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Health data analysis has emerged as a critical domain with immense poten-
tial to revolutionize healthcare delivery, disease management, and medical research.
However, it is confronted by formidable challenges, including sample bias, data pri-
vacy concerns, and the cost and scarcity of labeled data. These challenges collectively
impede the development of accurate and robust machine learning models for various
healthcare applications, from disease diagnosis to treatment recommendations.

Sample bias and specificity refer to the inherent challenges in working with
health datasets that may not be representative of the broader population or may
exhibit disparities in their distributions. These biases can significantly impact the
generalizability and effectiveness of machine learning models in healthcare, potentially
leading to suboptimal outcomes for certain patient groups. Data privacy and locality
are paramount concerns in the era of digital health records and wearable devices. The
need to protect sensitive patient information while still extracting valuable insights
from these data sources poses a delicate balancing act. Moreover, the geographic and
jurisdictional differences in data regulations further complicate the use of health data

in a global context. Label cost and scarcity pertain to the often labor-intensive and
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expensive process of obtaining ground-truth labels for supervised learning tasks in
healthcare. The limited availability of labeled data can hinder the development and
deployment of machine learning models, particularly in specialized medical domains.

This dissertation mainly focuses on health data analysis and explores ap-
proaches to tackle the above challenges. More specifically, the following three prob-
lems will be studied from different perspective: (1) Sample bias and specificity in
health data. (2) Data privacy and locality in health data. (3) Label cost and scarcity
in health data.

In summary, our major contributions in this dissertation are demonstrated in

the following aspects:

e To tackle data bias and specificity problem, we first conduct a comprehensive
exploration of the twin phenomena in health data with National Readmission
Databases (NRD). We first propose to use imbalanced learning for 30-day hospi-
tal readmission prediction. The main goal is to predict, at the time of a hospital
discharge, whether the patient may return in 30 days or not in the future. We
created a set of features, using simple patient demographics, ICD-10 clinical
modification (CM), and Clinical Classification Software Refined (CCSR) con-
version, to represent each hospital visit. Because patient readmission is only a
small portion of all patient visits, the machine learning task is severely chal-
lenged by the imbalanced class distributions. To solve the challenge, we used
random under sampling (RUS) to create different copies of balanced sample sets.
Ensemble classifiers were trained from balanced sample sets to build classifiers

for readmission prediction. conversion.

Secondly, we carry out systematic studies to understand data statistics for
United States nationwide hospital admission, and further designs a machine
learning framework for disease-specific 30-day hospital readmission prediction.

We identified factors related to three key party of the hospital remissions: pa-
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tient, disease, and hospitals, and reported national scale hospital admission
statistic. Based on the data statistics, we created 526 features with five ma-
jor types, including demographics features, admission and discharge features,
clinical features, disease features, and hospital features. We collected six dis-
ease specific readmission datasets, which reflect the top six leading diseases of
death. By using random under sampling and ensemble learning, combined with
soft ws. hard voting and four types of machine learning methods, including
gradient boosting, decision tree, logistic regress, and random forests, our exper-
iments validate three major type of settings: (1) hard voting vs. soft voting,

(2) random under sampling, and (3) disease specific readmission prediction..

e We introduce a unique federated learning approach designed specifically to ad-
dress the data privacy and locality of health data. We propose a dynamic node
matching method for federated learning. We argued that neural networks are
inherently non-transparent and unstable, and the same network structure may
end up with very different weight values, even with the same training data
and same parameter settings. Traditionally, existing methods, such as FedAvg,
force neurons across sites to be matched with predefined order, and use fixed
matching nodes during the FL learning process. Alternatively, we proposed a
dynamic node alignment, FedDNA, approach which dynamically finds matching
nodes across sites, and uses matched nodes to calculate weight for FL learning.
FedDNA represents each neuron as a vector, using their weight values, and cal-
culate distances between neurons to find matching nodes. Meanwhile, because
finding marching nodes are computationally expensive, we proposed a minimum
spanning tree (MST) based approach to speed up the matching, with matched
nodes across all sites being linked by using an MST tree. So the matching

process is simply the MST tree growing process.

e In order to address the labeling challenges in health care data analysis, we pro-
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pose a locality-customized GSA Federated Active Learning (LG-FAL) method
for federated active learning. LG-FAL combines locality-customized active
learning and Gravitational Search Algorithm (GSA) in a collaborative and ef-
fective way. In locality-customized active learning, both the local model as well
as the global model are taken into consideration when annotating local sam-
ples, in which each data’s overall uncertainty is a combination of both the local
model’s prediction entropy and the global model’s prediction entropy. In GSA
federated learning, global model parameter aggregations are achieved by GSA
which is empowered with higher adaptability with a set of parameters to allow
clients to move freely towards areas of high fitness calculated based on their

masses (accuracy).
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CHAPTER 1
INTRODUCTION

In recent years, the field of health data analytics has emerged as a crucial and rapidly
evolving domain in healthcare research and practice. This surge of interest in health
data analytics can be attributed to several key factors, each of which underscores its
growing significance in the healthcare landscape. Firstly, there has been a remarkable
increase in the popularity and accessibility of electronic health data. The digitization
of health records, diagnostic tests, patient histories, and treatment outcomes has
transformed healthcare into a data-rich industry. This shift has been facilitated by
the widespread adoption of electronic health record (EHR) systems in healthcare
institutions worldwide [28, 56, 104]. The wealth of digital health data generated on
a daily basis provides a unique opportunity to harness the power of data analytics
for improving patient care, optimizing healthcare operations, and advancing medical
research.

Secondly, the escalating costs of healthcare systems, particularly in the United
States and across the globe, have spurred a critical need for more efficient, cost-
effective, and data-driven approaches to healthcare delivery. The unsustainable rise
in healthcare expenditures, driven by factors such as an aging population, chronic
diseases, and expensive medical technologies, has necessitated innovative strategies
to reduce costs while maintaining or even enhancing the quality of care. Health data
analytics offers promising solutions to address these challenges by enabling predic-
tive modeling, resource allocation optimization, and the identification of cost-saving
opportunities [64,86,91]. Thirdly, the advent of advanced techniques and systems

empowered by data science and analytics has ushered in a new era of possibilities for
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healthcare. Numerous companies, both established healthcare providers and innova-
tive startups, have heavily invested in healthcare data science technologies. These
investments have given rise to cutting-edge tools and platforms for health analytics,
ranging from artificial intelligence and machine learning algorithms to data-driven
decision support systems, as shown in Fig. 1.1. This flourishing ecosystem of data-
driven solutions holds immense potential to revolutionize healthcare delivery, enhance
patient outcomes, and drive evidence-based medical advancements.

$30B $29.3B 1200

$20B 800

$10B 28 348 400

TOTAL VENTURE FUNDING
$7V3Aa 40 ¥38WNN

298

197 $4.88] $4.7B
146 $4.58

$1.6B $2.1B

$0B
2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

AVERAGE

DEAL SIZE $10.8M  $107M  $152M  $147M  $13.5M  $159M  $21.7M  $19.6M  ($30.6M | $39.7M  $26.7M

Figure 1.1: U.S. Digital Health Funding and Deal Size [18]

The successful analysis and utilization of healthcare data are contingent upon the
integrity and quality of the data itself. Data bias, stemming from factors such as
uneven data collection, skewed representation, and systemic inequalities in health-
care access, can introduce distortions into the analysis, leading to inaccurate predic-
tions and biased decision-making [10,74,102]. Simultaneously, the sensitive nature
of healthcare data, laden with personal and confidential information, necessitates
stringent privacy safeguards to protect patient rights. The imperative to strike a
delicate balance between data utility and individual privacy adds complexity to the
already intricate landscape of healthcare data analysis [17,70,70,79]. Furthermore,
data scarcity remains a significant hurdle in healthcare analytics. While the potential
for data-driven advancements is vast, healthcare datasets are often limited in size,

diversity, and quality. This scarcity poses a substantial obstacle to the development
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and validation of robust predictive models and data-driven interventions.

Learning tasks regarding with data bias, data privacy as well as data scarcity in
health care data analysis are fundamental, but challenging, which have also received
continuous attention in the research field. This thesis focuses on health data analysis
and explores approaches to tackle the above challenges. Many researches also pro-
posed to use a variety of prediction models, such as support vector machines [21] and
neural networks [13] to enable better health data analysis. While numerous existing
methods or models excel in this area, they may overlook at least one of the following

challenges or scenarios.

1.1 SAMPLE BIAS AND SPECIFICITY IN HEALTH DATA

Sample bias and specificity within health data have emerged as pivotal concerns
that demand rigorous investigation [87]. Sample bias refers to a phenomenon where
datasets used to train a predictive model have a biased class distribution. In many
health care cases, one type of samples (i.e. positive class) are significantly less than
other types of samples. This is partially caused by the reality that disease samples
are only a small percentage of the whole population, and naturally results in the class
imbalance. Learning models with imbalanced class distributions is defined challenge,
because most algorithms are affected by frequency bias and pay more attention to
majority class samples [43]. Sample bias tends to force the classifier to classify all
samples as normal, in order to satisfy the defined objective function, such as mini-
mizing the classification errors [16]. Common solutions are to re-balance samples in
different classes, by manipulating data populations (sampling approaches) or clas-
sification outcomes (cost-sensitive learning). Sample specificity in health data, on
the other hand, is associated to the sample distributions (or independent variables).
At population level, data analysis might be collected from a local /regional hospital,

where the demographics of the patient body naturally introduce bias. At individual
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level, when collecting data for each patient, the hospital visits used to characterize
the patient may also introduce bias. At the ministration level, regularization also
impose restriction for data sharing across hospitals, making it difficult to learn good
models from local data [68,96]. The landscape of health data, both in its richness
and complexity, is characterized by the interplay of various factors such as patient
demographics, healthcare access, geographic disparities, and clinical practices. Con-
sequently, the inherent biases and limitations within these datasets can significantly
influence the validity and generalizability of findings derived from them.

While many methods exist to tackle the above challenges in health data analysis,
some major questions in the field still need to be better addressed. (1) First of all,
the the positive class are a small portion of the total hospital visits, representing a
severe class imbalance problem for learning; (2) Secondly, for each type of disease,
their causes are different, leading to variance in disease characteristics. Such distine-
tions can further result in patient, in-hospital treatment and discharge gap, reflected
by unique patient features for each disease. How will demographic information, such
as gender, age, geographic, impact on disease prediction? Is the prevalence of certain
diseases or conditions vary widely across populations? Many methods are available
for prediction, but no existing research has provided clear answer to the above ques-
tions. (3) Thirdly, health data analysis is a compound outcome of many factors,
including patient, disease, care providers etc. Datasets that do not account for these
factors may fail to capture the full picture of health disparities. (4) Fourthly, health
data analysis is essentially data driven, where features and samples are the key to
ensure model performance. While many methods have been using a wide variety of
patient treatment data, such as patient blood tests, nutritional factors [31], treatment
etc, the data privacy and the Health Insurance Portability and Accountability Act
(HIPAA) [22] limit sensitive features to be used in general analysis setting.

Motivated by the above challenges, in this research, we conduct a comprehensive



exploration of the twin phenomena of sample bias and specificity in health data . We
first design an imbalanced learning strategy to predict patient readmission possibility
with National Readmission Databases (NRD). We use a random sampling approach
to balance the sample distributions in the training set. By implementing random
sampling, it helps ensure that our training dataset is representative of the overall
population, which is crucial because biased or non-representative samples can lead to
poor model performance. By randomly selecting data points, we are able to reduce
the risk of introducing bias into our training set. In addition, overfitting can be
reduced which occurs when a model learns to perform well on the training data but
fails to generalize to unseen data. We create features from patient hospital visit,
by combining patient demographic information, ICD-10 clinical modification (CM)
and procedure codes (PCS), and Clinical Classification Software Refined (CCSR)
conversion. Instead of directly using ICD-10- CM/PCS code to characterize patients,
we convert each patient’s visit to CCSR code space with a smaller feature space. To
better capture the sample bias and specificity problem, we use National Readmission
Databases (NRD), with over 15 million hospital visits, as our testbed, and report
national scale hospital admission statistics, including readmission rate differences with
respect to different demographic and hospital factors, such as gender, age, payment
type, hospital profile, and disease types. After that, we create six disease specific
readmission tasks for Cancer, Heart disease, Chronic obstructive pulmonary disease
(COPD), Diabetes, Pneumonia, and Stroke. Random under sampling and ensemble
learning, including hard-voting and soft-voting, are used to train models for disease-

specific readmission prediction.

1.2 DATA PRIVACY AND LOCALITY IN HEALTH DATA

As the healthcare industry reaps the benefits of data revolution from the digitiza-

tion of health records, the proliferation of wearable devices, and the emergence of
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telemedicine ete, it simultaneously faces profound challenges in safeguarding the pri-
vacy, confidentiality and data locality of sensitive health information. Data privacy
and locality in health data refers to the protection of individuals’ personal health
information from unauthorized access, disclosure, or misuse. It encompasses the
principles and practices that ensure the confidentiality, integrity, and security of sen-
sitive health-related data. This type of data includes but not limited to personal
identifiable information, medical records, biometric data. The adoption of electronic
health records enables health care professionals to disseminate knowledge across all
sectors of health care, which in turn helps to reduce medical errors and improve pa-
tient care and satisfaction. However, as mentioned previously, adequate medical data
sets are difficult to obtain. However, in order to capture the subtle relationships
between disease patterns, socioeconomic and genetic factors, and complex and rare
cases, exposing the model to different cases is critical. FL is able to address this
issue by enabling the distributed training of machine learning models using remotely
hosted datasets without the need to accumulate data and therefore compromise the
data privacy [10,17,70,70,74,79,102].

FL enables devices to collaboratively learn shared predictive models while keeping
all training data on-device, decoupling the power of machine learning from the need
to store data in the cloud. This goes beyond using native models to make predictions
on mobile devices and also brings model training to the device. Recently, other weight
aggregation methods have also been proposed in FL. For example, anomaly score of
each client is taken into consideration to detect abnormal client behavior, thus, clients
will not contribute equally when global model updates the weight values, the majority
of those novel methods are still based on FedAvg [36,59]. Even though this method
is widely used and has been proved with good prediction performance [34,90], due to
the nature of hidden layers in deep learning neural networks, we can clearly observe

that this method manually forces weight aggregations between neurons located at



the exact same location (i.e., same layer and same node index) of two networks.
However, when training two same-structured deep learning networks N4 and Np,
even they are given the same input, neurons at the same location of the two networks
do not always give the same update. In other words, certain property of the input
(or the same instance) may trigger the most significant activation to the i-th node of
N4, but same instance may triger the most significant activation to the j-th node of
Np. Meaning that same instance responds differently for the same lactation nodes
between two networks.

In our research, we present a novel federated learning method specifically tai-
lored to the intricacies of health data. We delineate the pressing need for inno-
vative solutions in health data analytics, underscore the limitations of traditional
data-sharing approaches, and provide a glimpse into the potential benefits of our pro-
posed novel federated learning method. We aim to design a dynamic node matching
method, FedDNA, to aggregate weight values in each round based on a neuron-
distance method, in which neuron distances across all the clients are calculated after
each client completes training the model parameters with their own data. After that,
the closest neurons are matched to calculate their average weight values as new pa-

rameter for the global model.

1.3 LABEL COST AND SCARCITY IN HEALTH DATA

To harness the full potential of health data for tasks like disease prediction, drug
discovery, and personalized treatment, robust machine learning models are essential.
However, these models typically demand vast quantities of labeled data for training.
In the field of healthcare, acquiring accurate and high-quality labels is a complex,
resource-intensive, and sometimes elusive endeavor. Label cost and scarcity in health
data refer to the challenges associated with obtaining and using labeled data for ma-

chine learning and data analysis tasks in the healthcare domain. These challenges
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are particularly prominent in the field of healthcare due to the unique characteristics
of health data and the stringent requirements for data quality and privacy. Label
cost refers to the resources, time, and effort required to manually annotate or label
data points. In the context of health data, this process often involves healthcare
professionals or domain experts reviewing and providing accurate labels for medical
records, images, or other health-related information [7,80,99]. Labeling can be ex-
pensive, as it may require the expertise of qualified professionals and rigorous quality
control measures to ensure the accuracy and relevance of data. The cost of labeling
can also include considerations related to data privacy and compliance with regula-
tions such as HIPAA (Health Insurance Portability and Accountability Act) in the
United States. In addition, label scarcity arises when there is a limited availability
of labeled data for a specific healthcare task or research problem. This scarcity can
stem from various factors, including the difficulty of obtaining consent from patients
for data usage, the need for domain expertise in labeling, or the sheer volume of data
required for training machine learning models effectively. In many healthcare appli-
cations, labeled data is a precious resource, and there may be insufficient quantities
of labeled examples to build robust and accurate models, especially for rare medical
conditions or emerging diseases [7,82, 85, 88].

Recently, Active Learning (AL) has emerged as a machine learning method that
can effectively address data annotation workloads [78,84]. Its main strategy is to
iteratively find the most informative data points to annotate. The annotated data
are then used as part of the training data in the next iteration. With more and
more iterations, the machine learning model’s performance can be more and more
improved. This strategy has been integrated into federated learning and generated
a new paradigm called Federated Active Learning (FAL) [8,55,72,100]. The FAL
framework consists of several clients and one central server. Each client holds one

labeled dataset and one unlabelled dataset, which can not be shared with others.



The server holds a test dataset that can be shared with all clients. The goal of FAL
is to train a globally optimized model at the server by annotating informative data
samples at the clients. FAL framework is trained in an iterative manner. In one iter-
ation, each client first trains a local model with annotated data. And then, the local
parameters are transmitted to the server. The server synthesizes local parameters
into a global model. With more and more iterations, more and more data will be
annotated and the global model can be improved. However, in most FAL, local un-
labelled samples are annotated by the aggregated global model’s parameters [50]. Its
global model parameter updating is limited to one method, which is called Federated
average (FedAvg) [7,8,67,69].

In order to address the labeling challenges in health care data analysis, we pro-
pose a locality-customized GSA federated active learning (LG-FAL) method which
strategically selects the most informative data points for labeling, holds the potential
to mitigate label cost and scarcity challenges. In this design, the algorithm takes the
local model into consideration aside from the global model when annotating. As for
model parameters update, global model parameter aggregations are achieved by GSA

which draws inspiration from the law of gravity and the interactions between celestial

bodies.

1.4 THESIS ORGANIZATION

Fig. 1.2 shows the thesis organization. Three health data analysis problems are
studied in this thesis which are elaborated in chapters 3, 4, 5 and 6, respectively. For
each research problem, respective data are experimentally studied and experimental
results demonstrate our proposed methods.

More specifically, we organize the thesis as follows. Chapter 2 briefly describes the
background including related work about health data analysis and preliminary knowl-

edge for our proposed methods. Chapter 3 emphasizes the problem of the sample bias
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Figure 1.2: The studied learning problems and their organization. 1) Chapter 1 gives a
general description of the studied problems with highlighted contributions. 2) Charter
2 introduce relevant backgrounds about related work and preliminary knowledge.
3) Chapter 3 studies the imbalanced learning for hospital readmission prediction
problem. 4) Chapter 4 studies the ensemble learning for disease-specific readmission
prediction problem. 5) Chapter 5 studies federated learning using dynamic node
alignment . 6) Chapter 6 studies active learning using locality-customized GSA. 7)

Finally, chapter 7 concludes the thesis and discusses future directions.

problem for hospital readmission prediction, and proposes a imbalanced learning al-
gorithm as a solution. Chapter 4 emphasizes the sample specificity, formulates the
nationwide hospital disease-specific readmission prediction problem and proposes an
ensemble learning approach. In chapter 5, we focus on the data privacy and locality
challenge and propose a novel federated learning node alignment approach. In chap-
ter 6, we consider the data label cost and scarcity and propose a localized federated
learning method. Finally, we conclude the contribution and discuss future directions

in charter 7.

Chapter 2: Background
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This chapter first presents related work about imbalanced learning for hospital read-
mission prediction. Then, we also present related work about hospital disease-specific
30-day readmission prediction. Finally, preliminary knowledge are briefly described
about federated learning using dynamic node alignment and federated active learning

respectively.

Chapter 3: Imbalanced Learning for Hospital Readmission Prediction

In this chapter, we propose to use imbalanced learning for hospital readmission pre-
diction. The goal is to predict whether a patient, based on his/her current hospital
visit records, is likely going to be re-admitted or not within 30-days after being dis-
charged from the current hospital visit. We design an imbalanced learning strategy to
create features from patient hospital visit, by combining patient demographic infor-
mation, ICD-10 clinical modification (CM) and procedure codes (PCS), and Clinical
Classification Software Refined (CCSR) conversion. Instead of directly using ICD-10-
CM/PCS code to characterize patients, we convert each patient’s visit to CCSR code
space with a smaller feature space. By using random sampling approach to balance
the sample distributions in the training set, our method achieves good performance

to predict patient readmission.

Chapter 4: Ensemble Learning for Disease-specific Readmission Predic-
tion

In this chapter, we use National Readmission Databases (NRD), with over 15 million
hospital visits, as our testbed, and report national scale hospital admission statis-
tics, including readmission rate differences with respect to different demographic and
hospital factors, such as gender, age, payment type, hospital profile, and disease
types. After that, we create six disease specific readmission tasks for Cancer, Heart
disease, Chronic obstructive pulmonary disease (COPD), Diabetes, Pneumonia, and

Stroke. Random under sampling and ensemble learning, including hard-voting and
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soft-voting, are used to train models for disease-specific readmission prediction.

Chapter 5: Federated Learning Using Dynamic Node Alignment

In this chapter, we aim to design a dynamic node matching method, FedDNA, to
aggregate weight values in each round based on a neuron-distance method, in which
neuron distances across all the clients are calculated after each client completes train-
ing the model parameters with their own data. After that, the closest neurons are
matched to calculate their average weight values as new parameter for the global
model. The results show that dynamic node matching provides much smaller weight
variance across all nodes of different networks. The advantage of reducing variance
is that it allows nodes with similar behaviors to be aggregated for weight averaging.

This potentially results in stable and improved federated learning performance.

Chapter 6: Active Learning Using Locality-customized GSA

In this chapter, we propose a locality-customized GSA federated active learning (LG-
FAL) method. We propose a new annotating strategy that considers both local and
global optimization. By doing so, the localization of samples and models can be
considered. We propose to update the global model parameters with GSA, in which
the model is updated in a more interactive and adaptable way. We design extensive
experiments to validate the proposed methods with different parameter settings and

comparisons.

