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Abstract. The Predict-Then-Optimize framework uses machine
learning models to predict unknown parameters of an optimization
problem from exogenous features before solving. This setting is com-
mon to many real-world decision processes, and recently it has been
shown that decision quality can be substantially improved by solving
and differentiating the optimization problem within an end-to-end
training loop. However, this approach requires significant computa-
tional effort in addition to handcrafted, problem-specific rules for
backpropagation through the optimization step, challenging its appli-
cability to a broad class of optimization problems. This paper pro-
poses an alternative method, in which optimal solutions are learned
directly from the observable features by joint predictive models. The
approach is generic, and based on an adaptation of the Learning-to-
Optimize paradigm, from which a rich variety of existing techniques
can be employed. Experimental evaluations show the ability of sev-
eral Learning-to-Optimize methods to provide efficient and accurate
solutions to an array of challenging Predict-Then-Optimize problems.

1 Introduction

The Predict-Then-Optimize (PtO) framework models decision-making
processes as optimization problems whose parameters are only par-
tially known while the remaining, unknown, parameters must be esti-
mated by a machine learning (ML) model. The predicted parameters
complete the specification of an optimization problem which is then
solved to produce a final decision. The problem is posed as estimating
the solution *(¢) € X C R"™ of a parametric optimization problem:

2" (¢) = argmin f(,¢) (1a)
such that: g(x) <0, h(xz) =0, (1b)

given that parameters ¢ € C C R? are unknown, but that a correlated
set of observable values z € Z are available. Here f is an objective
function, and g and h define the set of the problem’s inequality and
equality constraints. The combined prediction and optimization model
is evaluated on the basis of the optimality of its downstream decisions,
with respect to f under its ground-truth problem parameters [13]. This
setting is ubiquitous to many real-world applications confronting the
task of decision-making under uncertainty, such as planning the short-
est route in a city, determining optimal power generation schedules,
or managing investment portfolios. For example, a vehicle routing
system may aim to minimize a rider’s total commute time by solving
a shortest-path optimization model (1) given knowledge of the transit
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times ¢ over each individual city block. In absence of that knowledge,
it may be estimated by prediction models based on exogenous data z,
such as weather and traffic conditions. In this context, more accurately
predicted transit times é tend to produce routing plans %*(f) with

shorter commutes, with respect to the true city-block transit times ¢.
However, direct training of predictions from observable features to

problem parameters can generalize poorly with respect to the ground-
truth optimality achieved by a subsequent decision model [21, 16]. To
address this challenge, End-to-end Predict-Then-Optimize (EPO) [13]
has emerged as a transformative paradigm in data-driven decision
making, where predictive models are trained to directly minimize loss
functions defined on the downstream optimal solutions x* (é ).

On the other hand, EPO implementations present two key chal-
lenges: (i) They require backpropagation through the solution of the
optimization problem (1) as a function of its parameters for end-to-end
training. The required backpropagation rules are highly dependent on
the form of the optimization model and are typically derived by hand
analytically for limited classes of models [3, 1]. (ii) Furthermore, dif-
ficult decision models involving nonconvex or discrete optimization
may not admit well-defined backpropagation rules.

To address these challenges, this paper outlines a framework for
training Predict-Then-Optimize models by techniques adapted from
a separate but related area of work that combines constrained opti-
mization end-to-end with machine learning. This paradigm, called
Learn-to-Optimize (LtO), learns a mapping between the parameters
of an optimization problem and its corresponding optimal solutions
using a deep neural network (DNN), as illustrated in Figure 1(c).

The resulting DNN mapping is then treated as an optimization proxy
whose role is to repeatedly solve difficult, but related optimization
problems in real time [30, 14]. Several LtO methods specialize in
training proxies to solve difficult problem forms, especially those
involving nonconvex optimization.

The methodology of this paper recognizes that existing LtO meth-
ods can provide an array of implementations for producing learned
optimization proxies, which can handle hard optimization problem
forms, have fast execution speeds, and are differentiable by construc-
tion. As such, they can be adapted to the Predict-Then-Optimize
setting, offering an alternative to hard optimization solvers with hand-
crafted backpropagation rules. However, direct transfer of a pretrained
optimization proxy into an EPO training loop leads to degradation of
accuracy in the proxy solver, for which an end-to-end learning solu-
tion is proposed. The resulting Learning to Optimize from Features
(LtOF) framework extends the Learn-to-Optimize problem setting to
encompass that of Predict-Then-Optimize, by learning to construct
optimal solutions directly from features, as illustrated in Figure 2(d).
Contributions. This paper makes the following novel contributions:



Predicted
parameters

Feature
variables

Optimal
solution

Neural network

Optimization solver

(d) Learning to optimize from features

Forward pass %
Backward pass €—

Figure 1: [llustration of Learning to Optimize from Features, in relation
to other learning paradigms.

(1) It investigates the use of pretrained LtO proxy models as a means
to approximate the decision-making component of an EPO pipeline,
and demonstrates a distributional shift effect between prediction and
optimization models that leads to loss of accuracy in EPO training.
(2) It proposes Learning to Optimize from Features (LtOF), in which
existing LtO methods are adapted to learn solutions to optimization
problems directly from observable features, circumventing the dis-
tributional shift effect over the problem parameters. (3) The generic
LtOF framework is evaluated by adapting several well-known LtO
methods to solve Predict-then-Optimize problems with difficult opti-
mization components. Besides outperforming conventional two-stage
approaches, the results show that difficult nonconvex optimization
components can be incorporated into PtO pipelines naturally, and
illustrate how high decision quality can be reached in such cases even
when gradient-based EPO alternatives fail.

