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Abstract

We propose and analyze batch greedy heuristics for cardinality constrained maximization of
non-submodular non-decreasing set functions. We consider the standard greedy paradigm,
along with its distributed greedy and stochastic greedy variants. Our theoretical guaran-
tees are characterized by the combination of submodularity and supermodularity ratios.
We argue how these parameters define tight modular bounds based on incremental gains,
and provide a novel reinterpretation of the classical greedy algorithm using the minorize—
maximize (MM) principle. Based on that analogy, we propose a new class of methods
exploiting any plausible modular bound. In the context of optimal experimental design for
linear Bayesian inverse problems, we bound the submodularity and supermodularity ratios
when the underlying objective is based on mutual information. We also develop novel mod-
ular bounds for the mutual information in this setting, and describe certain connections to
polyhedral combinatorics. We discuss how algorithms using these modular bounds relate
to established statistical notions such as leverage scores and to more recent efforts such as
volume sampling. We demonstrate our theoretical findings on synthetic problems and on
a real-world climate monitoring example.

Keywords: Greedy methods, submodularity, non-submodular functions, optimal experi-
mental design, inverse problems, mutual information, uncertainty quantification, Bayesian
statistics

1. Introduction

Many design problems in engineering and science are inherently combinatorial. A typical
goal in these problems is to select a subset of indices from a larger candidate set, by
maximizing or minimizing an objective subject to certain constraints. In resource allocation,
for instance, a goal may be to assign tasks to different actors to ensure their expedited and
efficient completion. In the climate sciences, a goal might be to create the most informative
network of monitoring stations by identifying a set of locations from a larger list of plausible
candidate sites.

Problems such as these can be formulated as the optimization of set functions. They have
a rich mathematical structure and have been studied extensively (Wolsey and Nemhauser,
1999; Lovész, 2007; Schrijver, 2003; Papadimitriou and Steiglitz, 1998). Often the set
functions exhibit properties such as submodularity (Definition 1), which allow for efficient
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optimization solutions (Fujishige, 2005). The optimization of submodular functions has
been a topic of intense research in the past decade owing to these functions’ significance for
many problems in machine learning. The maximization and minimization of such functions
under very general matroid constraints has been a focus of several studies (Vondrak, 2008;
Vondrék et al., 2011; Jegelka and Bilmes, 2011; Horel and Singer, 2016; Sviridenko et al.,
2017; Khanna et al., 2017b). For a catalog of historical efforts, as well as more recent
investigations on these topics, we refer to the monographs by Bach (2013); Krause and
Golovin (2014).

While submodularity naturally arises in many problems, there are important problems
where the objective lacks this property. Our interest is one such case, where the core
task is to maximize a non-submodular but non-decreasing objective. Such objectives are
ubiquitous in optimal experimental design (OED), a fundamental problem in statistics which
involves the specification of all aspects of an experiment. The mathematical foundations of
experimental design have a history spanning almost a century (Fisher, 1936; Wald, 1943).
Methods developed in this field are relevant to engineering, the social and medical sciences,
and econometrics. In broad terms, a typical goal is to seek a design that provides the best
“return” (suitably defined) for the least amount of experimental effort. More specifically,
we will consider optimal experimental design under cardinality constraints in the Bayesian
setting, with an objective that reflects an end goal of parameter inference. For a classical
overview of experimental design, we refer the reader to Pukelsheim (2006); Fedorov (2013),
and for a perspective on Bayesian optimal experimental design, we highlight the review by
Chaloner and Verdinelli (1995).

When maximizing a submodular function under cardinality constraints, the greedy
heuristic of successively picking the best candidate performs remarkably well despite its
simplicity (Nemhauser et al., 1978; Nemhauser and Wolsey, 1978). The same technique
works well in many cases with a non-submodular objective (Das and Kempe, 2011; Bian
et al., 2017; Khanna et al., 2017a; Elenberg et al., 2018; Qian and Singer, 2019). Yet the
repeated function evaluations necessary to update the incremental gains (Definition 5) at
every step may comprise a staggering computational cost if each function evaluation is com-
putationally intensive. It is natural, then, to ask if there are favorable properties of the
function that circumvent the need to repeatedly update the incremental gains. To what
extent do such properties hold for a given function, and how can we exploit them? And how
does the worst case bound suffer if the incremental gains are only periodically updated?

Motivated by these questions, we propose and analyze a variant of the greedy heuristic
for non-submodular functions which we refer to as batch greedy. We also analyze distributed
and stochastic versions of this batch greedy approach. Every step in these algorithms selects
a batch of indices, thus reducing the overall number of function evaluations. In many
practical problems—for instance Bayesian optimal experimental design—this heuristic still
yields excellent solutions, as we shall demonstrate.

The solution index set of the greedy algorithm results from a sequence of locally optimal
choices. The choice in every step is determined by the incremental gains associated with
each index, or—in the batch greedy setting—Dby the sum of incremental gains corresponding
to a fixed-size subset of indices. The sum of incremental gains is simply a modular function
(Definition 23) and the individual incremental gains define a subgradient (Definition 27).
Analogous to results in the convex analysis for the optimization of continuous functions, the
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performance of the greedy algorithm can be tied to properties of the subgradient. The choice
of subgradient is not unique for any real valued continuous function, and the same is true
for set functions. This observation motivates us to recast sequential greedy algorithms in
a more abstract framework using minorize-maximize (MM) optimization principles. Using
this framework, we propose several alternative modular bounds and use them to develop
novel techniques for linear Bayesian optimal experimental design.

1.1 Outline and summary of key contributions

Much of the manuscript is written with Bayesian optimal experimental design as a mo-
tivation. Yet our theoretical results are rather general: applicable to any monotone set
function. In describing these results (Section 3 and Section 4.1), we have favored a more
abstract notation to help reach a broader readership. These sections can be read more or
less independently of the rest of the paper. With the same intention, we disperse much of
the relevant literature survey into the sections that follow.

e In Section 2 we introduce some notation and background on set functions, and give
an overview of the Bayesian experimental design problem. We formulate the design
objectives we study, and comment on some of their set theoretic properties.

e In Section 3 we discuss our primary results. We provide approximation guarantees for
the batch greedy heuristic in the context of maximizing monotone but non-submodular
objectives. We analyze the standard batch greedy paradigm (Theorem 7), along with
distributed batch greedy (Theorem 8) and stochastic batch greedy (Theorem 9) vari-
ants. Our results portray the joint expressive power of the submodularity and super-
modularity ratios. These two parameters quantify how much a function deviates from
submodularity and supermodularity, respectively. We then bound these parameters
for the information theoretic objective in linear Bayesian experimental design.

e Viewing the sub/super-modularity ratios as parameters that define tight modular
bounds, we argue in Section 4 that the classical greedy heuristic can be viewed as one
instance of optimization based on the MM principle. Building on that insight, we put
forth a general framework for optimizing monotone set functions using any modular
bound (Theorem 12).

e In Section 4.2, for the problem of linear Bayesian experimental design, we explicitly
discuss one such MM-based optimization approach exploiting modular bounds on the
mutual information objectives. These modular bounds are constructed using standard
inequalities but, as we show, they have surprising connections to notions in polyhedral
combinatorics.

e In Section 5 we investigate the performance of our algorithms on random instances
of structured inverse problems, and on the problem of designing sensor networks for
improving climate models. We end with a broader discussion of future directions in
Section 6.

e Appendix A contains some background to help with the reading, and all the technical
results are collected in Appendix B.
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2. Preliminaries and notation

2.1 Set function properties and subset selection

Consider an index set ¥ = {1,...,m}, m € Zso, and let its power set (i.e., set of all
subsets) be denoted by 27, We will refer to ¥ as the candidate set. Any real-valued set-
function F : 2”7 — R such that F(0)) = 0 is submodular (Fujishige, 2005; Bach, 2013) if and
only if, for all subsets &7, 8 C ¥, we have:

F(o/)+ F(B)>F (o4 UB)+ F (4 NB). (1)

A function is supermodular if its negation is submodular, and it is modular (see also Defi-
nition 23) if it is both supermodular and submodular.

An alternative but equivalent (see Bach, 2013, Proposition 2.2) definition of submod-
ularity highlights the diminishing returns property and is often easier to demonstrate in
practice:

Definition 1 (Submodular set function defined using first-order differences) (Fujishige,
2005; Bach, 2013) The set function F is submodular if and only if, for all o/, 28 C ¥V and
v e Y such that o C B and v ¢ B, we have

F(o/ U{w}) — F(o) > F(BU{v}) — F(B).

In the experimental design problems we investigate, the indices of the candidate set will
correspond to individual components of a multivariate random variable Y € R™. For the
purpose of selecting k < m components we introduce the notion of a selection operator.

Definition 2 (Selection operator) We refer to P € R™*k, k < m, as a selection oper-
ator with index set ' (P) = Ip = {i1,...,ix} C ¥, when P = [e;,...,e;,]. The e;; are
distinct canonical unit vectors from the m-dimensional identity matriz I,,.

Two selection operators that are unique up to permutation of their columns will have
identical index sets, and are equivalent for our purposes. We will denote by S(k) the
set of all permutation invariant selection operators P with |.#(P)| = k. It is clear that
|S(k)| = (}). As an abstract operator, P can be understood as a full-column rank matrix,
and an isometry on a k-dimensional subspace of R”. Applying P on Y allows us to select
k components out of m,

Yp=P'Y =[Yy,...,Y;,]" R~ (2)

2.2 Bayesian inference and optimal experimental design

In Bayesian parameter inference, we seek to characterize the distribution of some parame-
ters of interest, X € R"™, given a realization of some (related) observations Y € R". More
specifically, having endowed X with a prior distribution (whose density we denote by mx)
and knowing the conditional density of the data my|x, we wish to characterize the posterior
distribution 7xy_,~ for some realization y* of Y.l The associated Bayesian optimal ex-
perimental design problem is to find the subset of observations Yp that is most informative

1. To simplify this exposition, we assume all random variables to have densities with respect to a suitable
base measure.
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about the parameters of interest X. Solving the inference problem with Yp, or equivalently
those observations specified by the index set .#p, will result in a posterior 7y|y, that in
general differs from mx|y. We refer to the latter as the “full posterior” to indicate it is
obtained by conditioning on all candidate observations.

To assess the quality of selected observation subset, we will evaluate the mutual infor-
mation between the inference parameter X and the selected observations Yp. Of course,
many other experimental design criteria could be considered and have been employed in
the literature. Here we focus on mutual information as it is broadly applicable, and well-
founded in Bayesian decision theory as measure of the utility of an experiment (Lindley,
1956) in fully non-Gaussian/nonlinear settings (Chaloner and Verdinelli, 1995).

Definition 3 (Mutual information) (Cover and Thomas, 2006) Let two random vari-
ables X and Y have joint density wxy and let mx and my denote the densities of their
respective marginals. The mutual information T (X;Y") is the relative entropy or Kullback—
Leibler divergence (Definition 22) between the joint density and the product density mxmy .

T
I(X; Y) = Dgr, (7rX7y||7T)(7ry) = EWX,Y log (X7Y ) .
TXTY

Bayes’ rule allows us to rewrite mutual information as an expected information gain from
prior to posterior, i.e., Z(X;Y) = E., Dxr, (7TX|YH7T)(). This interpretation is quite intu-
itive: a larger mutual information or expected information gain means that the posterior
differs more strongly from the prior, on average.