Chapter 7: Conclusion and Future Directions
In this chapter, we summary our contributions for health care data analysis and their

applications. We also discuss some future research directions.
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1.5 DISSERTATION CONTRIBUTION

In summary, our major contributions in this dissertation are demonstrated in the

following aspects:

e To tackle data bias and specificity problem, we first conduct a comprehensive
exploration of the twin phenomena in health data with National Readmission
Databases (NRD). We first propose to use imbalanced learning for 30-day hospi-
tal readmission prediction. The main goal is to predict, at the time of a hospital
discharge, whether the patient may return in 30 days or not in the future. We
created a set of features, using simple patient demographics, ICD-10 clinical
modification (CM), and Clinical Classification Software Refined (CCSR) con-
version, to represent each hospital visit. Because patient readmission is only a
small portion of all patient visits, the machine learning task is severely chal-
lenged by the imbalanced class distributions. To solve the challenge, we used
random under sampling (RUS) to create different copies of balanced sample sets.
Ensemble classifiers were trained from balanced sample sets to build classifiers

for readmission prediction. conversion.

Secondly, we carry out systematic studies to understand data statistics for
United States nationwide hospital admission, and further designs a machine
learning framework for disease-specific 30-day hospital readmission prediction.
We identified factors related to three key party of the hospital remissions: pa-
tient, disease, and hospitals, and reported national scale hospital admission
statistic. Based on the data statistics, we created 526 features with five ma-
jor types, including demographics features, admission and discharge features,
clinical features, disease features, and hospital features. We collected six dis-
ease specific readmission datasets, which reflect the top six leading diseases of

death. By using random under sampling and ensemble learning, combined with
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soft ws. hard voting and four types of machine learning methods, including
gradient boosting, decision tree, logistic regress, and random forests, our exper-
iments validate three major type of settings: (1) hard voting vs. soft voting,

(2) random under sampling, and (3) disease specific readmission prediction..

We introduce a unique federated learning approach designed specifically to ad-
dress the data privacy and locality of health data. We propose a dynamic node
matching method for federated learning. We argued that neural networks are
inherently non-transparent and unstable, and the same network structure may
end up with very different weight values, even with the same training data
and same parameter settings. Traditionally, existing methods, such as FedAvg,
force neurons across sites to be matched with predefined order, and use fixed
matching nodes during the FL learning process. Alternatively, we proposed a
dynamic node alignment, FedDNA, approach which dynamically finds matching
nodes across sites, and uses matched nodes to calculate weight for FL learning.
FedDNA represents each neuron as a vector, using their weight values, and cal-
culate distances between neurons to find matching nodes. Meanwhile, because
finding marching nodes are computationally expensive, we proposed a minimum
spanning tree (MST) based approach to speed up the matching, with matched
nodes across all sites being linked by using an MST tree. So the matching

process is simply the MST tree growing process.

In order to address the labeling challenges in health care data analysis, we pro-
pose a locality-customized GSA Federated Active Learning (LG-FAL) method
for federated active learning. LG-FAL combines locality-customized active
learning and Gravitational Search Algorithm (GSA) in a collaborative and ef-
fective way. In locality-customized active learning, both the local model as well
as the global model are taken into consideration when annotating local sam-

ples, in which each data’s overall uncertainty is a combination of both the local
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model’s prediction entropy and the global model’s prediction entropy. In GSA
federated learning, global model parameter aggregations are achieved by GSA
which is empowered with higher adaptability with a set of parameters to allow
clients to move freely towards areas of high fitness calculated based on their

masses (accuracy).
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CHAPTER 2
RELATED WORK

This chapter first presents related work about sample bias and specificity in health
data. Then, we also present related work about health data privacy and locality.
Finally, preliminary knowledge are briefly described about label cost and scarcity for

heath data.

2.1 SAMPLE BIAS AND SPECIFICITY IN HEALTH DATA

Recently there have been many models built through machine learning methods to
tackle data bias as well as specificity and provide corresponding results and sug-
gestions [42,45,103]. Logistic Regression is a popular model in medical prediction
fields [87]. In addition, many researches also proposed to use a variety of prediction
models, such as support vector machines [21] and neural networks [13]. Sampling
approaches change data distributions to balance samples in different groups in order
to tackle the data imbalance challenge. Common sampling solutions are to either
drop majority class samples, repeat samples from minority class, or create synthetic
samples for minority class [16,43]. A research study [52] using Medical Information
Mart for Intensive Care I1I (MIMIC-III) database [51] shows that, by using undersam-
pling, their model achieves 0.642 AUC score for ICU patient readmission. Another
study [9] investigates RUS sampling and five supervised learning methods, decision
trees, naive bayes, logistic regression, neural networks, and support vector machines
(SVM) for risk modality and hospital readmission prediction. The results show that,

overall, neural networks achieve best performance for both risk modality and hospital
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readmission prediction. A novel approach is introduced to mitigate bias in electronic
health records (EHR) research. The study proposes a cohort design methodology
combined with natural language processing techniques to improve the quality and
reliability of research conducted using EHR data. By systematically addressing is-
sues related to data bias, missing information, and data quality, this approach aims
to enhance the accuracy of insights drawn from EHRs, ultimately contributing to
more robust and unbiased healthcare research, which is crucial for informed decision-
making and improved patient care [54]. Authors examine the impact of COVID-19
victimization distress and racial bias on the mental health of young adults from di-
verse racial backgrounds, including American Indian/Alaska Native (ATAN), Asian,
Black, and Latinx individuals. The study explores how the experiences of distress
related to COVID-19 and racial bias contribute to variations in mental health out-
comes within these communities. The findings of this research provide insights into
the complex interplay between pandemic-related stressors and racial bias, shedding
light on the unique mental health challenges faced by young adults from different
racial and ethnic backgrounds in the context of the COVID-19 pandemic [37].
Racial bias in the patient descriptors within electronic health records (EHRs)is in-
vestigated [89]. The study focuses on identifying the presence of negative descriptors
related to race or ethnicity in these records. The authors analyze a range of pa-
tient characteristics documented in EHRs, highlighting instances where racial bias is
evident. Their findings shed light on the persistence of racial biases in healthcare doc-
umentation, which can contribute to disparities in patient care and outcomes. This
study underscores the need for greater awareness and efforts to address racial bias in
healthcare data to promote equity and fairness in healthcare delivery. In addition,
using AdaBoost to change the weight of instances for learning results in 3% and 6%
improvement for readmission and mortality predictions, respectively. Using SMOTE

to generate synthetic instances to balance positive and negative samples for 30 day
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readmission prediction has been studied [83] by using a UCI hospital readmission
dataset [93]. The experiments show exceptionally higher AUC values (0.974) than
results from other studies (normally around 0.7 AUC range). One possible reason
is that UCI readmission dataset has a relatively balanced sample distributions be-
cause 11.2% samples belong to positive class (readmission), whereas in other dataset,
such as National Readmission Database [5], the positive ratio is much smaller. By
using different sampling approaches, including RUS, ROS, and ROSE, a method [30]
comparatively studies the three methods using UCI readmission dataset [93], using
different classifiers, such as SVM, random forest, gradient boosting, and regression
and partition trees. The results show that ROSE is significantly worse than other ap-
proaches (including original data without any sampling). In addition, RUS and ROS
have comparable performance, and both frequently outperform models trained from
original imbalanced dataset. A readmission prediction algorithm Joint Imbalanced
Classification and Feature Selection (JICFS) is proposed to construct the loss func-
tion and applied sample weight to handle class-imbalance problem [35]. Researchers
propose a novel approach for bearing fault diagnosis. They introduce a multitasking
intelligent system that utilizes representation learning techniques to address the chal-
lenges posed by imbalanced datasets common in real-world bearing fault data. By
integrating multiple tasks into their model, they achieve improved diagnostic accu-
racy and robustness, even in scenarios where data samples for different fault classes
are unevenly distributed. The paper presents a promising advancement in the field of
intelligent fault diagnosis, particularly in situations where imbalanced data is a sig-
nificant concern, offering potential benefits for various industrial applications reliant

on machinery health monitoring and maintenance [106].
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2.2 DATA PRIVACY AND LOCALITY IN HEALTH DATA

Common approaches to tackle data privacy and locality are to employ ensemble learn-
ing or federated learning [60]. The former trains multiple models from local datasets
and combine them for prediction, whereas the latter trains one model from multiple
decentralized /localized datasets. Ensemble learning combines multiple base mod-
els for prediction. Typical approaches include bagging, boosting, and stacking [71].
Bagging trains base models separately (often in parallel), and then combines them
using weighted (or unweighted) majority voting. Boosting, on the other hand, trains
base models in a sequential and progressive manner, so a later trained base model
is improved based on an earlier trained base model. Stacking is a meta learning
approach, which uses base classifiers to generate outputs, and then retrains another
model from the outputs for prediction. In [108], a localized sampling approach is
proposed to allow sampling process to focus on instances difficult to classify. By
using localized sampling to generate balanced datasets, this approach is validated
using data collected from several South Florida regional hospitals. A joint ensemble-
learning model [105] combines weight boosting algorithm with stacking algorithm,
and compares three major baseline (1) the LACE index, (2) RandomForest-Lasso-
SMOTE, and (3) SMOTE (which uses SMOTE to replace bagging for data samping)
on national Hosptial Quality Monitoring System (HQMS) database (including 651,816
records after data processing). The results show that LACE (which is commonly hos-
pital score systems) has the least performance, confirming that machine learning is
useful for hospital readmission prediction. Meanwhile, bagging with weight boosting
and stacking shows clear benefits on high dimensional medical data with imbalance
class distributions and imbalanced misclassification costs.

A research [17] proposes to use federated learning to build a global model to
predict hospitalizations due to heart diseases using patient electronic health records

(whether a patient will be hospitalized within one or two years, prior to the time
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of prediction). A FL-based privacy-aware and resource-saving collaborative learning
protocol was introduced in [40] for an EHR analysis management system working
with multiple hospital institutions and cloud servers, where each hospital runs neu-
ral network models with its own EHR with the help of cloud computing. In ad-
dition, an FL-based approach was proposed to predict hospitalizations in patients
diagnosed with heart disease using their historical EHR. More specifically, health
data from an EHR system consisting of patient smartphones and distributed hospi-
tals is trained locally on demographic information such as age, gender and physical
characteristics [17]. [29] proposed a FLT scheme for wearable health monitoring, in
which smartphones and cloud servers cooperated to train and share CNN model for
the identification of privacy-conscious human activities. A disease prediction method
using FL with a large national health insurance data set of 99 medical sites (such as
hospitals and clinical laboratories) distributed across 34 states in the United States
is studied [61]. The data included EHR for diabetes, psychological disorders, and is-
chemic heart disease. The FL approach achieves competitive performance in terms of
high accuracy and privacy by comparing with traditional methods such as centralized
learning and local training without federation. also builds a FL-based health mon-
itoring solution for analyzing patient outcomes from distributed hospital networks.
Interestingly, each hospital created an entity called the Personalized Treatment Ef-
fect Estimator. Each estimator can be classified in each subgroup, where individual
treatment outcomes include outcomes of patient characteristics, and site indicators
are used to estimate overall treatment outcomes coordination sites [92]. LoAdaBoost
FedAvg is proposed to achieve higher model prediction accuracy on distributed in-
tensive care data, in which local models with a high cross-entropy loss were further
optimized before model averaging on the server [48]. Federated-Autonomous Deep
Learning (FADL) is designed to update global model by training part of the model

using all data sources in a distributed manner while the rest of the model is trained
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with data from specific data sources [62]. When it comes to IID data, Haddadpour
and his colleagues introduce a framework called federated averaging with compression
(FedCOM), which the global model is decided not only by the update by the average

of all clients’ training results, but also determined by the previous global model [39].

2.3 LABEL COST AND SCARCITY IN HEALTH DATA

Recently, Active Learning (AL) has emerged as a machine learning method that
can effectively address data labeling workloads and label scarcity [78,84]. Its main
strategy is to iteratively find the most informative data points to annotate. The
annotated data are then used as part of the training data in the next iteration. With
more and more iterations, the machine learning model’s performance can be more
and more improved. This strategy has been integrated into federated learning and
generated a new paradigm called Federated Active Learning (FAL) [8,55,72,100]. The
FAL framework consists of several clients and one central server. Each client holds one
labeled dataset and one unlabelled dataset, which can not be shared with others. The
server holds a test dataset that can be shared with all clients. The goal of FAL is to
train a globally optimized model at the server by annotating informative data samples
at the clients. FAL framework is trained in an iterative manner. In one iteration, each
client first trains a local model with annotated data. And then, the local parameters
are transmitted to the server. The server synthesizes local parameters into a global
model. After that, the global model is sent to each client to annotate several unlabeled
data with the highest informativeness. The labeled dataset is extended by merging the
previously labeled dataset and the newly annotated dataset. In the next iteration, new
local models are trained with the new labeled dataset. With more and more iterations,
more and more data will be annotated and the global model can be improved.

A novel approach is designed to improve the classification accuracy of waste and

natural disaster images using a combination of Active learning and Federated learn-

22



ing techniques. The approach utilizes Active learning to select the most informative
and relevant data samples for labeling, reducing the labeling workload. These labeled
samples are then utilized in a Federated learning setting, where multiple devices
collaborate to train a shared model without sharing raw data centrally, which effec-
tiveness has been demonstrated in achieving higher classification accuracy compared
to traditional federated learning approaches [7]. A novel annotation strategy to en-
hance Federated Learning (FL) by leveraging the concept of active learning, F-AL,
is proposed. to address the challenge of limited annotated data in FL scenarios. By
incorporating active learning techniques, F-AL aims to intelligently select and query
the most informative data samples from each client’s local dataset, reducing the
annotation burden and improving the performance of the global model. The paper
presents the evaluation of F-AL, highlighting its potential benefits in promoting more
effective and privacy-preserving FL implementations [8]. A semi-supervised and per-
sonalized framework that combines active learning and label propagation techniques
is proposed. In this method, leverages unlabelled data from individual clients in the
federated environment to enhance the activity recognition process. Active learning
is used to intelligently select the most informative samples for labeling, reducing the
labeling effort while improving the model’s accuracy. Label propagation is then em-
ployed to propagate the labeled data across clients, allowing the global model to be
personalized for each client’s unique activity recognition requirements. The results
demonstrate the superiority of the semi-supervised and personalized approach, high-
lighting its potential to achieve more accurate and personalized activity recognition
in a federated setting [73].

Federated Active Learning with a focus on inter-class diversity is explored by
introducing novel methodologies to improve the performance of Active learning in
a Federated learning setting. By taking into account the diversity among different

classes of data, the authors propose innovative techniques that enhance the selection
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of informative samples for labeling during the active learning process. This approach
is aimed at improving the overall performance of the federated learning model while
reducing the labeling effort required from individual clients [55]. A novel frame-
work for enhancing intrusion detection in Zero-Trust Security Models (ZSM) using
federated learning and semi-supervised active learning techniques is created, which
incorporates semi-supervised active learning to optimize the model by selectively la-
beling the most informative data samples, thus reducing the reliance on fully labeled
data. The paper highlights the effectiveness of this combined approach in improving
intrusion detection performance and addresses challenges related to data privacy and
isolation in ZSM environments [69]. Wu Xing, et al, propose a framework that com-
bines Federated Learning and Active Learning to improve disease diagnosis accuracy
while preserving data privacy in a multi-center scenario. Federated Learning enables
multiple medical centers to collaborate and train a shared model without sharing
raw patient data. Active Learning is incorporated to intelligently select the most
informative and relevant data samples from each center for labeling, reducing the
need for extensive labeled data. It is evaluated on a multi-center dataset, showcas-
ing its effectiveness in achieving higher diagnostic accuracy compared to traditional

methods [100].

24



CHAPTER 3
IMBALANCED LEARNING FOR HOSPITAL READMISSION
PREDICTION

A hospital readmission is defined as an admission where a patient previously dis-
charged from a hospital is being admitted to the same or a different hospital, within
a specific time interval such as 30 days or 90 days. The reasons behind a hospital
readmission often differ from patient to patient [57] and the readmission rates between
different medical institutions also vary significantly [107]. A readmission implies extra
costs to the stakeholders, adds financial burden to the patients and deteriorates their
life quality [19,94]. Hospital readmissions are also related to unsatisfying patient out-
comes and heavy financial burden to the healthcare system [11,41,58]. Preventable
readmissions can lead to almost $17 billion annual cost reduction [49]. Therefore, in
2012, a national Hospital Readmissions Reduction Program (HRRP) initiative started
to link the health care payment to the quality of hospital care, by reducing payments
to hospitals with excess readmissions and providing hospitals an incentive to improve
their care coordination in post-discharge planning. HRRP is established to penalize
hospitals with readmission rates exceeding the national average by a drop in their pay-
ments. It is expected that by implementing such a penalization, an improvement in
post-discharge communication and care to patients can be implemented by hospitals
and a reduction in readmissions can be expected [66].

Since 2012, many efforts have been taken, by hospitals, caregivers, and aca-
demics [2, 108], to reduce readmission. But unfortunately, after eight years, it is
observed that the “needle has not moved very far” [77]. In 2019, Medicare, under

the HRRP plan, cut payments to 2,853 hospitals. Among the 3,129 general hospitals
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which were evaluated in the HRRP program, 83% of them received a penalty [77].

The reduction of hospital readmission rate is of great significance to Medicare sys-
tem and the effective usage of health care resources. It is meaningful and important
to predict preventable hospital readmission earlier than it really happens. Intuitively,
this problem is equivalent to predicting the likelihood of a patient being readmit-
ted again in the defined time-frame, using patient’s current information, including
demographics, diagnose, treatment, etc.

In order to promote research and analysis of national readmission rates for all pa-
tients, a Federal-State-Industry partnership sponsored by the Agency for Healthcare
Research and Quality (AHRQ) published National Readmission Database (NRD) [4];
including patient level admission information from 2010 to 2017, regardless of the
expected payer for the hospital stay. The NRD database provides a powerful public
data source for readmission analysis, using all cause national scale patient level data
with demographics, hospital, and treatment/procedure information.

Motivated by the above observation, we propose to use imbalanced learning for
hospital readmission prediction. The goal is to predict whether a patient, based on
his/her current hospital visit records, is likely going to be re-admitted or not within
30-days after being discharged from the current hospital visit. The main challenge of

hospital readmission prediction is twofold:

e Challenge 1: The readmission visits (i.e., the positive class) are a small portion
of the total hospital visits, representing a severe class imbalance problem for

learning

e Challenge 2: Due to privacy and health regulation, the information available
for patient characterization is limited; and is often only limited to the payment
level information. However, there are over 80,000 procedures code, representing

a high dimensionality and high sparsity problem for learning.
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Motivated by the above challenges, in our research, we design an imbalanced
learning strategy to predict patient readmission possibility. For Challenge 1, we use a
random sampling approach to balance the sample distributions in the training set. By
implementing random sampling, it helps ensure that our training dataset is represen-
tative of the overall population, which is crucial because biased or non-representative
samples can lead to poor model performance. By randomly selecting data points,
we are able to reduce the risk of introducing bias into our training set. In addi-
tion, overfitting can be reduced which occurs when a model learns to perform well
on the training data but fails to generalize to unseen data. For Challenge 2, we
create features from patient hospital visit, by combining patient demographic infor-
mation, ICD-10 clinical modification (CM) and procedure codes (PCS), and Clinical
Classification Software Refined (CCSR) conversion. Instead of directly using ICD-
10- CM/PCS code to characterize patients, we convert each patient’s visit to CCSR
code space with a smaller feature space. Experimental results on NRD validate the

effectiveness of our method. Our contributions can be summarized below:

e We first implement feature engineering on National Readmission Database (NRD)

to create 16 features as a solution.

e We propose a imbalanced learning strategy, to tackle the data imbalance chal-

lenge in 30-day hospital readmission prediction.

e Experiments on NRD datasets demonstrate that our imbalanced learning ap-

proach achieves better performance.

3.1 THE PROPOSED METHOD

In this section, we present our proposed imbalanced learning algorithm for 30-day
hospital readmission prediction. Our learning objectives are to (1) capture the most

relevant and informative input feature by creating new features, modifying existing
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ones, and (2) enable imbalanced learning for 30-day hospital readmission prediction.
We will first present our feature engineering for hospital visit. Then we present our

imbalanced learning for readmission predictions.

3.1.1 Feature Engineering for Hospital Visit

National Readmission Database National Readmission Database (NRD) was first
created by the Agency for Healthcare Research and Quality (AHRQ) in 2015 to pro-
vide data support for analyses of national readmission rates and further promote the
quality of health care [45]. AHRQ is in the family of Healthcare Cost and Utilization
Project (HCUP); where a collection of longitudinal healthcare databases combined
with professional data analysis tools are provided in order to facilitate healthcare-
related policies improvement. The database contains both clinical and nonclinical
elements and collects around 18 million discharges in a year. In order to protect
patient privacy, no patient’s is recorded in a NRD file. The actual admitted date,
discharged date or any other content that may reveal personal information are coded
in a special format for the derivation of the gap between two visits of the same pa-
tient. Both single and repeated visits for patients are captured in the NRD database,
and patient revisits are linked through the “VLink” filed, as shown in Table 3.1. In
2016, the NRD database replaced the International Classification of Diseases, Ninth
Revision, Clinical Modification (ICD-9-CM) applied in version 2015 with the tenth
revision (ICD-10-CM/PCS) codes to represent clinical diagnosed and inpatient pro-
cedures [4]. ICD-10-CM/PCS codes are an American adopted version modified by
Centers for Medicare and Medical Services (CMS) and the National Center for Health
Statistics (NCHS), based on ICD-10, the statistical classification of disease published
by the World Health Organization (WHO). ‘CM’ in ICD-10-CM codes stands for
"Clinical Modification’. There are more than 72,000 ICD-10-CM codes in the 2016
NRD database. Each ICD-10-CM code consists of 3 to 7 characters and the main
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purpose is to enable healthcare institutions to have a better understanding on a pa-
tient’s medical conditions so that a more comprehensive and efficient treatment can
be provided to patients. ICD-10-PCS stands for an inpatient procedural system.
The intention of ICD-10-PCS codes is to provide insurance companies, healthcare
providers with specific and accurate patient medical records.

We chose to use the 2016 NRD database as the data resource for our research.
There are three files in the database. The first file is a Core file, in which every patient
is represented by a unique NRD-Visitlink. Each row encodes visit information for
every single patient visit including patient demographics. The second file, severity
file, contains supplementary data information for condition severity identification and
hospital. The third file, the level file, represents the information about hospitals to
which patients in Core file were admitted. For this paper, we mainly focus on data
analysis using the Core file. There are total 17,197,683 number of visits recorded in

the Core file, with each visit including 103 data elements recorded in 103 columns.

Table 3.1: Example to calculate readmission days

Visit | Patient Visitlink | LOS | NRD_DaysToEvent
1 112233 2 days 2679
2 112233 5 days 2691
3 112233 3 days 2789

3.1.1.1 Feature Engineering for NRD Database

The most important steps for successful data analysis are pre-processing data and
extracting critical features [63]. In the clinical field, these steps are especially sig-
nificant because medical data are inherently complex and contain a variety of data
fields with different ranges. For this reason, we first removed patients visit records

with outliers, which are marked as a special value in the database. After that, we
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normalized columns with large range, such as total charges, to a fixed range. This is

helpful to improve the performance of the final result.