2 Problem Setting and Background

In the Predict-then-Optimize (PtO) setting, three distributions of data
are assumed. Observable features z ~ Z are correlated with the
unknown coefficients ¢ ~ C of a parametric optimization problem (1),
which in turn defines corresponding optimal solutions *(¢) ~ X.
We aim to learn optimal solutions &*(¢) to problem (1) without
knowing the objective coefficients ¢, but knowing instead the cor-
related features z. More precisely, the goal is to learn a mapping
xg : Z — X from observable features z to feasible solutions of (1b),
while aiming to optimize their objective value (1a) under the ground
truth coefficients ¢. Assuming a joint distribution (2, ) ~ €, this
can be expressed as

Miniemize E(z.¢)~a [f (®6(2),¢)]. (@)

A deterministic mapping * : C — X from problem coefficients
to optimal solutions is defined by optimization problem (1), and can
be implemented using any solution method which solves (1). As such,
approaches to solving (2) are commonly based on framing &g as a
composite prediction-and-optimization model z* o Cy : Z — X, in
which Cy : Z — C is a neural network trained to estimate problem
coefficients ¢ from the observable features z. The prediction and

optimization components Cp and ™ are called, respectively, the first
and second stage models.

Two main approaches are typically used to train the predictive
component é = Cy(z), in order to realize the training goal (2):
B Two-stage Method. A conventional approach to training the pa-
rameter prediction model ¢ = Cy(2) is the rwo-stage method. It
trains to predict the problem coefficients by MSE regression from
their ground-truth values; i.e. with loss function £(¢, ¢) = [|€ — ¢|I3.
without accounting for the downstream optimization during training.
This direct minimization of prediction errors is consistent with the
goal (2) of optimizing the objective value f(z*(¢), ¢). However, by
ignoring the effect of error propagation from predicted coefficients
¢ to downstream optimal solutions z* (¢) in the second stage, this
naive approach is known to result in suboptimal objective values
f (<), ¢) [13], yielding poor performance on the PtO goal (2).
B End-to-End Predict-Then-Optimize. Improving on the two-stage
method, the End-to-end Predict-Then-Optimize (EPO) approach trains
Cy directly to optimize the objective f(z*(¢), ¢) as a loss function
by gradient descent. This is enabled by finding or approximating the

derivatives through * (). This corresponds to end-to-end training of
the PtO goal (2), where &p = x* o C:

Minimize E(z,¢)~q [f (@*(Co(2)), )] ©)

EPO training consistently outperforms two-stage methods with re-
spect to the goal (2), especially when the mapping z — ¢ is complex,
due to the aforemention error propagation effect. See Figure 1 (a) and
(b) for an illustrative comparison, where the constraint set is denoted
with F. An overview of related work on EPO is reported in Section 6.

Challenges in End-to-End Predict-Then-Optimize

Despite their advantages over the two-stage, EPO methods are known
to face two key challenges: (1) Differentiability: the need for hand-
crafted backpropagation rules through *(¢), which are highly de-
pendent on the form of problem (1), and rely on the assumption of
derivatives % which may not exist, and require that the mapping
(1) is unique, producing a well-defined function; (2) Efficiency: the
need to solve the optimization (1) to produce &*(¢) for each sample,
in deployment and at each iteration of training. The results of Section
5 demonstrate a further potential pitfall of EPO training: even when
differentiable, nonconvexity of (1) can cause its gradients to provide
unhelpful descent directions for EPO training.

This paper is motivated by a need to address these disadvantages.
To do so, it recognizes a body of work on training DNNS as learned
optimization proxies which have fast execution, are automatically dif-
ferentiable by design, and specialize in learning mappings ¢ — x*(¢)
of hard optimization problems. While the next section discusses why
the direct application of learned proxies as differentiable optimization
solvers in an EPO approach tends to fail, Section 4 presents a success-
ful adaptation of the approach, in which predictive models are trained
to solve the PtO training goal (2) directly.

3 EPO with Optimization Proxies

The Learning-to-Optimize problem setting encompasses a variety of
distinct methodologies with the common goal of learning to solve
optimization problems. This section characterizes the LtO setting,
before proceeding to describe an adaptation of LtO methods to the
Predict-Then-Optimize setting.

H Learning to Optimize. The idea of training DNN models to em-
ulate optimization solvers is referred to as Learn-to-Optimize (LtO)



[16]. Here the goal is to learn a mapping F, : C — X from the param-
eters ¢ of an optimization problem (1) to its corresponding optimal
solution &*(¢)(see Figure 1 (¢)). The resulting proxy optimization
model has as its learnable component a DNN denoted F,,, which may
be augmented with further operations S such as constraint corrections
or unrolled solver steps, so that F, = & o F,,. While training such
a lightweight model to emulate optimization solvers is in general
difficult, it is made tractable by restricting the task over a limited
distribution of problem parameters ¢ ~ C. A variety of LtO methods
have been proposed, many specializing in learning to solve problems
of a specific form. Some are based on supervised learning, where
precomputed solutions *(¢) are required as target data in addition
to parameters ¢ for each sample. Others are self-supervised, requiring
only knowledge of the problem form (1) along with instances of the
parameters ¢ for supervision in training. LtO methods employ special
learning objectives to train the proxy model F,:

Minimize E¢-c [4“0 (Fw(c),c)] , “

where /© represents a loss that is specific to the LtO method em-
ployed. A primary challenge in LtO is ensuring the satisfaction of
constraints g(&) < 0 and h(&) = 0 by the solutions & of the proxy
model F,. This can be achieved, exactly or approximately, by a
variety of methods, for example iteratively retraining Equation (4)
while applying dual optimization steps to a Lagrangian loss function
[14, 24], or designing S to restore feasibility [12], as reviewed in
Section 5.4. In cases where small constraint violations remain in the
solutions x at inference time, they can be removed by post-processing
with efficient projection or correction methods as deemed suitable for
the particular application [16].