Formally, we can now state the problem of interest as follows: Given a desired number
of observations k < m, we seek a selection operator Popy € S(k) (Definition 2) such that
the mutual information between the inference parameter X and the selected observations

Yp,.. = POTptY is maximized:

Popt = argmax I(X;PTY) . (Prob-Max)
PeS(k)CRmx*k

Alternatively, we could indirectly determine the selection operator by first finding a
complementary set of observations that do not significantly inform the inference parame-
ters. While this approach may seem convoluted, its value is easier to appreciate when the
goal is to remove a small fraction of observations from the parent set while retaining the
bulk. To the best of our knowledge this has not been studied in the context of Bayesian in-
ference, but the underlying reverse/backward principle can be found in earlier investigations
concerning subset and feature selection (Couvreur and Bresler, 2000; Zhang, 2011), graph
cut approximation (Bian et al., 2015), optimization of a certain class of set functions (Il’ev,
2001), and classical experimental design using elementary symmetric polynomials (Mariet
and Sra, 2017).

For any selection operator P € S(k), let P¢ € S(m —k) denote its complement, meaning
their corresponding index sets are such that #p U #pc = ¥ and Ip N Fpe = (. Our
objective now is to minimize the loss of mutual information by discarding an optimal subset
of observations Ype = ngtTY. The loss is measured with respect to mutual information
as determined by the set of all candidate observations.

argmin T (X;Y) -7 <X; Y\ PCTY) . (Prob-Min)

c
opt —
PeeS(m—k)CRm*xm—k
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The optimal index sets pertinent to (Prob-Max) and (Prob-Min) are identical; hence we
do not distinguish between them notationally. Note, however, that the objectives differ
in how they vary as functions of #p. The objective in (Prob-Max) is a non-decreasing
function with respect to cardinality of .#p, and consequently non-increasing with respect to
Jpec. In contrast, the objective in (Prob-Min) has opposite relationships with respect to the
same cardinalities. More importantly, the two approaches have philosophical and practical
differences.

We show in Proposition 4 that the objective in (Prob-Max), is a submodular function
when the observations are conditionally independent.

Proposition 4 Given random variables X € R™ and Y € R™, let P € R™** be a selec-
tion operator such that P'Y = [Yil,...,Yik]T, with %p C V. The mutual information

I(X;PTY), between X and PY is submodular if Y;,| X are independent.

The proof is given in Appendix B.

It is worth emphasizing that the submodularity of the mutual information Z(X;PTY)
for conditionally independent observations holds even when the underlying joint distribu-
tion is non-Gaussian. As a simple corollary of Proposition 4, the objective in (Prob-Min)
can be shown to be supermodular under the same assumptions. More precisely, it is the
supermodular dual, but we will defer more discussion on the topic of duals to Section 4.2.

3. Batch greedy algorithms for maximizing monotone set functions

We now focus solely on cardinality-constrained maximization of monotone set functions.
We will not restrict these functions to be submodular. We begin with a summary of various
existing greedy heuristics, to contextualize the results that follow.

3.1 Greedy algorithms: a brief history

In the case of cardinality-constrained maximization of non-decreasing submodular functions,
the greedy heuristic of successively picking the candidate corresponding to the highest
incremental gain (Definition 5) performs well despite its simplicity. It has a constant factor
(1 —1/e) approximation guarantee (Nemhauser et al., 1978), which cannot be improved
in general by any other polynomial time algorithm (Nemhauser and Wolsey, 1978). If the
function can be shown to have small curvature ¢ € [0,1] (Definition 30), then the greedy
algorithm possesses a more refined guarantee, 1(1 —e~¢), (Conforti and Cornuéjols, 1984).
If the function is not submodular, then by incorporating a submodularity ratio v € [0, 1]
(Definition 32), Das and Kempe (2011) showed how the greedy algorithm achieves a (1—e™7)
approximation guarantee. Additionally, using the notion of generalized curvature « € [0, 1]
(Definition 31) for non-submodular functions, Bian et al. (2017) proved a more expressive
approximation guarantee, é(l —e ).

Definition 5 (Incremental gain) We denote the incremental or marginal gain of a set
o CV given a set B C V as py(B) = F(Fd URB) — F(AB). Forv € ¥V, we use the
shorthand p,(#) for py,)(5).
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Closely related variants of the greedy heuristic can be better choices depending on the
context and needs.

e Robertazzi and Schwartz (1989) explored an accelerated version wherein the computed
incremental gains are stored and exploited in the successive step, possibly reducing
the overall number of function evaluations.

e Mirzasoleiman et al. (2013) proposed a two-stage parallelized version which reduces
the number of function evaluations per parallel process. The approximation guarantee
for the algorithm, however, in general depends on the size of the candidate set and
cardinality constraint. That dependence can only be overcome in special cases.

e Mirzasoleiman et al. (2015) analyzed a randomized version of the greedy heuristic,
termed stochastic greedy. This algorithm achieves, in expectation, a (1 — 1/e — €)
approximation guarantee relative to the optimum solution. The number of function
evaluations does not depend on the cardinality constraint, but linearly on the size of
the candidate set, thus reducing the complexity substantially.

e Liu et al. (2016) analyzed the greedy heuristic wherein the locally optimal decision
involved selecting the best possible set of ¢ > 1 indices. This necessarily requires eval-
uating incremental gains associated with all combinatorial possibilities, a potentially
severe overhead but one which offers better guarantees. The algorithm was referred
to as batch greedy by Liu et al. (2016), where the batch size is the cardinality of the
locally combinatorially optimal set chosen in each step.

3.2 Batch greedy algorithm and its analysis

The variants of greedy discussed in Section 3.1 were mostly analyzed only in the context of
non-decreasing submodular functions. Our approach (Algorithms 1 to 3) can be understood
to be yet another distinct variant of the greedy heuristic, but one which we analyze for the
more general case of monotone non-submodular objectives. While we label our approach
as batch greedy, it is unlike the algorithm of Liu et al. (2016) and in some sense its polar
opposite.

In particular, we investigate the greedy strategy of picking multiple candidates in each
step but relying solely on the incremental gains associated with individual candidates. This
naturally reduces the computational overhead by avoiding combinatorial combinations, but
at the expense of inferior approximation guarantees. It is in this sense the exact opposite of
the algorithm proposed by Liu et al. (2016), since we are at the other end of the trade-off
spectrum.

Algorithm 1 describes the standard batch greedy algorithm. The total cardinality con-
straint & is necessarily the sum of batch sizes across all steps, k = ). ¢;. We seek approx-
imation guarantees for Algorithm 1 pertinent to the maximization of any non-decreasing
set function. To aid our arguments we introduce the supermodularity ratio, which has very
recently been used in other contexts too (Tzoumas et al., 2017; Bogunovic et al., 2018;
Karaca and Kamgarpour, 2018).
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Algorithm 1 Standard batch greedy algorithm

c Input F, 7, L,{q1,-..,q}
. Initialize & = ()
:fori=1tol do
Determine p,(o/) Va € ¥\ .
Find 2 C ¥ \ &/, |2| = ¢;, comprising the indices with the highest incremental
gains.
A — U2
7: end for
return Index set &7

TUs W N e

>

Definition 6 (Supermodularity ratio) The supermodularity ratio of a non-negative set
function F with respect to a set ¥ and a parameter k > 1 is

. P (B)
mr(F) = zgv,m@ﬁlgnk,mmzzm Y ovew Pu(B)

The supermodularity ratio is inspired by and related to the submodularity ratio (Defini-
tion 32), originally introduced by Das and Kempe (2011). It is a lower bound on the ratio of
the incremental gain associated with any set compared against the sum of incremental gains
associated with its elements. In contrast, the reciprocal of submodularity ratio is an upper
bound on the same quantity. Bian et al. (2017) defined the submodularity ratio without
the cardinality parameter k (Definition 33) by taking a minimum across all possibilities. In
the same way, we can define the supermodularity ratio without the cardinality parameter
as the largest scalar n such that

Pt (B)
ZI/E.Q{\:% Pv (’%)

>n, N, BCY.

We will refer to both 7y, and 7 as supermodularity ratio, preferring one over the other
depending on the context. Informally, the supermodularity ratio quantifies how close a set
function is to being supermodular, while the submodularity ratio performs the same task
for submodularity. More formally, we can prove that a function F' is supermodular iff the
supermodularity ratio n(F) = 1 (see proof in Appendix B.1). For all set functions which
are not supermodular (but which may or may not be submodular) we have the condition
n < 1 as a direct corollary.
Now we state the result corresponding to Algorithm 1.

Theorem 7 Let F be a non-decreasing function with F(()) = 0. The batch greedy algorithm
for maximizing F(</) subject to || < k oulputs a set &/ such that

l
Ny .,V k
> (1T (1 - &rark
F() 2 ( I1( k )) P P

i=1

where 7y i, is the submodularity ratio and ny 4, is the supermodularity ratio.
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The proof is given in Appendix B.1.

If we chose ¢ indices during each step with the total number of indices k = ¢l, the approx-
imation guarantee in Theorem 7 can be simplified using a standard logarithmic inequality:

_ o N,V

Fe) 2 (1—eamr) | max | F(5). (3)
Alternatively ¢ can also be the maximum batch size across all steps, ¢ = maxgq;, i =
1,...,l. The approximation guarantee as given in (3) can be viewed as a straightforward
generalization of that by Das and Kempe (2011) pertinent to the variant of greedy with
batch selection. Letting the function be submodular, v, > 1, and choosing one index in
every step, ¢ = 1, reduces the guarantee to the classical result by Nemhauser et al. (1978)
since 1y 1 = 1 for any set function. Selecting more than one index during each step worsens
the guarantee since Vkq, ko with k1 > ko > 1 we have ny p, < 7y 1,; this claim holds by

definition because the constraint set of the latter is contained in the former.
In Figure 1 we visualize the approximation factor 1 — e™".47.k in (3) for the range
of submodularity and supermodularity ratios. If the function is modular, the approxima-

1 1-1/e
053
0.71 0.42
2
= 0.32
?\ .
03 10.21
011
0 . L1
0 03 07 1 0

Nv.q

Figure 1: Visualization of the approximation factor 1 —e™"77.a77 .k in (3).

tion factor 1 — e~ 1477k reduces to 1 — 1/e, highlighting a gap in our analysis similar
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to that of Das and Kempe (2011). The supermodularity ratio 7y , is necessary to char-
acterize the batch greedy heuristic, while the submodularity ratio vy j characterizes the
non-submodularity of the function. Together, as they appear in (3) they are not suffi-
cient to refine the worst case bound accounting for modularity. The notions of curvature
(Definition 30) for submodular functions and generalized curvature (Definition 31) for non-
submodular functions have been used in non-batch settings to give refined approximation
guarantees avoiding such gaps (Conforti and Cornuéjols, 1984; Bian et al., 2017). It should
be possible to incorporate curvature in an analysis of the batch greedy heuristic to generalize
the result in Theorem 7, but we defer this investigation to the future.

If we consider the result in Theorem 7 directly and simplify it for the case when we
choose all the indices in one step, we get a tight bound:

F(t) > ny iy F(B). 4
( )_nv,kw,k%cl;"{%gk (%) (4)

The product 1y vy < 1 by definition. The algorithm returns an optimal index set if
Ny xYyk = 1. One instance of this scenario is when the function is modular, in which
case it is both supermodular and submodular, meaning vy ; = 1y, = 1,Vk and hence
Ny xYy k= 1, Vk. Of course, we can always optimize a modular function exactly, and hence
this observation is not entirely useful on its own. If we view the product of supermodularity
and submodularity ratios as a measure of deviation from modularity, however, then they
together prescribe favorable circumstances for a function that is not necessarily modular to

be almost maximized exactly.

3.3 Distributed batch greedy algorithm and its analysis

The distributed greedy algorithm for submodular maximization was first proposed by Mirza-
soleiman et al. (2013). Our distributed batch greedy approach is described in Algorithm 2.
The parameters 1 and [ are the number of iterations for which the batch greedy algorithm
is run in each round. We define k := qu and k = qT as the cumulative number of indices
returned at the end round. Similar to the setup in Mirzasoleiman et al. (2013), we allow for
index sets larger than the cardinality constraint to be returned, meaning k < min(%, k).

