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Abstract—IoT devices used in various applications, such as
monitoring agricultural soil moisture, or urban air quality as-
sessment, are typically battery-operated and energy-constrained.
We develop a lightweight and distributed cooperative sensing
scheme that provides energy-efficient sensing of an area by
reducing spatio-temporal overlaps in the coverage using a multi-
sensor IoT network. Our “Sensing Together” solution includes
two algorithms: Distributed Task Adaptation (DTA) and Dis-
tributed Block Scheduler (DBS), which coordinate the sensing
operations of the IoT network through information shared using
a distributed “token passing” protocol. DTA adapts the sensing
rates from their “raw” values (optimized for each IoT device
independently) to minimize spatial redundancy in coverage, while
ensuring that a desired coverage threshold is met at all points
in the covered area. DBS then schedules task execution times
across all IoT devices in a distributed manner to minimize
temporal overlap. On-device evaluation shows a small token
size and execution times of less than 0.6s on average while
simulations show average energy savings of 5% per IoT device
under various weather conditions. Moreover, when devices had
more significant coverage overlaps, energy savings exceeded 30%
thanks to cooperative sensing. In simulations of larger networks,
energy savings range on average between 3.34% and 38.53%,
depending on weather conditions. Our solutions consistently
demonstrate near-optimal performance under various scenarios,
showcasing their capability to efficiently reduce temporal overlap
during sensing task scheduling.

Index Terms—multi-sensor IoT; distributed scheduler; energy
efficiency; task adaptation; cooperative sensing; comb placement
problem

I. INTRODUCTION

IoT devices are used in various application areas, such as

agriculture and urban monitoring. They are typically resource-

constrained with limited battery, memory, and computation.

One technique for energy management includes using renew-

able energy sources like solar combined with solar prediction

mechanisms to maximize device lifetime. Micro-local condi-

tions at each device like shade/foliage affect its received solar

energy, limiting the accuracy and effectiveness of a central-

ized energy management solution. Therefore, decentralized,

lightweight IoT energy management solutions that are adaptive

to local device conditions are highly desirable

Multi-sensor IoT devices can monitor different phenomena,

e.g., in agriculture, IoT devices may have temperature sensors

and cameras, but this means more energy used per IoT device.

We thank the US NSF for their generous support through grants CNS-
1818971 and CPS 2133407.

However, if multiple IoT devices cover the same geographical

area, cooperative sensing ensures more energy-efficient op-

erations. Cooperative sensing allows multiple IoT devices to

coordinate their sensing operations, reducing the duplication

of sensing tasks and temporal overlap between neighboring

devices. While comprehensive coverage depends on the num-

ber of sensors, energy efficiency remains paramount. Saving

energy reduces operational costs and environmental impact,

while enhancing the system longevity and reliability. Inter-

device communication costs are high, so distributed and coop-

erative sensing solutions should minimize this cost in addition

to being adaptive and independent of deployment patterns.

There are a number of examples of IoT energy management

solutions that include renewable energy, such as Signpost [1],

FarmBeats [2], and SEMA [3]. However, these do not leverage

cooperation between IoT devices to use energy judiciously

and perform sensing without duplication. Cooperative sens-

ing is a scheduling problem, and has also been used for

energy management by avoiding duplication of sensing. For

example, [4] uses a partially observable Markov decision

process for target tracking, [5] uses cooperative monitoring

with mobile applications and [6] uses a frequency scaling

power minimization approach for scheduling. However, these

solutions are complex [4], aimed at less constrained devices

and do not account for limited renewable energy sources [5],

or require additional hardware [6]. Our distributed solution

is simple to implement and is designed to operate efficiently

on energy-constrained IoT devices by minimizing inter-device

communication.

Our goal is to provide an on-device energy management

solution that addresses the constraints of limited renewable

energy sources and achieves energy savings from cooperative

sensing between multiple IoT devices. Our distributed solution

eliminates the need for a centralized controller to schedule

each IoT device and we aim to optimize energy utilization

while maximizing sensing efficacy.

Our ”Sensing Together” solution presented here needs initial

sensing rates for each sensor at each IoT device. These can

be provided and optimized at each IoT device by existing

solutions such as SEMA-A [3]. Through distributed coor-

dination, our Sensing Together cooperative sensing solution

saves energy by adapting the sensing rates to reduce spatial

and temporal overlap using two algorithms: Distributed Task

Adaptation (DTA) and Distributed Block Scheduler (DBS).
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DTA adapts the sensing rates of each sensor in an IoT device

to minimize redundancy in spatial coverage, subject to meeting

a minimum coverage threshold at all points in the monitored

area. Adaptation is done through distributed coordination using

a distributed token passing protocol run over a Distributed

Hash Table (DHT) structure, using two traversals in opposite

directions (forward and reverse) to balance energy used in all

devices. We theoretically show that DTA meets the coverage

threshold at all points, as long as the IoT devices in the

network have enough energy to achieve it.

DBS minimizes temporal overlap by moving the sensing

patterns around in time. We reduce the sensing task scheduling

question to a novel block scheduling problem and present an

algorithm for minimizing temporal overlap. We theoretically

show that the algorithm finds the optimal solution to the block

scheduling problem in O(∆2) time, where ∆ is related to the

token size. The token size determines the degree of coordi-

nation between devices, and captures the balance of energy

savings versus computation and communication complexity.

Our on-device experiments show execution times of less

than 0.6s per device on average. In small network simulations

using experimentally measured values, DTA achieves energy

savings of 5% per IoT device on average; however, in areas

with more redundancy due to overlapping coverage areas,

energy savings for some devices exceeded 30%. In large

networks, our results show an average energy savings of 3.34%

on cloudy days and up to 38.53% on sunny days. Higher

energy availability on sunny days means more frequent sensing

resulting in higher redundancy across neighboring devices;

DTA reduces this redundant sensing. Furthermore, in various

scenarios, DBS consistently demonstrated performance close

to the optimal solution, showcasing its capability to efficiently

reduce temporal overlap during scheduling.