EPO with Pretrained Optimization Proxies

Viewed from the Predict-then-Optimize lens, learned optimization
proxies have two beneficial features by design: (1) they enable very
fast solving times compared to conventional solvers, and (2) are
differentiable by virtue of being trained end-to-end. Thus, a natural
question is whether it is possible to use a pre-trained optimization
proxy to substitute the differentiable optimization component of an
EPO pipeline. Such an approach modifies the EPO objective (2) as:
@
———
Minimize E(. ¢)~o {f(Fw (C’g(z))7 C)] , )
6 N——"
¢
where the solver output z*(¢) of problem (2) is replaced by the
prediction & obtained by LtO model F;, on input é (gray highlights a
pretrained model, with frozen weights w).

However, a critical challenge in LtO lies in the inherent limitation
that ML models act as reliable optimization proxies only within the
distribution of inputs they are trained on. This challenges the imple-
mentation of the idea of using pretrained LtOs as components of an
end-to-end Predict-Then-Optimize model as the weights 6 update
during training, leading to continuously evolving inputs Cy(z) to the
pretrained optimizer Fi, . Thus, to ensure robust performance, F,,
must generalize well across virtually any input during training. How-
ever, due to the dynamic nature of 6, there is an inevitable distribution
shift in the inputs to F,, , destabilizing the EPO training.

Figures 2 and 3 illustrate this issue. The former highlights how
the input distribution to a pretrained proxy drifts during EPO train-
ing, impacting both output and backpropagation. The latter quantifies
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Figure 3: Effect on regret as LtO proxy acts outside its training set.

this behavior, exemplified on a simple two-dimensional problem (de-
scribed in Appendix A), showing rapid increase in proxy regret as é
diverges from the initial training distribution ¢ ~ C (in black). >
The experimental results of Table 2 reinforce these observations.
While each proxy solver performs well within its training distribution,
their effectiveness deteriorates sharply when utilized as in equation 5.
A step toward resolving this distribution shift issue allows the weights
of F, to adapt to its changing inputs, by jointly training the prediction
and optimization models:
@
—_——
Minimize E(z ¢)vo {f (Fw (Cg (z)) , C)} .
0,w N —

S

(6)

The predictive model Cy is then effectively absorbed into the predic-
tive component of Fy,, resulting in a joint prediction and optimization
proxy model J4 = F,, o Cy, where ¢ = (w, 6). Given the require-
ment for feasible solutions, the training objective (6) must be replaced
with an LtO procedure that enforces the constraints on its outputs.
This leads to the joint training framework presented next.

4 Learning to Optimize from Features

The distribution shift effect described above arises due to the discon-
nect in training between the first-stage prediction network Cy : Z —
C and the second-stage optimization proxy F,, : C — X. However,
the Predict-Then-Optimize setting (see Section 2) ultimately only
requires the combined model to produce a candidate optimal solution
& € X given an observation of features z € Z. Thus, the intermedi-
ate prediction é = Cj(z) in Equation (6) is, in principle, not needed.
This motivates the choice to learn direct mappings from features to
optimal solutions of the second-stage decision problem. The joint

2 The Appendix can be found online at https://arxiv.org/pdf/2311.13087.



model Jy : Z — X is trained by LtO procedures, employing

Minimize E(z,¢)0 [13“0 (J¢(z), c)} . @

This method can be seen as a generalization of the Learn-to-Optimize
framework, to the Predict-then-Optimize setting. The key difference
from the typical LtO setting is that problem parameters { € C are
not known as inputs to the model, but the correlated features z € Z
are known instead. Therefore, estimated optimal solutions now take
the form & = J,(z) rather than & = F,,(¢). Notably, this causes
the self-supervised LtO methods to become supervised, since the
ground-truth parameters ¢ € C now act only as target data while the
feature variable z takes the role of input data.

We refer to this approach as Learning to Optimize from Features
(LtOF). Figure 1 illustrates the key distinctions of LtOF relative to the
other learning paradigms studied in this work. Figures (1c) and (1d)
distinguish LtO from LtoF by a change in model’s input space, from
¢ € Cto z € Z. This brings the framework into the same problem
setting as that of the two-stage and end-to-end PtO approaches, shown
in Figures (1a) and (1b). The key difference from the PtO approaches
is that they produce an estimated optimal solution z*({) by using
a true optimization solver, but applied to an imperfect parametric
prediction é = Cy(z). In contrast, LtOF directly estimates optimal
solution &(z) = Jy(z) from features z, circumventing the need to
represent an estimate of ¢.

Advantages of LtOF Section 5 demonstrates various LtOF im-
plementations which can greatly outperform two-stage methods in
terms of the optimality of their learned solutions, and are competitive
with EPO training based on exact differentiation through «*(¢). In
contrast to EPO, this is achieved without access to exact optimization
solvers, nor models of their derivatives. Two advantages of LtOF over
EPO training, demonstrated in Section 5, are emphasized next.

4.1 Efficiency Benefits

Because the primary goal of the Learn-to-Optimize methodology is
to achieve faster solving times than are possible with conventional op-
timization solvers, the LtOF approach broadly inherits this advantage.
As learned neural network mappings, LtOF models of joint predic-
tion and optimization can have order-of-magnitude lower runtimes
than other PtO methods which require to solve the full optimization
problem (1) at inference time (see Table 1). This enables the design
of real-time PtO models within the LtOF framework.

4.2 Modeling Benefits

While EPO approaches require the use of problem-specific backprop-
agation rules, the LtOF framework instead requires an existing LtO
implementation which can learn to solve the PtO problem’s second-
stage optimization component. Section 5.2 shows how several LtOF
implementations can succeed where EPO training fails, on a problem
with a nonconvex oscillating objective term (see Figure 5). This re-
sult is significant but intuitive, since derivatives through a nonconvex
function often do not correspond to useful descent directions for mini-
mization. By contrast, the LtOF approach learns to construct solutions
to the nonconvex problem directly from features, without relying on
their derivatives, by drawing from existing LtO methods [14, 24, 12]
that reliably learn to solve both convex and nonconvex optimization.