In order to extra features for patient readmission prediction, we consider three

types of features, including (1) patient demographics, (2) patient admission and dis-

charge information, and (3) patient clinical information. Table 3.2 summarizes the

features created for readmission prediction.

Table 3.2: Features chosen for prediction

Feature Type Feature Description
AGE Patient’s age
FEMALE Patient’s gender (binary, ‘1’ is female)
PAY1 Payment method
Demographics
PL_NCHS Patient’s location (based on NCHS Urban-Rural Code
ZIPINC_QRL Estimated median house income in the patient’s zip
code
RESIDENT Patient’s local (binary, ‘1’ is the patient comes from
same state as hospital)
AWEEKEND Patient’s admission Day (binary, ‘1’ means the admis-
sion day is a weekend)
MONTH Patient’s discharge month
QUARTER Patient’s discharge quarter
DISPUNIFORM Disposition of patients
Admission and LOS Length of the hospital stay
Discharge ELECTIVE Binary, ‘1’ represents elective admission
Information REHABTRANSFER Binary, 1’ is rehab transfer
WEIGHT Weight to discharges in AHA universe
TOTAL CHARGES Patient’s inpatient total charges
15t HOSPITAL VISIT Binary,’l” means the first hospital visit
Clinical  Informa- | CCSR Code Clinical categories
tion
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Patient Demographics and Admission Information For research purposes, the
patient demographics and medical records during patients hospitalization and dis-
charge information are key for readmission prediction. Data provided by demograph-
ics information about each participant, such as age and gender, are crucial in helping
us determine whether individuals in this study are representative samples of the tar-
get population. Analyzing demographics characteristics is a catalyst for exhaustive
medical policy enhancement.

In addition, patient admission and discharge information also play important roles
in determining the likelihood of a readmission visit in the future. For example, the
length of stay (LOS) of the current visit may imply the degree of illness (or severity
of the disease) with respect to the current visit. Take feature ‘DISPUNIFORM’ as
another example. It refers to the place where a patient is discharged, such as a
family with home care or a nursing center. This feature plays an important role in

readmission prevention.

Patient Clinical Information In addition to the patient demographics and admis-
sion information, we also consider patient clinical information which is encoded as
the ICD-10-CM code in the NRD database. For each patient visit, the ICD-10-CM
codes detail the diagnose and treatment carried out during the patient visit. One
essential challenge is that because ICD-10-CM are used for payment purposes and
include all disease types, the total number of unique ICD-10-CM is very large. There
are over 72,000 unique ICD-10-CM codes in the 2016 NRD database, making it highly
ineffective to directly use ICD-10-CM codes as features for learning.

In order to reduce the number of features reflecting the patient clinical informa-
tion, we convert the ICD-10-CM codes into Clinical Classification Software Refined
(CCSR) codes. CCSR is an aggregation version for ICD-10-CM and it can improve
the specificity of ICD-10-CM codes. Its utilization greatly improves the analysis on

health models including healthcare cost, efficiency, outcomes [3]. Figure 3.1 shows
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the distribution of total number of ICD-10-CM codes for each patient visit. The re-
sult indicates that the total amount of ICD-10-CM codes for per visit is concentrated
between 5 and 20. Figure 3.2 and Figure 3.3 represent the frequency distributions of
ICD-10-CM codes and CCSR codes respectively. Where the frequency of the codes
in the dataset are sorted in a log 10 scale descending order and the z-axis stands for
the rank order of the corresponding code. From these two figures, we can tell that
the frequency of both kinds of codes follows a negative exponential function.

After converting ICD-10-CM codes to CCSR codes, the number of features used
for patient clinical information is denoted by less than 500 unique CCSR codes, as
we will soon explain in Section Experiments.
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Figure 3.1: Distributions of the number of ICD-10-CM codes in each visit. The x—axis
denotes the number of ICD-10-CM codes in a patient visit. The y—axis denotes that

for each r—axis value, the number of patient visits (frequency) with the specified

number of ICD-10-CM codes.

Readmission Labeling Protocol In order to generate class label for each patient
visit, we label each patient visit as a readmission or not a readmission, by using 30-day
as the criterion. Because our objective is to predict the possibility of a readmission
in the future, we employ the following labeling protocol. For two visits (V,, and V},) of

the same patient, if the admission of V}, happens within 30-day (inclusive) after the
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Figure 3.2: Distributions of ICD-10-CM codes across all patient visits in log-scale.
The x—axis denotes the ICD-10-CM codes ranked in a descending order according to

their frequency. The y—axis denotes the frequency of each code in log-scale.

discharge of V,, we label V, as a readmission visit (denoted by 1). Otherwise, V, is
labeled as not a readmission (denoted by 0). If the patient only have two visits V,
and V;, then V, will be labeled as not a readmission, because there is no succeeding
visit following V;. Intuitively, if the prediction is accurate, for each current patient
visit, we will be able to estimate his/her readmission possibility in the future, when
discharging the patient from the current visit.

Because there is no exact date information for the admission and discharge date of
patient admissions, we need to calculate the gap (time period) between two admitted
dates before labelling. In the NRD database, they use NRD_VisitLink to represent
patient, thus, privacy can be protected through this de-identified patient record.
Another feature used for privacy protection is NRD_DaysToEvent, where the actual
patient admission date is substituted to a randomly chosen number (the main purpose
is to hide the actual admission/discharge date of each visit for privacy protection).
LOS stands for time duration a patient stays in the hospital after admission. Using
these three features we are able to label which visit is a readmission.

An example to calculate gaps between hospital visits and the corresponding labels
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Figure 3.3: Distributions of CCSR codes across all patient visits in log-scale. The
x—axis denotes the CCSR code ranked in a descending order according to their fre-

quency. The y—axis denotes the frequency of each CCSR code in log-scale.

are shown in Table 3.1 and Figure 3.4. In Table 3.1, a patient has three visit records
in the dataset. The time interval between visit 2 and visit 1 equals to the second
NRD_DaysToEvent minus the first NRD_DaysToEvent minus the first LOS. This is
2691 - 2679 - 2 = 10. For visit 3 and visit 2, the calculation is 2789 - 2691 - 5 = 93.
For visit links that appear more than once, if the time interval between two visits
is less than 30 days (inclusive), the earlier visit is label as ‘1’, which represents a
readmission. Therefore, we should label the first time visit as readmission and the
second as well as the third visits are labeled as not a readmission as showed in Figure
3.4. The reason why we do not label the second time as readmission is that the
purpose of our research is to predict whether there will be a possibility that a patient
will return to hospital in 30 days or not after being discharged. For those visit links
only appear once in the dataset meaning there exists no readmission for the patients,

the time interval is infinite and they are labelled as ‘0’.

34



Re-Admission Label ~ Re-Admission Label Re-Admission Labe

YES NO NO
;5‘ Visit 2" Visit 31 Visit
DaysToEvent: DaysToEvent: DaysToEvent:
2679 2691 2789

All visits of patient VLink: 112233

Figure 3.4: Temporal arrangement of patient visits for re-admission labeling (Based

on visits showing in Table II).

3.1.2 Imbalanced Learning for Readmission Predictions

Using feature engineering and labeling process, we are able to create a training dataset
with both features and labels, where each instance in the dataset represents a hospital
visit. This is a typical supervised learning task. Many leaning algorithms can be

applied to learn classifiers for prediction.

3.1.2.1 Class Imbalance

The final dataset for our research includes 300,000 rows representing 300,000 patient
visits, 498 columns of patient clinical features (CCSR code), 16 columns of patient
admission features, and one additional column denotes the label of the visit. Al-
though the number of features in this dataset is not particularly large, the data is
actually severely imbalanced. There are only 2,926 patients who conducted multi-
ple visits to hospitals, in which 2,851 patients were admitted into hospitals twice,
74 visited hospitals three times and only 1 patient visited 4 times. With respect to
the label part, only 881 visits are labelled as readmission and the rest 299,119 visits
are not readmission. Figure 3.5 and Figure 3.6 show the sample distributions of the
dataset. As a result, the ratio between readmission visits vs. not readmission visits is
around 1:340, meaning that positive samples (readmission visits) are less than 0.3% of
the whole training samples. This represents a well-known imbalanced learning chal-

lenge, because majority learning algorithms prefer an equal percentage of positive vs.
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negative samples for learning accurate classifiers.
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Figure 3.5: Distributions of the number of hospital visit(s) of all patients. Out of all
300,000 hospital visits, only 2,851 patients have two more more visits. If a patient

only has one visit, the visit will be labeled as “no a readmission” (0).
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Figure 3.6: Class distributions between 30-day re-admission visits (labeled as “17)
vs. non 30-day re-admission visits (labeled as “0”. Overall, the re-admission visits

are less than 0.3% of the total hospital visits.

3.1.2.2  Imbalanced Learning

Severe class imbalance will deteriorate the performance of the learning algorithms, as

a result, the learning tends to be biased to the majority (negative) class samples, and
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neglects the minority (positive) class. In our case, the positive samples (readmission
visits) are less than 0.3% of the whole population, so a classifier can predict all
instances to be negative and achieves 99.3% accuracy. This is, unfortunately, not
useful for readmission prediction.

To tackle the class imbalance, we employ a random under sampling based ap-
proach to generate different versions of relatively balanced training set, where each
training set contains a higher percentage of positive samples, compared to the pos-
itive /negative ratio in the original training set. More specifically, we applied a re-
peated k-fold cross-validation data frame in which re-sampling technique Random
Under Sampling was used. Repeated k-fold cross-validation is a re-sampling method
that repeatedly splits the dataset into k groups, and it is usually used to estimate
the general performance of a model. In each fold, a bagging approach combined with
three learning methods is implemented to combine results from multiple sampling.
By doing so, the bias can be lowered and can demonstrate a better estimation in
terms of statistics. The overall imbalanced learning algorithm is presented in Table

3.3.
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Table 3.3: Imbalanced Learning Algorithm

Algorithm: Imbalanced Learning for Hospital Readmission Prediction

Input NRD database;
Output Prediction of a new visit: Test
For features in NRD database:
F +Extract features as shown in Table I
For each visit v in NRD database:
Label v as first visit or not
F, < Extract features from visit v using selected features F
Label v as Readmission(1) or Not(0)
D <« Created traning set of NRD database
For each sampling repetition ¢:
S; + random under sampling to D to create a balanced training set
C; + Train a classifier from S;
Test result [j]<— Predict using classifier (C;, Test)
End
Test Final prediction<— Combine results from all sampling repetitions

to make final prediction

3.2 EXPERIMENTS

3.2.1 Experimental Settings

We randomly extracted 300,000 patients visit records from the overall 17,197,683
patient visits and created 16 demographic and admission features, and 498 clinical
features (CCSR codes) as shown in Table I to evaluate the algorithm performance for
readmission prediction. In our experiments, the values in column AGE and TOTAL

CHARGES are normalized through divided by the maximum value in the column to
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range [0,1]. Due to the large number of ICD-10- CM codes in 2016 NRD, instead of
directly using them, we converted them into manageable number of clinical categories.
The CCSR enables a way to identify specific clinical conditions using ICD-10-CM
codes and this helps reduce the number to 498 but still keep the clinical information
of each patient visit. In the experiments, we count the number of each CCSR code
for each visit, and use the numerical values as features for learning. So in total, our
training set contain 300,000 instances (visits), where each instance is represented by
516 features and a class label.

For all experiments, we used a 10 times 10-fold cross validation. Making multiple
10-fold cross validation repeatedly divided the data into 10 blocks for ten times where
every block has equal size. As a result, it will generate 100 re-samples that with
averaged data. For each fold in cross validation, we implemented Random Under
Sampling with different sampling ratios, where the proportion of positive and negative
classes are designed as 1:1, 1:2, 1:5, 1:10. Three learning algorithms are used in the
experiments, including Decision Tree, Random Forest with 500 trees, and Random

Forest with 1000 trees.

3.2.2 Experimental Results

The detailed performance including accuracy, F1_score and Area Under the ROC
Curve (AUC) values for learning method Decision Tree (DT'), Random Forest with 500
trees (RF-500), and Random Forest with 1000 trees (RF-1000) using four sampling

ratios are reported in Table 3.4.
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Table 3.4: Performance of imbalanced learning algorithm

Learning Method | Performance | Positive:Negative Sampling Ration

1:1 1:2 1:5 1:10

Accuracy | 0.8491 | 0.9429 | 0.9859 | 0.9933
DT F'1_score 0.4688 | 0.5003 | 0.5174 | 0.5161
AUC 0.6789 | 0.6236 | 0.5466 | 0.5191

Accuracy 0.858 | 0.9824 | 0.9955 | 0.9961
RF-500 F'1_score 0.4751 | 0.5322 | 0.6106 | 0.5066
AUC 0.7538 | 0.6114 | 0.5085 | 0.5046

Accuracy | 0.8585 | 0.9824 | 0.9955 | 0.9961
RF-1000 F'1_score 0.4749 | 0.5322 | 0.5060 | 0.5065
AUC 0.7535 | 0.6109 | 0.5080 | 0.5046

The three line graphs in Figure 3.7 indicate the change trend of three performance
values with respect to different sampling ratios. For accuracy performance, as showed
in Figure 3.7a, the results of RF- 500 and RF-1000 are almost the same except the
value under sampling ratio 1:1. All of the three methods show improved accuracy
using 1:5 or more balanced sampling ratios (such as 1:1 or 1:2). When using more
imbalanced sampling ratios (such as 1:5 or higher), the accuracy will remain stable.
This is possible because that when data are imbalanced in the sampled set, using 1:5
or 1:10 sampling ratios, all positive samples will be misclassified as negative samples.
Therefore, the accuracy will become stable (approaching to the percentage of negative
samples in the test set).

As for the F1_scores, shown in Figure 3.7b, the change shows two opposite trends
at the point of ratio 1:5 for three methods. Overall, RF-500 and RF-1000 demonstrate
a more significant rate of descent than DT. This is, in fact, consistent with the

accuracy showing in Figure 3.7a, where the accuracy remain stable when using 1:10
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Figure 3.7: Performance comparisons using different class sampling ratios 1:1, 1:2,

1:5, 1:10

sampling ratio.

Figure 3.7c reports the AUC scores of all three methods with respect to different
sampling ratios. Comparing to the accuracy and F1_score, AUC is much more accu-
rate in evaluating the performance of the classifier with respect to both positive and
negative samples. The results in Figure 3.7c show that as the sampling ratio is be-
coming more imbalanced (from 1:1 to 1:5), the performance of all methods deteriorate
in their AUC scores. After the sampling ratio reach 1:5, using more imbalanced sam-
pling, such as 1:10, does not deteriorate the algorithm performance further, because
all positive samples are classified as negative samples, resulting in 0.5 AUC values.

Figure 3.8 reports performance of three learning methods using different sampling
ratios. For DT, Figure 3.8a, its accuracy and fl_score keep climbing before ratio 1:5
and after it the ascent scope becomes smooth. However, the AUC score decreases for
all the four ratios. RF-500, Figure 3.8b, is consistent with RF-1000, Figure 3.8c, in
respect to accuracy and AUC, which is also the same as DT. The peak for RF-500 is

the point at ratio 1:5 whereas it reaches the maximum at ration 1:2 for RF-1000.
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Figure 3.8: Performance comparisons between decision trees (a), and random forest

with 500 trees (b), and 1,000 trees (c)

3.3 CONCLUSIONS

In this research, we proposed to use imbalanced learning for 30-day hospital read-
mission prediction. The main goal is to predict, at the time of a hospital discharge,
whether the patient may return in 30 days or not in the future. To build a machine
learning task, we used National Readmission Databases (NRD) to extract features
from patient visits. We created a set of features, using simple patient demograph-
ics, ICD-10 clinical modification (CM), and Clinical Classification Software Refined
(CCSR) conversion, to represent each hospital visit. Because patient readmission is
only a small portion of all patient visits, the machine learning task is severely chal-
lenged by the imbalanced class distributions. To solve the challenge, we used random
under sampling (RUS) to create different copies of balanced sample sets. Ensemble
classifiers were trained from balanced sample sets to build classifiers for readmission
prediction. Experiments on the NRD databases confirm that Random Forests, with

1,000 trees, deliver the best AUC scores for 30-day hospital readmission prediction.
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CHAPTER 4
ENSEMBLE LEARNING FOR DISEASE-SPECIFIC READMISSION
PREDICTION

Hospital readmission is a process or episode when a patient discharged from a hospital
is readmitted within a specific time interval, say 30 or 90 days, since the previous dis-
charge [98]. With annual costs reaching $41.3 billion for patients readmitted within 30
days after discharge, readmission is one of the costliest episodes to treat in the United
States [46]. The large annual costs not only imply unsatisfactory hospital quality, but
also hinder resources available for other attention-required government programs and
erode US industrial competitiveness [14]. To minimize the negative impact of high
readmission rate, since 2012, a Hospital Readmissions Reduction Program (HRRP)
has been developed by Centers for Medicare & Medicaid Services (CMS) aiming to
improve the quality of patient care and reduce healthcare expenditures by imposing
fines on hospitals with higher readmission rates than expected rate [26]. Hospitals
across the US are under scrutiny of this program and have increased the investment
in order to enhance their discharge process, resulting in the drop of readmission rate
from 21.5% to 17.5%, from 2007 to 2015 [109]. Despite of this encouraging drop,
the expenses on developing an effective discharge procedure including better med-
ication prescription, patient education, discharge follow-up and so on is extremely
high and time consuming [65]. Development of readmission risk analysis tools has
increased dramatically for accurate identification of high-risk patients. Neverthe-
less, the complexity of in-patient care and discharge process hinders the progress of
building high-sensitivity and precise risk models, which stimulates growing research

focusing on finding potential patterns of readmission and aiming to prevent avoidable
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readmissions.

Machine learning, supervised learning in particular, has the unique strength to
learn patterns from historical data for prediction. Accordingly, many methods have
been proposed to train predictive models to assess readmission risk of individual
patients, using their past visit records combined with other information [42, 68, 103].
For example, logistic regression is a commonly used model, due to its simplicity and
transparency for prediction. In addition, studies also propose to use more advanced
models, such as support vector machines and neural networks, for readmission analysis
[21,81]. Our previous study [98] has systematically reviewed major research challenges
for hospital readmission.

The main contribution of our work, compared to existing research in the field, is

fourfold.

Answers to important questions: With over 15 million hospital visits in national
readmission databases (NRD), we are able to carry out data statistics analysis and
conclude answers for several important questions regarding hospital readmission. To
find out the impact from demographics on hospital readmission, we explored the read-
mission percentage between gender and various age groups, from which an apparent
readmission difference between male and female can be observed with male having
higher readmission rate than female. Also, patients aged over 56 usually have larger
risk to be readmitted into hospital. The second aspect we conclude is that patients
suffering from diseases vary significantly regarding to their readmission rates. For
example, patients with heart diseases have much more readmission rate than patients
with pneumonia. As for hospital, private-owned non-profit hospitals discharged much

more patients than government-owned hospitals and private-own hospitals.

Nationwide Admission Data Statistics: Using National Readmission Databases (NRD),
with over 15 million hospital visits, as our testbed, we summarize nationwide patient

admission data statistics, in related to to demographic, disease types, and hospital

44



factors. By separating patient visits into different cohorts, our study directly answers
how demographic, socioeconomic, and diseases are reflected in the readmission. The
data statistics can not only be useful for designing features for readmission predic-
tion, but are also useful for policy and other purposes. For example, our study found
that, even in the same disease group, patients with low incomes do not go/return
to the hospital as the same as populations with higher incomes. These observations
can help design policy to help patients vulnerable to high readmission risk in specific

geographic locations or service areas.

Feature Engineering for Readmission Prediction: In order to design HIPAA compliant
features to characterize patients, diseases, and hospitals, we use feature engineering to
design 526 representative features to model each patient visit. The six demographic
features, ten admission and discharge features, 498 clinical features, three disease
features, and nine hospital features are fully compliant with the HIPAA standard to

support disease-specific readmission prediction.

Disease Specific Readmission Prediction: Our studies found that readmission rates
vary significantly from diseases to diseases. For six diseases studied in our research,
their readmission rates vary from 1.832% (Pneumonia) to 8.761% (Diabetes). The
high variance makes it inaccurate to use one model for all prediction. In addition, the
readmission visits are a small portion of the patient visits, presenting a data imbalance
issue for learning. Accordingly, we propose to use random under sampling, combined
with hard-voting and soft-voting based ensemble leaning. By training different en-
semble models using disease specific datasets, and comparing their performance using
Friedman test and Nemenyi post-hoc test, our study shows the most accurate models

for disease-specific readmission prediction.
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4.1 THE PROPOSED METHOD

4.1.1 US National Readmission Databases Overview

Due to HIPAA regulations [22], patient data cannot be shared between researches.
This creates a barrier for researchers to obtain hospital data for research study and
designs. Nationwide Readmission Databases (NRD) provide an alternative public
data source for readmission analysis, using all cause national scale patient level data.
The NRD databases were first created by the Agency for Medical Research and Qual-
ity (AHRQ) in 2015 to provide data support for the analysis of national readmission
rates and further improve the quality of medical care. AHRQ belongs to the “Health
Care Cost and Utilization Project (HCUP)” family, which provides a collection of
longitudinal healthcare databases combined with professional data analysis tools to
promote the improvement of healthcare-related policies. The NRD database contains
clinical and non-clinical elements and collects about 18 million unweighted discharges
each year with more than 100 clinical and non-clinical variables per hospitalization.
NRD is a unique and powerful database designed to support various types of analysis
of national readmission rates for all payers and uninsured. The database addresses
a huge gap in healthcare data: the lack of nationally representative information on

hospital readmission rates for all age groups [5].

4.1.1.1  NRD Database Descriptions

The NRD database has three major tables, each includes information about patient,
hospital, and disease, respectively. Each row of the core table represents a hospital
visit, and table has 103 fields, including admission, diagnose, and discharge infor-
mation. The 103 fields in the table can be separated into three main categories:
Demographics, Admission and Discharge information, and Clinical information [97].

Patients’ privacy are protected with de-identified KEY_NRD element and the dates
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related to their in-patient treatment are replaced by sequential numbers. For clinical
information, ICD-10-CM code is applied for medical diagnoses (the next subsection
details the ICD diagnose code descriptions).

The hospital table in the NRD databases includes information about hospitals
involved in the core table. The hospitals are across the whole country, with different
types of ownership and teaching status, such as non-profit, government owned, or
for-profit hospitals. In addition, hospitals are also categorized based on their bed
sizes which reflect the scale/capacity of the hospital.

The disease severity table in the NRD databases includes diseases associated to
each hospital visits. The disease information is based on the main reason of each
admission. In addition, the risk of mortality and severity of illness are also encoded
in the disease severity table. The code in the disease severity table is based on
APRDRG (All Patients Refined Diagnosis Related Groups) code associated to each

visit.