II. RELATED WORK

Examples of IoT energy management solutions include

SEMA [3], Signpost [1], and FarmBeats [2]. Each solution

incorporates a renewable energy component, IoT device sens-

ing operations, and an energy management system. SEMA [3]

offers an on-device energy management system utilizing an

approximate Model Predictive Control approach to optimize

information utility and sensing operations while minimiz-

ing energy consumption. Signpost [1], designed for urban

monitoring, features a solar prediction component leveraging

historical data, modular sensors, and a sensor virtual battery

management system. FarmBeats [2], aimed at farm monitor-

ing, incorporates a weather-aware solar prediction mechanism

and conserves energy through duty-cycling of base station

components. SEMA’s solar prediction approach considers local

device conditions without relying on weather forecasts like

FarmBeats. Signpost employs a uniform solar prediction for

all devices in a given area. In terms of energy management, the

mechanisms used by SEMA and Signpost operate at the device

level, whereas FarmBeats manages energy at the base station

level. Furthermore, SEMA accounts for the specific energy

needs of individual IoT applications, while Signpost assumes

uniform energy requirements for all applications. However,

none of these solutions utilize cooperative sensing to harness

information from neighboring devices, a fundamental feature

of the solution we present here.

The solutions in [7]–[10] use a task scheduling approach

to manage energy at the IoT device. Authors in [7] use a

dynamic programming approach for scheduling. [10] uses

a Mixed Integer Linear Programming (MILP) formulation to

define the sensing problem. Jarvsis [9] uses a hierarchy of

control tasks operating in the Cloud/Fog. LSA [8] determines

whether all task deadlines can be met before scheduling.The

solution in [10] runs on a centralized node and not on the

IoT device, and both [10] and [7] are complex solutions. The

communication cost in [9] can be significant, and individual

IoT devices cannot be scheduled independently. Moreover,

none of these solutions take advantage of cooperative sensing.

Our algorithms are designed to be simpler, employ tokens for

inter-device communication, and reduce communication costs

by sharing minimal information between neighbors.

Cooperative sensing solutions for energy management have

been proposed in [4]–[6], [11]–[13], and a comprehensive

survey on cooperative sensing in IoT networks is in [14].

For scheduling, [4] used the partially observable Markov

decision process while [11] used a randomized myopic policy,

selecting devices with the highest energy levels to perform

sensing in each time slot. Authors in [6] use a power min-

imization approach where nodes receive task requests with

estimated task execution times and schedule the tasks by

scaling the CPU core’s operating frequency ensuring task

completion within the estimated time. In [12] a near-optimal

transmission scheduling policy to maximize throughput using

cooperative sensing is presented while [5] uses cooperative

monitoring with mobile applications. Our previous work [13]

minimizes overlapping sensing times between IoT devices

by only sharing free time slots. Information is shared using

tokens and devices independently schedule their start times.

[6] requires additional hardware for frequency scaling, [4] is

complex, and [5] targets mobile phones which may not be

as strictly energy-constrained and also have more compute

capability. These limitations hinder the effectiveness of their

solutions on more energy-constrained IoT devices. While [13]

is lightweight and distributed, it ignores potential overlaps in

sensing times later in the sensing period and thus fails to fully

exploit the benefits of cooperative sensing.

The algorithms we develop in this paper are hardware-

independent, less complex, and optimized for efficient op-

eration on energy-constrained IoT devices while accounting

for any available renewable energy. They are lightweight,

distributed, and take full advantage of cooperative sensing by

considering all sensing operations within the sensing period.

III. SYSTEM DESIGN

A task refers to a distinctive sensing modality used by an

IoT device’s sensor e.g., a temperature task for a device with

a temperature sensor. Each task is characterized by a task

parameter such as number of measurements/sensing operations
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Fig. 1: Sensing Together: Architecture Overview.

per epoch (15 min period). Task parameters have minimum

and maximum values e.g. the maximum temperature task

parameter value is 15. Existing energy and task management

solutions can determine the maximum task parameter values

possible at each IoT device independently based on its avail-

able device energy. However, geographical and temporal over-

lap can cause redundant data and unnecessary transmissions,

wasting energy at the device. Cooperative monitoring allows

IoT devices to share information and coordinate sensing to

address these challenges. Our goal is to develop a lightweight

and efficient distributed cooperative monitoring solution that

minimizes inter-device communication overhead. We show our

“Sensing Together” solution architecture in Fig. 1. We rely

on any existing solution to provide the initial task parameter

values and have used the SEMA-A algorithm from [3] in

this work. We propose two on-device distributed algorithms

that reduce spatio-temporal overlap in two token rounds using

our token passing protocol: A Distributed Task Adaptation

(DTA) algorithm (§ IV) that adapts the task values based on

neighbors task information and a Distributed Block Scheduler

(DBS) (§ V) that schedules task sensing operations. Next, we

review SEMA-A in [3] (§ III-A), describe the abstractions

forming the basis of our algorithms in § III-B, and discuss the

communication setup in § III-C.

A. Decentralized Task Value Computation and IoT Hardware

There are three main differences in the SEMA-A imple-

mentation used in this work for decentralized task value

computation. First, in [3] image quality was the image task

parameter; however we fixed the image quality, and used

number of images taken per epoch ni (ranging from 1–30).

Second, instead of the night algorithm, we always use the

SEMA-A algorithm for task selection. Third, we only consider

image, temperature, and humidity tasks. The prototype IoT

device used in [3] is based on a Raspberry Pi Zero W,

supports WiFi and has multiple sensors including a camera and

temperature and humidity sensors (see Fig. 1). It is powered

by a Li-ion battery and solar panel.