5 Experimental Results

The LtOF approach is evaluated against two-stage and EPO baselines,
on three Predict-Then-Optimize tasks, each with a distinct second
stage optimization component * : C — X, as in equation 1. These
include a convex quadratic program (QP), a nonconvex QP variant,
and a nonconvex program with sinusoidal constraints, to showcase
the flexibility of LtOF over various problem forms.

Performance Criteria. Each PtO method considered in this section
is evaluated on the basis of its downstream decisions &, which are
required to be feasible to the problem constraints (1b). Subject to fea-
sibility, the object is to minimize the expected ground-truth objective
f(&,¢) as per (2). This is equivalent to minimizing expected regret,
defined as the magnitude of suboptimality of a solution & to problem
(1) with respect to the ground-truth parameters:

regret(&, ) = f(&,¢) — f(x"(¢),¢)- ®)

LtOF methods. Three different LtOF implementations are evalu-
ated on each PtO task, based on distinct Learn-to-Optimize methods,
reviewed in detail in Section 5.4:

o Lagrangian Dual Learning (LD) [14], which augments a regression
loss with penalty terms, updated to mimic a Lagrangian Dual ascent
method to encourage the satisfaction of the problem’s constraints.

o Self-supervised Primal Dual Learning (PDL) [24], which uses an
augmented Lagrangian function to perform joint self-supervised
training of primal and dual networks for solution estimation.

e Deep Constraint Completion and Correction (DC3) [12], which
relies on a completion technique to enforce constraint satisfac-
tion, while maximizing the empirical objective function in self-
supervised training.

While several other Learn-to-Optimize methods have been pro-
posed in the literature, the above-described collection represents di-
verse subset which is used to demonstrate the potential of adapting
the LtO methodology as a whole to the PtO setting.

Feature generation. End-to-End Predict-Then-Optimize methods

integrate learning and optimization to minimize the propagation of

prediction errors—specifically, from feature mappings z — ¢ to the
resulting decisions * () (regret). It’s crucial to recognize that even
methods with high error propagation can yield low regret if the pre-
diction errors are low. To account for this, EPO studies often employ
synthetically generated feature mappings to control prediction task
difficulty [21]. Accordingly, for each experiment, we generate fea-
ture datasets (2z1,...2zny) € Z from ground-truth parameter sets

(¢1,...¢n) € C using random mappings of increasing complexity.

A feedforward neural network, G*, initialized uniformly at random

with k layers, serves as the feature generator z = G*(¢). Evaluation

is then carried out for each PtO task on feature datasets generated
with k € {1, 2,4, 8}, keeping target parameters ¢ constant.

Baselines. In our experiments, LtOF models use feedforward net-

works with k hidden layers. For comparison, we also evaluate two-

stage and, where applicable, EPO models, using architectures with m

hidden layers for each m € {1, 2,4, 8}. Additionally, for each task

and each m € {1, 2,4, 8}, we evaluate EPO model with pretrained
optimization proxies, which predictive model Cj is, or is not, pre-
trained by MSE regression, as the two-stage predictive model. Further

training specifics are provided in Appendix B.

Comparison to LtO setting. It is natural to ask how solution quality

varies when transitioning from LtO to LtOF in a PtO setting, where

solutions are learned directly from features. To address this question,
each PtO experiment includes results from its analogous Learning to

Optimize setting, where a DNN F, : C — A’ learns a mapping from
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k=4 k=28

Method Portfolio N/conv. QP AC-OPF

LD it 0.0003 0.0000 0.0004
% LD fct 0.0000 0.0032 0.0516
= PDLit 0.0003 0.0000 0.0006
PDL fct 0.0000 0.0032 0.0207
DC3 it 0.0011 0.0001 -
DC3 fct 0.0003 0.0000 -
PtO-1 et 0.0054 0.0122 2.5922
Q@ PtO-2et 0.0059 0.0104 2.5841
A~ PtO-4 et 0.0062 0.0123 2.5835
PtO-8 et 0.0067 0.0133 2.5907

Table 1: Execution (e?), inference (it), and feasibility correction
(fct) times for LtOF and PtO (in seconds) for each sample. Two-
stage methods execution times are comparable to PtO’s ones.

the parameters ¢ of an optimization problem to its corresponding
solution «*(¢). This is denoted k=0 (LtO), indicating the absence
of any feature mapping. All figures report the regret obtained by LtO
methods for reference, although they are not directly comparable to
the Predict-then-Optimize setting.

Finally, all reported results are averages across 20 random seeds
and we refer the reader to Appendix B for extensive additional details
regarding experimental settings, architectures, data generation and
hyperparamaters adopted.

5.1 Convex Quadratic Optimization

A well-known problem combining prediction and optimization is the
Markowitz Portfolio Optimization [26]. This task has as its optimiza-
tion component a convex Quadratic Program (QP):

z*(¢) =argmax Tz — A" Sz, st. 17z=1 (9
x>0

in which parameters ¢ € R represent future asset prices, and deci-
sions « € R represent their fractional allocations within a portfolio.
The objective is to maximize a balance of risk, as measured by the
quadratic form covariance matrix 3, and total return ¢ . Historical
prices of D = 50 assets are obtained from the Nasdaq online database
[23] and used to form price vectors ¢;, 1 < ¢ < N, with N =12,000
individual samples collected from 2015-2019. In the outputs & of each
LtOF method, any feasibility violations are restored, at low computa-
tional cost, by first clipping [&]+ to satisfy & > 0, then dividing by
its sum to satisfy 172 = 1. The convex solver cvxpy [11] is used
as the optimization component in each baseline method.

Results. Figure 4 shows the percentage regret due to LtOF variants
based on LD, PDL and DC3. Two-stage and EPO models are evaluated
for comparison, with predictive components given various numbers
of layers. For feature complexity k£ > 1, each LtOF model outper-
forms the best two-stage model, increasingly with &k and up to nearly
two orders of magnitude when k = 8. The EPO model, trained us-
ing exact derivatives through (9) using the differentiable solver in
cvxpylayers [1] is competitive with LtOF until k£ = 4, beyond
which its best variant is outperformed by each LtOF variant. This
shows the ability of LtOF models to reach high accuracy under com-
plex feature mappings without access to optimization solvers or their
derivatives, in training or inference, in contrast to EPO methods.