Algorithm 2 Distributed batch greedy algorithm

L: Input F, 7, nyp, lA,Zq
2: Partition the set ¥ into n, sets 71,..., 7,
3: Run the standard batch greedy algorithm, with batch size g, for [ iterations within each
set ¥; to yield the corresponding solution set o/ b[g 7
%,[Np,
4: Merge the result sets: J, ngib[i 5= M
) P ~
5: Run the standard batch greedy algorithm, with batch size ¢, for [ iterations on .# to

yield the solution set 7 d-be
[np, K]

return Index set o798
[npvk]

In the most general case, the input to Algorithm 2 could include different batch sizes
in each round, across parallel processes, and across different iterations. For the purpose

10
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of exposition and analysis, we have favored a simplified version of the algorithm with a
fixed /uniform batch size g. Our theoretical analysis, summarized as Theorem 8 below,
extends the work of Mirzasoleiman et al. (2013) not only to batch settings but also to
non-submodular functions.

Theorem 8 Let F be a non-decreasing function with F(0) = 0. The distributed batch
greedy algorithm for mazimizing F (<) subject to |o/| < k = ql outputs a set A such

[np,k]
that

dbg \ s (1 _ o=ty iz U0 o () VY k
F(ﬂf[np,kﬁ—(l ¢ )(1 ¢ ) R PG

where vy , v, 7 are submodularity ratios and 1y 4, is the supermodularity ratio.

The proof is given in Appendix B.1.

If F is submodular (v = 1), and further if T=1= [, then Theorem 8 can be simplified
as follows:
(1—e )

F(adbey> — — 2
( )2 min(ny, k) %CI“/I},\%gk

Note that the term appearing in the denominator of (5) is min(n,, k) and not k, the natural
expected term as per Theorem 8. In this case of F' being submodular, we rely on Mirza-
soleiman et al. (2013, Theorem 4.1) as opposed to Lemma 34 to prove the slightly improved
result in (5). The dependence of the distributed solution on min(n,, k) is in general un-
avoidable, but as argued by Mirzasoleiman et al. (2013), the ground set ¥" and function F
can exhibit rich geometrical structure that can be used to prove stronger results.

3.4 Stochastic batch greedy algorithm and its analysis

The stochastic greedy algorithm for submodular functions was first proposed by Mirza-
soleiman et al. (2015). Here we present a batch variant of the stochastic greedy algorithm,
in Algorithm 3 below.

Algorithm 3 Stochastic batch greedy algorithm

t: Input F, 7, 1. {q1,-.-,qi},s
2: Initialize & = ()
3: fori=1to!l do
4: Construct a randomly sampled set & by sampling s random elements from 7"\ &7
5: Determine p, (<), Ya € Z.
6: Find 2 C #Z, |2| = ¢i, comprising the indices with the highest incremental gains.
T A +—d U2
8: end for
return Index set &/
In the most general case, the input to Algorithm 3 includes batch sizes ¢;, i =1,...,1,

indicating the number of indices selected at each step. We will analyze the algorithm (wlog)
for the case of fixed batch size ¢ with the cardinality constraint & = ¢l. Furthermore we will

11
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restrict our analysis to the regime when the cardinality constraint is at most O(y/m); this is
very much reflective of practical scenarios when stochastic greedy algorithms are warranted.
Our theoretical analysis extends the work of Mirzasoleiman et al. (2015) not only to batch
settings but also to non-submodular functions; the main result is stated in Theorem 9.

Theorem 9 Let F' be a non-decreasing function with F(()) =0, and 0 < € < 1 be a tolerance
parameter. The stochastic batch greedy algorithm for mazimizing F(</) with s = 7 log 4,

|| <k < |y/m/e—1]/e|, and ”;e_k%k > hﬁ’g_zlg outputs a set o/ such that

> (1 = e~ @=)vy kmy,
B 2 (1 ) o P ")

where vy i, is the submodularity ratio and ny 4 is the supermodularity ratio.
The proof is given in Appendix B.1.

If the function F' is submodular (v = 1) and if the batch size is equal to one, then our
result reduces to that shown by Mirzasoleiman et al. (2015). It is worth highlighting that
the assumptions of Theorem 9—specifically the last inequality relating m, k, ¢, and e—stem
primarily from the complexity of a required probability bound, detailed as Lemma 36. The
complexities arise specifically when the batch size is greater than one. The corresponding
constraints, however, should be easily satisfied in practice. For instance, suppose that
k < %\/m/e for some x > 1. Then it is easy to see that m=2% > 471 holds when

2ek?2 — 10g
~ V/2(g—1) . . . .. .
e < qe = . When ¢ = 1, this constraint on the tolerance parameter is trivial since we

know 0 < € < 1. When ¢g > 1, a sufficiently large x will ensure that the condition can be
satisfied.

3.5 Complexity of the batch greedy algorithms

Recall that we denote the size of the candidate set ¥ as m and the desired cardinality as k.
The number of function evaluations needed to find the standard greedy solution is O(mk).

e In the batch heuristic (Algorithm 1) with a uniform batch size ¢, the number of
function evaluations reduces to O(mTk). Thus a suitably chosen batch size reduces the
computational overhead of a large cardinality constraint, but the linear dependence
on the size of the candidate set remains the same.

e For the distributed batch greedy heuristic (Algorithm 2), if k=k= k, then the
number of function evaluations per parallel process to construct the set . is (’)(%).
To determine the distributed batch greedy solution using .# we will further need

anp . .
O(=,*) function evaluations.

e For the stochastic batch greedy heuristic (Algorithm 3), the number of function eval-
uations needed to find the solution is (’)(%); here O absorbs the log g dependency
that arises since the random set Z drawn at each step scales logarithmically with the
batch size. The complexity does not depend on the cardinality constraint due to the
probabilistic nature of the algorithm.

In all three instances, the batch variant of the greedy heuristic reduces the complexity
by a factor 1/q.

12
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3.6 Theoretical guarantees for linear Bayesian optimal experimental design

The Bayesian linear—Gaussian model arises in numerous practical applications, and is a
building block for countless others. It is particularly important in inverse problems (Stuart,
2010; Kaipio and Somersalo, 2006), where the observations may depend indirectly on the
parameters through the action of a smoothing forward operator. Examples of such problems
include computerized tomography and electromagnetic source inversion. Here we discuss
theoretical guarantees for the performance of Algorithms 1 to 3 when used in optimal
experimental design for these problems. First, we set up the relevant notation and discuss
some important features of linear Bayesian experimental design.

3.6.1 LINEAR BAYESIAN INVERSE PROBLEM

Without loss of generality, we model the parameters X and observation noise € as zero-mean,
normally distributed random variables with covariance matrices I'x and I'y|x, respectively.
Here Y denotes the observed data. We assume that X and € are independent of each other.
The linear forward model that maps parameters to data is represented by G € R™*™. Hence

Y=GX +e¢ (6)

serves as our statistical model for the data and specifies the likelihood, i.e., Y|z ~ N(Gz, Ty x).
The data Y thus have a marginal distribution A (0,T'y), where the covariance I'y is

Fy = erGT + Fy|X. (7)

The linearity of the forward model, along with Gaussianity of the prior and observation
noise, allows us to characterize the posterior in closed form: X|Y ~ N (u xly, T X|y). Here
I'x|y is the posterior covariance matrix and p x|y is the posterior mean, which is a function
of the actual realization of the data y:

1
Ty = (TF' +GTTEG) (8a)
pxy (y) = FX|YGTF;/‘1Xy- (8b)

In (8a), the term GTF;?XG is the Hessian of the negative log-likelihood (i.e., the Fisher
information matrix).

The task of optimal experimental design involves selecting a subset of observations
Yp = PTY € R*, corresponding to some selection operator P € R™** such that X|Yp ~
N(px|vp, I x|y;») has minimal uncertainty (given constraints on k). We make this goal pre-
cise by using the mutual information between X and Yp, Z (X; Yp), as our design objective.
Analogous to (8) we can write the statistical moments of the posterior X|Yp as

—1
FX|Y73 = (F;{l + G;F;ilXG’P) y (9&)
pxyp (y) = FX\YPG;F;/;XPT?/- (9b)

In (9) Gp := PTG € RF*™ and Ly, 1x = PTFHXP : R¥¥F is the compression of I'yx by
P to R*. In linear algebraic terms, I'y,|x is a principal submatrix of I'y|x. In a similar

13



JAGALUR-MOHAN, MARZOUK

manner, the marginal covariance of Yp is

Iy, = GpI'xGp + Ty, x =P Ty P : RMF, (10)
From (9a) we can identify G;';F;,;‘ +Gp as the relevant Hessian term when the likelihood is
specified using any subset of observations Yp. It is clear that this term is not a compression
of the full Hessian GTF;‘lXG unless I'y| y is diagonal, meaning that the observation errors
are uncorrelated.

3.6.2 SPECTRAL PROPERTIES OF THE MUTUAL INFORMATION

Since the inference parameters X and the data Y are jointly Gaussian random variables,
the mutual information between them, Z (X;Y'), can be written as
1 det(Fy) _ 1 det(Fx)

I(X;Y)=Z(Y; X) = = log

Y — 11
2 B det(Tyx) 2 S det(Typy) -

The above expression can be easily verified from first principles. From (11), it is clear that we
could alternatively express mutual information as a function of the generalized eigenvalues
of the definite pencils (I'y,I'y|x) or (I'x,['x|y) (Definition 19). The first can be viewed
as a “data space” pencil, while the second is the corresponding “parameter space” pencil.
Since I'y = I'y|x > 0 and I'x = I'x)y > 0, the eigenvalues of both definite pencils are lower
bounded by one. Here the symbol ‘>’ denotes the Lowner ordering, or the positive semi-
definite ordering of Hermitian matrices (Definition 17). Furthermore, the two generalized
eigenvalue problems, while differing in dimension, have identical generalized eigenvalues that
are strictly greater than one. We make this fact precise through the following proposition.

Proposition 10 Let X € R" and Y € R™ be jointly Gaussian random variables as defined
in Section 3.6.1. Then the following conditions are equivalent:

1. The definite pairs (I'y —T'y|x,Ty|x) and (I'x —T'x)y,T'x}y) have identical non-trivial
generalized eigenvalues, o; > 0.

2. The definite pairs (I'y,Ty|x) and (I'x,Txy) have identical generalized eigenvalues
that are strictly greater than 1, 1+ 0; > 1.

The proof is given in Appendix B.2.

Using the notation of Theorem 10, we can now write Z(X;Y") as follows:
1
I(X;Y) = §Zlog(1+0j). (12)
J

Such an expression for mutual information in terms of the generalized eigenvalues o; has
been highlighted in many works (Alexanderian et al., 2016; Giraldi et al., 2017) that adopt
a Bayesian formalism. From a more classical statistics perspective, mutual information can
be written using the squared canonical correlation scores (Bach and Jordan, 2002) between
the concerned random variables. These scores can be computed using generalized eigenvalue
problems that are different from those in Theorem 10, but not surprisingly have a similar
dual representation.
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If we were to determine Z(X;Yp), the mutual information between X and a subset of
observations Yp, then the relevant generalized eigenvalues are those of the definite pairs
(Pyp, Ty, x) or equivalently (I'x, T'x|y;). The equivalence holds since Theorem 10 applies
to these new definite pairs constructed using the compressed covariance operators. If we
denote by 7; the eigenvalues for the case when we use a subset of observations Yp, then we
can write Z(X; Yp) in a manner analogous to (11) and (12) as

1 det(ry ) 1 det FX
(X, Y; 1 — = 71 _— 1 13
( P) =g log det(Ty,|x) ©8 det( FX|Y73 Z 8 (l+7;) (13)

The expression for mutual information Z(X;Yp) is quite revealing upon closer scrutiny.
First, notice that we can rewrite (13) as the difference of log principal determinant of the
data marginal and observation error covariance operators,

(X Yp) = % (1og det (PTFYP> ~ logdet (PTFY‘ XP)) . (14)

It is thus the difference between two set functions, each one defined as the log determi-
nant of the principal submatrix of a definite matrix. Here the set comprises the indices of
rows/columns of the principal submatrix, with each index corresponding to a unique ob-
servation. Each of those set functions can be inferred to be submodular (Gantmacher and
Krein, 1960; Kotelyanskii, 1950; Fan, 1967, 1968; Kelmans and Kimelfeld, 1983; Johnson
and Barrett, 1985). Mutual information can thus be interpreted as the difference between
two submodular functions (and hence is a DS function, following the terminology by Iyer
and Bilmes (2012)). This is not entirely surprising since it has been shown that every
set function can be decomposed as the difference between two submodular functions (see
Narasimhan and Bilmes, 2005, Lemma 4), (see Iyer and Bilmes, 2012, Lemma 3.1). This
fact is akin to how any continuous function, subject to weak conditions, can be expressed
as the sum of a convex and concave part (see Yuille and Rangarajan, 2003, Theorem 1).
Such a decomposition is not unique and can be exponentially hard to compute (Iyer and
Bilmes, 2012), but in our case it is readily apparent.