1) Task Energy and Utility Characterization: The utility

function in SEMA-A is a simple concave utility function of the

form Uk = 1−e−fk/x, where fk is the task parameter for task

k, and x is a task-dependent utility constant.The task energy

models were determined by executing multiple experiments

and fitting a curve. The total energy used per device is the sum

of the base (idle) energy for device operations and additional

energy for each task Ek characterized by its variable task

parameter fk. For the image, temperature, and humidity tasks,

the equation for the additional energy used has the form,

Ek = fk(Ek,base+Eus
k,base), where k = i, t or h for image,

temperature, and humidity; sk,base is the size of the sensor

data uploaded, and Eu (Joules/MB) [15] is the TCP upload

transmission energy per MB. For image Ei,base= 0.80943J,

si,base=3.516MB, (see [3] for more details).

2) Model Predictive Control (MPC) Formulation: [3] uses

a Model Predictive-based approach for IoT energy manage-

ment that caters to local environmental conditions at each IoT

device. The goal is to choose task parameters that maximize

the sensing utility over a time horizon of M epochs (till

06:00am the next day), subject to battery charging charac-

teristics/limits and renewable energy supply predictions. This

is given by the MPC formulation in Eqns. 1-5, where task

k has a sensing optimization variable fk with a minimum

value fk
min, a utility function Uk, and an assigned weight wk.

Emin and Emax are the minimum and maximum battery levels

allowed. R(m) represents the energy pushed into or taken out

of the battery during epoch m and has a maximum value

of Rmax(m) i.e. recharge limit of the battery. Ek(f
k(m))

represents the total energy required by task k in epoch m when

its task value is set to fk. The predicted solar energy available

during epoch m is S(m) (given by the solar prediction

mechanism proposed in [3]), the base energy required by the

device while idle is Ebase and Ŝ = S(m) − Ebase. The

maximum battery voltage is vmax, epoch duration in seconds

is e (we use 15 min epochs from [3]) and the current flowing

into the battery is I . Here, all tasks have equal weight.

max
fk(m)≥fk

min

M
∑

m=m0

∑

k∈K

Uk(f
k(m)), (1)

subject to:
E(m) = min [E(m− 1) +R(m), Emax] , ∀m, (2)

R(m) = min

[

Ŝ(m)−
∑

k∈K

Ek(f
k(m)), Rmax(m)

]

, ∀m,

(3)
Rmax(m) =

IeE(m)vmax

Emax
, ∀m, (4)

E(m) ≥ Emin, ∀m. (5)

The MPC formulation represents a convex optimization prob-

lem, but without any specific structure that would allow it to be

solved efficiently within the small computing and memory ca-

pabilities of a typical IoT device. However, under a reasonable

approximation that the charging limit Rmax(m) does not vary

appreciably with the battery charge level, an assumption that

is experimentally justified in [3], an algorithm, SEMA-A, that

solves the MPC in low time complexity is proposed. SEMA-A

rewrites Eqns. 1- 5 transforming the optimization problem into

an energy allocation problem (Eqn. 6) and a sensor scheduling

problem (Eqn. 7) where g(m) =
∑

k Ek(f
k(m)).
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max
g∈G,g(m)≥gmin

M
∑

m=m0

V (g(m)), (6)

where V (g(m)) = max
g(m),fk(m)≥fk,min

∑

k∈K

Uk(f
k(m)). (7)

SEMA-A uses this bi-level decomposition and a novel com-

bination of a recursive dynamic programming-like procedure

and an incremental max-min fair allocation method to solve

the approximate MPC problem in cubic time complexity

(O(M3 + MK2)), where K is the total number of tasks

and M is the total number of epochs. While the details of

the SEMA-A algorithm are not necessary to understand the

contribution of this paper, it is worth noting that SEMA-

A runs independently on each IoT device and provides the

initial task values (which are also the upper bounds). Using

these task values (without adaptation) and scheduling sensing

times without any coordination would result in high spatial

and temporal coverage overlap which we address with our

DTA and DBS algorithms.

B. Spatial and Temporal Coverage Abstraction

Let IoT device i have an ID si and fk
i represent task

k’s value computed by the device independently (using the

SEMA-A algorithm). We adapt the fk
i value cooperatively

through token-based coordination using DTA and then sched-

ule the sensing operations using DBS. Since our cooperative

sensing objective is to minimize the sensing overlap, the spatial

and temporal coverage model has to be chosen accordingly.

Spatial Overlap Abstraction: Geographical coverage over-

lap determines which devices are neighbors and their over-

lapping coverage amount. Two IoT devices are coverage

neighbors (or simply neighbors) if they have non-zero overlap

in their coverage areas. If we discretize the area of interest

into a set of grid points, two IoT devices are neighbors

if their coverage areas share at least one grid point. While

discretization is unnecessary for our framework, we use it for

ease of exposition. Based on task type, coverage area shapes

may differ; e.g., temperature and image tasks have circular and

conical shapes respectively. Devices may thus have different

sets of neighbors per task. The goal of DTA (Section IV) is to

reduce the amount of overlap coverage between all neighbors

that sense the area in an epoch, across all the grid points.

Temporal Overlap Abstraction: If we view sensing (an

instantaneous operation for each task) at an IoT device as

a spike on a timeline, then the scheduling question involves

finding where to place the spikes so the sensing instances per

grid point are spaced out to provide the best temporal coverage

of the grid point. To reduce computation and communication

complexity for coordination, we assume that every epoch the

fk
i spikes at device i are uniformly spaced in time, with an

interval wk
i = e/fk

i between them (e is the epoch duration).