4.1.1.2  ICD Diagnose Code

In the NRD database, the diagnose and treatment with respect to each hospital
visit are recorded using ICD-10-CM (International Classification of Diseases) code.
The standardized coding allow stakeholders, including physicians, hospitals, and care
givers, to classify and code all diagnoses, symptoms and procedures, with details nec-
essary for diagnostic specificity and morbidity classification. For each visit, a number
of ICD-10-CM and ICD-10-PCS (procedure coding system) codes are recorded to rep-
resent diagnose and procedures carried out during patient’s visit. ICD-10-CM is the
Clinical Modification of World Health Organization’s International Classification of
Diseases (ICD) 10" version and it is used for medical diagnoses. An example of the
ICD-10-CM code structure is shown in Fig. 4.1. In order to sufficiently serve health
care needs, U.S. made the transition from ICD-9-CM to ICD-10-CM codes [24].
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Alpha _ Nygeric Alpha or, Numeric

category category, anatomic site, extension
severity

Figure 4.1: ICD-10-CM code structure. For example, S06.0X1A code means “Con-

cussion with loss of consciousness of 30 minutes or less, initial encounter”.

As shown in Table 4.1, ICD-10-CM codes are very different from ICD-9-CM codes
with nearly 5 times as many diagnoses codes as in ICD-9-CM and it has alphanu-
meric categories instead of numeric ones. ICD-10-CM code sets provide more precise
identification and conditions tracking by including laterality, severity, and complexity
of disease conditions [24,44]. The ICD-10-CM code specification has 21 chapters and
it has a much longer index and tabular list. It uses an indented format for both
the index and tabular list. Categories, subcategories, and codes are contained in the
tabular list [12,27]. ICD-10-CM codes can consist of up to 7 characters with the sev-
enth digit extensions representing visit encounter or sequela for injuries and external
causes compared to five digits in ICD-9-CM codes. Fig.4.1 shows the meanings of
the seven characters: characters 1-3 indicate the category of diagnoses, characters 4-6
indicate etiology, anatomic site, severity, or other clinical detail, and character 7 is
the extension. All ICD-10-CM codes begin with one of the alphas and they are not
case sensitive. Although in the original version, alpha U was excluded, CDC released
COVID-19-guidelines from April 1 2020 to September 30 2020 in which U07.1 is used
to defined a positive COVID-19 test result, or a presumptive positive COVID-19 test

result [23].

4.1.1.3 Readmission Label

In the NRD database, the core table only records each hospital visits (from admission
to discharge). There is no readmission label associated to the visits. Therefore, we

need to derive label to determine whether a visit is a readmission visit or not. For this
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Table 4.1: Comparison between ICD-9-CM and ICD-10-CM Diagnosis Code Sets

ICD-9-CM ICD-10-CM
14,025 codes 69,823 codes
3-5 characters 3-7 characters

First character is alpha or | First character is alpha, second character

numeric 1S numeric

Characters 2-5 are nu- | Characters 3-7 can be alpha or numeric

meric

Decimal placed after the | Decimal placed after the first three charac-

first three characters ters

Lacks detail and lateral- | Very specific and has laterality

ity

purpose, we need to leverage NRD_DaysToFEvent (a timing variable specifies a number
of days from a random “start date” to the current admission) and LOS (Length of
stay) two fields in each record.

Each hospital visit record in NRD is kept in de-identified format in order to
comply to the HIPAA regulations. As a result, not only patient’s name is represented
using NRD-VisitLink, the exact admission/discharge date are also adjusted using a
specific random number for each patient. For each patient, a random “start date”
is first selected. The admission time (NRD_DaysToEvent) of the patient is then
calculated by using difference from the “start date” to the admission day. Starting
from 2009, Centers for Medicare & Medicaid has been reporting each hospital’s 30-
day risk-standardized readmission rate (RSRR) across the U.S to measure unplanned
readmissions that happen within 30 days of discharge from patients’ admission, which
has formed a 30-day readmission rule as a standard for hospital evaluation [57]. Thus,

in our research, we use 30-day criterion for readmission labeling. For two visits (V,
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and V), if the interval between V}, admission and V, discharge is less than 30 days,
then visit V, will be labeled as readmission [97]. One example to label patient visit
is demonstrated in Table 4.2, in which the patient has three visits in total. The time
interval between two visit is calculated as the second NRD_DaysToFEvent minus the
first NRD_DaysToFEvent and minus the LOS. For visit 2 and visit 1, the result is 1053
- 1034 - 3 = 16, which is less than 30 days, therefore, we label the first visit as 1,
indicating that this is a readmission visit. For visit 3 and visit 2, their difference is
1097 - 1053 - 2 = 42, so visit 2 is labelled as 0, meaning not a readmission. Visit 3 is
also labelled as 0 because there is no more records showing the patient returning to

the hospital after the third visit.

Table 4.2: Example to label patient visit

Patient Vis- | Visit NRD_Days LOS Readmission Label
itlink ToEvent

863245 1 1034 3 days 1

863245 2 1053 2 days 0

863245 3 1097 4 days 0

By using the above labeling approach, if two consecutive visits are within the
defined interval (30-days in our setting), the first visit is labeled as the readmission
visit. We do not label the second visit as readmission because we want to predict the
possibility of a patient returning back to the hospital after being discharged from the
current visit. By doing so, we can implement the hospital readmission prediction at

the time of patient discharge.
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4.1.2 NRD Data Statistics
4.1.2.1 Demographics Related Statics

Table 4.3 reports the NRD patient admission statistics. The total number of readmis-
sion in NRD is 17,197,683 in which the effective admissions is 15,722,444 excluding
outliers. The number of effective admissions does not equal to the number of unique
patients, because each patient has a unique NRD-VisitLin (global ID) and some pa-
tients will return back to the hospitals for multiple times. Table 4.3 shows that about
80% of patients only have a single visit, so readmissions happen to the rest 20% of
patients. In Fig. 4.2, we further report the readmission percentages between gender
and different age groups. Combining Table 4.3 and Fig. 4.2, we can find that although
female patients are the majority part of hospital visits, the readmission rates of male
population exceed that of female across all the age groups, especially for age group

[18, 35], where the readmission rate of male is more than twice the rate of female.

Table 4.3: A summary of NRD patient admission

Categories Number(%)

Effective Admission Total 15,722,444
30-Day Readmission 1,834,786 (11.67%)
Not 30-Day Readmission 13,887,658 (88.33%)

Unique Patient Total 11,691,620
Patient with single visit 9,335,277 (79.85%)

Patient with multiple visits | 2,356,343 (20.15%)

Patient Visit Total 15,722,444
Male patient visits 6,630,005 (42.17%)
Female patient visits 9,092,439 (57.83%)

The NRD databases have three main payment types, Medicare, Medicaid, and Pri-
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Figure 4.2: Gender readmission rate difference with respect to different age groups
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Figure 4.3: Readmission rate comparison with respect to different payment methods

vate insurance, which cover 43.40%, 21.80%, and 28.08% of payments in the database,
respectively. In Fig 4.3, we report the readmission rates comparison between differ-
ent payment groups. The results show that the top two highest readmission rates
are from the Medicare and Medicaid patients, respectively. Fig. 4.2 shows that the
readmission rates increase for older age groups, this partially explains why Fig 4.3
medicare and medicaid patients have higher readmission rates than patients from

other payment groups.
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4.1.2.2 Hospital Related Statistics

NRD hospital table includes information, such as ownership and teaching status, from
about 2,355 hospitals across the US. In our analysis, we categorize hospitals based on
their bed size and ownership. Hospital bed size are presented as numbers 1 to 3, in-
dicating small, medium, and large respectively (this number indicates the capacity of
the hospital). Fig. 4.4 reports the total admissions/discharges in 2016 from hospitals
under different ownership. The results show that private-owned non-profit hospitals
discharged much more patients than government-owned hospitals and private-own
hospitals. Overall, as the hospital capacity increase (from 1 to 3), the mean ad-
mission/discharge numbers also increase. This is quite understandable because large
capacity hospitals can accommodate more patient visits. In order to validate whether
hospital ownership plays any significant roles in readmission, we report the readmis-
sion rates of different types of hospitals on admissions with five and more days during
the visits. The results in Fig. 4.5 show that despite of the large difference in the
total discharge, only a small variance is observed when comparing the percentage of

admissions with Length of Stay (LOS) >= 5 days.
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Figure 4.4: Total annual hospital discharge

In order to understand whether hospital ownership and capacity introduce signif-

icant variance to the diagnose and procedures carried out during the patient visits,
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Figure 4.5: Percentage of admission with LOS >= 5 days

we report the average number of ICD-10-CM codes and ICD-10-PCS codes for each
visit in Fig. 4.6 and Fig. 4.7, respectively. The results show that, in general, patients
admitted to non-federal government-owned hospitals have less amount of averaged
ICD-10-CM/PCS codes for their in-patient treatment, compared with patients ad-
mitted to private-owned not-profit hospitals and private-owned investment hospitals.
Meanwhile, hospital bed size (or capacity) also play significant roles, especially in
terms of the ICD-10-PCS. The results show an explicit rising trend, as the bed size
increases for all kinds of hospitals. This is possibly because that large scale hospitals
frequently accommodate patients with more complicated (or severe) disease condi-

tions, and therefore more diagnoses and procedures are carried out on those patients.
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Figure 4.6: Average number of ICD-10-CM codes in each visit
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Figure 4.7: Average number of ICD-10-PCS codes in each visit

4.1.2.8  Disease Related Statistics

Disease and the level of severity are the two important factors associated to read-
mission. The disease severity table in the NRD database records the illness measure-
ment of each patient in the core table, where each row is the description of patient’s
classification according to their admission reason, risk of mortality and severity of
illness. One major disease is identified for each admission. The coding is based on
the APRDRG (All Patients Refined Diagnosis Related Groups) code.

In order to understand the readmission difference between different disease specific
patient cohorts, we comparatively study top leading disease to death as well as the
top diseases for admission. There are 320 APRDRG code in total and 38% patients
are diagnosed as “Moderate loss of function”. We extracted the top 10 most frequent
reasons for hospital admission based on the APRDRG code for each visit. In addition,
we also report the top seven leading diseases to death according to CDC [25] to analyse
the readmission rate and revisit rate. Table 4.4 and Table 4.5 report the statistics
of top 10 APRDRG coded diseases/reasons and top seven leading disease of death,
respectively.

The results from Tables 4.4 and 4.5 show that readmission rates of patients suffer-

ing from different diseases vary significantly in their readmission rates. For example,
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Table 4.4: Readmission distributions for the top 10 APRDRG in NRD

Admission reason Readmission Revisit rate
rate

Vaginal delivery 0.048% 0.168%

Septicemia & disseminated infections | 3.983% 9.184%

Neonate birthwt > 2499g, normal | 0.848% 0.847%

newborn or neonate w other problem

Cesarean delivery 0.013% 0.062%
Heart disease 8.696% 19.500%
Knee joint replacement 0.392% 5.775%
Other pneumonia 1.800% 4.654%
Chronic obstructive pulmonary dis- | 6.990% 16.684%
ease(COPD)

Hip joint replacement 1.088% 5.222%
Cardiac arrhythmia & conduction dis- | 3.662% 7.868%
orders

vaginal delivery and cesarean delivery are the two APRDRG coded top reasons for
admissions, but these visits have very small readmission rates. For the top seven
leading diseases to death, their readmission rates also vary significantly, where di-
abetes have the highest readmission rates (8.761%) and pneumonia has the lowest
readmission rates (1.832%). Overall, readmission rates and revisit rates for leading
diseases to death are much higher than the 10 most common admissions. This is due
to the nature of the diseases and their complications.

In order to study the readmission rate variance with respect to socioeconomic
factors, we report the readmission rates of the seven leading diseases of death with

respect to the family incomes, which are coded by ZIP 1 to Zip 4 meaning low to
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Table 4.5: Readmission distributions for the top seven leading diseases of death

Leading diseases

Readmission rate

Revisit rate

Heart disease 8.092% 17.873%
Stroke 2.448% 3.770%

Pneumonia 1.832% 4.738%

COPD 6.990% 16.684%
Cancer 6.823% 12.275%
Diabetes 8.761% 14.372%
Nephritis & nephrosis | 7.019% 10.595%

high incomes. Readmission rates for four ZIP code areas categorized by the estimated
median household income of residents in the patient’s residence for the seven leading
disease are shown in Fig. 4.8. The results show that area gap can be observed

explicitly: for every disease, readmission rates for patients from lower income families

(ZIP 1 and ZIP 2) are higher than those from high-income families (ZIP 3 and ZIP 4).

Table. 4.6 summarizes factors of interest analyzed in this paper as for demographic,

hospital and disease respectively.

Figure 4.8: Readmission rate for leading diseases of death with respect median house-

hold incomes (ZIP 1 to 4 denotes an increasing level of incomes)
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Table 4.6: Factors of interest analyzed in NRD database

Aspect Factors of interest

Demographic | Gender; Age; Payment (Insurance)

Hospital Bed size; Ownership

Disease Disease type; ZIP code (Household income)

4.1.3 Feature Engineering for Disease specific hospital readmission pre-

diction

Based on the nationwide hospital admission data statistics, we design five types of
features, demographics features, admission and discharge features, clinical features,
disease features, and hospital features, and use ensemble learning, combined with
under random sampling, for disease specific readmission prediction.

Table 4.7 lists five types of features created using feature engineering to capture
patient, disease, and hospital information. In the following, we briefly describe each

type of features, and explain why they were chosen for readmission prediction.

4.1.3.1  Demographics Features

Demographic is a combination of population demography and socioeconomic infor-
mation, which includes patient gender, age, average income of the community, patient
medical record and so on. A generalization of a specific geography’s population can
be concluded based on a sampling of people in that geography and profoundly affect
how important decisions are made. In medical institution, statistical results obtained
from the patient allow for the identification of a future patient and the categorization,

such analysis will enhance the development of high pertinence medical policy.
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Table 4.7: Features created for disease specific hospital readmission prediction

Feature Type Feature Description Feature size and domain
AGE Patient’s age R! € Ry
FEMALE Patient’s gender (binary, ‘1’ is female) N € {o,1}
Demographics PAY1 Payment method N! e {1,2,3,4,5,6}
Feature PL_NCHS Patient’s location (based on NCHS N! e {1,2,3,4,5,6}
Urban-Rural Code
ZIPINC_QRL Estimated median house income in the N! e {1,2,3,4}
patient’s zip code
RESIDENT Patient’s location (‘1’: the patient is | N' e {0,1}
from same state as hospital)
AWEEKEND Admission Day (‘1’: the admission day is N € {o,1}
a weekend)
MONTH Patient’s discharge month N e {1,2,3,---,12}
QUARTER Patient’s discharge quarter N e {1,2,3,4}
Admission and DISPUNIFORM Disposition of patients N e {1,---,7,20,21,99}
Discharge LOS Length of the hospital stay N e N
Feature ELECTIVE Binary, ‘1’ represents elective admission N € {o0,1}
REHAB Binary, '1’ is rehab transfer N € {o,1}
WEIGHT Weight to discharges in AHA universe Rl e Ry
CHARGES Patient’s inpatient total charges Rl e Ry
1t VISIT Binary,’l’ means the first hospital visit N e {0,1}
Clinical Feature CCSR Code Clinical categories N498 ¢ N
APR—-DRG Patient admission reason Nl e N
Disease Feature RISK The mortality risk N e {0,1,2,3,4}
SEVERITY The severity of illness N e {0,1,2,3,4}
BEDSIZE Hospital bed size N e {1,2,3}
CONTROL Hospital ownership N' € {1,2,3}
URU Hospital urban—rural designation N e {1,---,9}
AVE_CHARGE Average charge amount per patient visit R! € R,
Hospital Feature of the hospital
AVE_CM Average number of ICD-CM per patient R! € Ry
visit of the hospital
AVE_PCS Average number of ICD-PCS per patient R! € Ry
visit of the hospital
PER_LOS Percentage admission with LOS larger Rl e Ry
than 5 days
DIS/UNI Sample discharges/Universe discharges Rl e R4
in NRD_STRATUM
DIS/BED Total hospital discharges/num bed size R € R4

of hospital

4.1.3.2  Admission and Discharge Features

Informative materials about patient in-hospital activities can be obtained from ad-
mission and discharge information. There are time-related message indicating the
exact time of the patient admission and length of stay (LOS) for treatment, admis-

sion nature-related information such as whether the patient was hospitalized through
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emergency or not and so on. This kind of information offers a comprehensive view
of the procedures a patient received from the healthcare providers, how patient’s
condition improve, and whether the treatment is adequate and effective to prevent

readmission.

4.1.3.3  Clinical Features

Clinical features are used to characterize diagnoses and treatments patient received
during the hospital visit. Because each patient’s medical condition varies and there
are tens of thousands of subcategory disease types, medical treatments, procedures
etc., finding good clinical features to represent patients is a significant challenge.

An essential challenge of using ICD-10-CM codes as clinical features to represent
patients is that the total number of unique ICD-10-CM codes is very large (about
70,000), making it ineffective and computationally expensive for learning. Accord-
ingly, we employ ICD-CCSR transformation [97] to convert ICD-CM code to CCSR
code. CCSR stands for Clinical Classification Software Refined, which is used to ag-
gregate ICD-10-CM /PCS codes into clinically meaningful categories. Fig. 4.9 shows
CCSR code structure, where the first three letters mean the body system category
and the last three numbers are CCSR categories numeric sequence of individual CCSR
category starting at “001” within each body system [6]. In the code assignment, each
CCSR code is designed to match to at least one or multiple ICD-10-CM code cate-
gories. Table 4.8 shows an example of many-to-one CCSR mapping, where multiple
ICD-10-CM codes, corresponding to “displaced fracture of shaft of left clavicle”, are
mapped into one CCSR code [6]. The alphabetic correspondence between ICD-10-CM
code and CCSR code is listed in Table 4.9, where the alphabetic conversion follows
defined rules, and the numeric part also follows the user guide [6]. In Fig. 4.10a and
Fig. 4.10b, we report the ICD-10-CM code distributions for Pneumonia disease and

the mapped CCSR code distributions. In the figure, the y-axis shows the logarithm of
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the code frequency sorted in a descending order, and the index of the corresponding
code is shown in the z-axis. For ICD-10-CM codes, the log scale of the code frequency
still follows a negative exponential function, meaning that ICD-10-CM code frequency
follows an exponential to the power of exponential decay, and a few ICD-10-CM codes
have very high frequency. The converted CCSR code frequency follows an exponential
decay (so the logarithm function is close to a linear line). The ICD-10-CM to CCSR
conversion not only preserves similar node frequency patterns, but also reduces the
clinical feature dimension in our experiments from about 70,000 to around 498 as
shown in “Feature size and domain” in Clinical Feature in Table 4.7. As a result, the
clinically meaningful categories, with respect to each disease, are provided to detail

diagnoses and treatments implemented during patient in-hospital visit.

body system category CCSR sequence

Figure 4.9: CCSR (Clinical Classification Software Refined) code structure. For
example, INJOO8 code indicates Traumatic brain injury (TBI); concussion, initial

encounter.

4.1.3.4 Disease Features

In addition to the CCSR code specified clinical features, three disease-level features
are also added. The first feature is called APR—DRG, which represents the patient
admission reason. Because a disease may include multiple subgroups, we select all
APR-DRG codes related to one disease, and then use a numeral number to encode
the feature value. Table 4.10 lists the APR-DRG codes selected for all six diseases in
our study. For example, “Heart Disease” has six sub-groups (each has one APR-DRG

code). We then use six integers, 10, 11, 12, 13, 14, 15, to encode them. By doing so,
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Table 4.8: An example of ICD-10-CM to CCSR mapping

1CD-10- ICD-10-CM code description CCSR category CCSR description

CM code

542022D Displaced fracture of shaft of left | INJ041 Fracture of the upper limb;
clavicle, subsequent encounter for subsequent encounter

fracture with routine healing

S542022G Displaced fracture of shaft of left | INJ041 Fracture of the upper limb,
clavicle, subsequent encounter for subsequent encounter

fracture with delayed healing

S42022K Displaced fracture of shaft of left | INJ041 Fracture of the upper limb,
clavicle, subsequent encounter for subsequent encounter

fracture with nonunion

S42022P Displaced fracture of shaft of left | INJ041 Fracture of the upper limb,
clavicle, subsequent encounter for subsequent encounter

fracture with malunion
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Figure 4.10: (a) Distributions of ICD-10-CM code of all Pneumonia disease patient
visits. The z-axis denotes the ICD-10-CM codes ranked in a descending order ac-
cording to their frequency. The y-axis denotes the frequency of each code in log scale.
(b) Distributions of CCSR codes converted from ICD-10-CM codes in (a). The z-axis
shows the CCSR code ranked in a descending order according to their frequency. The

y-axis denotes the frequency in log-scale.

we are encoding APR-DRG codes as numerical values within similar range, allowing
some learning algorithms, such as logistic regression to better leverage the code value.