The sum of the generalized eigenvalues, ) ;, is the expected symmetrized Kullback-
Leiber divergence between the prior mx and posterior 7x|y;; this relationship is shown in
Proposition 38. Note that the expected symmetrized Kullback-Leiber divergence
Ery, [DkL(7x|vp Imx) + DxL(7x||7x|v;)] is nothing but the mutual information Z(X; Yp)
plus an additional term. It is worth contrasting this design criterion with that used in
traditional Bayesian A-optimal design, where the trace of the posterior covariance operator
(i.e., sum of simple eigenvalues) is minimized. In the former case the generalized eigenvalues
correspond to the largest reductions in posterior variance relative to the prior (see Spantini
et al., 2015, Corollary 3.1), while in the latter case the simple eigenvalues represent the
largest absolute contributions to the posterior variance, without regard to the prior. On the
other hand, Bayesian D-optimal design in the linear—-Gaussian case, wherein we minimize
the determinant of the posterior covariance operator, is identical to maximizing mutual
information; this can be easily inferred from (13).
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3.6.3 BOUNDS FOR THE PERFORMANCE OF THE BATCH GREEDY ALGORITHM

We now provide bounds for the submodularity and supermodularity ratios of the set func-
tion objective of (Prob-Max) in the setting of linear Bayesian inverse problems, where the
objective is given by (13). These bounds enter our theoretical guarantees for the solution
of (Prob-Max) using Algorithm 1.

Proposition 11 In the linear—Gaussian setting defined in Section 3.6.1, the submodularity
ratio v and supermodularity ratio n pertinent to (Prob-Max) can be both lower bounded by

%, where ( is any generalized eigenvalue of the definite pair (Fy, Fy|X).

The proof is given in Appendix B.1.

Recall from Section 3.6.1 that ( = 1 + o, where o is any generalized eigenvalue of
the definite pair (Fy — Fy|X, Fy|X). We know opmin > 0, and thus (uin > 1. If the least
eigenvalue is 1, its algebraic multiplicity is the difference between the number of observations
and the dimension of the inference parameters (Theorem 10). In such cases we obtain a
trivial bound on the submodularity and supermodularity ratios. If the dimension of the
inference parameters is greater than the number of observations, as is typically the case
in inverse problems (for instance, consider the limit n — oo analyzed by Stuart (2010)),
we obtain a non-trivial bound on the same parameters. The empirical performance of
Algorithm 1 is however impressive in all cases as will be demonstrated. Such gaps between
worst-case bounds and practical performance are commonplace in algorithmic analysis. In
this particular case the culprit is not necessarily the analysis framework, but a loose bound
on the parameters featuring in the approximation guarantee.

3.7 Relationship to other algorithmic approaches

As we have previously remarked, our results Theorems 7 to 9 can be interpreted as the nat-
ural generalization of certain existing results (Das and Kempe, 2011; Mirzasoleiman et al.,
2013, 2015) to the batch—and in some cases also to the non-submodular—settings. We now
contrast our results with specific aspects of these works and other relevant investigations.

e Das and Kempe (2011) describe the so-called “oblivious” algorithm, wherein indices
are selected ignoring any possible dependence among them. In the batch greedy
algorithm we propose, at each step we also ignore any dependence among the indices
that are selected. However we do account for dependencies with the indices already
selected. When the batch size is equal to the cardinality constraint, i.e., ¢ = k, or
equivalently if all indices are chosen in one step, i.e., [ = 1, the batch greedy heuristic
is the oblivious algorithm. When we have a batch size greater than one but strictly
less than the cardinality constraint, then the batch heuristic can be understood as the
interleaving of the oblivious and classical greedy algorithms.

e Our ideas involving batch greedy heuristics are similar in spirit to adaptive sampling
algorithms (Balkanski et al., 2018; Balkanski and Singer, 2018b,a; Chekuri and Quan-
rud, 2019b; Fahrbach et al., 2019; Chekuri and Quanrud, 2019a; Chen et al., 2019;
Balkanski et al., 2019), in that both try to add a large set of elements at each step as
opposed to growing the solution set incrementally. Qian and Singer (2019) analyze an
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adaptive sampling algorithm for the maximization of non-submodular functions. That
work introduces the notion of differential submodularity (apr € [0, 1]), which captures
how tightly incremental gains corresponding to a given non-submodular function can
be bounded by incremental gains corresponding to submodular functions. The corre-
sponding approximation guarantee for cardinality constraint maximization was shown
to be (1 — 1/e®>r — ¢), where € > 0 is a tolerance parameter in the adaptive sam-
pling algorithm. Qian and Singer (2019) show how feature selection for regression
and Bayesian A-optimal experimental design are +2-differentially submodular, where
~ is the submodularity ratio. Using similar strategies, it can be seen that the mu-
tual information-based Bayesian experimental design criterion is also y2-differentially
submodular. Consequently, the adaptive algorithm by Qian and Singer (2019) corre-
sponds to a (1 —1/ et — €) performance guarantee. In our case, however, we have a
strictly better (1 — 1/ 672) guarantee as described in Theorem 7. The approximation
factor (1 —1/ 6'72) is obtained by recognizing that the submodularity and supermod-
ularity ratios are lower bounded by the same term (see Proposition 11) and hence
we can replace n by v in (3). It is worth emphasizing that our approximation factor
(1-1/ ewz) is independent of batch size, and has no tolerance parameter.

4. Sequential greedy algorithms based on the MM principle

We now explore algorithms of a slightly different flavor, which are still greedy in a sense
but do not necessarily make the locally optimal choice corresponding to incremental gain.
They are based on the MM (minorize-maximize or majorize-minimize) principle (Lange,
2016), and involve maximizing (resp. minimizing) at every step a minorizing (resp. majoriz-
ing) counterpart function to eventually obtain the arg max (resp. argmin). Every instance
of applying the MM principle is prompted by the need to transform a hard optimization
problem into a sequence of simpler ones. Here simplicity can refer to one of many desirable
attributes, such as reduction in overall computational complexity, linearization or convexi-
fication of the problem, easing the handling of complex constraints, and so on. For a broad
survey of techniques and algorithms based on the MM principle we refer the readers to the
excellent text by Lange (2016).

While most of the work in optimization using the MM principle has been in the setting
of continuous functions, in the recent past these have been adapted to the world of set
functions (Iyer et al., 2012, 2013). Narasimhan and Bilmes (2005); Iyer and Bilmes (2012),
explored these ideas for the most general case of difference between two submodular func-
tions. Concrete hardness results on multiplicative inapproximability of such optimization
problems were also shown by Iyer and Bilmes (2012). The MM principle proves handy
in these scenarios; it is deployed by first seeking tight modular bounds for one (or both)
of the terms in the difference, and subsequently optimizing the resulting submodular (or
modular) objective using existing methods. The key property of submodular functions that
enables such approaches is that one can define a subgradient (Definition 27) and supergra-
dient (Definition 28) at every point (Fujishige, 2005; Jegelka and Bilmes, 2011), meaning
for every subset in the power set. Calculation of those semigradients, however, will require
repeated function evaluations of appropriate subsets, and the semidifferential sets (Defini-
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tions 27 and 28) that contain them constitute a polyhedral partitioning of R™ (Iyer and
Bilmes, 2015).

Our efforts utilizing the MM principle differ from the approaches summarized above
and perhaps to a certain degree from how MM algorithms are generally thought of. The
techniques by Iyer et al. (2012, 2013); Iyer and Bilmes (2012) are applicable for fairly general
constraints and can be best understood as an iterative framework where one continues until
local convergence is achieved. The algorithms we consider, however, are sequential in a
‘bonafide’ sense, meaning an individual element or a batch of elements are selected at every
step and appended to the previously chosen set of elements. Our focus is restricted to
cardinality-constrained problems. We begin by providing a reinterpretation of the classical
greedy heuristic.

4.1 Reinterpreting the classical greedy heuristic for maximization

The definitions of the submodularity and supermodularity ratios allow us to write the
following bounds for the incremental gain p. (%),

1Y 0 B) < p(B) < =Y pul(B). (15)

ved

If we view p () as a function of o7, then what we have above are modular bounds on
por(A) defined using the incremental gains p, (%), v € «7. Alternatively if we view the set
A as one individual entity and the elements of &7 as distinct entities, we can write modular
bounds on F(</ U %) in terms of F(A) and p,(AB), v € &

F(#)+1 Y pu(#) < P U#) < F@#) + = 3 pu(). (16)
ved Ve

Thus we can view the submodularity and supermodularity ratios as parameters that allow
us to define the tightest possible modular bounds of the above form for any </, % C 7.
Note that the bounds are also tight in the sense that if & \ Z = ) then (16) reduces to
a trivial statement. Viewed through the lens of MM algorithms, the modular lower/upper
bound serves as the minorizing/majorizing counterpart to F'(</ U A).

With these perspectives, the greedy heuristic for maximization in Algorithm 1 can be
easily paraphrased in the language of MM algorithms. Having selected the set .o7; 1 after
J — 1 steps, we seek o;_1,; C ¥\ “;_1, |9/;_1-;| = ¢; that maximizes F(ofj_1 U ;1 ).
We achieve this by maximizing the minorizing counterpart: the modular lower bound as in
(16) defined using the incremental gains p, (1), v € ¥ \ 1.

Incremental gains associated with individual elements, coupled with the submodularity
or supermodularity ratios, are an obvious combination for defining modular bounds for a
function. Many problems, however, may have additional attributes that enable other ways
of defining modular bounds. The greedy heuristic can be adapted appropriately to utilize
these special modular bounds. Such bounds could be easier to compute and perhaps perform
better empirically. In Algorithm 4 we outline a greedy procedure built on the ansatz of an
abstract modular lower bound My [-] and modular upper bound M [-] for the incremental
gain p/(#) associated with any &/, Z C 7

My (B)] < por(B) < My [por (B)] . (17)
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The symbols |, T are a visual cue to pinpoint whether the bound is from above or below.

Algorithm 4 Greedy algorithm using modular lower bounds

s Input F, 7, 1. {q1,-..,q}
: Initialize & =0
:fori=1tol do
Determine My [py o ().
Find 2 C 7 \ &, |2| = ¢; that maximizes My [po(o/)]
A — U2
end for
return Index set &/

I A i A

Now we give performance bounds for the abstract batch greedy approach of Algorithm 4.

Theorem 12 Let F' be a non-decreasing function. Algorithm 4 for maximizing F(</) sub-
ject to |.<7| < k outputs a set o/ such that

l
4
= (1 -1 <1 k(O n))) PEAT PR

i=1
where 7; > 0 is a parameter that encapsulates the effectiveness of the modular lower bound
M -] in locally describing the function.
The proof is given in Appendix B.1.