This lets us view the sensing process for a task at an IoT

device as a comb (Fig. 2a). Thus, with multiple IoT devices

(multiple combs) running the same task, scheduling all task

executions to maximize temporal coverage becomes equivalent

to a comb placement problem, where the combs are placed

to maximize the inter-spike gap at each grid point. (see

Fig. 2b). The optimal comb placement problem is still quite

(a) Task executions as a comb (b) Comb placement problem

(c) Comb to brick to block (d) Block overlap

Fig. 2: Task Abstractions

complex to formulate and solve since each comb (device)

has a different number of spikes (determined by DTA) and

therefore different inter-spike times. Towards developing a

low-complexity solution, we “spread out” the spike from one

execution to the next, forming a “brick”. The spreading out

of the spike is reasonable because for example in periodic

sensor measurements, data obtained from one measurement is

considered valid/fresh until the next periodic measurement is

due. Therefore multiple spikes transition into multiple bricks

placed side by side, since the task executions are uniformly

distributed within the epoch. The multiple bricks side by side

can then be represented by a single block characterized by a

device ID si, a start time Sk
i when the first brick starts, an

end time T k
i when the last brick ends, and a block height

1/wk
i where wk

i is the task period representing the number of

seconds between successive task executions (sensing actions).

Tasks with higher number of task executions have shorter inter-

task intervals, and hence higher block height. Fig. 2c shows

this comb-to-brick-to-block task abstraction.

The task scheduling problem is now framed as a block

placement problem where we only consider temporal overlap

with neighboring nodes. Therefore at a given node, our goal is

to place the current node’s block on top of its neighbor’s blocks

to minimize total overlap with the blocks of all its neighbors

aggregated across all commonly covered grid points.

C. Communication Protocol Overview

Our algorithm does not depend on deployment, but requires

devices to communicate with neighbors (i.e., nodes with

overlapping coverage) using the underlying wireless network.

Inter-device communication: We assume the devices com-

municate with their neighbors using a logical, circular Dis-

tributed Hash Tables (DHT) network [16]. Communication

between neighbors in the DHT may be either through an access

point or a relay (if using device-to-device communication).

Therefore, we assume the DHT can be constructed such

that the peering relationship reflects the coverage neighbor

relationship as described in Section III-B. Each IoT device
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(a) (b) (c)

Fig. 3: Token 1 (N-S direction)

(a) (b) (c)

Fig. 4: Token 2 Case 1 (S-N direction)

(a) (b) (c)

Fig. 5: Token 2 Case 2 (S-N direction)

knows the address of its next live neighbor and is resilient

to connectivity changes as is typical with DHTs. Connectivity

among neighbors is maintained independently of our sched-

uler. WiFi is used in [3], however, our protocol is independent

of the communication technology. Other technologies like

LoRA, BLE, etc., can be used for extra energy savings.

Token Passing: We use token-passing to share information

between IoT devices and assume that existing token ring

techniques (IEEE 802.5) [17] can address challenges like

handling lost or duplicate tokens and leader election. The

token carries information from upstream nodes (IoT devices

that have already run our algorithms). The upstream nodes’

information carried in the token includes si and task informa-

tion including Sk
i , wi and fk

i . We assume the token is large

enough to carry sufficient geographical neighbor information

for all upstream neighbors of the current device.

IV. TASK ADAPTATION

SEMA-A determines the upper bound task parameter values

for each device. We introduce the term “coverage threshold”

(CT ) representing the minimum number of measurements

(sensor readings) required per grid point, per epoch, and per

task. For instance, a temperature task with CT = 9, requires a

minimum of 9 temperature measurements over each covered

grid point per epoch. The application determines the value

of CT which only applies to grid points covered by the IoT

network. The measurements to achieve CT can be provided

by a single IoT device or multiple devices working together.

This requires coordination between neighboring devices, when

multiple devices cover the same grid points.

The coverage value, denoted by ckg , is the current total

number of measurements for task k in an epoch over grid

point g. It is determined by adding the total number of task

executions (i.e., fk
i values for all i devices) for task k from

all devices covering grid point g in an epoch. For example,

if we have 3 IoT devices (s1, s2, and s3) covering grid point

g = 10 and they have maximum temperature task values 5, 6,

and 2 respectively (where k = t for the temperature task). If

CT = 9 then one solution to meet this threshold is to use task

values 4, 3, and 2 at s1, s2, and s3 respectively. This means

that during an epoch s1 takes 4 measurements, s2 takes 3

measurements and s3 takes 2 measurements resulting in total

grid point coverage of grid point 10, ct10 = 9. The mechanism

by which this is done is discussed later in this section.

If ckg > CT (over coverage), energy is wasted because the

extra measurements are not required. If ckg < CT (under

coverage), the grid point is under-covered and insufficient

sensing information is being provided. Our target is to ensure

that for all covered grid points every epoch ckg = CT (threshold

coverage), which satisfies the coverage requirements without

wasting energy. Using the neighbor’s task information, DTA

adapts the task values at an IoT device to achieve this. Tokens

traverse the network in two rounds and share information

between IoT devices.

A. Forward Traversal of Token (Token 1)

The token travels say in a North-South direction in the

network, as determined by the communication architecture

(Section III-C). Consider an example where the token travels

through devices in ascending ID order. IoT device 5 (s5)

covers grid points 1-4 which are also covered by other IoT

devices 1-4. Figs. 3a-3c illustrate the algorithm’s operation

for task k when the token arrives at s5. DTA extracts the

neighbor’s task k information from the token, saves it, and

determines the current coverage of all its grid points. This

is shown by the blue bars in Fig.3a, with coverage values

ck1 = 7, ck2 = 5, ck3 = 4 and ckg4 = 1 for grid points 1-4.