RISK is the second extracted disease-level feature representing the risk of patient
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Table 4.9: Correspondence between ICD-10-CM and CCSR Categories by Body Sys-

tem

ICD-10-CM Body System Description CCSR
A B Infectious and Parasitic Diseases INF
C Neoplasma NEO
D Neoplasms, Blood,Blood-forming Organs BLD
E Endocrine, Nutritional, Metabolic END
F Mental and Behavioral Disorders MBD
G Nervous System NVS
H Eye and Adnexa, Ear and Mastoid Process EYE/EAR
I Circulatory System CIR
J Respiratory System RSP
K Digestive System DIG
L Skin and Subcutaneous Tissue SKN
M Musculoskeletal and Connective Tissue MUS
N Genitourinary System GEN
O Pregnancy, Childbirth and the Puerperium PRG
P Certain Conditions Originating in the Perinatal Period PNL
Q Congenital Malformations, Deformations and Chromosomal | MAL
Abnormalities
R Symptoms, Signs and Abnormal Clinical and Lab Findings SYM
S/T Injury, Poisoning, Certain Other Consequences of External | INJ
Causes
U no codes listed, will be used for emergency code additions
V, W, External Causes of Morbidity (home- EXT
X, Y care will only have to code how patient was hurt; other settings

will also code where injury occurred, what activity patient was

doing)

Z Factors Influencing Health Status and Contact with Health Ser- | FAC

vices (similar to current ”V-codes”)

mortality. There are five different levels (0 to 4) indicating patient’s likelihood of
dying where level 4 mortality means the highest risk. The last feature is SEVERITY
standing for the severity of illness and the degree of loss of function. Similar to RISK,

degree zero to extreme severity is represented by number 0 to 4.
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Table 4.10: APR-DRG codes selected for the six studied diseases

Disease Components APR-  Feature
DRG
Heart &/ lung transplant 2 10
Major cardiothoracic repair of heart anomaly 160 11
Heart Cardiac defibrillator & heart assist implant 161 12
Disease Permanent cardiac pacemaker implant w AMI, heart failure 170 13
or shock
Perm cardiac pacemaker implant w/o AMI, heart failure or 171 14
shock
Heart failure 194 15
Nervous system malignancy 41 20
Respiratory malignancy 136 21
Digestive malignancy 240 22
Malignancy of hepatobiliary system & pancreas 281 23
Musculoskeletal malignancy & pathol fracture d/t muscskel 343 24
malig
Cancer Kidney & urinary tract malignancy 461 25
Malignancy, male reproductive system 500 26
Uterine & adnexa procedures for ovarian & adnexal malig- 511 27
nancy
Female reproductive system malignancy 530 28
Intracranial hemorrhage 44 44
CVA & precerebral occlusion w infarct 45 45
Stroke
Nonspecific CVA & precerebral occlusion w/o infarct 46 46
Bronchiolitis & RSV pneumonia 138 138
Pneumonia
Other pneumonia 139 139
Diabetes Diabetes 420 420
COPD COPD 130 30
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4.1.3.5 Hospital Features

Hospital features are created to characterize hospital ownership, bed size (capacity),
locations, and patient body admitted to the hospitals. For example, hospital bed
size tells us the hospital scale, the ownership represents the control of the hospital,
and the geographic locations of the hospitals specify the patient demographic. In
addition to simple statistics, we also create several statistics features, such as the
average charge amount and the average number of ICD-CM codes for each visit. For
feature DIS/UNI, the universe discharge is the total number of inpatient discharges
in the universe of American Hospital Association (AHA) excluding non-rehabilitation
and Long-Term Acute Care Hospitals (LTAC) for the stratum. These features provide
specific understanding of patient in-hospital treatment in order to discover the effect

of different treatment provided by hospitals towards hospitalized patients’ recovery.

4.1.4 Prediction Framework

Six disease-specific datasets are extracted (we focus on the leading diseases of death as
given in Table 4.11), including cancer, heart disease, chronic obstructive pulmonary
disease (COPD), diabetes, pneumonia, and stroke. All six datasets are imbalanced
due to the nature of the readmission [97].

In the six datasets, the ratios of non-readmission visits (negative samples) to
readmission visits (positive samples) all exceed 10 (with the largest value 53). This
imbalanced distribution causes the machine learning model to be more biased towards
majority (negative) samples, which in our case, non-readmission samples and causes
poor classification of minority (positive) classes. As a result, the model will give a
high false negative value, which means a patient is not considered that he will be
readmitted to the hospital but actually he is. Such classification performance will not
only hinder the application of machine learning models but also will not be able to

detect potential illness in advance, which goes against our intent, because one of the
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Table 4.11: Readmission distributions for the top seven leading diseases of death

Leading diseases Readmission rate | Revisit rate
Heart disease 8.092% 17.873%
Stroke 2.448% 3.770%
Pneumonia 1.832% 4.738%
COPD 6.990% 16.684%
Cancer 6.823% 12.275%
Diabetes 8.761% 14.372%
Nephritis & nephrosis 7.019% 10.595%

reasons Al models are applied to healthcare is to anticipate potential risks, to prevent
patients suffering from pain, to reduce the burden on patients and the burden on the
healthcare system [15].

In order to tackle the class imbalance, Random Under Sampling (RUS) is applied
to balance the ratio between positive and negative samples. RUS is employed to
generate various versions of relatively balanced training sets, in which positive samples
have a higher percentage than the original dataset. During this process, the sampling
radio applied to the data is critical, and will impact on the algorithm performance.
In addition, RUS changes the sample distributions, and inevitably introduces bias to
the training data. In order to address the above challenges, we propose to employ

three solutions as follows:

e Sampling Ratios: We will employ different sampling ratios to the random under
sampling to balance the positive vs. negative samples, valid the algorithm

performance, and choose the best sampling ratios for readmission prediction.

e FEnsembles: We will carry out random under sampling for multiple times on the
training data. The classifiers trained from each copy of the sampled data are

combined to form an ensemble for prediction. This will alleviate the bias and
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improve the overall performance.

Soft vs. hard voting: We will validate two ways to combine classifiers trained
from random under sampled data, hard voting wvs. soft voting. Assume h;()
denotes a trained classifier in a classifier ensemble E, Eq. (4.1) defines the binary
prediction of the classifier on a test instance x, where Pry, (c|z) define the class
distribution (i.e., conditional probability) of the classifier predicting instance
x to class ¢. Hard voting predicts the final class label with the most agreed
votes by summing the predictions for each class label from models, as shown
in Eq. (4.2), where I(h:(z) = ¢) returns 1 if classifier h;(x) predicts instance x
to be class ¢, or 0 otherwise. Soft voting, defined in Eq. (4.3), summarizes the
predicted class probabilities for each class from models and predict the classes

with the largest summed probability.

h = P 4.1
(@) = axg_max Pry,(clo) (4.)
|E|
. = arg max I(h(x) =c 4.2
de =g xS ((a) = ) (12)
|E|

;= arg max Pry, (c|z 4.3
j = arg_ma }; nlcl) (4.3)

4.2 EXPERIMENTS

4.2.1 Experimental settings

We create six disease-specific readmission datasets from NRD databases (2016 ver-

sion). The datasets and their simple statistics are reported in Table 4.12. Using

feature engineering approaches, we created 526 features for each instance (which rep-

resents a hospital visit). The list of features are summarized in in Table 4.7. Among
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Algorithm 1 Disease Specific Hospital Readmission Prediction

Input: (1) Disease specific database: D;
(2) Under Sampling Ratio: r;
(3) Ensemble size: K
Output: Prediction on a test hospital visit: =
{D*,D~} + Label pos. (+) and neg. (-) visits in D
FP « Create features from D
E+ 0
for each random under sampling (RUS) round ¢t € K
[D~, D] + RUS with ratio » on D~ and D+
D « {D* UD"}. Create balanced training set
hi(+) < Train classifier from D using features FP
E «+ E U ()
end for
U < Apply hard voting or soft voting for prediction.

return .

all features, AGE, TOTAL CHARGES, and AVE_CHARGE are normalized to range
[0, 1] by dividing each value by the maximum value in the column.

In order to evaluate the performance between different random under sampling
ratios and different voting approaches, including hard voting wvs. soft voting, for
disease-specific readmission prediction, we will need to repeat experiments for a large
number of times. Therefore, for three large datasets (COPD, Heart Disease, and
Pneumonia), we randomly sample 300,000 records from each of them, and use the
sampled datasets to validate the parameter settings. For the remaining experiments,
the whole datasets are used for each disease.

All experiments use 10-fold cross validation. For each fold, RUS is applied to

the training data, using different sampling ratios, where the ratios between negative
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vs. positive classes vary from 0.5:1, 0.7:1, 0.8:1, 0.9:1, 1:1, 1.1:1, 1.2:1, 1.5:1, 2:1,
3:1, 4:1, to 5:1. Instead of using 1:1 balanced sampling, like most existing methods
do, we intentionally vary the class ratios to a large range, to study how will class
distributions impact on the readmission prediction results.

Four learning algorithms are used in the experiments, including Decision Tree,

Random Forest with 500 trees, Logistic Regression. and Gradient Boosting.

Table 4.12: Total sample number and sample ratio in six disease datasets

Datasets Total sample number Negative:positive

sample ratio

COPD 327,269 10.88
Heart disease 582,058 10.16
Cancer 171,495 12.3
Diabetes 183,726 10.4
Pneumonia 358,001 7.38
Stroke 273,395 45

4.2.1.1 Performance Metrics and Statistical Test

Four performance metrics, Accuracy, Balance Accuracy, Fl-score, and AUC, are used
in our experiments. The purpose of using other three measures, in addition to accu-
racy, is to take class imbalance into consideration for validation.

We use Friedman test [32] to validate statistical difference between four models
trained on the six datasets. For each measurement, the classifiers are ranked according
to their performance in a descending order. The classifier with the best score is ranked
as 1 and the one with the lowest is ranked as 4. Two classifiers present the same

measurement performance score are ranked with the average rank.
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Assume that R; denotes the average rank of a classifier j and rg is the rank of

classifier j on dataset i, Eq. (4.4) defines the average ranking.

1
Rj= Dl (4.4)

=1

The average rankings of the algorithms are compared by the Friedman test. The
Friedman statistic is defined as x% as shown in Eq. (4.5) where N means the number
of datasets and k is the number of classifiers. After the calculation of the Friedamn
test statistic, the y% value is used to calculate the p-value, and decide whether the
null-hypothesis is valid, where the null-hypothesis states that all algorithms are equal,

meaning there is no statistical difference between their ranking R;.

2
G| o (15

A Nemenyi post-hoc test will be performed for performance pairwise comparisons
if the null-hypothesis is rejected. Critical difference (CD) is used to determine the
classifiers” average ranking difference and Eq. (4.6), in which ¢, is the Studentized
range statistic divided by v/2 [32]. In this study, with four classifiers and o =0.05,
Ga =2.569, therefore, CD =1.9148. The performance difference between classifiers is

plotted using CD diagrams (detailed in the experiments).

k(k+ 1)

OD =4\ —5y

(4.6)

4.2.2 Experimental Results
4.2.2.1 Hard Voting vs. Soft Voting Results

Fig. 4.11 compare the performance between hard voting and soft voting, with respect
to four measurements, Accuracy, Fl-socre, AUC, and Balanced Accuracy, on all six

disease specific datasets. For each plot, the r—axis and y—axis represent the mea-
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surement values of a classifier, trained using one sampling ratio and using soft voting
vs. hard voting, respectively, on all six datasets. Because there are 12 different sam-
pling ratios (from 0.5:1 to 5:1), four classifiers, and six disease datasets, each plot has
12x4x6=288 points. Points below the y = x line are those performing better with
soft voting and points above the line means hard voting outperforming soft voting.
The head-to-head comparison plots allow us to directly compare soft voting vs. hard
voting on all experimental settings and benchmark data.

The Accuracy comparisons in Fig. 4.11a show that the number of data points
above and below the y = x line are 167 and 121, respectively, meaning hard voting
achieves better performance than soft voting, but majority of achievements are from
using Decision Tree classifier. There is no obvious performance difference between
soft voting vs. hard voting with respect to other three classifiers, Gradient Boosting
classifier, Logistic Regression, and Random Forest classifier, in terms of accuracy.
Ensemble models are know to benefit from unstable base classifiers, such as decision
trees. Since decision trees are much more unstable than other three classifiers, the
results in Fig. 4.11a confirm that using decision trees combined with hard voting can
boost the classification accuracy.

The AUC value comparisons in Fig. 4.11c show that majority points (217 points)
are below the y = x line, and additional 68 points are right located on the y = x
line (points on the y = z line mean that soft voting and hard voting deliver the
same prediction performance). There are only three points (288-217-68=3) that hard
voting outperforms soft voting in terms of AUC values. In addition, the point color in
Fig. 4.11c also show that decision trees using soft voting and hard voting have similar
performance, whereas there is a significant AUC performance gain using soft voting
for gradient boosting, logistic regression, and random forest. AUC is calculated by
using posterior probability values of the ensemble classifier on a given test instance.

Hard voting uses 0/1 frequency count to calculates final posterior probability of the
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Figure 4.11: Hard voting vs. soft voting performance on all six disease-specific datasets

and 12 sampling ratios. Points are color coded by different classifiers, and shape

coded by different datasets. Points above y = z diagonal lines denote hard voting

outperforming soft voting, and vice versa.

ensemble, whereas soft voting uses average of the base classifier’s posterior probability

as the ensemble classifier’s posterior probability. This observation shows that for

0/1 loss based measures, such as accuracy, hard voting may outperform soft voting,

whereas for continuously loss based measures, soft voting frequently outperforms hard
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voting.

For F1-score and balance accuracy in Fig. 4.11b and Fig. 4.11d, the performance
of soft voting and hard voting do not differ significantly. For F1l-score, there are 137
points below the y = x line, 14 less than that above the line. For balanced accuracy,
173 points are below the y = x line, 58 points more than points above the y = x line.
Because soft voting shows better performance majority of times, and for imbalanced
datasets, AUC and balanced accuracy are more objective measures, we choose soft

voting in all remaining experiments.

4.2.2.2  Imbalanced Learning Results

Fig. 4.12 reports the performance of all four classifiers on six disease specific datasets,
using soft voting and different sampling ratios. Each plot in Fig. 4.12 reports per-
formance measure (y—axis) of four classifiers on six datasets (so there are 4x6=24
curves in each plot), by using different sampling ratios (z—axis).

In the accuracy measure plot in Fig.4.12a, the larger the sampling ratio, the higher
the classification accuracy each classifier achieves. This partially demonstrates the
class imbalance challenge. Because sampling ratio denotes the ratio between negative
vs. positive samples, the larger the sampling ratio (e.g. 5:1), the more negative
samples the training set has (the ratio in the original datasets are all more than 10:1,
as show in Table 4.5). Fig.4.12a shows that as negative samples gradually dominate
training set, the trained classifier intends to classify more samples to be negative, in
order to achieve a higher accuracy. The higher accuracy, however, does not assure
useful classification results, as shown in Fl-score, AUC, and balance accuracy, where
all three plots show a downward/decreasing trend, after sampling ratios pass certain
ratio values.

Because plots in Fig. 4.12 are color coded by different datasets, and shape coded

by different classifiers, this helps understand the performance trend of each classifiers.
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Figure 4.12: Performance comparisons using soft voting and different sampling ratios.
Points are color coded by different datasets, and shape coded by different classifiers.
Each curve denote one classifier’s performance on a specific dataset, using different

sampling ratios.

Overall, decision trees have the worst performance in terms of all four measures. Ran-
dom forest, Logistic regression and Gradient boosting are comparable with relatively
small value variance, and gradient boosting shows relative better performance among

the three classifiers. When comparing results of all six disease types, Diabetes (red-
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colored) receive best prediction results in terms of all four performance measures.
While diabetes also have the highest readmission rates among all six disease types
(meaning less severe class imbalance), stroke (green-colored) has the second lowest
readmission rate (Pneumonia has the lowest readmission rate). The AUC and bal-
anced accuracy in Figs. 4.12c¢ and 4.12d show that they both receive the best and
second best prediction results. This observation indicates that the prediction results
are not directly tied to the class imbalance rate. Our sampling and ensemble learn-
ing framework is effective to tackle the class imbalance. Meanwhile, the readmission
prediction performance of each disease critically depends on the nature and charac-
teristics of the diseases.

Overall, the aforementioned observations for the four measures lead to the con-
clusion that sampling ratio 1.1:1 presents the best performance of all classifiers on
the six disease datasets. Therefore, we use 1.1:1 sampling ratio in the remaining

experiments.

4.2.2.3  Readmission Prediction Results € Statistical Analysis

Table 4.13 reports the hospital readmission prediction results using all samples in
Table 4.12, including four classifiers’ average performances on the six disease specific
datasets. The bold-text denotes the best result for each measure-disease combination.
Overall, the results show that gradient boosting achieves the best performance.

In order to fully understand the four classifiers’ performance, we carry out Fried-
man test for each measure, and report the critical difference diagram plots in Fig. 4.13.
For all measures, we use @ = 0.05, the x% and p values corresponding to each measure
are reported as (Y%, p) value pair underneath each plot. For ease of comparisons,
in each plot, a horizontal bar is used to group classifiers that are not significantly
different, meaning that their average ranks do not differ by C'D).

Fig. 4.13 shows that for all four measures, the largest p value is 0.0129 (which cor-
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Table 4.13: Readmission prediction performance comparisons using all samples (using
soft voting and 1.1:1 sampling ratio). Bold-text denotes best performance on each

measure-disease combination (i.e. each row)

Measure Disease Decision Random Logistic Gradient
Tree Forest  Regression Boosting
COPD 0.4659 0.7301 0.7317 0.7300
Cancer 0.5260 0.7509 0.7670 0.7536
Diabetes 0.6898 0.8163 0.8249 0.8070
Accuracy
Heart Disease  0.4631  0.6983  0.7194 0.7025
Pneumonia 0.5705 0.6964 0.7262 0.7192
Stroke 0.6261 0.8318 0.8244 0.8263
COPD 0.1791 0.2414  0.2376 0.2415
Cancer 0.1866  0.2700  0.2841 0.2814
Diabetes 0.3173  0.4201 0.4119 0.4152
F1 score
Heart Disease  0.1889  0.2350  0.2209 0.2370
Pneumonia 0.2941  0.3607  0.3585 0.3648
Stroke 0.0828 0.1574 0.1482 0.1558
COPD 0.5957  0.6767  0.6604 0.6793
Cancer 0.6568  0.7527  0.7596 0.7692
Diabetes 0.8113 0.8753  0.8543 0.8758
AUC
Heart Disease  0.5958  0.6732  0.6406 0.6768
Pneumonia 0.6919 0.7678 0.7542 0.7645
Stroke 0.7594  0.8597  0.8484 0.8667
COPD 0.5687 0.6303  0.6250 0.6304
Cancer 0.6176  0.6882  0.6979 0.7030
Diabetes 0.7500  0.7906  0.7682 0.7956
Balanced Accuracy
Heart Disease  0.5691  0.6168  0.5954 0.6184
Pneumonia 0.6481  0.7057 0.6894 0.7003
Stroke 0.7023 0.7808 0.7672 0.7852
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Figure 4.13: Critical difference diagram of classifiers on the six disease specific hospital
readmission prediction tasks (Based on results from Table 4.9). All plots use a = 0.05.
The two numerical numbers inside the parentheses denote the x% and p values for
each plot, i.e., (x%, p). Classifiers not significantly different, (i.e. their average ranks

do not differ by C'D), are grouped together with a horizontal bar.

responds to the Fl-score). Because all p values are less than 0.05, the null-hypothesis
(which states that all algorithms are equal and there is no statistical difference be-
tween their ranking) is rejected. This concludes that there is a statistical difference
between different methods in terms of their performance ranking. Meanwhile, the
X% value shows the spread of the classifier performance. The higher the y% value,
the larger the variance of all classifiers (with respect to the current measure) is. For
AUC and balanced accuracy (which are the two measures most frequently used to as-
sess classifier performance under class imbalance), the gradient boosting outperforms,
random forest and logistic regression, with random forest outperforming logistic re-
gression, in terms of their mean rankings. Also, although these three classifiers have
different mean rankings, their performance are not statistically different. In sum-
mary, the critical difference diagrams in Fig. 4.13 concludes that gradient boosting

achieves the best average ranking among all models, whereas decision tree has the
7



lowest ranking.

4.3 CONCLUSIONS

This research carries out systematic studies to understand data statistics for United
States nationwide hospital admission, and further designs a machine learning frame-
work for disease-specific 30-day hospital readmission prediction. We argued that
although many methods exist for hospital readmission prediction, answers to some
key questions, such as demographic, disease, and hospital characteristics with respect
to admissions, still remain open. Accordingly, we employed national readmission
databases (NRD), with over 15 million hospital visits, to carry out data statistics
analysis. We identified factors related to three key party of the hospital remissions:
patient, disease, and hospitals, and reported national scale hospital admission statis-
tic. Based on the data statistics, we created 526 features with five major types,
including demographics features, admission and discharge features, clinical features,
disease features, and hospital features. We collected six disease specific readmission
datasets, which reflect the top six leading diseases of death.

By using random under sampling and ensemble learning, combined with soft wvs.
hard voting and four types of machine learning methods, including gradient boosting,
decision tree, logistic regress, and random forests, our experiments validate three ma-
jor type of settings: (1) hard voting vs. soft voting, (2) random under sampling, and
(3) disease specific readmission prediction. Experiments and statistical test results
show that soft voting outperforms hard voting on majority results, especially for AUC
and balanced accuracy which are the main measures for imbalanced data. Random
under sampling using 1.1:1 for negative:positive ratio achieves the best performance
for AUC, balanced accuracy, and Fl-score. Gradient boosting achieves the best per-
formance for disease specific hospital readmission prediction, and decision trees have

the worst performance.
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CHAPTER 5
FEDERATED LEARNING USING DYNAMIC NODE ALIGNMENT

Federated Learning (FL), originally proposed in 2016 [67], is a learning paradigm
which builds machine learning models based on datasets distributed across multiple
sites/devices in order to protect privacy and prevent data leakage. While traditional
machine learning methods are typically trained based on centralized data, using FL
provides a feasible way to develop models that can keep all the training data on
distributed devices and update model parameters using immediate aggregation.

As data collection and analytics are becoming increasingly popular, protecting
data privacy and safety is becoming a major concern for business, government, and
nearly all sections of human society. By deploying FL, each participant in the model
training process can build one model together without sharing data, naturally results
in data privacy protection. Traditional machine learning methods need to concentrate
training data in a certain machine or a single data center, which means in order to
meet the gradually increasing data level, it is necessary to continuously add machines
and build infrastructure. Such method not only greatly increases the cost but also
hinders the efficiency building models. In contrast, FL allows all the needed data
stay in their local places without the need to build specific data center to aggregate
them, at the same time, each part of the data will be used to develop the model.
Such efficient characteristic enables Federated Learning to be widely used in multiple
areas especially in the healthcare domain.

The shift from written health records to electronic health records has been instru-
mental in driving the use of patient data to improve the healthcare industry. The

adoption of electronic health records enables health care professionals to disseminate
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knowledge across all sectors of health care, which in turn helps to reduce medical
errors and improve patient care and satisfaction. However, as mentioned previously,
adequate medical data sets are difficult to obtain. However, in order to capture the
subtle relationships between disease patterns, socioeconomic and genetic factors, and
complex and rare cases, exposing the model to different cases is critical. FL is able
to address this issue by enabling the distributed training of machine learning models
using remotely hosted datasets without the need to accumulate data and therefore
compromise the data privacy [10,17,70,70,74,79,102].

While FL is capable of making use of data across different sites/institutions, there
are still several data acquisition issues which can cause bias during model develop
process. First of all, due to data privacy limitation, the Health Insurance Portability
and Accountability Act (HIPAA) has set up regulations for healthcare organizations
to manage and safeguard personal information and address their risks and legal re-
sponsibilities in relation to processing personal patients data [22]. This leads to strict
data share policies of each healthcare provider, which, limits the amount of available
data source. Another issue is that there exist hospital speciality gaps between differ-
ent hospitals, in other words, healthcare providers might focus on several particular
diseases treatment instead of performing general hospitalization. In this case, there
are big chances where FL models trained across all different disease focus datasets
will perform predictions with certain disease-specific bias. In addition, biases also
exist when patients demographic characteristics differ. Different income groups, age
groups, genders, and geographical locations and living environments will all affect
the overall patient characteristics that admitted to different regional hospitals, thus,
data bias can also be observed in such kind of dissimilarity. Therefore, it is essential
to reduce all the above biases when we try to develop a federated learning model to
make crucial medical predictions. We aim to design a novel federated learning model

that can take this kind of bias into consideration at the first step where node weight
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aggregation takes place.