Table 1 presents LtOF inference times (i) and feasibility correction
times (fct), compared with the per-sample execution times (ef) for
PtO methods. Run times for two-stage methods are closely aligned
with those of EPO, and thus omitted. Notice how LtOF methods are
at least an order of magnitude faster than the PtO baselines.

5.2 Nonconvex QP Variant

As a step in difficulty beyond convex QPs, this experiment considers
a generic QP problem augmented with an oscillating objective term,
resulting in a nonconvex optimization problem:

x*(¢) = argmin %wTQw + CT sin(x) (10a)

s.t. Ae=0b, Gz < h. (10b)

A variant of this formulation was used to evaluate the LtO methods
proposed both in [12] and in [24]. Following those works, 0 < Q €
R™ ™ A € R™a*™ b c R™, G € R"ea*™ h € R™ned and each
¢; has elements drawn from a normal distribution. The EPO baseline
for comparison differentiates (10) via the fixed-point conditions of a
locally convergent Projected Gradient Descent method, implemented
using the fold-opt library [17]; details on this EPO model are in
Appendix B. Feasibility is restored by a projection onto the feasible
set, efficiently calculated by as a convex QP. The problem dimensions
are n = 50 neq = 25, and Nineq = 25.

Results. Figure 5 (top) shows regret due to LtOF models based on
LD, PDL and DC3, along with two baseline PtO methods. The best
two-stage models perform poorly for all values of k, implying that the
regret is particularly sensitive to prediction errors in the oscillating
term. As alluded earlier, EPO training based on differentiation of
(10) performs even worse. This is intuitive, since gradients of the
objective in (10a) do not correspond to descent directions, due to its
nonconvex sin term [8]. Thus, backpropagation through (10) guides
the EPO model (3) to poor local minima in gradient descent train-
ing. The LtOF models achieve over 4 x times lower regret than the
best baselines, suggesting strong potential for LtOF when predict-
ing parameters of nonconvex objective functions. Additionally, the
LtOF methods execute several times faster than both baselines, after
restoring feasibility.

5.3 Nonconvex AC-Optimal Power Flow

Given a vector of marginal costs ¢ for each generator in an electrical
grid, the AC-Optimal Power Flow problem optimizes the generation
and dispatch of electrical power from generators to nodes with pre-
defined demands. The objective is to minimize cost, while meeting
demand exactly. The full optimization problem is specified in Ap-
pendix A, where a quadratic cost objective is minimized subject to



Portfolio Nonconvex QP AC-OPF
Method k=2 k=4 k=8| k=2 k=4 k=8 |k=2 k=4 k=8
LD Regret 17170 21540 21700 | 9.9279  9.7879  9.5473 | 0.0748 03762 0.7231
LD Regret (*) 15739 2.0903 2.1386 | 9.9250  9.8211 95556 | 0.0013 0.0071  0.0195
& LD Violation (*) 0.0010  0.0091 0.0044 | 00148 00162 00195 | 0.0020 0.0037 0.0042
S PDL Regret 15150  2.0720 23830 | 7.2699 10747  7.6399 | 0.8714 0.8012 0.8373
= PDL Regret (¥) 14123 19372 20435 | 72735 10749  7.6394 | 0.0260 0.0243  0.0242
PDL Violation (¥) 0.0001  0.0003 0.0003 | 00028 00013 00015 | 0.0000 0.0002 0.0002
DC3 Regret 21490 23140 2.6600 | 14271 11028  10.666 - - -
DC3 Regret (¥) 21490 23140  2.6600 | 13779 11755  10.849 ; ; -
DC3 Violation (¥) 0.0000 0.0000 0.0000 | 05158 05113 05192 ; ; -
O EPO Regret (Bes) 09220 14393 47495 | 103978 117.651 130379 | - - -
& EPOw/Proxy Regret (Best) 15440 11931 11469 | 81275 80426  789.50 | 389.04 41389  404.74
EPO w/Proxy and pretrained ) 703 3050 22158 | 21453 198.02 24193 | 52344 55195  60.052
prediction Regret (Best)
Two-Stage Regret (Best) 28500 44790 91326 | 36.168 37399 38297 | 14090 15280 24740

Table 2: Percentage Regret and Constraint Violations for all experiments. (*) denotes “Before Restoration”. Missing entries denote experiments

not achievable with the associated method.
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Figure 5: Comparison between LtO (k = 0), LtOF, and Two Stage
Method (2S) on the nonconvex QP (top) and AC-OPF case (bottom).
Top plot y-axe is in semi log-scale.

nonconvex physical and engineering power systems constraints. This
experiment simulates an energy market situation in which generation
costs are as-yet unknown to the power system planners, and must be
estimated based on correlated data. The goal is to predict costs so as to
minimize cost-regret over an example network with 54 generators, 99
demand loads, and 118 buses taken from the NESTA energy system
test case archive [10]. Cost data are generated as perturbations around
the test case’s cost values as described in Appendix B. Feasibility is
restored after LtOF by Newton’s method on the constraint violations
as specified in Appendix A.

Results. Figure 5 (bottom) presents regret percentages, comparing
LtOF to a two-stage baseline. Note that no general EPO exists for
handling such nonconvex decision components. It is found empirically
that the Lagrangian Hessian is not positive-semidefinite, preventing

even a differentiable convex QP appromixation at its optima, as lever-
aged in [31]. Further, the solving times reported in Table 1, due to
Casadi solver [4], are prohibitively slow for EPO training. DC3 is
also omitted, following [24], due to its incompatibility with the LtO
variant of this experiment. Notice how the best two-stage model is
outperformed by the LD variant of LtOF for £ > 1, and also by the
PDL variant for k > 2. Notably, PDL appears robust to increases in
the feature mapping complexity k. On the other hand, it is outper-
formed in each case by the LD variant. Notice how, in the complex
feature mapping regime k > 1, the best LtOF variant achieves up
to an order of magnitude improvement in regret relative to the most
competitive two-stage method. Additionally, LtOF methods report
orders-of-magnitude speed advantages in Table 1.