DTA finds the difference between the coverage values and

CT for each grid point, (shown by the red bars d1 − d4 in

Fig.3b). DTA then finds the mean of the differences, i.e. d =
mean(d1, d2, d3, d4) = mean(2, 4, 5, 8) = 4.75 ≈ 4, and the

updated intermediate task value for s5 f̃k
5 is the minimum

of the upper bound task value fk
5 from SEMA-A and d i.e.

f̃k
5 = min(fk

5 , d). Fig. 3c shows the updated coverage values

with the new f̃k
5 for s5 included. Here we assumed f̃k

5 = d
and therefore the updated coverage values are ck1 = 7 + d =
11, ck2 = 5+d = 9, ck3 = 4+d = 8 and ckg4 = 1+d = 5 for grid

points 1-4 respectively. The token is updated with s5 data and

forwarded to the next node. This distributed approach allows

each device to adapt its values based only on information from

its upstream neighbors.

B. Reverse Traversal of Token (Token 2)

The second token travels in the reverse direction carrying

information from devices that were “downstream” when using

token 1 to nodes that were previously “upstream”. Once the

token arrives at a device, it uses the “upstream” neighbor

information saved when processing token 1, the “downstream”

neighbor information carried in token 2, and its own intermedi-

ate task value f̃k
i to calculate the current grid point coverage.

In our example, information from IoT devices 6, 7, and 8

(which were previously downstream) is now carried to IoT

device s5 which combines this information with the previously
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received information from IoT devices 1-4. The device now

has information from all its neighbors.

Case 1: All grid points coverage is greater than CT .

This is an over-coverage case illustrated by the blue bars

in Fig. 4a, which represent the current coverage per grid

point and exceed the coverage threshold CT . Note that these

coverage values are calculated including the intermediate task

value f̃k
5 at s5. DTA finds the excess coverage per grid point

represented by d1 = 4, d2 = 3, d3 = 1 and d4 = 2 and

shown by the green bars in Fig. 4b. DTA then finds the

maximum excess coverage value that can be removed while

ensuring all coverage remains at least CT (d3 in this case).

The final task value is the intermediate value determined in

the forward round minus the maximum excess coverage that

can be deleted i.e.
≈

fk
5 = f̃k

5 − d3, reducing over-coverage.

Fig. 4c shows the final grid point coverage with the updated
≈

fk
5

values. In this case since d3 = 1 the updated coverage values

are ck1 = 13− d3 = 12, ck2 = 12− d3 = 11, ck3 = 10− 1 = 9
and ck4 = 11− d3 = 10 for grid points 1-4 respectively.

Case 2: At least one grid points coverage is less than

CT . This is an under-coverage case shown by the blue bars in

Fig. 5a. DTA finds the under coverage per grid point (d2 = 4,

d3 = 2, and d4 = 6 shown by the red bars in Fig. 5b).

DTA then finds the maximum under-coverage difference (d4
here) and tries to minimize this. Therefore the final task value

is the minimum of the upper bound (from SEMA-A) and

the intermediate task value plus the maximum under-coverage

difference, i.e.
≈

fk
5 = min(fk

5 , f̃
k
5 + d4), which reduces under-

coverage. Assuming the final task value
≈

fk
5 = f̃k

5 + d4 the

updated coverage values are then ck1 = 9 + 6 = 15, ck2 =
5 + 6 = 11, ck3 = 7 + 6 = 13 and ck4 = 3 + 6 = 9 for grid

points 1-4 respectively. Note that although we do have over-

coverage because the final task value
≈

fk
5 affects coverage of

all grid points covered by si, we prioritize ensuring we meet

the coverage threshold over reducing the over-coverage.

C. Analysis

In the token forward traversal, each device only ensures

an average coverage level of CT over all the grid points in

its coverage area; individual grid points can still be short of

the required coverage threshold CT . This deficit is made up

during the token reverse traversal. The following result argues

that, if the network has enough energy, each grid point will

be covered up to CT at the end of the reversal traversal step.

Theorem 1. The desired coverage level (CT ) for task k at

grid point g is satisfied at the end of the reverse traversal of

the token, as long as
∑

i∈Ng
fk
i ≥ CT .

Proof. Let Ng be the nodes in the DHT covering grid point g.

Also, let f̂k
g =

∑

i∈Ng

≈

fk
i be the total coverage of grid point

g for task k at the end of the reverse traversal step. Since each

node i ∈ Ng schedules up to rate fk
i to meet the threshold

CT in the reverse traversal step, the only way the threshold

CT may not be met is if
∑

i∈Ng
fk
i < CT , which contradicts

the assumption. This proves the result.

Theorem 1 is more of a feasibility result showing our solution

attains threshold CT if it is possible to attain it with the

task parameters given by the SA algorithm. One goal of task

adaptation is to avoid coverage redundancy. This depends on

the level of coordination, determined by the number of devices

whose task parameter information is carried by the token,

which we denote by ∆. Extreme values, ∆ = 0 represents

no coordination while ∆ = NDHT (number of DHT devices)

represents full coordination among all the DHT devices. Under

uniformity assumptions on the device deployment pattern and

DHT topology, it can be argued that the amount of redundancy

(over the required CT ) goes down with ∆ as O(1/∆). On the

other hand, the message length grows as O(∆), capturing the

trade-off between efficiency and message complexity.

V. SCHEDULING

Intuitively, the sensing times of neighboring IoT devices

should be staggered as much as possible to minimize the

possibility that those devices are all sensing the same area

simultaneously. For complexity reasons, we use uniformly

distributed sensing times for the K sensors (tasks) at a device

(see Section III-C), with frequency given by SEMA-A and

further adapted by DTA (see Section IV). In the block sensing

model (Section III-B), the only variable to optimize is the start

time of the sensing block subject to fitting the entire block in

an epoch. Here, we describe how to do it optimally (under

the protocol constraints) and in a computationally efficient

manner.