Despite the fact that use of traditional machine learning techniques (TML) in
combination with electronic health records (EHR) is gaining popularity as a means
to extract knowledge that can improve decision-making processes in healthcare, they
usually require the training of high-quality learning models based on diverse and com-
prehensive datasets that are difficult to obtain due to the sensitivity of medical data
from patients. Meanwhile, although distributed machine learning [95] has addressed
parallel computing in handling large scale data, these methods are often designed
to tackle the data volumes using frequent data exchange. In addition, switch learn-
ing models are often prohibitively expensive/inconvenient, making it difficult for end
users to try/implement different learning algorithms. On the contrast, FL enables
devices to collaboratively learn shared predictive models while keeping all training
data on-device, decoupling the power of machine learning from the need to store data
in the cloud. This goes beyond using native models to make predictions on mobile
devices and also brings model training to the device.

Table 5.1 summarizes the main difference between federated learning, traditional
machine learning methods, and distributed machine learning methods. In summary,
the inherent advantage of federated learning is that is allows flexible modeling training
and continuous learning on end-user devices while ensuring no end-user data leaves
the device.

Fig. 5.1 shows how FL works. Global model M is downloaded from the central
server to each client when it comes to training the model, after which the downloaded
model is trained by each client using their own dataset. Once the training process
is completed, each client needs to update their updated training parameters to the
central server and the central server would aggregate the learnt parameters (parameter
aggregation) and pass the aggregation results to the global model, therefore, one

update for the global model is accomplished and this process is called Global update.
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Table 5.1: Comparison between Federated Learning (FL), traditional machine learn-
ing (TML), and distributed machine learning (DML) algorithms. DML methods are
commonly data driven (DML,;) or computing driven (DML,.). Data driven methods
(DMLy) mainly try to learn from large volume distributed data, whereas computing
driven methods (DML,) aim to parallelize computing in learning from centralized
data. Computing framework refers to the whole eco-system for learning, and model

switch refers to easiness of switching a new learning model.

Method Data lo- Main com- Computing frame- Data exchange Main Challenge Privacy protection Model switch
cation puting work

TML Centralized Data center Very restrictive Yes Model performance Low Very restrictive

DML, Centralized Data center Restrictive Yes Data volume Low Very restrictive

DML, Distributed Local Flexible Yes Data volume Medium Restrictive

FL Distributed Local Very flexible Prohibited Data protection High Flexible

Once global update is finished, model parameters will be passed from the global model
to each local model for Local update, where clients’ model parameter will be updated

with the new aggregated model weights to start a new round training. [74].
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Figure 5.1: A conceptual view of the FL Framework. The local update (downstream)

and global update (upstream) are carried out iteratively to ensure models trained
using local data are aggregated at central server, and then dispatched to distributed

sites.

Parameter aggregation is one of the most important steps of the federated learning.
Among all existing methods, Federated Averaging (FedAvg) is the most commonly
used method. Eq. 6.13 summarizes the global weight values w updating of FedAvg

in each training round ¢, in which k is the client index, K means the total number of
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clients, n is the total number of instances and n,, is the local data examples for each
client [67]. Overall, Eq. 6.13 indicates that the global weight vector w is the weighted
average of weight values obtained from local clients. A bold-faced symbol denotes a

vector or a high dimensional vectors (e.g. a matrix).

K

n
Wii1 = Z kaf (5.1)

k=1
Recently, other weight aggregation methods have also been proposed in FL. For

example, anomaly score of each client is taken into consideration to detect abnormal
client behavior, thus, clients will not contribute equally when global model updates
the weight values, the majority of those novel methods are still based on FedAvg
[36,59]. Even though this method is widely used and has been proved with good
prediction performance [34,90], due to the nature of hidden layers in deep learning
neural networks, we can clearly observe that this method manually forces weight
aggregations between neurons located at the exact same location (i.e., same layer
and same node index) of two networks. However, when training two same-structured
deep learning networks N4 and Np, even they are given the same input, neurons at
the same location of the two networks do not always give the same update. In other
words, certain property of the input (or the same instance) may trigger the most
significant activation to the i-th node of N4, but same instance may triger the most
significant activation to the j-th node of Ng. Meaning that same instance responds
differently for the same lactation nodes between two networks.

In order to demonstrate the above hypothesis, we create a simple dense neural
network Np with one input layer, two hidden layers and one output layer. One
dataset with 10 features is fed into Np. For the i'® node in the first hidden layer
Np, there will be 10 weight values {w], w;,,...,w} o} corresponding to the 10 input
features (the superscript denotes the first trained network). After we train Np from
scratch for five times with the exactly same dataset, a node e is randomly chosen

from all five networks (with the same node index), from which we will get 10 weight
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vectors of {We o, We,1,- -, Weg} in which weo = [w; o, 0o, w), wio, w; o] represents all
five trained weight values corresponding all five networks’ first indexed node and first
feature dimension as shown in Fig. 5.2. After that, we calculate the variance of w g,
and repeat the same for all 10 nodes. Fig. 5.3 reports the variance of the weight values
across all five trained network. The high weight variance in Fig. 5.3 concludes that
weight aggregation by static node matching will not only add uncertainty to model
performance, but also will hinder the practical application of Federated Learning in

industry.

. Ctwl w2 w3 wh w5
i Weo = [Wio, Wio, Wig WioWiol €
B -

1 2 !
Input O Input i j Input :

- 1 1 ..
14 training Np 2,4 training Np 54, training

Figure 5.2: A conceptual view of node weight variance calculation. Five neural net-
works with the same architecture are trained using same training sample. The first
hidden layer nodes are trained with the same input features and the first node is

chosen to calculate the node variance.

In this research, we aim to design a dynamic node matching method, FedDNA
to aggregate weight values in each round based on a neuron-distance method, in
which neuron distances across all the clients are calculated after each client completes
training the model parameters with their own data. After that, the closest neurons
are matched to calculate their average weight values as new parameter for the global
model. Fig. 5.3 reports weight variance of the matched nodes trained using same
setting as the static node matching. The results show that dynamic node matching

provides much smaller weight variance across all nodes of different networks. The
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Figure 5.3: Comparisons of weight variance between two weight matching methods,
Static node matching vs. Dynamic node matching (proposed). The z-axis denotes
the neuron node ID of the first hidden layer, consisting of 10 neurons, of a neural
network. The network was trained five times till convergence, using same training
data. The y-axis denotes the variance of the weight values of each of the hidden nodes
(Larger variance mean the neuron weights are more unstable across different training

times, even for the same feature dimension of the same neuron).

advantage of reducing variance is that it allows nodes with similar behaviors to be
aggregated for weight averaging. This potentially results in stable and improved
federated learning performance.

In summary, the main contribution of the proposed research is summarized as

follows:

e Dynamic node alignment: We propose a new dynamic node alignment
framework, FedDNA, for weight aggregation in federated learning. Instead of
using fixed node index to match nodes across different sites, FedDNA finds the

best matching nodes based on node weight values, such that nodes, of the same
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layer, with the most similar response to the input are considered as one new

node for next round training.

e Fast node alignment: To increase node aliment speed, we propose a Minimum
Spanning Tree (MST) based method to find global optimal matching nodes

across all sites.

e Alignment and frozen: In each training process, after finding the matching
nodes at the very beginning, node matching will be frozen and federated average
will be used for the rest of training rounds. By doing this, we can ensure the

matching nodes orders which will not be disturbed by subsequent training.

5.1 THE PROPOSED METHOD

Instead of using fixed node matching, like FedAvg does, we propose to use dynamic
node matching to find matching node between different sites, and then aggregate
weights of matched nodes to calculate weight values of the global model. During the
FL process, the sites will pass their local weight values to the center, so the center
will carry out node matching before aggregating site weight values. Our idea is to
use weight values of each node as a feature vector to find matching nodes. Because
weight values of a neuron are associated to each features, for nodes at the same hidden
layer, they will have same input space. This allows us to use weight values to find
distance/similarity between nodes for matching.

To make sure weight values are aggregated from the most similar nodes crossing all
clients C', at the first step, nodes distances are calculated across all clients as shown
in the distance matrix in Table. 5.2, from which Minimum Spanning Tree (MST)
as shown in Fig. 5.4 is used to ensure that the matching are across all clients. A
minimum spanning tree (MST) or minimum weighting tree is a subset of edges of a

connected edge-weighted undirected graph that joins all vertices together without any
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loops and with the smallest possible total edge weights. That is, it is a spanning tree
with the smallest possible sum of edge weights. More generally, any edge-weighted
undirected graph (not necessarily connected) has a minimum spanning forest, which
is the union of the minimum spanning trees of its connected components [38]. In our
example in Table 5.2, a distance mapping is plotted to demonstrate how the matching
process works. At first node distances are calculated across all sites, in this case, 3
sites. we start the matching process from node a because it has the smallest distance
0.11 across all the nodes. we can observe that node B has the smallest distance with
it, therefore, B will be matched to a. For the next step, we are using MST to find
the next matching node for {a, B}, which in this case, will be node .. This MST
matching process will continue until all the nodes are matched across all clients as

shown in Fig. 5.4.

Figure 5.4: Node matching using MST. Node a is the starting point since it has the
smallest distance 0.11 with node B, therefore, B will be matched to a. Node o will
be matched with a, B with MST. This MST matching process will continue for node
b and c.

5.1.1 Dynamic Neural Network Node Matching

In the proposed method, one key step is to find the closest nodes based on distance
calculation in each round. This step is carried out at the center, and the aggregated
weights are then dispatched to the federated learning site for the next round. The
node matching is applied to one specific hidden layer of all networks, one at a time.
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Table 5.2: An example of pairwise distance tables between three sites where each site
has three nodes: Site;={A, B, C'}, Sitea={a, b, ¢}, and Sites={«, 3,v}. Each value in

the table denotes distance between two nodes across two sites.

a b c A B C a b ¢
A 0.12 0.15 0.16 a 027 0.13 0.19 a 0.13 0.24 0.18
B 0.11 0.13 0.17 6 0.23 0.14 0.18 g 0.14 0.19 0.21
C 0.16 0.14 0.18 v 021 0.16 0.21 v 021 0.21 0.25

By default, we are referring to nodes in the first hidden layer for ease of explanation.
The same matching process is applicable to any other hidden layers as well. Algorithm
4 outlines the main steps of FedDNA for matching nodes across networks. Overall

definition of the symbols used in our node matching is shown in Table. 5.3.

Table 5.3: Definition for symbols used in node matching

Symbol Definition

S Global model (server)

A Weight vector of the i-th node in global model first hidden layer

C Set of clients
c“ Nodes weight vector of client c
vy Node weight vector of client c¢*’s i-th node
wiy Weight values of node v
d(a,b) Distance between node a and node b
T Minimum spanning tree
d(v,T) Distance between node v and tree T
Denote S = {v$,v3, -+, v3} the global model (server) in which v = [wfﬁo, Wiy, ,wfﬁm]
is the weight vector of the i-th node in its first hidden layer. C = {cy,cy, -+ ,c5}
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means the set of clients ¢ and c¢* = {v{, vy, -+ ,v2} is nodes weight vector of client

c. Node weight vector of client ¢*’s i-th node is denoted by v§* = [wfy, wiy, - -+, wi, |-

5.1.1.1 Neuron Matching Distance Calculation

Given two neurons v{* and vf at the same layer, because they have the same input
dimensions (In this paper, we are using dense network architecture, so neurons at
the same layer are connecting to all inputs/nodes of the preceding layer), we can
represent each nuron as a vector, and calculate distance/similarity between neurons
using the vectors.

Assume for any particular layer, the input dimension is m, and the weight values of
neuron v = [wiy, wiy, -+, wy, ], weight values of neuron Vf = [wﬁo, wﬁl, e ,wﬁm],
respectively. Node distance between v® and v¥ can be calculated with Euclidean
distance defined in Eq. 5.2 or using Manhattan distance defined Eq. 5.3. The
Euclidean distance between two points in Euclidean space is defined as the length
of the line segment between the two points, which essentially represents the shortest
distance between two points. Manhattan distance is a distance measure between two
points in an m-dimensional vector space. It is the sum of the projected lengths of the

line segments between the points on the coordinate axes. In simple terms, it is the

sum of the absolute differences of two points measured in all dimensions.

m
dEuclideom(V?u Vf) - Z(wgd - wf,d)2 (52)
d=1
m
drtahattan (V5 Vf) = Z |w¢ofd - w£d| (5.3)
d=1

During the node matching process, we will be growing a tree (i.e. a minimum spanning
tree MST) to link matched/aligned nodes across all sites. In this case, a tree T consists
of a set of neurons, i.e., T = {v{,--- ,Vf, .-+ } where a # . We enforce a # 3 such

that an MST tree only contains one node from each site (because we are trying to find
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Algorithm 2 FedDNA: Federated learning with dynamic node alignment

Input: The index of the layer to apply node alignment (default first hidden layer); Client models’

node weight values; Chosen node set N'={}; Matched node set M={}; Chosen Client set C={}

Output: Aggregated weight values of the global model S

1:
2:
3:
4:
5:
6:
T
8:
9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:

27:

C + Set of federated learning participating clients
N « Node set of the [** hidden layer of participating clients (C)
W « Obtain I*" layer’s weight values from participating clients (C)
c® < Randomly select one client from the client set C
{v§, v, -+, vZ} < Obtain client ¢®’s layer [ node weight vectors
M« 0; R < N Initialize matched node set (M) and remaining unmatched node set (R)
W <« ) Initialize set (W) storing mean weight values of matched nodes across all sites
while R is not empty loop until all nodes are matched do
C’ + C A temporary set to ensure that each site has one node being matched, one at a time
c® < Randomly select one client from the client set C
v{' < Randomly select on neuron of ¢* from remaining node set R
T + {v¢} Initialize MST tree for matching
R+ R\ v¥ Exclude v{ from remaining node set R
C' < C\ c® Exclude selected site ¢®, because its node already in the tree T
while C’ is not empty *loop until all sites are matched do
[v*, ¢*] + arg m*in / d(v*,T) find node v* most closest to the MST tree T
T+ TU v:*IericiljdECmatched node v* to the tree T
C' + C'\ ¢* Exclude site ¢*
R < R\ v* Exclude v* from remaining node set R
end while
W + Average(vy); Vo € T Calculate average weight values of matched notes in 7
W < WUW Center collects average weights of matched nodes across all sites
M +— MUT Include all MST tree nodes to the matched set M
end while
for each client ¢ € C do
W ¢ ClientUpdate(c®, W) Dispatch mean weight values to each site for next round federated
learning (Alg. 3)

end for
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Algorithm 3 ClientUpdate(c,w): Local client weight updating

Input: w: trainable model parameters; D,.: local data at site ¢; (2) b: batch size; (3) e:
Number of epochs; (4) n: learning rate
Output: w: updated local model parameters
1: B < split local data D, into batches of size b
2: for each epoch from 1 to e do

3: for batch b € B do

4: w <+ w —1n v t(w;b)
5: end for
6: end for

7: Return w

matching nodes across all sites. It does not make sense to have a neuron to match
a node of the same network). The number of nodes in the tree T varies, as the tree
is growing dynamically. However, after the matching, each node only belongs to one
MST tree, and the final number of nodes in the MST tree equals to the number of
sites of the FL learning framework. We do not record edges connecting nodes in the
tree, because our goal is to find matching nodes as a group, and then use their weights
to update center’s node weights. In this case, the pairwise relationship between sites
is not important to us. Also, each tree T records its membership nodes and will
use their weights to calculate the average weights, which will be pass to respective
members of the tree 7 for next round FL learning.

During node matching, we need to expand the tree 7 and include matching node to
the tree. Therefore, we define the distance between a node v and Minimum Spanning
Tree 7 as in Eq. 5.4. The distance from a node to a Minimum Spanning Tree tree

argmin d(v,7T) equals to its distance to its closest node in the tree.

d(v,T)= arg mind(v,v®) (5.4)

ve € T
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5.1.1.2  Minimum Spanning Tree for Neuron Alignment across Sites

At the first step, each client downloads the model from central server and train it
with its local data, after which client ¢* is randomly chosen from C. One node v{'
will be randomly selected among all the nodes in the first hidden layer of client ¢*’s
local model. In the second step, another client c* will be chosen at random from {C
- c“}. A distance function explained previously will be used to calculate the distance
d(v¥,v¢) between all nodes in the first hidden layer of client ¢* model and node v§'.
We can get two nodes matched (Vf, v$) based on the smallest distance.

Now we have two nodes, which are also the start of our MST tree T = {Vf , Ve
from which we will start to grow the tree. MST is the one whose cumulative edge
weights have the smallest value, and in our proposed method, it means the one whose
cumulative node distances have the smallest value. In each matching step, we will
randomly pick one client from {C - {c®, ¢*}}. Node to tree distance Eq. 5.4 will be
applied to find the subsequent matching nodes to join the MST tree 7. The MST

tree T will continue growing until {C - {c®, c,...}} is empty and at the same time, a

k
R

complete tree 7 with new node set {v®, v¥ v/ ..} will be formed to aggregate their
averaged weight values as a new node weight v; for the global model. To illustrated
the above description, for example, one client is randomly chosen in Fig. 5.5, then
in Fig. 5.6, after the first calculation, node {a, B} are matching node, then we
calculate distance d(a, @), d(a, f), d(a,7), d(a,0), d(B,«), d(B, ), d(B,~), d(B,0),
then choose node a with the smallest distance and node {a, B, a} are the matching

nodes. Weight values {v! v%,v3} will be averaged to be considered as a new node

value for the global model.

5.1.1.3 Dynamic Node Alignment vs. Frozen

In our proposed method, frozen means instead of using dynamic node alignment

through the entire training process, we choose to train the federated learning model
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Figure 5.5: Node matching step 1. after each client finishing training its local model,
client ¢® is randomly chosen from C and node v{* will be randomly selected among

all the nodes in the first hidden layer of client ¢ local mode.

Figure 5.6: Node matching result. node {a, B, a} are matching nodes.

with dynamic node alignment for certain rounds at the very first beginning, then
static node alignment will be applied for the rest training part. By doing so, nodes
with similar response will be paired right after the training process starts and once
all the neurons are matched during the first certain rounds, we believe that the node
pair pattern will discovered and fixed to a certain extend, therefore, using static node
alignment will prevent the pattern from being disturbed from subsequent training

process.

5.1.1.4 Theoretical Analysis

In this subsection, we analyze the time complexity of FedDNA, and compare its com-
plexity with simple global optimal matching search. Denote ¥ the number of sites, n
the number of first layer nodes at each site, and m the number of features for each

neuron. Because all sites in FL setting have same network structure, we only focus on
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first layer, and the same analysis applies to other layers, if dynamic node alignment
is carried out beyond the first layer.

Finding global optimal matching (i.e., the sum of matching distances of all nodes,
across all sites) is a combinatorial problem, because it requires comparisons of all
nodes against all other nodes, across all sites. For two sites, each having n nodes,
the matching complexity is ¥n x n x m, because it needs to cross check all pairs
(and each pairs involve m feature dimension comparisons). Adding a third site would
result in @On x n X n x m complexity because all node pairs between three sites need
to be checked. As a result, for ¥ sites the total complexity is @n* x m, which grows
exponentially with respect to the number of sizes.

For FedDNA, finding matching nodes across all sites for one node requires (% — 1) x n. x m
complexity because a node needs to search all nodes from other sites and it does not
need to search nodes from the same site. Once the first node is matched (across all
sites) and matched nodes are added to the minimum spanning tree (MST), the next
node matching requires O(X — 1) x (n — 1) x m complexity because there are n — 1
unmatched nodes remain for each site. As a result, total time complexity for all nodes
(across all sites) is the sum of all individual nodes’ complexity: O(X — 1) x n x m +
DE-1Dxn—1)xm+--+0(X—1) x 1 xm=0% x n? x m. By growing mini-
mum spanning tree (MST) to support the matching, FedDNA reduces the exponential
complexity from @n* x m (for global optimal matching) to quadratic @Y x n? x m.

In summary, FedDNA’s complexity is linear with respect to the number of sites,

and quadratic with respect to the number of nodes at each site.
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5.2 EXPERIMENTS

5.2.1 Experimental settings
5.2.1.1 Datasets

We used four benchmark datasets in the experiments. The first one is Diabetes Data
Set which data source are obtained from two main aspects, an automatic electronic
recording device and paper records to predict whether a patient has diabetes or not.
For the automated electronic recording devices, they have an internal clock to mark
events, whereas paper records only provide periods of “logical time” (breakfast, lunch,
dinner, bedtime). For paper records, fixed times are assigned to breakfast (08:00),
lunch (12:00), dinner (18:00) and bedtime (22:00). Therefore, paper records have a
fictional uniform time of recording, while electronic records have a more real time
stamp [53]. The second dataset we used is Spam_base Data Set from UCI which
was created by spam emails from postmaster and individuals and non-spam emails
from filed work and personal e-mails in order to construct a personalized spam filter.
In this dataset, The last column indicates whether the email is considered spam (1)
or not (0), that is, unsolicited commercial email. Most properties indicate whether
a particular word or character occurs frequently in emails [47]. Another data set
used in this paper is called Patient Survival Prediction Dataset. It uses knowledge
about patient chronic conditions from Intensive Care Units (ICUs) to inform clinical
decisions about patient care and ultimately predict patient’s survival outcomes [75].
Occupancy Detection Data Set is the last data set we used to verify our model’s
performance. It is a dataset for predicting room occupancy using environmental
factors such as Temperature, Humidity, Light and CO2. Ground-truth occupancy
obtained from time stamped pictures that were taken every minute [20].

Basic descriptions about these four datasets are shown in Table 5.4 from which

we can observe the number of samples in each dataset, diabetes database has 1150
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samples and there are 4601, 91714 instances in the spambase data set and Patient
Survival Prediction data set separately. Patient Survival Prediction set has the most
samples and also the largest attributes while Occupancy detection data set has the
medium size samples with the least number of attributes. Apart from that, data di-
mensions of those four are also different with various feature types such as categorical
features, numerical features. One same point is that there are only two classes in
all the datasets, which means binary classification will be performed in our proposed

model.

Table 5.4: Summary of the benchmark datasets used in the experiments, including

sample amount, attributes amount, data characteristics and class distribution.

Dataset # of instances # of attributes Attribute Characteristics Class Class Distri- Class set up

bution
Diabetes Database 1,150 19 Categorical, Integer Binary 0.89 0.2; 0.4; 0.5; 0.6; 0.7
Spambase Data Set 4,601 56 Integer, Real Binary 1.54 0.8; 0.6; 0.5; 0.4; 0.2
Patient Survival Prediction 91,714 186 Categorical, Real Binary 11.26 0.5; 1; 3; 5; 7
Occupancy Detection 20,560 7 Real Binary 3.33 0.5; 1; 1.5; 2; 2.5

5.2.1.2 Baseline Methods

To validate the performance of the proposed method, we use deep neural networks
as the training models and employ four baselines for our comparisons. One is plain
neural network (Plain_NN) model which has the same structure as our proposed model

which has one input layer, two hidden layers and one output layer.