Table 2 collects an abridged set of accuracy results due to each
LtOF implementation and PtO baseline, across all experimental tasks.
In particular, average constraint violations and objective regret are
shown in addition to regret after restoring feasibility. Infeasible results
are shown in grey for purposes of comparing the regret loss due to
restoration. Best results on each task are shown in bold. Additionally,
regret achieved by the EPO framework with pretrained proxies (dis-
cussed in Section 3) are included. Average regrets between 10 and
1000 times higher than LtOF illustrate the effect of their distributional
shifts on accuracy. Notice how, in the context of complex feature
mappings k > 2, LtOF is competitive with EPO, while bringing
substantial computational advantages, and consistently outperforms
two-stage methods, often, beyond an order of magnitude in regret.

5.4 Learning to Optimize Methods

Finally, this section describes in more detail those LtO methods which
were adapted to solve PtO problems by LtOF, in the above exper-
iments. Each description below assumes a DNN model F and its
weights w, which acts on problem parameters ¢ specifying an in-
stance of problem (1), to produce an estimate of the optimal solution
& = F,(¢), sothat & ~ x*(¢).

Lagrangian Dual Learning (LD). Fioretto et al. [14] constructs
the following modified Lagrangian as a loss function for training the
predictions & = F,,(¢):

Lin(@,¢) = |& — 2" (Ol + A" [9(@, )], + k" h(&,¢). (1)



At each iteration of LD training, the model F, is trained to mini-
mize the loss Lrp. Then, updates to the multiplier vectors A and . are
calculated based on the average constraint violations incurred by the
predictions &, mimicking a dual ascent method [9]. In this way, the
method minimizes a balance of constraint violations and proximity to
the precomputed target optima x*(¢).

Self-Supervised Primal-Dual Learning (PDL). Park and Van Hen-
tenryck [24] use an augmented Lagrangian loss function

LeoL(#,C) = f(&,¢) + X g(#,¢) + A" h(2, )+

5 (Zu@j(ﬁ:)) + thj@») ,

J

(12)

where v measures the constraint violation. At each iteration of PDL
training, a separate estimate of the Lagrange multipliers is stored for
each problem instance, and updated by an augmented Lagrangian
method [9] after training & = F,,(¢) to minimize equation 5.4. In
addition to the primal network F;,, a dual network D¢ learns to store
updates of the multipliers for each instance, and predict them as
(A, f1) = D¢(C) to the next iteration. The method is self-supervised,
requiring no precomputation of target solutions for training.

Deep Constraint Completion and Correction (DC3). Donti et al.

[12] use the loss function

Loc3(2,¢) = f(&,¢) + Al [g(&, O], |13 + plh(, Q)5 (13)

which combines a problem’s objective value with two additional
terms which aggregate the total violations of its equality and inequal-
ity constraints. The scalar multipliers A and p are not adjusted during
training. However, feasibility of predicted solutions is enforced by
treating & = E, (¢) as an estimate for only a subset of optimization
variables. The remaining variables are completed by solving the under-
determined equality constraints h(x) = 0 as a system of equations.
Inequality violations are corrected by gradient descent on the their
aggregated values || [g(&, ¢)] || . These completion and correction

steps form the function S, where F,,(¢) = S o FL,(¢).

6 Related Work

This section gives an overview of related work in the Predict-Then-
Optimize setting. While the idea is general and has broader appli-
cations, differentiation through the optimization of (1) is central to
EPO approaches. Backpropagation of parametric quadratic program-
ming problems was introduced by [3], which implicitly differentiates
the solution via its KKT conditions of optimality [8]. Agrawal et al.
[2] followed by proposing a differentiable cone programming solver,
which uses implicit differentiation of problem-specific optimality con-
ditions. That framework is leveraged by [1] to solve and differentiate
general convex programs, by pairing it with a symbolic system for
conversion of convex programs to canonical convex cone programs.
For many practical problems with discrete structure, such as linear
programs, the mapping defined by (1) does not have well-defined
derivatives, necessitating a suitable approximation in EPO training.
[13, 19] propose a surrogate loss function for (2) in cases where f is
linear, which admits useful subgradients for stochastic gradient de-
scent training. [32] proposes backpropagation through linear programs
by adding a smooth quadratic term to the objective and differentiating
the resulting QP problem via [3]. [7] also propose backpropagation
through linear programs but by smoothing the mapping (1) through

random noise perturbations to the objective function. [25] form ap-
proximate derivatives through linear optimization of discrete variables,
by using a finite difference approximation between a pair of solutions
with perturbed input parameters. Finally, [18] use the barrier function
of an interior point method with early stopping to provide a smoothed
surrogate model for differentiable linear programming.

A few recent works have addressed the topic of PtO learning with-
out computing or approximating derivatives through optimization. In
[28], [29], [33] neural networks are trained to function as surrogate
models of solution regret, for use in EPO training. In [20], PtO is
recast as a learning to rank (LTR) problem and solved with various
LTR methods, in favor of EPO training.

7 Discussion and Conclusions

While the typical role of Learning to Optimize is to accelerate the
solution of optimization problems, this paper demonstrates a novel
use case: solving problems in the Predict-Then-Optimize scope. The
adaptations of LtO described in this paper bring distinct advantages
in the PtO setting, including real-time inference and enhanced ability
to handle some PtO problems with nonconvex optimization.