A. Block Scheduling Model

For each IoT device sensing pattern, represented as a block

(Section III-B), our goal is to minimize the temporal coverage

overlaps by multiple sensors covering the same area. Since

the sensors are scheduled sequentially according to their DHT

position, when a sensor is scheduled, our objective is to place

its sensing block to minimize coverage overlap with all prior

sensing blocks whose positions have already been chosen. The

sensor block is scheduled in the DTA reverse traversal step,

once the task value is finalized. Therefore, when the token

reaches device i, it carries information on the starting time

Sk
u and task frequency information

≈

fk
u for ∆ sticks traversed

immediately before stick i in the DHT. Since the sensing

points
≈

fk
i and their inter-sensing interval wk

i are known, the

width and height of the sensing block are known for each task

k. Therefore, only the start time Sk
i (and end-time T k

i ) needs

to be optimized, given the start times of the ∆ devices in the

DHT traversed immediately before device i, to minimize their

spatial overlaps in coverage with i being scheduled. For device

u, let αiu denote its spatial coverage overlap with i.

Let Oiu(S
k
i ) denote the overlap of the two devices when

the start time of task k sensing block for i (currently being

scheduled) is Sk
i (variable), while the position of the sensing

block of u is fixed (pre-determined) (see Fig. 2d). The overlap

is calculated by considering the shaded area formed by over-

laying the sensing blocks of i and u, and counting when they
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Algorithm 1 Distributed Block Scheduler Algorithm

Require: token; bi = [si, Si,dline, Ti,dline, fk = 1
wk

i

]

output← []
blocks← createDeltaBlocks(token)
wall← createWall(blocks)
y ← getTransitionPoints(wall)
for j = 0 .. len(y) do

S1 ← y[j];T2 ← y[j];S2 ← T2 − wk
i fk {Place block bi

start and end boundaries at transition point}
for S in [S1, S2] do

if 0 ≤ S ≤ Sdeadline then

bi ← updateStartT ime(S)
overlap← calcOverlap(bi, blocks) {Eqn.9}
output.append([S, overlap])

Sk
i ← getMinOverlap(output)

overlap. The optimization goal is to choose Sk
i that minimizes

overlap with all ∆ devices scheduled prior to i, i.e.,

S∗k
i = argmin

Sk
i

∑

u

αiuOiu(S
k
i ), where (8)

Oiu =

(

1

wk
i

+
1

wk
u

)

[

min(T k
i , T

k
u )−max(Sk

i , S
k
u)
]

+
; (9)

T k
i = Sk

i + wk
i ∗ f

k
i . (10)

Here, αiu represents the geographical coverage overlap be-

tween devices i and u (0 indicates no overlap at all) and

[z]+ = max(0, z). In general, the function Oiu(S
k
i ) is neither

convex nor concave. This implies that standard convex opti-

mization tools cannot solve this problem. Further, even though

Sk
i is a scalar, it varies over a continuous space, making it a

one-dimensional continuous optimization problem. However,

we can utilize the linearity of the problem to develop an

algorithm that computes the optimum block start time S∗k
i

in (8)-(10) in time complexity O(∆2), described below.

B. Distributed Block Scheduling Algorithm

The DBS algorithm (Algorithm 1) describes scheduling of

a single task, and is run separately for each task at a device.

To explain the operation of DBS, we use the example of

device s5 (i = 5) scheduling task k. Device s5 has four

already scheduled neighbors (s1-s4) with their information in

the token. When device i (5) receives the token, for each task k
it extracts the information (Sk

j , w
k
j ) for each of the ∆ (4 in this

example) device j included in the token. Device i generates

blocks b1 − b4 for the prior ∆ devices (Fig. 6b), with respect

to which it must place its own block (see Fig. 6a) optimally.

The optimal placement of device i’s block can be visualized

as follows. The Block Scheduler arranges the prior ∆ blocks

along a timeline to create a “wall structure” where blocks

with overlapping time spans are placed one on top of another

(see Fig 6c). The figure assumes that the weights αiu are the

same for all prior blocks u, else they would have to be scaled

accordingly. From the figure, it is clear that time points where

the wall height changes (ti, t2, · · · ) – or “transition points”

(Fig 6d) – correspond to the start or end points Sk
u, T

k
u of all

the prior blocks u. Clearly, there are up to 2∆ such transition

points. As the block of device i slides along this time axis,

the total value of the overlap function changes only when

the block’s start time Sk
i or end time T k

i , hits a transition

point. The steps where Sk
5 = t1, S5,dline and T k

5 = t3, t4 are

illustrated in Figs.7a-7d

Theorem 2. There exists an optimum solution S∗k
i such that

either S∗k
i or T ∗k

i is a transition point, i.e., either S∗k
i or T ∗k

i

equals Sk
u or T k

u for some prior block u.

Proof. For the sake of contradiction, assume that all optimum

solutions of (8)-(10) are such that neither S∗k
i nor T ∗k

i are

transition points. Consider any such optimum solution.

Consider any prior block u among the ∆ prior blocks. From

(9), we see that increasing Sk
i “slightly” (from S∗k

i ) would

increase Oiu linearly with slope βiu, where βiu is either 0,

(1/wk
i + 1/wk

u), or −(1/wk
i + 1/wk

u), until either Sk
i or T k

i

reaches a transition point. This continues until this increase

in Sk
i is large enough (say δ+u > 0) for either Sk

i or T k
i

to become a transition point. Since Oiu is linear, decreasing

Sk
i “slightly” (from S∗k

i ) would then naturally increase Oiu

linearly with slope −βiu; this continues until the decrease in

Sk
i is large enough (say δ−u > 0) for either Sk

i or T k
i to become

a transition point. Let β =
∑

u αiuβu.

First consider the case β > 0. In this case, we increase

Sk
i by δ+ = minu δ

+
u , which results in either Sk

i or T k
i

becoming a transition point, while the objective function in (8),
∑

u αiuOiu(S
k
i ) strictly increases (from

∑

u αiuOiu(S
∗k
i )).

This contradicts the assumption that S∗k
i is optimal.