The analysis of Algorithm 4 is along the same lines as that of Algorithm 1. The ef-
fectiveness of the modular lower bound in locally describing the function is baked into the
approximation guarantee via the parameter 7;. If o/ is the optimal set of the maximization
problem, then for the i step, 7; is defined as the smallest scalar satisfying

Tikpos, (i-1)
qi

The dependence of 7; is strictly on the modular lower bound, but in many cases estimating
it is easier when it is defined as the smallest scalar satisfying

Tik‘MT [P&fi (i—1)]
qi

par= (Fie1) = My [par (Hi1)] < (18)

M, [per ()] = My [pur- (i) < (19)

Notice that 7; estimated using the definition in (19) is always larger than what is necessary
to satisfy (18).

One instance of 7; which we have previously seen, indirectly, is when the modular bounds
are defined using incremental gains and submodularity /supermodularity ratios. In that case,
with a little effort it is easy to see that 7; according to (19) will be 0wk - Byt this

YV kN q;
value is sub-optimal when compared to the 7; one can implicitly infer from the result in
. . 1- ) . .
Theorem 7, which is % The sub-optimality stems from the fact that ny 4, > 1y 1,
5 544

Vq; < k. The discrepancy is easily explained since in the proof of Theorem 12 we allow for
the modular lower bound M [-] to be negative. If we assume non-negativity of the modular
lower bound, the proof can be accordingly modified to obtain the optimal result.
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4.2 Adapting MM techniques for linear Bayesian optimal experimental design
In this section we develop specialized MM-based algorithms for the linear Bayesian optimal
experimental design problem formulated in Section 3.6.2.

4.2.1 MODULAR BOUNDS FOR MUTUAL INFORMATION DESIGN CRITERIA

In Section 3.6.2 we discussed some key spectral properties of design criteria based on mutual
information. Now we derive helpful majorizations and minorizations using tight modular
bounds on these information theoretic objectives.

Proposition 13 Let X € R" and Y € R™ be jointly Gaussian random variables as de-
fined in Section 3.6.1. Let P € R™* be a selection operator such that Yp = PTY =
Y, -, Y}k]T. The mutual information between X and Yp can be bounded on both sides by
the following modular functions:

T(X:Yp)> %trace (PT (log (T'y) — log diag (T'yx)) P) )
T(X:;Yp) < %trace (PT (log diag (Ty) — log (T'y|x)) P) .

The proof is given in Appendix B.3.

Note that the lower bound in the proposition above is always positive when mutual
information is submodular (Corollary 14), but in general it need not be. The machinery used
to obtain Proposition 13 exploits the linear algebraic structure of the information theoretic
objectives. Using the same arsenal of tools we can provide the following alternative bounds:

Z(X;Yp)> %trace (PT (log (T'y) —log (Ty|x) + Imlog (1)) P) ; (20a)
T(X;Yp) < %trace (PT (log (T'y) — Iy log (02) — log (Ty x)) P) . (20b)

We include arguments for these bounds (20) in the proof of Proposition 13 as well. The con-
stants 01, 02 € (0, 1] depend on the range of the spectrum of covariance operators I'y|x, 'y

respectively. If eig(I'y|x) € [as, o] C Rxo and eig(T'y) € [Bs, Bi] C R0, then o1 = (;i%
and g9 = %. Note that lower bound in (20) is not guaranteed to be positive even when
s 1

mutual information is submodular, and the bounds in (20) are tighter when the cardinality
of .Z (P) is smaller.

To understand the modular bounds in Proposition 13 and their significance, it is helpful
to discuss two simple corollaries. We begin with the more restricted of the two, which is
valid only when the observations are conditionally independent.

Corollary 14 For random variables X € R" and Y € R™ as defined in Proposition 13, if
Yi | X are additionally independent, then the following bounds hold for any selection operator
P € Rk,

I(X;Y) - Z(X;Y \ Yp) < %trace (PT (log (Ty) —log (T'y|x)) P) <T(X;Yp).

20



BATCH GREEDY MAXIMIZATION

The proof is given in Appendix B.3.

Recall that Z (X;Yp) is the objective corresponding to (Prob-Max), and Z(X;Y) —
Z(X;Y \ Yp) is the objective corresponding to (Prob-Min). If P is square with its corre-
sponding index set #p = ¥, then the corollary statement reduces to a simple identity. In
all other circumstances the inequalities are strict.

We now highlight a few properties encapsulated by Corollary 14 which relate to concepts
in polyhedral combinatorics.

e We know the mutual information Z (X;Yp) is submodular when observations are
conditionally independent (Proposition 4). The term Z(X;Y) — Z(X;Y \ Yp) is the
supermodular dual (Definition 29) of Z (X; Yp), and both the functions have the same
base polytope (Definition 24).

e The diagonal of the matrix appearing in the middle term deserves special attention.
We denote the diagonal of % (log (I'y) — log (Fy|X)) by the vector d € R™. Note
that the covariance I'y|x in this context is diagonal since we are presently discussing
the case of uncorrelated observation error. The vector d can be inferred to be a
point in the base polytope (Definition 24) of Z (X;Yp) or equivalently of Z(X;Y) —
Z(X;Y \ Yp). As a result, it is naturally a subgradient (Definition 27) of Z (X;Yp)
and a supergradient of Z(X;Y) — Z(X;Y \ Yp) defined at ¥ or (). The individual
components of d are all positive, which must be the case since the base polytope lies
in the positive orthant for all non-decreasing submodular functions.

e Most interestingly, d is not necessarily one of the extreme points of the base polytope
but rather can lie in its interior. Note that there are at most m! extreme points and
these are at least in theory determinable using the ‘greedy algorithm’ (see Edmonds,
1971, Rado—Edmonds theorem). Typically subgradients defined using extremal points
are used to drive the optimization steps (Iyer et al., 2012, 2013; Iyer and Bilmes, 2012).
Using a non-extremal point to drive optimization, as we do here, is a novel approach,
albeit specific to the setting of linear—Gaussian Bayesian problems.

We now consider a generalization of Corollary 14 pertinent to the case of correlated
observation errors. Recall that in this case the mutual information Z (X;Yp) is neither
submodular nor supermodular, but simply a non-decreasing set function.

Corollary 15 For random variables X € R™ Y € R™ as defined in Proposition 13, the
following bounds hold for any selection operator P € R™*k

I(X;Y) - I(X;Y \ Yp) < %trace (PT (log (T'y) —log (Ty|x)) P) +Dpe,  (21)

— I(X;Yp) > §trace (PT (log (T'y) —log (Ty|x)) P) — Dp, (22)

—_

where Dp = %trace (PT (log diag (Fy|X) — log (Fy|X)) 73).
The proof is given in Appendix B.3.

The term ®p is non-negative and strictly increases with increasing cardinality of the
index set . (P). When the observation errors are uncorrelated, meaning that the covariance
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operator I'y | x is diagonal, Dp evaluates to zero and we recover the statement in Corollary 14
by combining (21) and (22). Adding (21) and (22) we obtain,

I(X;Y)-I(X;Y \Yp) <T(X;Yp)+ %trace (logdiag (I'y|x) —log (Tyx)) .  (23)

Loosely speaking, © = %trace (log diag (Fy|X) — log (FY\X)) reflects the deviation from
submodularity of the mutual information Z (X;Yp): the smaller its magnitude, the more
7 (X;Yp) behaves as a submodular function. If Dpc and ©p in Corollary 15 are replaced
by ©, the inequalities are akin to affine modular bounds on the set functions Z(X;Y') —
Z(X;Y \ Yp) and Z(X;Yp). The pair (d,®), where the vector d € R™ is the diagonal of
% (log (Ty) — log (Fy|X)), characterizes the affine modular bound in Corollary 15. Such a
pair in general defines generalized lower and upper polyhedra (Definition 26) for arbitrary set
functions that need not be sub/super-modular. Iyer and Bilmes (2015) use those theoretical
constructs to study polyhedral aspects of submodular functions.

4.2.2 MM ALGORITHMS FOR MAXIMIZING INFORMATION GAIN

For the problem of maximizing information gain (Prob-Max), wherein the objective is non-
decreasing, we have previously discussed the performance of the standard batch greedy
algorithm (Algorithm 1) in Section 3.6. We now consider Algorithm 4, implemented with
the modular lower bounds for incremental gain given in Proposition 13. We will refer to this
algorithm as MMGreedy in the comparative discussion of Section 5. Note that incremental
gain in the present context corresponds to information gain, which in turn can be written as
conditional mutual information. The inequalities in Proposition 13 can be suitably adapted
by replacing the covariance operators with the appropriate conditional covariances. We
describe this process below.

Suppose our goal is to select k& < m observations altogether, and we have already selected
k1 < k. Let the indices of the selected k; observations correspond to the selection operator
P1, Ip, C V. We now seek the remaining ko = k — k; observations whose corresponding
index selection operator Pz, with Sp, C ¥ \ Sp,, is argmaxp | =k, Z(X; YpP[Yp,). In
the proposed MM framework, this is achieved by maximizing the minorizing modular lower
bound,

1 . ' .
itrace (PT (log (FYPf‘Yﬁ) — log diag (prf|X7yP1>> P) <I(X;Yp|Yp). (24)

In (24), P{ is the complement of P; with Spe = 7\ #p,. The selection operator P
in (24) has the same index set as P and is simply its counterpart when selecting from the
reduced dimension random variable Ype € R™~*1, The approximation guarantee in this case
follows from Theorem 12. Bounding the parameter 7; (see Theorem 12) that encapsulates
the effectiveness of the modular lower bound is a non-trivial exercise which we will not
pursue. Our empirical results (see Section 5), however, demonstrate that the performance
of the algorithm is comparable to that of standard batch greedy (Algorithm 1) and in some
instances slightly better.

22



BATCH GREEDY MAXIMIZATION

4.2.3 MM ALGORITHMS FOR MINIMIZING INFORMATION LOSS

Our motivation to independently study minimizing information loss is triggered by a com-
bination of factors. The asymmetry that exists between incrementally choosing good
observations—as opposed to discarding bad observations—is perhaps the most intriguing
reason. In the context of linear Bayesian inverse problems, Corollary 14 encapsulates our
motivation perfectly. Observe how the same modular bound proves useful in selecting the
best observation and discarding the worst. Yet each procedure carried out sequentially, by
updating the modular bound, yields different answers in general. While Corollary 14 is
restricted to the submodular case with conditionally independent observations, we have the
generalization in Corollary 15 with slightly different modular bounds.

(Prob-Min) is the formal representation of the problem of minimizing information loss.
Exploiting the previously discussed modular bounds for mutual information, we propose
the following approach for its solution. Suppose our goal is to discard k < m observations,
and we have already removed ki < k. Let the indices of the discarded ki observations
correspond to the selection operator Py, #p, C ¥. We now seek ks := k — k; observations
whose corresponding index selection operator Po, with #p, C ¥\ &p,, is the solution of
the following problem:

Py = argmin Z(X;Y) - Z(X;Y \ Yp,,Yp) = argmin Z(X;Y|Yp,) —Z(X;Y \ Yp,, Yp).
P,|Ip|=ka P,|Ip|=k2
(25)
We solve (25) using Algorithm 5 by minimizing the majorizing modular upper bound,
as given in Proposition 16. We refer to this algorithm as MMReverseGreedy, alluding to the
fact that we remove indices sequentially from the candidate set until we reach the desired
cardinality. While it is unclear if this approach can be supplemented with an approximation
guarantee, numerical results indicate excellent empirical performance.

Algorithm 5 Sequential greedy algorithm for minimizing information loss

1: Input G, I'x, FY|X7 VL {aq, - a}

2: Initialize . (P,.) = ()

3: fori=1to!l do

4: Determine MY [Z(X;Y|Yp,) — Z(X;Y \ Yp,, Yp)] as per Proposition 16.