Another advantage of the Learning to Optimize from Features
approach to PtO settings is its generic framework, which enables it
to leverage a variety of existing techniques from the LtO literature.
On the other hand, as such, a particular implementation of LtOF
may inherit any limitations of the specific LtO method that it adopts.
Future work should focus on understanding to what extent a broader
variety of LtO methods can be applied to PtO settings; given the large
variety of existing works in the area, such a task is beyond the scope
of this paper. In particular, this paper does not investigate of the use
of combinatorial optimization proxies in learning to optimize from
features. Such methods tend to use a distinct set of approaches from
those studied in this paper, often relying on training by reinforcement
learning [6, 15, 22], and are not suited for capturing broad classes of
optimization problems. As such, this direction is left to future work.

One disadvantage inherent to LtOF, compared to EPO, is the inabil-
ity to recover parameter estimations from the predictive model, since
optimal solutions are predicted directly from features. Although it is
not required for the PtO problem setting, this may pose a challenge
if transferring the learned parameters to external solvers is desirable.
Furthermore, LtOF cannot be applied to PtO problems whose opti-
mization component does not have an effective LtO solution.

By showing that effective Predict-Then-Optimize models can con-
sist solely of Learning-to-Optimize methods, this paper has aimed
to provide a unifying perspective on these as-yet distinct problem
settings. The flexibility of its approach has been demonstrated by
showing superior performance over PtO baselines with diverse prob-
lem forms. As the advantages of LtO are often best realized in com-
bination with application-specific techniques, it is hoped that future
work can build on these findings to maximize the practical benefits
offered by LtO in settings that require data-driven decision-making.
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A Optimization Problems

Ilustrative 2D example Used for illustration purposes, the 2D
optimization problem used to produce the results of Figure 3 takes
the form

x*(¢) = argmin (a7 + Coxs
@x

s.t. x1 4+ 2x2 < 0.5,
2.%‘1 — X2 S 0.2,
1+ 22 <0.3

and its optimization proxy model is learned using PDL training.

AC-Optimal Power Flow Problem. The OPF determines the least-
cost generator dispatch that meets the load (demand) in a power
network. The OPF is defined in terms of complex numbers, i.e., pow-
ers of the form S = (p+jq), where p and ¢ denote active and reactive
powers and j the imaginary unit, admittances of the form Y = (g+4b),
where g and b denote the conductance and susceptance, and voltages
of the form V' = (v£0), with magnitude v and phase angle 6. A power
network is viewed as a graph (N, £) where the nodes N represent
the set of buses and the edges & represent the set of transmission lines.
The OPF constraints include physical and engineering constraints,
which are captured in the AC-OPF formulation of Figure 6. The model
uses p?, and p? to denote, respectively, the vectors of active power
generation and load associated with each bus and p’ to describe the
vector of active power flows associated with each transmission line.
Similar notations are used to denote the vectors of reactive power
q. Finally, the model uses v and 6 to describe the vectors of voltage
magnitude and angles associated with each bus. The OPF takes as
inputs the loads (pd, qd) and the admittance matrix Y, with entries
gij and b;; for each line (ij) € &; It returns the active power vector
p? of the generators, as well the voltage magnitude v at the generator
buses. The problem objective equation 2a captures the cost of the
generator dispatch and is typically expressed as a quadratic function.
Constraints equation 2b and equation 2¢ restrict the voltage magni-
tudes and the phase angle differences within their bounds. Constraints
equation 2d and equation 2¢ enforce the generator active and reactive
output limits. Constraints equation 2 enforce the line flow limits.
Constraints equation 2§ and equation 2h capture Ohm’s Law. Finally,
Constraint equation 2i and equation 2j capture Kirchhoff’s Current
Law enforcing flow conservation at each bus.

Feasibility restoration (AC-Optimal Power Flow) Being an ap-
proximation, a LtO solution (p?, ©) may not satisfy the original con-
straints. Feasibility can be restored by applying Netwon’s method,
which is reported in Figure 7. It is an iterative method that produces
better approximation to the root x € R?, of a function f(z) € R™
by iteratively solving a non-linear system of equations. If solving for
Xn+1, given X,, the method requires to compute the inverse of the
Jacobian J(x,) € R™*?. From Eq. 15 and 16, it can be noticed that
J(xn)Ax, = —f(xn), and so is possible to avoid computing the
inverse of the Jacobian J of f, and solving a linear system of equation
for the unknown Ax,,. In the context of restoring feasibility of the
LtO solution to the AC-Optimal Power Flow problem, f represents the
set of inequality and equality constraint functions, from equation 2b
to equation 2h, while z = [v, 6, p?, ¢?]”. Since the method requires
each f;(z),i = 1,...m to be an equality function, to construct a
system of only equations, a ReLU(f(x)) = max(0, f(z)) is applied
to each inequality function. For the AC-OPF experiment, the num-
ber of constraint function m = 602 while the number of variables
p = 472; being m > p, the inverse J~1 of the Jacobian J is the

Minimize : Z cost(p?, ¢i) (22)
ieN
st. v <o <P Vie NV (2b)
— 03 <0, —0; <05 V(ij) €& (22)
p!™" < p? < P! Vie N (2d)
g™ <qf <q!™ VieN (28)
() + (af)? < 8L vijyee @
pl; = givi — viv;(bij sin(0; — 0;)+
gij cos(0i — 0;)) V(ij) € € 29
gl = —bijv} — vivj(gij sin(0; — 0;)—
bij COS(Q»L‘ — (9])) V(’L]) S g (2;1,)
P! =Pl = jeeply ViEN (20)
@ — a4 =Yy al; ViEN (2))
Output :  (p?, v) — The system operational parameters
Figure 6: AC Optimal Power Flow (AC-OPF).
Ax, = —J 7 (x0)f (%) (15)
Xn+1 = Xn + Ax'n (16)

Figure 7: Newton’s method.
generalized inverse J* = (J7J)~'J7, and Ax,, is the solution in
the least square sense. The convergence of the method requires the
starting point xo to be such that the 2-norm || f(zo)||2 < 1. In the
experiments, we verified that such assumption holds as evidenced
by the minimal Constraint Violation achieved by each LTO method
adopted (see Table 2). We consider the method to have converged
when the absolute value of each constraint function | f; (z,)| < le—6.