For the case β < 0, the argument is similar. In this case,

we decrease Sk
i by δ− = minu δ

−
u , resulting in either Sk

i or

T k
i becoming a transition point, while the objective function in

(8),
∑

u αiuOiu(S
k
i ) strictly increases from

∑

u αiuOiu(S
∗k
i ).

This again contradicts the assumption that S∗k
i is optimal.

Finally, for the case β = 0, we either increase Sk
i by δ+

or decrease it by δ−, which keeps the objective function the

same at
∑

u αiuOiu(S
∗k
i ) (optimum), but results in either Sk

i

or T k
i becoming a transition point. This also contradicts our

assumption that in all optimum solutions, neither S∗k
i nor

T ∗k
i are transition points. Since all the three cases lead to

a contradiction, this proves the result.

Theorem 2 allows us to find S∗k
i by only computing the

overlap function (8) corresponding to the 4∆ transition points.

Each computation of the overlap function takes O(∆) time,

which implies that the optimum starting time of block i can

be found in O(∆2) running time. This method is illustrated

in Figure 7, and at a high-level in Algorithm 1.

VI. EVALUATION AND RESULTS

We use on-device and simulation experiments to evaluate

the performance of our algorithms. For the simulations, we

estimated energy use and coverage based on measured device

data over several days (under different weather conditions).

We consider a small network as a base case and then study a

larger deployment. The evaluation metrics are total experiment
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(a) Current block (b) Prior ∆ blocks

(c) ∆ blocks wall (d) Transition points

Fig. 6: Construction of the wall for blocks

(a) S5 = t1 (b) T5 = t3

(c) T5 = t4 (d) S5 = S5,dline

Fig. 7: Placing block b5 at transition points Fig. 8: DTA and DBS Execution time

TABLE I: Token and tasks epoch communication energy

Min Max
Energy(J) Data(B) Energy (J) Data(B)

Image 1.318998 3.516x10
6 39.569936 105.48x10

6

Temp 0.000103 275 0.001547 4,125

Hum 2.063x10
−5 55 0.000309 825

Token 0.000178 474 0.000263 700

(a) Non-uniform deployment (b) Average overlap

Fig. 9: Baseline results without task adaptation

energy used and average total temporal overlap. We compared

the performance of “Sensing Together” against several sched-

ulers described next.

A Random Scheduler (Random) that selects a random start

time from 0 to the task start deadline, as the token travels

to each device. This ensures all task executions are completed

within the epoch. A Centralized Optimal Scheduler (NLP) that

operates at the sink, and uses data from all devices. A Gurobi

optimizer solves the Non-linear Program which is the best

case bound. The optimization problem for a single task k is

given by min
∑

pq α
k
pq max

(

0, Ok
pq

)

for any two devices sp
and sq . It minimizes the overlap between all IoT devices in

the network while ensuring the overlap between any two IoT

devices p and q (which is calculated using Eqns. 9 and 10) is

always positive. An Iterative Distributed Scheduler (It. Dist.)

that repeatedly randomly schedules an IoT device using DBS

until the solution converges. It also uses all of the neighbor’s

information, not just upstream neighbors like DBS, without

placing any token size restrictions. An Alternate Scheduler

(Alt.) which alternately schedules the task start times to be

0 or the start deadline (limit) as the token travels between

devices.

A. On-device Experiments

We deployed our Sensing Together solution onto three

devices. The initial token size is 474 Bytes and increases by

approximately 113 Bytes each time another device processes

it. An increase in the token size results in a slight increase

in the total execution time for the DTA and DBS algorithms.

However, 80% of the time it is less than 0.6s. Fig. 8 shows the

cumulative distribution on all the devices over several days.

The communication energy for the tasks and token was

calculated using the equations described in Section III-A1.

Table I shows that the maximum token communication energy

(in this 3-node network) is comparable to the lowest energy

task (humidity) operating at maximum frequency. The last

node in the DHT transmits the largest token and so uses the

maximum token communication energy. The energy for trans-

mitting the token from the current device can be calculated

from 0.000178+ (∆) ∗ 4.2391 ∗ 10−5. Here, 0.000178J is the

minimum token transmission energy, 4.2391 ∗ 10−5J is the

additional energy required every time we add 133B of data to

the token. These results show that our algorithm design cou-

pled with a small token size gives a feasible solution enabling

operation directly on the devices with minimal execution time

and communication energy.

B. Simulation Experiments - Baseline Results

As a baseline experiment, we use a small network of 8 IoT

devices deployed in a 10m x 10m grid. Each IoT device’s ID

corresponds to its grid point location and the IoT device IDs

are 22, 46, 59, 66, 67, 73, 75, and 79. Each IoT device runs

three tasks (image, temperature, and humidity sensing) with

the variable parameter being frequency of execution. We use

coverage threshold value CT = 9 for all tasks. The coverage

area radius is 2m for all tasks (see green circles and red cones

in Fig. 9a). The experiment duration was 48 hours and we

show results for a cloudy day solar profile for both days. We

slightly varied solar patterns and the starting battery energy

(which was approximated at 6,000J) for each IoT device. We

use a non-uniform deployment (Fig. 9a) where some devices

may have overlapping coverage (e.g., device 66). We first run

the experiment with the DTA algorithm disabled and compare

the performance of the five different schedulers. DBS results

in the graphs are marked as “Block”.

1) Schedulers without DTA Adaptation: Without DTA,

all IoT devices use the initial task values from SEMA-A.

The average temporal overlap of the schedulers (averaged

across multiple experiment runs) is in Fig. 9b. Temporal

overlap, measured in seconds, indicates the total time during
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(a) Average overlap (b) Total energy (c) Battery energy

(d) Image task values (e) Epoch energy (f) Legend for Figs. 10c-10e

Fig. 10: Baseline Experiments with Task Adaptation (DTA)

an experiment when any two neighboring IoT devices are

simultaneously performing sensing operations. Lower values

are preferable. Neighboring IoT devices are those sharing

spatial coverage of at least one grid point. The minimum and

maximum temporal overlap values are determined by the task

values at each device. DBS performs best with a low overlap

value, close to the optimal (NLP) solution. The Iterative

Distributed and Alternate schedulers perform slightly worse,

while the Random scheduler has much worse performance.