5: Find P with # C ¥ \ p, and |#p| = ¢ that minimizes
MY (XY |Yp,) — Z(X;Y \ Yp,, Yp)]

6: Ip, — Ip, U Ip

7: end for
return Index set .Zp,

Proposition 16 For random variables X € R™ and Y € R™ as defined in Proposition 13,
and selection operators P € R™* and Py € R™ ¥ such that k1 < k, the following bound
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holds:
I(X;Y[Yp,) = Z(X;Y \ Yp,, Yp) < trace (73T (log (FY\%) ~log (FY'X’YPID 73)
+ trace <73CT <log diag (prgy,)l) — log <FY\X,YP1)> 730)

+ trace (ﬁCT <log diag (Fy\ypl |X) —log (FY‘X7Y?1>) 730> .

Here P is the counterpart of P when selecting from the reduced dimension random variable
Yplc e Rm—k1,

The proof is given in Appendix B.3.

The two trace terms involving PC are non-negative and identically zero if the observations
are conditionally independent. In that scenario, the proposition statement reduces to a
slightly modified version of Corollary 14.

4.2.4 NUMERICAL AND COMPUTATIONAL ISSUES CONCERNING MM ALGORITHMS

Our aim here is to provide some technical information on how to compute the modular
bounds, and the associated computational costs. With regard to computational complexity,
our focus here is not the number of function calls to the value oracle model, but complexity in
terms of number of floating point operations (FLOPs). This is a more pertinent comparative
metric since the optimization is performed using a minorizing/majorizing surrogate, not the
actual objective itself. We will use the symbol &(-) when referring to FLOP count, rather
than O(-), which we previously used to specify the number of function evaluations.

For the algorithms outlined in Sections 4.2.2 and 4.2.3, one critical task is estimating the
diagonal of the matrix logarithm of a definite matrix. In each iteration, the matrix of interest
is obtained using a Schur complement operation. More precisely, it is the Schur complement
corresponding to one of the principal submatrices of the (larger) matrix in the previous
iteration. The computational overhead of the Schur complement is moderate compared to
that of determining the diagonal entries of the matrix logarithm. The cumulative cost of
the latter task across all the iterations is what determines the complexity of the algorithm.

If the objective is submodular, and when the batch size is one, it is easy to see that we
only require the relative ordering of the diagonal entries as opposed to absolute accuracy
of each. However there is no direct way to obtain relative ordering and, surprisingly, nor
is there a direct efficient way to estimate the diagonal of a matrix logarithm. At first
glance, it is tempting to consider estimating each entry of the diagonal as the bilinear
form eiT log(A)e;, but such efforts (Golub and Meurant, 2009; Bai et al., 1996; Golub and
Meurant, 1994) are quickly realized to be inefficient in this case. Avoiding computation of
the matrix logarithm in all but special cases in not an option. We refer to the readers to
Higham (2008, Chap. 11) for a comprehensive survey on computing matrix logarithms.

In our case, since we seek the logarithm of a definite matrix, we can use its eigenvalue
decomposition. Recall that for a definite matrix A € R™*™ with eigendecomposition A =
UXU™, its matrix logarithm is simply log A = Ulog XU*. Note how any favorable decay
in the spectrum of the matrix A may not necessarily aid the estimation of its matrix
logarithm, since eigenmodes corresponding to the smallest eigenvalues could also dominate
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the estimate. In special cases, though, randomized methods that provide inexpensive low
rank approximations of a matrix could still be useful.

In general, however, the leading order complexity for the algorithms in Sections 4.2.2
and 4.2.3 is 0 (mTSk) Here m is the size of the candidate set, k is the desired cardinality,
and ¢ is the batch size. The dominating cost is that of determining the sub/super—gradient
using the modular bounds of Proposition 13. Asymptotically, we do not improve on the
complexity of batch greedy based on incremental gains (Algorithm 1); the dominating cost
there is that of evaluating log determinants.

4.2.5 CONTEXTUALIZING WITH OTHER APPROACHES

In various simplified settings, the sequential methods outlined in Sections 4.2.2 and 4.2.3
for the linear Bayesian optimal experimental design problem share similarities to existing
techniques. Consider the case of independent and identically distributed observation errors;
in this case the objective in (11) is submodular and defined entirely by the data marginal
my. (Prob-Max) is now equivalent to finding the mode of a fixed-size determinantal point
process (DPP) (Kulesza and Taskar, 2011, 2012), with the kernel of the DPP being the
marginal covariance of the data, I'y.

In the MM approach of Section 4.2.2, we define a tight modular lower bound on the
objective using the trace of the logarithm of the data marginal covariance, or its appropriate
conditional counterpart. The individual diagonal entries of the matrix logarithm are akin to
weighted leverage scores associated with each row/column index; here the weights are simply
the logarithms of the eigenvalues. Historically, the notion of leverage scores was introduced
in the context of linear regression for outlier detection, and to assess the amount of influence
exerted by one observation regardless of its actual value (Chatterjee and Hadi, 1986; Hoaglin
and Welsch, 1978). In the recent past such scores have been useful in performing subset
selection (Boutsidis et al., 2009) and in linear regression (Drineas et al., 2011), both of
which directly relate to optimal experimental design.

Sampling based on leverage scores versus DPPs. Volume sampling in DPPs
and sampling based on traditional statistical leverage scores are clearly different. But in
precisely what way? Contrasting their differences and understanding the nuances is a useful
exercise. Consider a DPP defined through an L-ensemble specified by £ > 0; often the semi-
definite matrix L is also termed the kernel matrix. One popular interpretation is obtained
by expressing £ as a Gram matrix, B'B, where the columns of B are feature vectors
representing items in the candidate set. Furthermore, if each column B; is written as the
product of a quality term ¢; € Rso and a vector of normalized diversity features ¢; € R,
|¢il| = 1, then we have L;; = qi@T(quj. Now suppose that AU " is the eigendecomposition
of £. Then it is easy to see that ¢ = L{AUT[i’i]. The diagonal entries in UAUT are
strictly speaking not statistical leverage scores, since we are weighing the contribution of
each eigenvector by its corresponding eigenvalue. But note that when using randomized
numerical linear algebra methods, the practice is always to give more importance to higher
eigenmodes. In the context of this comparative discussion, it is evident that sampling based
on leverage scores does not account for diversity among the candidates, but accounts only
for the quality of each one.
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5. Numerical results

In this section we evaluate the performance of the batch greedy algorithms when applied to
linear Bayesian optimal experimental design. Our focus here to is to demonstrate how batch
size affects performance and to evaluate the impact of different modular bounds; hence we
only consider the standard greedy algorithm and the MM algorithms. The performances
of distributed and stochastic variants of the greedy heuristic, compared to the standard
greedy paradigm, have been showcased previously by Mirzasoleiman et al. (2013, 2015). In
the discussion and figures that follow, we label the approach of maximizing information
gain using Algorithm 1 as StdGreedy; the approach of maximizing information gain using
the minorizing surrogate (Algorithm 4 and Section 4.2.2) as MMGreedy; and analogously,
the approach of minimizing information loss using the majorizing surrogate (Algorithm 5
and Section 4.2.3) as MMReverseGreedy.

5.1 An inverse problem with structured random operators

We consider a Bayesian inference problem in the setting of Section 3.6.1, with a randomly
generated linear forward operator G. The dimension of the parameters X is set to n = 20,
while cardinality of the candidate set of observations Y is fixed at m = 100. Realizations of
the forward operator are constructed by independently generating random singular values
and left /right singular vectors. The spectrum of G, while random, has a prescribed expo-
nential rate of decay reflective of many real world inverse problems (Spantini et al., 2015).
The random left and right singular vectors are obtained by taking a modified Gram-Schmidt
QR factorization of a random normal matrix of the appropriate dimension. We specify the
prior and observation error covariances, I'x and I'y|x, using squared exponential kernels
with correlation lengths 0.105 and 0.021, respectively, on a unit domain. We draw 1000
random instances of the forward operator G and solve the experimental design problem
of maximizing mutual information Z(X,P'Y) in each case. The spectra of the relevant
operators are shown in Figure 2. If a spectrum corresponds to a random operator, we plot
the median and indicate the spread.

In Figure 3 we illustrate the influence of batch size for each algorithm. On the horizon-
tal axis we indicate the number of observations included, and on the vertical axis we plot
the amount of mutual information captured at that cardinality relative to the maximum
amount possible (i.e., using all the candidate observations Y). We consider seven different
batch sizes, corresponding to ¢ € {1%, 10%, 20%, 30%, 40%, 50%, 100%}. (Here we have
expressed the batch size ¢ as a fraction of the size of the candidate set.) For each algorithm
and for each choice of batch size, Figure 3 shows the median performance across the random
instances of the forward model. Figure 4 illustrates the variability in performance across
these random problem instances; here, in addition to the median mutual information, we
show the 0.1/0.9 quantiles and range of mutual information obtained at each cardinality.
Kinks in the continuous lines of Figures 3-4 reflect the start of each new batch calcula-
tion. Improved gains at smaller batch sizes are consistent with our theoretical claims in
Theorems 7 and 12. The numerical results also corroborate our remark in Section 3.6, that
the trivial approximation guarantee for m > n is merely an artifact of loose bounds on the
sub/super-modularity ratios. Interestingly, while we do not have a theoretical analysis of
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Figure 2: Spectrum of the relevant operators of the inverse problem with correlated ob-
servation error. The solid line is the median across 1000 random instances of the forward
model. The whiskers capture the interquantile range (10% to 90%), and the % symbols
mark the maximum and minimum eigen/singular value. The prior and observation error
covariances are not random.

the MMReverseGreedy algorithm, the effect of batch size on its performance is similar to
that of the other two heuristics.

In Figure 5, we compare the performance of the greedy algorithms, for a range of
batch sizes, to that of a random selection of indices. To obtain the latter results, we
draw 1000 random index selections for each random forward model. In general, the greedy
algorithms vastly outperform random selection. The median performance of even the one-
shot (¢ = 100%) greedy approaches is better than the median performance of random
selection. This difference is greatest for the MMGreedy and MMReverseGreedy algorithms,
which show significantly better performance at large batch sizes than StdGreedy. As shown
in the right two panels of Figure 5, the median performance of these two greedy heuristics
is better than even the 90% quantile of performance of random selection.

Std Greedy MM Greedy MM Reverse Greedy
100% 100% 100%
80% 80% 80%
60% 60% 60%
N
40% 40% 40%
20% g 20% 20%
= 5l
¢ =100% ¢ = 100%
0% 0% 0%
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
Number of indices Number of indices Number of indices

Figure 3: Performance of each greedy heuristic for different batch sizes, ranging from single
index selection (¢ = 1%) to a one-shot approach (¢ = 100%). The solid line is the median
across 1000 random instances of the forward model.

Fixing the batch size, we compare the three greedy algorithms’ performance more di-
rectly in Figure 6. We consider the cases ¢ € {1%, 20%, 40%,100%}. Once again, we only
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Figure 4: Performance of the greedy heuristics for different batch sizes across all 1000
random instances of the forward model. The solid line is the median; the whiskers bound
the 10% to 90% interquantile range, and the * marks the maximum and minimum mutual
information captured.

plot the median performance across 1000 random instances of the forward model to retain
visual clarity. When choosing indices one at a time (¢ = 1%) the standard greedy heuristic
does marginally better than both MM greedy heuristics, but at larger batch sizes, both
MM approaches provide better gains. This distinction is more readily apparent in Fig-
ure 7, where we plot the difference between the relative amount of information captured
by MMGreedy and MMReverseGreedy in comparison to the standard greedy heuristic. Here
we also indicate the spread due to the forward model being random. The differences in the
performances of the three heuristics are stark at relatively lower cardinalities, and dimin-
ish at higher cardinality since information saturates. The upside to using the MMGreedy
heuristic in comparison to the standard greedy heuristic is much greater than the downside,
as indicated by the interquantile range and the maximum/minimum mutual information
captured.

