voting and four types of machine learning meth-

ods, including gradient boosting, decision tree, logistic regress, and random

forests, our experiments validate three major type of settings: (1) hard voting

vs. soft voting, (2) random under sampling, and (3) disease specific readmission

prediction.

2. Data Privacy and Locality in Health Data.

• Contributions. We introduce a unique federated learning approach designed

specifically to address the data privacy and locality of health data. We propose

a dynamic node matching method for federated learning. We argued that neural
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networks are inherently non-transparent and unstable, and the same network

structure may end up with very different weight values, even with the same

training data and same parameter settings. Traditionally, existing methods,

such as FedAvg, force neurons across sites to be matched with predefined order,

and use fixed matching nodes during the FL learning process. Alternatively,

we proposed a dynamic node alignment, FedDNA, approach which dynami-

cally finds matching nodes across sites, and uses matched nodes to calculate

weight for FL learning. FedDNA represents each neuron as a vector, using their

weight values, and calculate distances between neurons to find matching nodes.

Meanwhile, because finding marching nodes are computationally expensive, we

proposed a minimum spanning tree (MST) based approach to speed up the

matching, with matched nodes across all sites being linked by using an MST

tree. So the matching process is simply the MST tree growing process.

3. Label Cost and Scarcity in Health Data.

• Contributions. In order to address the labeling challenges in health care

data analysis, we propose a locality-customized GSA Federated Active Learn-

ing (LG-FAL) method for federated active learning. LG-FAL combines locality-

customized active learning and Gravitational Search Algorithm (GSA) in a col-

laborative and effective way. In locality-customized active learning, both the

local model as well as the global model are taken into consideration when anno-

tating local samples, in which each data’s overall uncertainty is a combination

of both the local model’s prediction entropy and the global model’s prediction

entropy. In GSA federated learning, global model parameter aggregations are

achieved by GSA which is empowered with higher adaptability with a set of pa-

rameters to allow clients to move freely towards areas of high fitness calculated

based on their masses (accuracy).
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7.2 FUTURE DIRECTIONS

For imbalanced learning in health data analytics, the majority of the data used in

our study are historical. Future research should explore the integration of real-time

patient data, including wearable devices, electronic health records, and social deter-

minants of health, to make predictions more timely and precise. Combining diverse

data modalities such as medical images, free-text clinical notes, and structured patient

records will be considered in order to lead to more comprehensive and accurate pre-

dictions. Future study can emphasize on the following directions for data privacy and

locality in health data analytics. First, future study can try to explore node match-

ing between different types of network architectures, such as convolutional neural

networks. Second, more practical multi-class classification problems will be explored

using our proposed methods. For the last direction, future study will aim to explore

the locality-customized GSA using healthcare data. With the validated feasibility of

our proposed method using MNIST dataset, we will explore and fine-tune it using

healthcare data with more completed experiments.
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