The Iterative Distributed Scheduler exhibits slightly poorer

performance compared to DBS because its final converged

overlap value is influenced by the initial “seed” chosen during

simulation. Therefore, we averaged the results across multiple

Iterative Scheduler iterations to get the final converged value

which yields higher average overlap values. The solid lines

in Fig. 10c show the starting battery energy levels per device

and battery discharge pattern. The battery slowly discharges

throughout day 1 for all devices till they all shut down

temporarily early on day 2. However, high task values are still

used for all tasks on day 1 (see Fig. 10d for the image task,

no adaptation case). As more solar energy becomes available

on day 2 even on this cloudy day, the IoT devices can charge

their batteries, restart and perform sensing tasks. But on this

cloudy day, the batteries cannot be sufficiently charged, and

therefore only minimum task values are used. Between epochs

79-81 on day 2, all the IoT devices shut down again and do

not recover (again, until the next day).

2) Benefit of Task Adaptation: Fig. 10a shows the average

overlap for all tasks when DTA is added to the schedulers.

Now, DBS performs best with values close to the optimal. The

Random Scheduler performs the worst. Fig. 10b compares the

total energy used per device using DBS and with (orange) and

without (blue) DTA. Adaptation provides energy savings at all

devices enabling them to operate over the 2 days (dashed lines

in Fig. 10c show the battery changes at each device (legend

in Fig. 10f)). In particular, device 66 has much higher energy

saving due to its overlap i.e., all its grid points are also covered

(a) Image task (no adaptation) (b) Image task (with adaptation)

(c) Legend

Fig. 11: Image grid point coverage with/without adaptation

by its neighboring devices (see Fig. 9a).

Cooperative sensing with adaptation allows a device with

overlaps e.g. device 66 to conserve energy by using min. task

values, and thus DBS+DTA allows all tasks to be run over 2

days. Fig. 10d compares the initial image task values with no

adaptation from SEMA-A (solid lines) and the final adapted

task values (dotted lines) from DTA (similar results were seen

with the other tasks). On day 2 when some neighbors use lower

task values due to lower energy availability e.g., devices 46

and 67 between epochs 1 and 71, DTA at device 66 increases

its task value. Thus, ensuring the coverage threshold is still met

for all its grid points. This shows how DTA uses cooperative

sensing to meet the coverage threshold, enabling higher-energy

IoT devices to compensate for devices with lower energy and

conserve energy at devices when the threshold is already met

by upstream neighbors.

The energy per epoch (see Fig. 10e) shows a recurring

sawtooth pattern during day 2, between epochs 1-8 when the

devices intermittently power down. This is because, within

an epoch, the battery charges enough to power up the device
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momentarily. But, after this stored energy is immediately

allocated to task execution, the battery is depleted, leading

to device shutdown. As more solar energy becomes avail-

able during the day, the battery can be charged more, thus

mitigating this sawtooth pattern. However, with DTA (dotted

lines), the total energy per epoch remains relatively fixed and

stable. Experimental results also show energy savings at the

IoT devices range from 0.16% to 36% with an average of 5%.

We compare the grid point coverage per epoch with DBS

with and without DTA (see Figs. 11a- 11c for the image task

results). Similar results were seen with all tasks. Red and green

indicate under-covered and over-covered grid points respec-

tively. Blue shows grid points that are at the target coverage

threshold. Using DTA (task adaptation) significantly reduces

over-coverage (green) and under-coverage (red), providing the

highest number of grid points at the coverage threshold (blue).

In terms of percentages, for the image task, DBS without DTA

shows 53.5% of grid points are under-covered while 46.6% are

over-covered. DBS+DTA reduces under-coverage and over-

coverage to 20.9%, and 10% respectively, and increases the

percentage of grid points at the coverage threshold to 69%.

C. Simulation Experiments - Large Network Results

We used a non-uniform deployment pattern in a

100mx100m grid, 100 sticks and CT = 9. Due to the network

size and centralized scheduler runtime we only compared DBS

with the Random and Alternate schedulers and enabled the

DTA for all. We evaluated the performance during cloudy

and sunny weather. Energy saved per device on sunny days is

higher than on cloudy days due to the higher initial task values.

On average, adaptation yielded per-device energy savings of

3.34% on cloudy days vs. 38.53% on sunny days. The max-

imum energy savings observed for an individual device was

44.92% on a sunny day. We also evaluated DBS, Random, and

Alternate schedulers with different CT values. DBS always

performs best, then Alternate, then Random Schedulers.

VII. CONCLUSION

In this paper, we presented a cooperative sensing solution

that utilizes distributed coordination between multi-sensor IoT

devices. Spatial redundancy is minimized (while meeting a

minimum desired coverage level) through a distributed token

passing algorithm (DTA). DTA utilizes a DHT and a two step

(forward and reverse) token traversal process to balance energy

consumption among all the devices traversed by the token.

The reverse token traversal process also optimizes the exact

sensing instants using our DBS algorithm, which runs in time

that is quadratic in token size and minimizes temporal overlaps

between sensors with overlapping coverage. For both DTA and

DBS, the token size trades off computation and communica-

tion complexity with the efficiency of sensing operations. Our

on-device experiments demonstrate that our algorithm coupled

with a small token size requires minimal execution time and

communication energy. DTA simulation results show average

energy savings of 5% per IoT device in small networks under

various weather conditions. Some devices with overlapping

coverage areas achieve energy savings above 30%. Further,

DBS consistently achieved performance close to the optimal.
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