The results we have discussed thus far are for the case of correlated but structured
observation error covariance. Smaller batch sizes clearly yield more information gain, and
should be preferred unless computational demands dictate otherwise. But many realistic
problems have error terms with a less structured correlation (see Section 5.2), or independent
and identically distributed (i.i.d.) observation errors. In the latter case, the experimental
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Figure 5: Performance of each greedy heuristic, for different batch sizes g, compared to a
random selection of indices. The solid line corresponding to a given batch size is the median
across 1000 random instances of the forward model. The solid line labeled “random” is
the median performance across 10% cases: 1000 random instances of the forward model
tensorized with 1000 random selections of indices. For the random selection results, the
whiskers bound the 10% to 90% interquantile range and the x symbols mark the maximum
and minimum mutual information captured. Note that the random selection results are the
same in each of the three panels above; only the batch greedy algorithms are different.
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Figure 6: A comparative study of the greedy heuristics for four different batch sizes. The
solid line is the median across 1000 random instances of the forward model.

design objective is also submodular. In these scenarios, the use of a smaller batch size may
be unwarranted, as our numerical experiments in Section 5.2 indicate. More generally, if
the observation error covariance is not strongly correlated, meaning the observations are
nearly conditionally independent, the advantage of a smaller batch size is diminished.

We have also numerically investigated the performance of the algorithms when the
dimension of the parameters is greater than the cardinality of the candidate set of ob-
servations, i.e., n > m. Recall that in such cases the results in Proposition 11 provide
non-trivial bounds on the sub/super-modularity ratios. The StdGreedy and MMGreedy
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Figure 7: MM-based batch greedy approaches compared against the standard batch greedy
heuristic for different batch sizes, across all 1000 random instances of the forward model.
The solid line is the median; the whiskers capture the 10% to 90% interquantile range, and
the * marks the maximum and minimum mutual information captured.

heuristics perform similarly to the case discussed in this section. The performance of the
MMReverseGreedy heuristic, however, appears insensitive to the batch size.

5.2 Optimal sensor placement to improve climate models

We now consider a problem of optimizing sensor networks for climate models (which we
refer to as the “SNCM” problem). Given a desired cardinality, our goal is to select field
observation sites that will yield the most informative data for parameter inference. In the
present application, the parameters are uncertain inputs to the land-surface component
of a climate model, while the field data correspond to certain observable outputs of the
same model. Our example is based on the land-surface component of the Energy Exascale
Earth System Model (E3SM), an ongoing effort led by the US Department of Energy.
E3SM comprises multiple model components, each with its own set of uncertain input
parameters. These individual components can be coupled, and together they simulate the
earth’s atmosphere, ocean, land surface, and sea ice (Hurrell et al., 2013). Uncertainty in
any one component can contribute to a large spread in the overall model predictions. This
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affects our understanding of severe climate events, their timing, and our ability to cope with
the consequences.

The simplified E3SM land model (Ricciuto, 2020), henceforth referred to as sELM, is a
“land model” derived from E3SM that simulates carbon cycle processes relevant to the earth
system in an efficient way. This allows for large regional ensemble simulations that would
otherwise be infeasible using the complete land model. The simulation region of our focus
is the eastern part of the north American continent located between the latitudes 28.25°N—
48.25°N and longitudes 66.25°W-96.25°W. Please see Figures 8 and 9b for a depiction of
the region. The simulation resolution is 0.5° in each direction, which corresponds to a grid
of 41 x 61 points. Only 1642 of those grid points fall within the land area, however, and at
those locations we have access to the SELM outputs. In the version of sSELM we consider,
there are 47 input parameters; these parameters have no spatial variability and have the
same prior distribution at every location. Drawing realizations of these parameters yields a
simulation ensemble with 2000 samples. The code for sELM is publicly available, and more
details about the E3SM land models can be found in the works by Lu and Ricciuto (2019);
Ricciuto et al. (2018).

To set up the optimal experimental design problem, we focus exclusively on one output
of the sELM, the gross primary production (GPP). GPP can be understood to be a proxy
for the amount of carbon flux attributable to the natural vegetation at that location. GPP
is a function of the sSELM input parameters and relevant meteorological quantities such as
temperature. In the version of sELM we consider, the GPP is output as monthly averages
for thirty years starting from the year 1980. In Figure 8 we plot the monthly GPP averaged
across the 2000 samples of the parameter ensemble and across thirty years of output history.
The trends in the plot reflect expected seasonal variations, with more activity in the tropical
southern regions. If we treat the GPP output at any grid point as a random variable, then
its variance is affected by the uncertainty of the sELM input parameters and the temporal
variation of meteorological quantities. In Figure 9b we plot the variance of the GPP as
output from the sELM.

Isolating the contribution of the model parameter uncertainty to the variance of the
GPP output can be accomplished in a number of ways. We could perform a multivariate
regression with covariance estimation that accounts for spatial correlation among the GPP
output variables (Rothman et al., 2010), or alternatively use factor model approaches that
are popular in econometrics (Fan et al., 2008, 2011). However we adopt a more straight-
forward technique, since our primary goal is to set up a design problem suitable for a
comparative study of the batch greedy algorithms we have proposed. We simply estimate
the linear relationship between the GPP output, Y, and sELM model parameters, X, using
an empirical estimate of the cross-covariance I'y, x . Incorporating this result into the setting
of Section 3.6.1 assumes that the parameters have a normal prior and that the error term
is independent of the parameters. In Figure 9a we plot the spectrum of the linear forward
operator (G obtained in such a manner, along with the prior covariance I'x. Observe that
we have reduced the dimension of the parameters to 10 by retaining only those that have
a prior variance larger than O(1). The number of candidate observations, corresponding
to the dimension of Y, is m = 1642. The generalized eigenvalues of the matrix pencil
(T'x,T X|y), also shown in Figure 9a, suggest that the data are only marginally informative
about the parameters.
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Figure 8: Mean GPP for each month averaged across both the parameter ensemble and
temporally.

Using the derived operators, we study the performance of the previously proposed batch
greedy algorithms. From Figure 10, it is evident that decreasing the batch size does not
reward us with any significant gains; furthermore, all the greedy heuristics have similar
performance as indicated in Figure 11. The difference between the relative amount of
information captured by the MM greedy heuristics in comparison to the standard greedy
heuristic is shown in Figure 12. The MM greedy heuristics have better gains at lower
cardinality numbers (except for extremely low cardinality), but these differences return to
zero once information saturates. In Figures 10 to 12, we have not shown the case of ¢ = 1%
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Figure 9: Linear operators of the SNCM problem.

since it requires substantial computing time, but given the trends we expect its performance
will not be any better than that of batch size ¢ = 10%.

Std Greedy MM Greedy MM Reverse Greedy
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Figure 10: Performance of each greedy heuristic for different batch sizes for the SNCM
problem. The batch sizes range from ¢ = 10% to the one-shot approach with ¢ = 100%.

In Figure 13 we have marked the first 10 locations given by each of the heuristics for the
case when the batch size is 10% of the total cardinality. The fact that most of these locations
are close to the coastal boundaries—and predominantly the southern coast—is intriguing.
This phenomenon is simply a result of the sEkLM data. To comprehend it better, we have
visualized in Figure 14 the rankings of locations at the start of the standard greedy and
MM greedy heuristics (i.e., the “one-shot” rankings). These rankings follow from either the
incremental gain associated with each location (StdGreedy) or the initial evaluation of the
modular lower bound (MMGreedy). While each heuristic provides a different set of locations
as the solution of the design problem, the collective information gained from them may not
differ significantly. Such a behavior is not unique to the SNCM problem, and is common in
many scenarios where combinatorial choices have to be made.
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Figure 13: The first ten locations obtained by each greedy heuristic when the batch size ¢
is set to 10% of the full cardinality.
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Figure 14: (i) Incremental gains of each candidate location, logdiag 'y — logdiagI'y|x,
scaled to the interval [0, 1]. (ii) The modular lower bound associated with the one-shot MM
greedy approach, diaglog I'y — logdiag I'y|x, scaled to the interval [0, 1].

6. Discussion

This paper has investigated batch greedy heuristics for maximizing monotone non-submodular
functions under cardinality constraints. We analyzed batch versions of the standard greedy
paradigm, and of its distributed and stochastic variants. Our theoretical guarantees for the
resulting batch greedy algorithms are characterized by a combination of submodularity and
supermodularity ratios. In the context of linear Bayesian optimal experimental design, we
bound these parameters for the mutual information design criterion. Reinterpreting the
classical greedy heuristic in the language of MM algorithms, we also argue how any good
modular bound—not necessarily one based on incremental gains—can instantiate a related
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greedy technique. Based on those insights, we propose several novel modular bounds and
algorithms for optimizing information theoretic design criteria in the context of Bayesian
experimental design. Now we discuss some further context and potential extensions.

Our result as expressed in (3) does not incorporate curvature of the function. The
classical notion of curvature (Conforti and Cornuéjols, 1984) measures how close a sub-
modular set function is to being modular, while the notion of generalized curvature (Bian
et al., 2017) measures how close a set function is to being supermodular. Bian et al. (2017)
showed the submodularity ratio and the generalized curvature together quantify how close
a set function is to being modular. These parameters provide approximation guarantees
that refine the worst case bounds depending on the instance of the function. In our case,
the product of supermodularity and submodularity ratios characterizes the modularity of
a function, but as it appears in Theorem 7, this product does not always refine the worst
case bound as tightly as desired. Incorporating curvature into our arguments should result
in a more expressive approximation guarantee, and the technical path could be similar to
that of Conforti and Cornuéjols (1984); Bian et al. (2017).

The batch size g implicitly appears in the result (3) through the supermodularity ratio.
It can be understood to be either the uniform batch size or more generally the maximum
batch size. One’s computational budget should ultimately dictate the batch size; we know
that a smaller maximum batch size will tend to yield better performance. An adaptive
strategy to change the batch size across different steps could thus aid the efficient utilization
of computational resources. Such a strategy will not influence the worst case bound, but
in many practical problems should improve empirical performance. Several factors should
impact any adaptive strategy: the number of indices already selected, the number that
remains to be selected, and the contrasts between the incremental gains corresponding to
each of the remaining indices. It would make sense to measure the latter contrasts relative
to the function value evaluated on the set of already chosen indices.

The supermodularity ratio that is essential to characterize the batch greedy heuristic
can be a useful theoretical construct in several other settings. Il'ev (2001) analyzed the
greedy descent algorithm for minimizing any non-increasing supermodular function. The
approximation guarantee was given using the steepness of the function, which is a counter-
part to curvature for supermodular functions. Using the supermodularity ratio, it should be
possible to analyze the case of minimizing any non-increasing set function. Such an effort
would mirror the work of Bian et al. (2017) but in the context of minimizing non-increasing
functions.

The modular bounds we derived for the information theoretic objectives in Section 4.2
have intriguing connections to concepts in polyhedral combinatorics. When the design ob-
jective is a submodular function, the subgradient vector that defines the modular bound is
in general a non-extremal point in the base polytope associated with the function. Typi-
cally, algorithms rely on enumerating coordinates of the vertices of the polytope and iterate
towards a locally optimal solution (Iyer et al., 2012, 2013); our approach is thus somewhat
unconventional. The existence of such a subgradient was established using the operator
concave inequality (Theorem 43), and was possible since our objective involves an operator
monotone function, log(-), acting on a Hermitian operator (covariance of the data marginal).
Hermitian operators that characterize the volume/diversity of subsets arise in other situa-
tions too—for instance, as kernels of determinantal point processes. In all such cases it is
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unclear if more nuanced and fundamental links exist between classical results in functional
analysis and notions in combinatorial optimization. It would be interesting to understand
these connections more fully, building on what we have been able to show and exploit.
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Appendix A. Additional background and definitions

A.1 Definite matrices and generalized eigenvalue problems

Definition 17 (Lowner ordering or the positive semi-definite ordering) For any two
Hermitian matrices A and B, we write A = B if and only if A— B is positive semi-definite.
The positive semi-definite condition can be used to define a partial ordering on all Hermitian
matrices.