FedAvg The second baseline is called Federated Average (FedAvg), which also share
the same network structure with our proposed method and use static node matching
to aggregated node weight values for the global model. In FedAvg, each client down-
loads the current model from a central server, improves it by learning from its own
local data, and then aggregates the changes into a small centralized update. Only

updates to the model are sent to the server/cloud using encrypted communication
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and immediately averaged with other user updates to improve the shared model based
on Eq. 6.13. All training data is kept locally and no individual updates are stored in
the cloud.

Federated Average (FedAvg) is a generalization of FedSGD that allows local nodes
to perform multiple batch updates to local data and swap updated weights instead
of gradients. The basic principle behind this generalization is that in FedSGD, if all
local nodes start from the same initialization, the mean gradient is strictly equivalent
to the mean weight itself. Furthermore, averaging adjustment weights from the same
initialization does not necessarily harm the performance of the resulting averaging

model [67,79].

FedDyn Next baseline is call FedDyn, in which each client learns a unique model
with its own regularization parameter [1]. In this method, each client in the federated
learning system learns a unique model with its own regularization parameter. The
regularization parameter is updated dynamically during the training process based
on the client’s local model performance. This means that clients with more difficult
data can have a higher regularization, while clients with easier data can have a lower
regularization, which improves the convergence speed and accuracy of the federated
learning process.

The objective of FedDyn is to solve Eq. 5.5, where k € [m] consists of Ny training
instances, Ly (6) is the empirical loss of the ky, device and 6 are the parameters of the

neural network.

OeRd

arg minfi(0)] é% S Lu(6) (5.5)
kem]

FedDNAgyeq Baseline 4 (FedDNAg,.q) calculates nodes’ distance based on a fixed
node. This baseline is created because we want to confirm whether the node matching

pattern in dynamic node alignment improve compared with when the node used for
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matching remains the same. At the first step, after each client finishing training its
local model, client ¢* is randomly chosen from C. Then one node v{* will be randomly
selected among all the nodes in the first hidden layer of client ¢®’s local model. In the
next step, one client will be randomly c* picked from {C - ¢}, a distance function
explained previously will be used to calculate the distance d(vé?, v$) between all nodes
in the first hidden layer of client c* model and node v¢. We can get two nodes matched
(v;?, v?) based on the smallest distance.

Now we have two nodes, which are also the start of our MST tree 7" = {v¥ v&},
from which we will start to grow the tree. In each matching step, we will randomly
pick one client from {C - {c%, cf}}. Unlike FedDNA, in this baseline, the distance
between a node to the tree will be calculated with Eq. 5.6, which means that only v{*
will be used in MST tree 7 to do the node matching. The MST tree 7 will continue
growing until {C - {c%, c¥,...}} is empty and at the same time, a complete tree T

k

with new node set {v{, v}, Vf ...} will be formed to aggregate their averaged weight

values as a new node weight v; for the global model.

d(V, T) = dEuclidean/Manhattan (V7 V?) (56)

For example, in Fig. 5.5, distance for ¢ will be d(a, A), d(a, B), d(a,C), d(a, D)
and for ¢* the distance will be d(a, @), d(a,f), d(a,v), d(a,0). Assume for c?, the
smallest distance is d(a, B) and d(a, a)for ¢, then node {v}, v%,v2} are the matching
nodes and their weight values will be averaged as one new node weight values for the

global model.

FedDNA ,.ndom 1Lhe last baseline is a modification based on both FedDNA and
FedDNAgeq. Instead of being too static or too dynamic with the node matching,
we cant to confirm the feasibility when the matching node is neither 100% percent
fixed nor using the entire MST tree as a matching node. Settings for baseline 4

(FedDNA .ndom) is as follows: At the first step, after each client finishing training its
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local model, client c® is randomly chosen from C. Then one node v{* will be randomly
selected among all the nodes in the first hidden layer of client c¢®’s local model. In
the next step, one client will be randomly c* picked from {C - ¢}, a distance func-
tion explained previously will be used to calculate the distance d(v;?7 v$) between all
nodes in the first hidden layer of client ¢* model and node v¢. We can get two nodes
matched (v5,v) based on the smallest distance.

Now we have two nodes, which are also the start of our MST tree 7 = {V;C Ve
from which we will start to grow the tree. In our third step, one node will be randomly
chosen from {v{", v¥} which will be used to match nodes of client {C - {c®, ¢"}} using
Eq. 5.4. Step 3 will be repeated until {C - {c®, c¥,...}}is empty and at the same time,
a new node set {v¥, Vf, Vf ...} will be formed to aggregate their averaged weight
values as a new node weight value for the global model. Assume we randomly choose
c? in Fig. 5.5 to do the first match, node {a, B} are the matching nodes, then one
node will be randomly chosen from node {a, B} to calculate distance for ¢3. If node
B is chosen, distance d(B,«), d(B, 3), d(B,7), d(B,0), will be calculated to choose
the next matching node.

Our overall experiment setting is shown in Table 5.5. We use 10-fold cross val-
idation, under which there will be 10 training rounds for each model to train. For
each dataset, our aim is to predict the corresponding target and 10-fold cross vali-
dation is applied to reduce both bias and variance. Under each cross validation fold
K, same weight values are initialized for all both baseline models and our proposed
models, Plain_.NN , FedAvg, FedDyn, Baselines, Baseliney, and Fed DNA. For
methods under FL setting, model parameters will be passed to each clients at the
very beginning of training. Training data will be randomly split into 5 sites and dis-
tributed to 5 clients, which is able to training the local model using their own data,

after which weight values will be aggregated based on different FL. method and then

send back to the global models. Global models will pass the new calculated parame-
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ters to their local clients to start new round training until the convergence. For our
proposed method FedDNA, there are two experiment settings in this paper. One is
called no-freezing weight update setting, in which weight values of the global model
will be aggregated using FedDNA method for all the 10 rounds while the second type
of setting is called freezing, in other word, we will choose to update the global model
parameters with FedDNA at the first ¢ round and after that FedAvg will be used to
aggregate clients’” model weight values for the rest of rounds. We design this type
of setting because we think the first several rounds of distance calculation will give
use the answer of the closest matching nodes then we can use that match to directly
aggregated the node weight values.

For our experiment dataset settings, we first run our model based on the original
class distributions across all clients in all datasets which is negative : positive = 1.54
in spam database, negative : positive = 0.89 in diabetes data base, negative : positive
= 11.26 in Patient Survival Prediction data set and negative : positive = 3.33 in
Occupancy Detection data set . In the second experiment setting, for each training
process, 2 clients are randomly chosen to exchange 2/3 of their data while the rest 3
clients keep their own data, in this case, our model will be verified on non-I11D datasets.
Calculated overall node distance, Accuracy, AUC, F1_score, Balanced accuracy and
Loss are used as performance measurement metrics.

Apart from randomly selecting 2 clients to exchange their data, we decide to
evaluate our proposed model under different class distribution settings. The original
class distribution (negative:positive) of the four datasets are as shown in Table 5.4.
A set of class distributions is set up for the original four data sets to check the model
performance. Since all the datasets have different original class distributions, the
assigned class distributions of the four datasets in this paper are different from each

other.
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Table 5.5: The pseudo code of the experiment settings and comparisons (all methods
are compared based based on same training/test data. The initial network weights
of each site are the same for different methods to avoid discrepancy due to random

weight initialization.

Ezxperiment setting: Node_matching Federated Learning

Input (1) Datasets D; (2) Node matching setting: Freeze; No freeze
Output Prediction of the target y
For each cross validation fold K:
Initialize same weight values for all the global models:
Plain_.NN, FedAvg, FedDyn, (FedDN Afizeq), (FedDN A, andom)
and FedDN A
Split training data into 5 sites for 5 clients
For Baseliney:
Train model using all the training data
For federated learning models:
Client train their own model using their own data
Match nodes with their distance calculation principle
Aggregated weight values pass to each global model
End For

Evaluate each global models

5.2.2 Experimental Results

Table 5.6 to Table 5.9 show the results for Diabetes dataset, Spam dataset, Occu-
pancy data set and Patient survival data set respectively in our first dataset setting.
Due to page limitation, only the best model performance results are presented in this
paper. For Diabetes database, we can observe that FedDNA, which uses our proposed

method FedDNA is able to find nodes combinations where the total node distance is
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the smallest with value 42.1352 compared with other methods whose final distance
results are greater than 50. At the same time, FedDNA presents better metrics per-
formance. Similarly, the smallest overall node distance and better metric performance
are realized by our FedDNA method for spam database. However, we can also come
to the conclusion that smaller overall node distance and better metrics performance
does not always come with the smallest training loss, especially for FedDNA. For oc-
cupancy and patient survival prediction datasets, FedDNA shows similar performance
as for the previous two datasets. Its overall classification performance outperforms
all the baselines with the smallest node distance 5.7316 and 57.4096 respectively after
matching, which indicates FedDNA is able to pair closest nodes together. We can tell
that overall, for all the four datasets, when class distributions are the same across all
clients, our proposed method performs the best in the freezing setting when the first
two rounds using Manhattan distance to find the matching nodes and the rest using
FedAvg with the smallest overall distance under freeze first two rounds experiment
setting with 42.1352 for diabetes dataset, 730.3930 for the spam data set, 5.7316 for

Occupancy Detection and 57.4096 for Patient Survival Prediction data set.

Table 5.6: Experimental results from Diabetes dataset using Manhattan distance
based matching. For FedDNA, the matching freezes after first two rounds of dynamic

node alignment.

Distance Accuracy AUC F1_score Balanced accuracy Loss
Plain NN 0.6755 0.7529  0.6361 0.6744 3.3221
FedAvg 51.7421  0.7165 0.8044  0.7029 0.7219 1.9016
FedDyn 53.0637  0.7016 0.8012  0.7147 0.7078 1.8932
FedDN Ayizeq  63.7216  0.7264 0.7961  0.7120 0.7341 1.8354
FedDN A, qndom 56.3497  0.7298 0.8003  0.7280 0.7396 1.8274
FedDNA 42.1352 0.7381 0.8230 0.7290 0.7434 1.9253
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Table 5.7: Experimental results from Spam dataset using Manhattan distance based

matching. For FedDNA, the matching freezes after first two rounds of dynamic node

alignment.
Distance  Accuracy AUC F1.score Balanced accuracy Loss
Plain NN 0.9165 0.9536  0.8905 0.9095 0.5110
FedAvg 824.3761  0.9320 0.9717  0.9120 0.9294 0.4823
FedDyn 792.1406  0.9316 0.9719  0.9136 0.9117 0.4431
FedDN Ayizea  798.0362  0.9350 0.9762  0.9187 0.9343 0.6352
FedDN A, qngom  911.6532  0.9351 0.9772 09178 0.9337 0.4521
FedDNA 730.3930 0.9376 0.9781 0.9210 0.9357 0.4841

Table 5.8: Experimental results from Occupancy detection dataset using Manhattan

distance based matching. For FedDNA, the matching freezes after first two rounds

of dynamic node alignment.

Distance Accuracy AUC F1_score Balanced accuracy Loss
Plain_. NN 0.8327 0.9578  0.5018 0.7021 1.4599
FedAuvg 7.8736 0.9225 0.9715  0.8236 0.8910 1.1592
FedDyn 8.5130 0.9135 0.9713  0.8137 0.8862 1.0927
FedDN Ayizeq  10.4510  0.9346 0.9751  0.8681 0.9179 0.9031
FedDN A, qngom 9.6437 0.9306 0.9762  0.8699 0.9083 0.8621
FedDNA 5.7316  0.9402 0.9788 0.8710 0.9140 0.8711

5.2.2.1 FedDNA vs. FedAvg with respect to Different Class Distributions

Fig. 5.7 is a box-plot for our second experiment setting’s results. Instead of showing

all the results of all models across all the datasets, since results from the first set-
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Table 5.9: Experimental results from Patient survival prediction dataset using Man-

hattan distance based matching. For FedDNA, the matching freezes after first two

rounds of dynamic node alignment.

Distance Accuracy AUC F1.score Balanced accuracy Loss
Plain NN 0.8201 0.5309  0.0618 0.4998 1.7521
FedAvg 63.2566  0.7913 0.6185  0.0676 0.4942 1.1150
FedDyn 67.9825  0.7740 0.6098  0.0635 0.5099 1.0047
FedDN Ayizeq  71.2609  0.9083 0.6422  0.0302 0.5024 1.0670
FedDN A, qndom  75.6094  0.8633 0.6251  0.0232 0.5075 1.0427
FedDNA 57.4096 0.8898 0.6485 0.0297 0.5079 1.4629

ting highlights that FedDNA outperforms FedAvg and FedDyn overall across all the
datasets, only comparisons between FedDNA and FedAvg, FedDyn with the com-
bined results across all the datasets are shown in Fig. 5.7, in which outliers can be
observed for three models but overall we can come to the conclusion that when data
is not evenly distributed across all clients, FedDNA performs the best in the freezing
setting when the first two rounds using Manhattan distance to find the matching
nodes and the rest using FedAvg.

Since under this experiment setting, FedDyn does not deliver better overall per-
formance than FedAvg according to above tables and figure, its detailed comparison
with FedDNA is not demonstrated. Fig. 5.8 to Fig. 5.11 report the performance of
FedDNA and FedAvg, with respt to different class distributions (the class distribu-
tions were adjusted to assess the algorithm performance under different conditions).
The y-axis is the values of each measurement and x-axis is different class distribution
set ups for each dataset as shown in Table 5.4.

For Diabetes Dataset, FedDNA and FedAvg has the largest gap for all the mea-

surements when sampling rate is 0.5 and both models’ performance fluctuate a lot
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Figure 5.8: Performance comparisons between FedDNA and FedAvg with respect to

different class distributions for diabetes dataset.

with the change of class distributions. For Spam Dataset, even though FedDNA and

FedAvg perform similarly when class distribution is smaller, as more and more neg-

ative samples shown in the datasets, FedDNA starts to show more advantages than

FedAvg, especially when negative instances take up more than 40% of the dataset, the

gap between both models become larger with a better performance from FedDNA.
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Figure 5.9: Performance comparisons between FedDNA and FedAvg with respect to
different class distributions for spam dataset.
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Figure 5.10: Performance comparisons between FedDNA and FedAvg with respect to

different class distributions for patient survival prediction dataset.

Similarly, for Patient Survival Prediction Dataset, the larger the sampling rate is,
the better FedDNA outperforms FedAvg especially in terms of Fscore and Balanced
accuracy. While for Occupancy dataset, FedDNA does not show much better results
than FedAvg when class distribution is less than 2, after which both models the

performance of the two models tends to be consistent.
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Figure 5.11: Performance comparisons between FedDNA and FedAvg with respect to

different class distributions for occupancy dataset.

5.3 CONCLUSIONS

In this research, we propose a dynamic node matching method for federated learning.
We argued that neural networks are inherently non-transparent and unstable, and
the same network structure may end up with very different weight values, even with
the same training data and same parameter settings. Traditionally, existing methods,
such as FedAvg, force neurons across sites to be matched with predefined order, and
use fixed matching nodes during the FL learning process. Alternatively, we proposed a
dynamic node alignment, FedDNA, approach which dynamically finds matching nodes
across sites, and uses matched nodes to calculate weight for FL learning. FedDNA
represents each neuron as a vector, using their weight values, and calculate distances
between neurons to find matching nodes. Meanwhile, because finding marching nodes
are computationally expensive, we proposed a minimum spanning tree (MST) based
approach to speed up the matching, with matched nodes across all sites being linked
by using an MST tree. So the matching process is simply the MST tree growing pro-
cess. Experiments and comparisons, including biased sample distributions, validate
the performance of the FedDNA, compared to other baseline.

Future study can emphasize on the following three directions. First, we only
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studied dense networks and verified its performance using FedDNA. Future study
can try to explore node matching between different types of network architectures,
such as convectional nueral networks. Second, we only studied the proposed design
using binary classification problems. In the future, multi-class classification problem
will be explored using our proposed FedDNA method. For the last direction, we will
use non-I11D datasets to further adjust our model so that it can be applied not only
to binary classification problem but also can achieve good results for datasets with

different settings.
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CHAPTER 6
ACTIVE LEARNING USING LOCALITY-CUSTOMIZED GSA

Federated Learning (FL), represents a novel learning approach that constructs ma-
chine learning models using decentralized datasets distributed across numerous sites/devices.
The primary purpose of this paradigm is to safeguard privacy and avert data leak-
age risks [67]. The feasibility of Federated Learning (FL) as a decentralized machine
learning approach heavily relies on the proficiency of local models in both training
and inference tasks. These local models’ effectiveness is contingent upon the avail-
ability of meaningful and annotated data, which is essential for their successful train-
ing [7,80,99]. However, obtaining such data involves a laborious and time-consuming
annotation process, necessitating manual analysis of the training samples. In the
realm of machine learning, data annotation plays a pivotal role in empowering models
with the capacity to generalize effectively and achieve high-performance levels. How-
ever, The data annotation process presents two significant challenges that researchers
and practitioners must confront. First, it demands meticulous and time-consuming
analysis for each sample, rendering it a laborious endeavor. Second, and perhaps more
critically, the selection of appropriate samples is not always guaranteed, resulting in
potential negative impacts on the overall performance of the model [7, 82,85, 88].
Recently, Active Learning (AL) has emerged as a machine learning method that
can effectively address data annotation workloads [78,84]. Its main strategy is to
iteratively find the most informative data points to annotate. The annotated data
are then used as part of the training data in the next iteration. With more and
more iterations, the machine learning model’s performance can be more and more

improved. This strategy has been integrated into federated learning and generated a
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new paradigm called Federated Active Learning (FAL) [8,55,72,100].

The FAL framework consists of several clients and one central server. Fach client
holds one labeled dataset and one unlabelled dataset, which can not be shared with
others. The server holds a test dataset that can be shared with all clients. The goal
of FAL is to train a globally optimized model at the server by annotating informative
data samples at the clients. FAL framework is trained in an iterative manner. In one
iteration, each client first trains a local model with annotated data. And then, the lo-
cal parameters are transmitted to the server. The server synthesizes local parameters
into a global model. After that, the global model is sent to each client to annotate sev-
eral unlabeled data with the highest informativeness. The labeled dataset is extended
by merging the previously labeled dataset and the newly annotated dataset. In the
next iteration, new local models are trained with the new labeled dataset. With more
and more iterations, more and more data will be annotated and the global model can
be improved.

However, current FAL has two significant weaknesses: (i) In most FAL, local un-
labelled samples are annotated by the aggregated global model’s parameters, which
totally ignores the localization of the samples, furthermore, the importance of local
models for local sample annotation is completely ignored [50]. (ii) Its global model
parameter updating is limited to one method, which is called Federated average (Fe-
dAvg) [7,8,67,69]. FedAvg relies on a strong assumption that the corresponding nodes
in local neural networks share the same importance when averaging, while different
local models should have different average weight [99].

To tackle the first weakness, we propose a locality-customized annotation strategy,
which takes the local model into consideration aside from the global model when
annotating. There are two reasons to pay attention to the local model: (i) local
models compose the global model; (ii) the annotated data are directly used to train

local models. Specifically, we first predict all unlabeled data’s labels by the local
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model and the global model separately. Then, we calculate the uncertainty of the
prediction by the metric of entropy. Each data’s overall uncertainty is a combination
of both the local model’s prediction entropy and the global model’s prediction entropy.
Finally, we annotate the top K data with the highest informativeness.

To tackle the second weakness, we propose a Gravitational Search Algorithm
(GSA) based FAL framework. Different from FedAvg, global model parameter ag-
gregations are achieved by GSA which draws inspiration from the law of gravity and
the interactions between celestial bodies. GSA allows population diversity as well as
global exploration, which means FL clients can interact with each other based on their
masses (accuracy) and positions (local model parameters), at the same time, GSA
is capable of exploring the solution space globally by allowing clients to move freely
towards areas of high fitness calculated based on their masses (accuracy). Moreover,
it is empowered with higher adaptability with a set of parameters that control the
interaction between clients. Essentially, the GSA method can be viewed as a weighted
averaging strategy where the mass plays the role of weight.

To summarize, in this research, we propose a locality-customized GSA federated
active learning (LG-FAL) method. The main contributions of the proposed research
are: (i) We propose a new annotating strategy that considers both local and global
optimization. By doing so, the localization of samples and models can be considered;
(ii) We propose to update the global model parameters with GSA, in which the
model is updated in a more interactive and adaptable way; (iii) We design extensive
experiments to validate the proposed methods with different parameter settings and

comparisons.

6.1 THE PROPOSED METHOD

We propose to combine Active Learning (AL) and Gravitational Search Algorithm

(GSA) in a federated and collaborative framework to select a small enough subset
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of informative local data and provide an improved trade-off between communication

costs and learning accuracy.

6.1.1 Framework

Our proposed locality-customized GSA Federated Active Learning (LG-FAL) frame-
work includes two phases: local phase and global phase. Inspired by the original ver-
sion of FL algorithm to train the global model in a central server, locality-customized
annotation AL is executed in clients and sends the local parameters to the central
server. Then globally, GSA continues the process in the central server to aggregate
the local model parameters and update the global model. Once the GSA is finished,
new model parameters will be passed down to clients for the next iteration. We

summarize the description of the framework in Fig. 6.1.

3. Update global 1*’ ‘*»
model by GSA 7@ O,

Server
4. Send My, 4. Send My, parameters

to M; \) Mi
2. Send M; _|
D parameters to server | l
e

Client 1 Client i
1. Train local model M, with annotated data 1. Train local model M with annotated data
5. Annotate unlabelled data by M, and M 5. Annotate unlabelled data by M; and Mgy >
6.GotoStep | 6.GotoStep |

Figure 6.1: Framework of LG-FAL. Clients train local models and send them to the
server. The server synthesizes the models and gets a global model. The global model

is sent to each client to help annotate local data.

6.1.2 Locality-customized Annotating

Inspired by the classic AL methods, we introduce a locality-customized annotation
function AL, which is able to find the most informative samples to be labelled for each
local dataset with the combined informativeness from both local model and global

model.
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Local Model For each local client 7, model trained using its own local data is defined
as M;. Local model M; enables customization and adaptation to specific local device
characteristics and local data patterns to better fit unique local data distributions,

which is able to capture different facets of the local data distribution and localization.

Global Model Global model Mgy, is the central model that is shared and iteratively
updated across a network of decentralized M; in FL. During the training process, lo-
cally trained models M; send back their parameter updates to a central server, which
aggregates these updates to refine the global model Mpg;. By combining data infor-
mativeness from both M; and Mgy, we are able to capture the data generalization

while maintain its localization at the same time.