B Experimental Details
B.1 Portfolio Optimization Dataset

The stock return dataset is prepared exactly as prescribed in [27].
The return parameters and asset prices are ( = a(@ + €:) where
é is the realized return at time t, ¢; is a normal random variable,
e ~ N(0, o.1), and a = 0.24 is selected to minimize E||¢; — ¢||3.
For each problem instance, the asset prices ¢ are sampled by circularly
iterating over the five year interval. In the experiments, see Prob. 9,
A =20.

The covariance matrix X is constructed from historical price data
andsetas X = FXpFT + D, where F € R™! is the factor-loading
matrix, & € S estimates the factor returns and D € S, also called
the idiosyncratic risk, is a diagonal matrix which takes into account
for additional variance for each asset.

B.2  Nonconvex Optimization Dataset

The nonconvex optimization dataset has 2400 samples, divided into
training, validation and test set, each consisting of 2000, 200 and 200
samples, respectively. With reference to 10 and 10a, the matrix QQ =
ul, where p € R™ ~ U(0,1). The parameter ¢ ~ (0, 5) and the
matrix A and G are both drawn from the normal distribution A/(0, 1).
The right-hand side of the equality constraint b ~ U/(—1, 1), while the



right-hand side of the inequality constraint h = ", |M;|, where
M =GA" and AT = (AT A)~AT.

B.3 Nonconvex AC-OPF Dataset

The nonconvex optimization dataset has 10000 samples, divided into
training, validation and test set, each consisting of 8334, 833 and 833
samples, respectively. The Nonconvex AC-OPF Dataset is constructed
by applying random perturbations of the cost values found in NESTA
benchmark case 118. More specifically, a perturbation p € 2/(0, 100)
is applied to each generator cost value (;.

B.4 Nonconvex EPO Baselines

The nonconvex QP variant (10) of Section 5 admits derivatives for
EPO training by differentiation of the fixed-point conditions of a
locally convergent solution method. Projected Gradient Descent is
known to be locally convergent in nonconvex optimization [5], and it
is found empirically to converge locally on the problem (10).

On a problem of form

z"(¢) = argmin_ f(z,))
st. ¢x€S
one step of the method follows
Tpt1 = projs(xk — aV f(xg, €)) 5)
leading to the fixed-point conditions
x" = projs(x” — aVf(z", () (6)

whose implicit differentiation results in a linear system which can be
solved for 66%:

oz* B . N oz*
B = gurPis(® —aVi@ Q) T

8 . * *
+oePis (" —aVf(z",C)) (7b)
Differentiation of the inner projection step is performed by cvxpy
[1], while the system (7) is constructed and solved by fold-opt
[17].

B.5 Hyperparameters

For all the experiments, the size of the mini-batch B of the training
set is equal to 200. The optimizer used for the training of the op-
timization proxy’s is Adam, and the learning rate is chosen as the
best among {5e — 2,1e — 2,5e — 3,1e — 3,5e — 4, 1le — 4}. For
each task, an early stopping criteria based on the evaluation of the
test-set percentage regret after restoring feasibility, is adopted to all
the LtO(F) the proxies, the predictive EPO (w/o0) proxy model, and
pre-trained predictive model; an early stopping criteria based on the
evaluation of the mean squared error is adopted to all the Two-Stage
predictive model.

For each optimization problem, the LtO proxies are 2-layers ReLU
neural networks with dropout equal to 0.1 and batch normalization.
All the LtOF proxies are (k 4 1)-layers ReLU neural networks with
dropout equal to 0.1 and batch normalization, where &k denotes the
complexity of the feature mapping. For the LtOF, Two-Stage, EPO

(w/o) Proxy algorithm, the feature size of the Convex Quadratic Opti-
mization and Non Convex AC Optimal Power Flow |z| = 30, while
for the Non Convex Quadratic Optimization |z| = 50. The hidden
layer size of the feature generator model is equal to 50, and the hidden
layer size of the LtO(F) proxies, and the 2Stage, EPO and EPO w/
proxy’s predictive model is equal to 500.

A grid search method is adopted to tune the hyperparameters of each
LtO(F) models. For each experiments, and for each LtO(F) methods,
below is reported the list of the candidate hyperparameters for each
k, with the chosen ones marked in bold. We refer to [14], [24] and
[12] for a comprehensive description of the parameters of the LtO
methods adopted in the proposed framework. In our result, two-stage
methods report the lowest regret found in each experiment and each k
across all hyperparameters adopted.

B.5.1 Convex Quadratic Optimization and Non Convex
Quadratic Optimization

LD
Parameter Values
A(0) 0.1,0.5, 1.0, 5.0, 10.0, 50.0
1(0) 0.1,0.5, 1.0, 5.0, 10.0, 50.0

50, 100, 200, 300, 500
1.0, 0.1, 0.01, 0.001, 0.0001

Training epochs
LD step size

PDL
Parameter  Values
T 0.5,0.6,0.7,0.8,0.9
P 0.1,0.5,1, 10
Prmax 1000, 5000, 10000
« 1,1.5,2.5,5,10
DC3
Parameter  Values
A4 0.1, 1.0, 10.0, 50.0, 100.0
A
Swur 0.1,0.5,0.75, 1
ttest 1, 2, 5, 10, 100
ttrain 1, 2, 5, 50, 100

Non Convex AC-Optimal Power Flow

LD
Parameter Values
A(0) 0.1,0.5, 1.0, 5.0, 10.0, 50.0
1(0) 0.1, 0.5, 1.0, 5.0, 10.0, 50.0

50, 100, 200, 300, 500
1.0, 0.1, 0.01, 0.001, 0.0001

Training epochs
LD step size

PDL
Parameter  Values
T 0.5,0.6,0.7,0.8,0.9
p 0.1,0.5,1, 10
Prmax 1000, 5000, 10000

o 1,1.5,25,5,10