Locality-customized Active Learning In this work, for each local client i, both
local labelled dataset D; as well as newly-annotated dataset A; by AL will be set up
for the training. We design a score function S(x) to evaluate unlabeled samples. The
strategy is to annotate data samples with the highest score in the unlabelled data as
shown in Eq. 6.1, where z is the sampling number and S(z) is the score function of

Z.

AL; = argmax S(z) (6.1)

|Ai‘:2{,x€u,‘

To make sure that the score function is able to reflect the localization and potential
informativeness of local unlabelled instances, we introduce the score function as shown
in Eq. 6.2. Global model Mg, and local model M; are allowed to predict on the
labelling possibilities of samples. The most informative query is considered to be
the instances about which they most agree. The sample informativeness from both
global model Mgy, and local model M, are integrated to find the average score of an

sample.

S(x) = wy * Entr(Dis(z|M;)) + wy * Entr(Dis(z|Mpp)) (6.2)
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where Dis(x| M) denotes the prediction distribution of z under model M; Entr(Dis(xz|M))
denotes the entropy of the distribution. w; and wy are weights between 0 and 1.

The higher the entropy is, the more uncertain the sample under the model will be.
Thus, the active learning strategy prefers to annotate samples with high uncertainty.
AL adopts multiple rounds as the FL goes on for sampling and gradually adds samples

to the labeled local dataset.

6.1.3 GSA Federated Learning

We integrate Gravitational Search Algorithm (GSA) with federated learning to obtain
a globally optimized model from local models. Within GSA’s iterative framework,
each local model is viewed as one object with mass, while its parameters are viewed
as position coordinates. These objects attract each other due to gravity, prompting
their movement towards heavier masses, which correspond to favorable solutions [76].

Fig.6.2 shows the movement of the object.

Figure 6.2: Demonstration of object movement with GSA. Object M is attracted by
M, and Mj, with gravity force Fy; and F3;. The total force Fj results in acceleration

a1 to update the position of M7, which equals to update the parameter vector X;.

Assume there are N clients participating FL, each of whose local model has a D
dimensional parameter vector denoted as Eq. 6.3, where x¢ is the parameter of the

1th agent in dimension d.

X; = (21,78, o0y 77) i=1..N (6.3)



First, the gravitational mass of each object using the fitness values is calculated as
in Eq. 6.4 and Eq. 6.5. The gravitational mass is denoted as M;(t) and fit;(t)
indicates the fitness value of the ith object at iteration ¢, which, in our method,

client’s predictive accuracy on the test dataset is used as the fitness value.

fit;(t) — worst(t)

milt) = best () — worst(t) (6.4)
Mi(t) = i) (6.5)

Zj:l m; (1)

In addition, worst(t) and best(t) are the worst and best fitness values obtained in the
collection of objects at ¢ which are defined for maximization problem as in Eq. 6.6

and Eq.6.7 respectively.
worst(t) = min fit;(¢) jed{l,..,N} (6.6)

best(t) = max fit;(t) je{l,...N} (6.7)
The total force that is applied on the ith object from other objects is computed

following the gravity law in Eq. 6.8

M;(t) x Mi(t)
Rij X €

Fit)= )  rand{G(t)

jeKbest,j#i

(a5(t) — 27(1)) (6.8)

in which rand? is a random number with uniform distribution in the interval [0, 1].
e denotes a small number close to 0, R;;(f) denotes the Euclidean distance between
clients ¢+ and j, and Kbest is a set consisting of the first K objects with the best
fitness values (the largest masses).

K is set as N at the very beginning and reduces linearly with time until it reaches
to 1 in the end. The gravitational constant at iteration ¢ is denoted as G(t) which
is initialized at the first iteration by Gy and decreased by time according to Eq.6.9,

where T is the total number of iterations.

G = Goexp T (6.9)
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Then, the obtained force is used to calculate the acceleration of the object using

the law of motion as in Eq.6.10.

arpy _ F()
a; (t) - Mz<t)

' (6.10)
= Z rande(t)Rift—ﬂe(ﬁ?(t) — (1))

jEKbest,j#i

After the above steps, the next movement for ith object can be computed based on

the change of its acceleration as in Eq. 6.12 and this is the end of one GSA iteration.
vl(t+1) =i (t) +al(t),  vH0)=0 (6.11)

d _ . d d
zi(t+1) =i (t) +vi(t+ 1) (6.12)

After a certain number of iterations, all parameter vectors X; are updated with
other vectors’ information. In other words, all X; can be viewed as candidates of the
aggregated global model parameters. We test them on the test dataset, and consider
the parameter with the best performance as the parameter of the global model Mpgy,.

Training of a global GSA algorithm is performed in an iterative fashion. It com-
municates with local ones iteratively since the stopping criterion is reached. Each
client initially starts with a randomized model that is the exact same structure as the

central model. The pseudo-code of the LG-FAL is shown in Algorithm 4.

6.2 EXPERIMENTS

6.2.1 Experimental Settings
6.2.1.1 Datasets

We use two benchmark datasets in the experiments. The first one is MNIST Dataset
(Modified National Institute of Standards and Technology database) [33], which con-
sists of a collection of handwritten digits. It contains 60,000 training images and
10,000 testing images. Each image is a grayscale image of size 28x28 pixels, repre-

senting a single digit (0-9). The second dataset is called Fashion MNIST [101]. It is a
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Algorithm 4 Locality-customized GSA Federated Active Learning (LG-FAL)
Input: Number of clients NV, number of FAL iteration T, test dataset 7T, initially labelled

dataset {D;(0)}}¥,, number of annotated data in each iteration z, initially unlabelled
dataset {U;(0)},
Output: Optimized global model Mgy,
1: for t=1to T do

2: for each client i, 7 = 1, ..., N do

3: Train local model M; with annotated data
4: Send M; parameters to the server
5: end for

6: At the server:
7: Calculate gravitational mass M;(t) for each client by Eq.6.5
8: Calculate total force F{(t) on each client by Eq. 6.8
9: Calculate the acceleration a¢(t) of each client by Eq. 6.10
10: Update local model parameters by Eq. 6.12
11: Evaluate all updated local models with test dataset 7T, define
12: M, as the best local model
13: Send Mgy, to each client

14: for each client ¢, i =1, ..., N do

15: Annotate z unlabelled data A; from U;(t)
16: Update D;(t + 1) = D;(t) + A;
17: Update U;(t + 1) = U (t) — A;

18: end for

19: end for

variation of the original MNIST dataset, but instead of containing handwritten digits,
it consists of images of various types of clothing and fashion items. This dataset has
10 different categories, which include items like T-shirts, trousers, pullovers, dresses,

coats, sandals, shirts, sneakers, bags, and ankle boots with 60,000 training images
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and 10,000 testing images and each image being a grayscale 28x28 pixel.

6.2.1.2 Baselines

To validate the performance of the proposed method, we use deep neural networks as
the training models and employ two baselines for our comparisons.

The first baseline is called Federated Average (FedAvg) Active Learning, FedAvg-
FAL, which also shares the same network structure with our proposed method. In
FedAvg, each client downloads the current model from a central server, improves it
by learning from its own local data, and then aggregates the changes into a small
centralized update. Eq. 6.13 summarizes the global weight values w updating of
FedAvg in each training round ¢, in which ¢ is the client index, N means the total
number of clients, D is the total number of instances and D; is the local data examples

for each client [67].
N D, |
Wip1 = ; Wi (6.13)
The second baseline S-FAL annotates samples in a single AL way while keep the
same GSA FL model parameter update approach. In this setting, the local instance

informativeness score is only computed based on the updated local model M, with

local dataset D; as shown in Eq. 6.14.

S(x) = Entr(Dis(z|Mgr)) (6.14)

6.2.1.3  FExperiment Settings

Our overall experiment setting is as follows. For each dataset, our aim is to predict
the corresponding target. Model parameters will be passed to each clients at the very
beginning of training. Training data will be randomly split into 3 sites and distributed
to 3 clients, which is able to training the local model using their own data. As for
AL part, by default, w; = wy = 0.5. For each round, 32 unlabelled samples will

be annotated by different AL approaches and added into local dataset for training.
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For FL part, weight values will be aggregated based on different FL. methods and
then send back to the global models. Global models will pass the new calculated
parameters to their local clients to start new round training until the convergence.
In order to explore the effect of various GSA parameter settings, we decided to
evaluate our proposed method with different o and Gy combinations. Additionally,

we conduct experiments to explore the impact of w; and wy on out proposed method.

6.2.2 Experimental Results

Table 6.1 and Table 6.2 show the model results for MNIST dataset and Fashion
MNIST dataset respectively. Due to page limitation, only the best model performance
results are presented in this paper. For MNIST dataset, overall, GSA based FAL
methods do a better classification job than FedAvg based FAL approach. For all
the methods, an obvious increase in their predictive accuracy can be observed with
gradually increased samples annotated by AL regardless the GSA parameter settings,
however, we have to admit that there are small accuracy fluctuations for all methods
especially with annotated samples larger than 192. When a = 30 and G, = 20,
LG-FAL still outperforms FedAvg-AL with a 0.835 accuracy when 320 samples are
annotated, while S-FAL performs the best with a 0.849 accuracy. The superiority of
our proposed method is more significant under o = 30 and Gy = 10 setting and o =
30 and Gy = 50 setting, with 0.842 and 0.855 accuracy respectively. LG-FAL deliver
the highest final predictive accuracy 0.855 when a = 30, Gy = 50.

For Fashion MNIST dataset, similar performance as in MNIST dataset can be
observed for all three methods. S-FAL and LG-FAL demonstrate better model per-
formance with higher predictive accuracy than FedAvg-AL under all three parameter
settings. The advantage of LG-FAL over S-FAL does not show when o = 30, Gy =
10 since both methods achieve 0.73 around accuracy. However, as Go goes up and

the more annotated samples, the gap between S-FAL and LG-FAL gets more obvious
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Table 6.1: Model accuracy w.r.t different parameter settings for MNIST with grad-

ually increasing annotated samples: FedAvg-AL is the first baseline, S-FAL is the

second baseline, LG-FAL is our proposed method.

GSA Parameter setting | Model 32 64 96 128 160 192 224 256 288 320
FedAvg-AL | 0.795 | 0.786 | 0.819 | 0.809 | 0.813 | 0.816 | 0.809 | 0.813 | 0.809 | 0.806
a=30,Go =10 S-FAL 0.757 | 0.793 | 0.808 | 0.803 | 0.814 | 0.822 | 0.824 | 0.82 | 0.833 | 0.823
LG-FAL 0.817 | 0.82 | 0.823 | 0.831 | 0.842 | 0.846 | 0.843 | 0.844 | 0.842 | 0.842
FedAvg-AL | 0.765 | 0.812 | 0.82 | 0.828 | 0.829 | 0.801 | 0.81 | 0.821 | 0.823 | 0.832
a=30,Go =20 S-FAL 0.783 | 0.811 | 0.829 | 0.814 | 0.834 | 0.829 | 0.836 | 0.837 | 0.847 | 0.849
LG-FAL 0.79 | 0.8 | 0.793 | 0.811 | 0.821 | 0.831 | 0.821 | 0.829 | 0.825 | 0.835
FedAvg-AL | 0.756 | 0.798 | 0.812 | 0.8 | 0.799 | 0.803 | 0.808 | 0.813 | 0.813 | 0.814
a=30,Go =50 S-FAL 0.769 | 0.815 | 0.823 | 0.82 | 0.838 | 0.834 | 0.837 | 0.83 | 0.822 | 0.84
LG-FAL 0.816 | 0.848 | 0.844 | 0.854 | 0.853 | 0.857 | 0.861 | 0.852 | 0.857 | 0.855
Table 6.2: Model accuracy w.r.t different parameter settings for Fashion MNIST with
gradually increasing annotated samples: FedAvg-AL is the first baseline, S-FAL is
the second baseline, LG-FAL is our proposed method.
Parameter setting | Model 32 64 96 128 160 192 224 256 288 320
FedAvg-AL | 0.669 | 0.677 | 0.677 | 0.692 | 0.694 | 0.697 | 0.675 | 0.708 | 0.699 | 0.7
a=30,Gop =10 | S-FAL 0.692 | 0.708 | 0.722 | 0.715 | 0.725 | 0.722 | 0.714 | 0.712 | 0.727 | 0.733
LG-FAL 0.668 | 0.7 | 0.701 | 0.726 | 0.713 | 0.729 | 0.7 | 0.718 | 0.722 | 0.731
FedAvg-AL | 0.602 | 0.604 | 0.615 | 0.598 | 0.612 | 0.609 | 0.602 | 0.601 | 0.603 | 0.612
a=30,Gop =20 | S-FAL 0.698 | 0.698 | 0.698 | 0.692 | 0.701 | 0.68 | 0.703 | 0.7 | 0.703 | 0.717
LG-FAL 0.718 | 0.713 | 0.742 | 0.717 | 0.729 | 0.747 | 0.749 | 0.75 | 0.752 | 0.757
FedAvg-AL | 0.453 | 0.553 | 0.601 | 0.6 | 0.62 | 0.67 | 0.684 | 0.695 | 0.699 | 0.701
a=30,Go =50 | S-FAL 0.711 | 0.715 | 0.717 | 0.73 | 0.734 | 0.731 | 0.723 | 0.724 | 0.725 | 0.726
LG-FAL 0.732 | 0.748 | 0.755 | 0.756 | 0.755 | 0.736 | 0.74 | 0.743 | 0.762 | 0.762

with LG-FAL showing a higher accuracy.

Since LG-FAL and S-FAL outperforms FedAvg-AL, we create a figure to further

demonstrate model comparison between LG-FAL and S-FAL with the results from

both MNIST dataset and Fashion MNIST dataset. Regardless the parameter setting,

the average accuracy of two models for both datasets are calculated. Fig. 6.3 report
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the performance of LG-FAL and S-FAL as the increasing of annotated samples. The
y-axis is the values of model accuracy and z-axis shows the increase of annotated
instances. As the number of labeled samples gradually increases, the overall per-
formance of the two models also shows an upward trend. Overall, LG-FAL always
outperforms S-FAL, increasing from 0.755 to 0.795, which is much higher than the

accuracy of S-FAL.

— SFAL
—— LG-FAL

32 64 96 128 160 192 224 256 288 320
Number of annotated samples

Figure 6.3: Overall performance comparison between LG-FAL and S-FAL with the
increase of annotated samples: y-axis is the model averaged accuracy from MNIST
dataset and Fashion MNIST dataset; x-axis is the gradually increased number of

annotated samples.

The advantages of LG-FAL are able to be verified with the previously shown
results. With the confirmation that LG-FAL is able to outperform our baselines,
especially when o = 30, and Gg = 50, we further conduct a series of experiments
aiming to figure out how the change of proportion of M; and Mgy, in Eq. 6.2 effects
the performance of LG-FAL. By default, the values of w; and ws are set as 0.5 and
0.5 respectively. Different combinations of w; and wy are designed in order to check
how our proposed method will react as follows: w; = 0.2, wy = 0.8; w; = 0.4, wy =
0.6; wy = 0.5, wy = 0.5; wy = 0.6, wy = 0.4; wy = 0.8, wy = 0.2.

Fig. 6.4 reports the overall predict accuracy trend of LG-FAL on our benchmark

datasets under different w; and wy settings. For MNIST dataset, the prediction
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— a=0.2,B=0.8
—— a=0.4,B=0.6
— 0=05,=05
— a=06,B=0.4

— a=0.8,=0.2

50 100 150 200 250 300 50 100 150 200 250 300
Number of annonated samples Number of annonated samples

(a) LG-FAL performance on MNIST (b) LG-FAL performance on Fashion

dataset MNIST dataset

Figure 6.4: Performance of LG-FAL with different w; and wy settings on MNIST
dataset and Fashion MNIST dataset with the increase of annotated samples: y-axis
is LG-FAL accuracy; z-axis is the gradually increased number of annotated samples;

legends are w; and ws, settings.

accuracy difference of LG-FAL with different w; and w, combinations is relatively
clear. We can observe that when prefer the predictive uncertainty from local model
over global model, the performance of LG-FAL drops especially when w; = 0.8 and
wy = 0.2. However, the gradual increase of model performance with the increasing
annotated samples can still be validated. LG-FAl demonstrates the best predictive
accuracy on MNIST dataset when local model and global model are equally considered
for annotating the instances. As for Fashion MNIST dataset, similarly, LG-FAL
performs the best when the entropy from local model and global model contribute

equally for the calculation of sample informativeness.

6.3 CONCLUSIONS

In this research, we propose a locality-customized GSA Federated Active Learning
(LG-FAL) method for federated active learning.We argued that in most federated
active learning frameworks, local unlabelled samples are annotated by the aggregated

global model’s parameters, which totally ignores the localization of the samples, lead-
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ing to the neglect over the importance of local models for local sample annotation.
In addition, current federated active learning approaches usually are limited to one
method, Federated averaging (FedAvg) to update global model parameter. Alterna-
tively, we propose a locality-customized GSA Federated Active Learning method, LG-
FAL, to tackle the aforementioned limitations. LG-FAL combines locality-customized
active learning and Gravitational Search Algorithm (GSA) in a collaborative and ef-
fective way. In locality-customized active learning, both the local model as well as the
global model are taken into consideration when annotating local samples, in which
each data’s overall uncertainty is a combination of both the local model’s predic-
tion entropy and the global model’s prediction entropy. In GSA federated learning,
global model parameter aggregations are achieved by GSA which is empowered with
higher adaptability with a set of parameters to allow clients to move freely towards
areas of high fitness calculated based on their masses (accuracy). Experiments and
comparisons validate the performance of the LG-FAL, compared to other baselines.
Future study can focus on the following directions. First, we only verified the
performance of LG-FAL with dense neural network. Future study can try to explore
LG-FAL between different types of network architectures. Second, we only studied
the proposed design with image datasets. In the future, more data formats will be

explored using our proposed method, such as tabular data.
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CHAPTER 7
CONCLUSION & FUTURE DIRECTIONS

In the rapidly evolving landscape of healthcare, data-driven approaches have emerged
as a cornerstone for advancing medical research, diagnosis, treatment, and overall
healthcare delivery. The potential benefits of harnessing the power of health data
are vast, ranging from early disease detection to personalized treatment recommen-
dations and improved patient outcomes. However, as we embark on this data-driven
healthcare journey, we are confronted with a triad of formidable challenges: data bias,
privacy concerns, and data scarcity.

In this thesis, in order to promote effective and robust health data analysis algo-
rithms, we propose imbalanced learning, ensemble learning to address sample bias and
specificity. We design novel federated learning approaches to better utilize limited
health data resources and protect patient privacy. We implement federated active
learning as a solution for label cost and scarcity in health data. The contributions

and evaluation results of the proposed models are summarized as below.

7.1 CONCLUSION

1. Sample Bias and Specificity in Health Data.

e Contributions. We conduct a comprehensive exploration of the twin phenom-
ena of sample bias and specificity in health data . First, we proposed to use
imbalanced learning for 30-day hospital readmission prediction with National
Readmission Databases (NRD). The main goal is to predict, at the time of a

hospital discharge, whether the patient may return in 30 days or not in the fu-
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ture. We created a set of features, using simple patient demographics, ICD-10
clinical modification (CM), and Clinical Classification Software Refined (CCSR)
conversion, to represent each hospital visit. Because patient readmission is only
a small portion of all patient visits, the machine learning task is severely chal-
lenged by the imbalanced class distributions. To solve the challenge, we used
random under sampling (RUS) to create different copies of balanced sample
sets. Ensemble classifiers were trained from balanced sample sets to build clas-
sifiers for readmission prediction. Secondly, we carry out systematic studies to
understand data statistics for United States nationwide hospital admission, and
further designs a machine learning framework for disease-specific 30-day hospi-
tal readmission prediction. We identified factors related to three key party of
the hospital remissions: patient, disease, and hospitals, and reported national
scale hospital admission statistic. Based on the data statistics, we created 526
features with five major types, including demographics features, admission and
discharge features, clinical features, disease features, and hospital features. We
collected six disease specific readmission datasets, which reflect the top six lead-
ing diseases of death. By using random under sampling and ensemble learning,
combined with soft vs. hard voting and four types of machine learning meth-
ods, including gradient boosting, decision tree, logistic regress, and random
forests, our experiments validate three major type of settings: (1) hard voting
vs. soft voting, (2) random under sampling, and (3) disease specific readmission

prediction.

2. Data Privacy and Locality in Health Data.

e Contributions. We introduce a unique federated learning approach designed
specifically to address the data privacy and locality of health data. We propose

a dynamic node matching method for federated learning. We argued that neural
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networks are inherently non-transparent and unstable, and the same network
structure may end up with very different weight values, even with the same
training data and same parameter settings. Traditionally, existing methods,
such as FedAvg, force neurons across sites to be matched with predefined order,
and use fixed matching nodes during the FL learning process. Alternatively,
we proposed a dynamic node alignment, FedDNA, approach which dynami-
cally finds matching nodes across sites, and uses matched nodes to calculate
weight for FL learning. FedDNA represents each neuron as a vector, using their
weight values, and calculate distances between neurons to find matching nodes.
Meanwhile, because finding marching nodes are computationally expensive, we
proposed a minimum spanning tree (MST) based approach to speed up the
matching, with matched nodes across all sites being linked by using an MST

tree. So the matching process is simply the MST tree growing process.

3. Label Cost and Scarcity in Health Data.

e Contributions. In order to address the labeling challenges in health care
data analysis, we propose a locality-customized GSA Federated Active Learn-
ing (LG-FAL) method for federated active learning. LG-FAL combines locality-
customized active learning and Gravitational Search Algorithm (GSA) in a col-
laborative and effective way. In locality-customized active learning, both the
local model as well as the global model are taken into consideration when anno-
tating local samples, in which each data’s overall uncertainty is a combination
of both the local model’s prediction entropy and the global model’s prediction
entropy. In GSA federated learning, global model parameter aggregations are
achieved by GSA which is empowered with higher adaptability with a set of pa-
rameters to allow clients to move freely towards areas of high fitness calculated

based on their masses (accuracy).
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7.2 FUTURE DIRECTIONS

For imbalanced learning in health data analytics, the majority of the data used in
our study are historical. Future research should explore the integration of real-time
patient data, including wearable devices, electronic health records, and social deter-
minants of health, to make predictions more timely and precise. Combining diverse
data modalities such as medical images, free-text clinical notes, and structured patient
records will be considered in order to lead to more comprehensive and accurate pre-
dictions. Future study can emphasize on the following directions for data privacy and
locality in health data analytics. First, future study can try to explore node match-
ing between different types of network architectures, such as convolutional neural
networks. Second, more practical multi-class classification problems will be explored
using our proposed methods. For the last direction, future study will aim to explore
the locality-customized GSA using healthcare data. With the validated feasibility of
our proposed method using MNIST dataset, we will explore and fine-tune it using

healthcare data with more completed experiments.
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