Definition 18 (Matrix pencil) (Stewart and Sun, 1990) Given matrices A and B, a
matriz pencil is a family of matrices A — AB, parametrized by a complex number A.

Definition 19 (Definite pencil and definite generalized eigenvalue problem) (Stewart
and Sun, 1990) The pair of Hermitian matrices (A, B) is a definite pencil if

c(A,B) = inf {z*(A++—1B)z} >0,

flz]|=1

where ¢(A, B) is called the Crawford number (Crawford, 1976) of the definite pencil A—\B.
The generalized eigenvalue problem AY = BYY. is definite if (A, B) is definite.

Throughout the manuscript we refer to the generalized eigenvalue problem involving ma-

trices A and B through the pair (A, B). We use o to denote any non-trivial generalized
eigenvalue of (A, B) and ¥ to denote the diagonal matrix of eigenvalues.
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A.2 Notions from statistical information theory

Definition 20 (Differential entropy) (Cover and Thomas, 2006) The entropy of a con-
tinuous random variable X with density wx is defined as

H(X) = —E,, logmx(x).

Definition 21 (Condtional differential entropy) (Cover and Thomas, 2006) For two
continuous random variables X and Y, let mxy denote their joint density and let wxy
denote the density of the conditional distribution of X|Y. Then the conditional entropy
H(X|Y) is defined as

H (X|Y) = _EﬂX,Y log 7TX|Y(Z“y) :

Definition 22 (Relative entropy / Kullback—Leibler divergence) (Cover and Thomas,
2006) The relative entropy or Kullback—Leibler divergence between two distributions with
densities m and T is defined as

f(m)

DKL (7['”7/1\') = Eﬂ- log 7T($)

A.3 Submodularity and related concepts

Definition 23 (Modular set function) (Fujishige, 2005; Bach, 2013) A set function F :
27 — R is modular (i.e., both submodular and supermodular) if and only if there exists
s € Rl such that F (o) =3 1c.y Sk

In the literature concerning submodular functions, it is common to refer to any vector s €
RI”1 as the modular set function defined as s(«/) = 3", ., sk. This practice is particularly
useful when discussing submodular and base polyhedra, or subgradients.

Definition 24 (Submodular and base polyhedra) (Fujishige, 2005; Bach, 2013) Let
F be a submodular function such that F(0) = 0. The submodular polyhedron P(F) and the
base polyhedron B(F') are defined as:
P(F)={seR" Vo C ¥V ,s() < F()}, and
B(F)={seR":s(¥)=F(),Vod CV,s(o) < F(H)},
= P(F)n{s(¥)=F()}.
Remark 25 Analogous to the submodular polyhedron, one can also define the supermodular

polyhedron for supermodular functions with the inequalities in Definition 24 being accord-
ingly reversed.

Definition 26 (Generalized lower and upper polyhedra) (Iyer and Bilmes, 2015) Let
F be any set function, not necessarily sub- or super-modular. The generalized lower poly-
hedron is defined as:

P/"(F):={(5,6):s e R", 6 e R,V C ¥,s() + S < F()}
By reversing the inequality above, we can define the generalized upper polyhedron as:

PIn(F) == {(5,6): s € R™, &G € R,V C ¥, 8(/) + & > F()}
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Definition 27 (Subgradients and subdifferentials of submodular functions) (Fujishige,
2005) Consider a submodular function F : 2 — R on a distributive lattice 2 C 27, with
0, € 2. Fora e R” and o € 9, if

a(B) — a(a) < F(B) — F()

holds for each B € 9, then we call a a subgradient of F' at o/. We denote by Op(</) the
set of all the subgradients of F' at o/ and call Op(<7) the subdifferential of F at <f .

Definition 28 (Supergradients and superdifferentials of submodular functions)
(Jegelka and Bilmes, 2011) Consider a submodular function F : 9 — R on a distributive
lattice 2 C 27, with 0, ¥ € 9. Fora e R” and & € 2, if

a(B) — () > F(B) — F(F)

holds for each % € 9, then we call o a supergradient of F at </ . We denote by 0F (<) the
set of all the supergradients of F' at </ and call Y (&) the superdifferential of F at < .

Definition 29 (Supermodular dual) (Fujishige, 2005) For any submodular function F :
27 = R, the function F#*(X) = F(¥)—F(¥Y\Z),Z C ¥ is referred to as its supermod-
ular dual, with the properties (F#)# = F, and B(F) = B(F#). Here B is the base polytope
associated with each function (Definition 24).

Definition 30 (Total curvature of a non-decreasing submodular function) (Conforti
and Cornuéjols, 1984; Sviridenko et al., 2017) The total curvature of a non-decreasing sub-
modular function is the scalar ¢ € [0,1] s.t.,
Y () R AN NP VAN (4]
vey pu(0) ve?  pu(0)

Definition 31 (Generalized curvature) (Bian et al., 2017) The generalized curvature
of a non-negative set function F' is the smallest scalar o s.t.,

po (A \{VUB) > (1—a)py (Z\{v)), VA, BCV,ved\B

Definition 32 (Submodularity ratio as per Das and Kempe (2011)) The submod-
ularity ratio of a non-negative set function with respect to a set ¥ and a parameter k > 1

1S
Pv B
i Zyeyf ( )

: F) =
’W/,k( ) BV 1| |<k,d \B=0 Py (B)

Definition 33 (Submodularity ratio as per Bian et al. (2017)) The submodularity ra-
tio of a non-negative set function F is the largest scalar v s.t.,

Y ol B) 2 pa(B), VA BT
veAS\AB
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Appendix B. Technical results

Proof of Proposition 4 If Y;,|X are independent then the conditional entropy of PTY|X
can be written as H(PTY|X) = Z§:1 H(Yi;|X). This allows us to write the mutual infor-
mation Z(X;PTY) as follows:

k
I(X;PTY)=H(PTY) - HPTY|X)=H(PY) - Y H(Y, (26)
j=1

Consider selection operators P; € R™*¥1 and Py € R™**2 such that .7 (P;) C .7 (Ps).
Consider a canonical row e; that selects Y;,, with supp(e;) ¢ -#(P2). We define new selection
operators P = [P1,e;] € R™*(k1+1) and Py = [Pa, €] € R™*(k2+1) by appending e; to Py
and Py respectively. The incremental change in mutual information from incorporating Y
can be determined for each case. Let us consider Z(X; 7/5; Y) — Z(X; P, Y); the expression
can be adapted for Z(X; 7311—}/) — I(X; P, Y) accordingly.

I(X;PY) —L(X; Py Y) = H(PY) — H(PY) — H(Y;, |X), (27a)
= H(Y;, [P Y) — H(Y;, |X). (27b)

To obtain (27b) we recognize from the chain rule for entropy that H(Y;, [P, Y) = H(PJY)—
H(PJ Y). Since conditioning cannot increase entropy we can assert,

H(Y;,|PIY) = H(Y;, [Py Y), (28)
S I(X;P YY) —I(X; P Y) > I(X; P, Y) —I(X; Py Y), (29)
which concludes the proof. |

B.1 Proofs concerning batch greedy algorithms

Below we provide a formal proof demonstrating that any function F' is supermodular if and
only if the supermodularity ratio n = 1. Recall that the supermodularity ratio without the
cardinality parameter is defined as the largest scalar such that

Pt (B)
Zue%\% Pv (’%)

Proof Assuming n = 1, we can claim the following inequalities for any set % C ¥, and

{Vl,VQ} S 7/\,@

>n, N, BCY.

2

F({v1,1} U RB) — > (F({ni}u®B) - F(B), (30)

=1
= F({r1, 12} URB) — F({ni} UB) > F({ra} UA) - F(A). (31)

This demonstrates supermodularity (see Bach, 2013, Proposition 2.3) having assumed 7 =
1. To complete the proof, we prove the proposition statement the other way around by
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recursively exploiting the supermodularity property. For any sets o/, # C ¥ with |«7| <
k, o/ N A = () consider v}, € o, we claim because of supermodularity

F(o/ UB) — F(B) > (o \ {vs} UB) — F(B) + F({,} UB) — F(B).  (32)

Pvy, (%)

Repeating the same argument but on the term F'(«7 \ {v} U B) — F(A) we have,
F(sf UB) — F(#) > F(/ \ (g, vh 1} UB) — F(B) + p(B) + pu(B). (33)
Continuing the process gives us the inequality

F(d/UB) - F(#B) > Y (F({r}URB) - F(#)). (34)
ved

B.1.1 STANDARD BATCH GREEDY ALGORITHM

Proof of Theorem 7 Our arguments closely follow those of Nemhauser et al. (1978);
Wolsey (1982) with suitable modifications. Let </* be a maximizer of F' with k elements.
Let {a;,,... ,aiqj} be the ¢; elements selected during the j—th step of the greedy algorithm.
If o7;_; is the set of elements after j —1 steps, then 7 = @71 U{a;,,... ) Wi, }. If there are
[ steps altogether, we naturally have g1 + g2 + -+ + ¢ = k. For a given j € {1,...,1}, we
denote by {b1, ..., by} the elements of &7*\ /;_1 (we must have k > m > gj+qj11+---+q).
We then have

F(er*) < F(ol* U oy_1), (35a)
< F(fj1) + —— 3 (F(fj U b)) = F(/-0) (35b)
=1
< Fe1) + qﬂ’j N (F(j—1 U{ai,}) — F(Fj-1)) (35¢)
M =1
< P) o (Pl — (et ) (35d)
< P(ya) ot (F(f) ~ F(). (35¢)

a) holds because F' is non-decreasing,
b) holds by definition of the submodularity ratio (Definition 32),

c) holds because g; < m, and the g; elements in the set {a;,, ... ,aiqj} are (by virtue of
the batch greedy algorithm) those that correspond to the highest incremental gains
at step j:
Yty (F(ja U{bi}) = F(j)) _ Yoty (F(j1 U{ai}) — F(j))

m q]'
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d) holds by definition of 7y 4. as the supermodularity ratio (Definition 6),
e) holds because m < k, and vy ,,, > vy k.
A simple manipulation of (35e) allows us to write the following,

F(er) = F(a) < (1= PPT8) (o) = F(ady1). (36)

This leads to F(&*) — F () < Hé’:1 (1 - W) F(e7*), and the theorem statement
follows. u

B.1.2 DISTRIBUTED BATCH GREEDY ALGORITHM

Our approach to prove Theorem 8 adapts the strategies of Mirzasoleiman et al. (2013) to
the batch and nonsubmodular setting. Similar to the exposition there, we first investigate
some approximation properties of the intractable but communication efficient counterpart
to Algorithm 2. Here one first distributes the ground set 7" to n, processes. Each process
then finds the optimal solution A% [ E i.e., a set of cardinality at most k, that maximizes
the value of F' in each partition. These solutions are then merged |J; A;’?;L K] and the
optimal subset A[ ] of cardinality k is found in the combined set. The following lemma

relates A? Opt} to the combinatorial optimal solution A[k] = argmaxgcy | g|<k I (%#).

Lemma 34 Let F be a non-decreasing function with F(0) =0, and let k > 0. Then

d-opt 'Y“I/k’ opt
F(Ap, 5 = .~ F(Ay)

Proof of Lemma 34 Let A([)]St = {v1,...,v}. Using the notion of submodularity ra-
tio, we have > _ Az pu(0) > vy kpAolf]t(ﬁ)? = F(A?]f}t) < 7;& ZueAi’,ff Fv). If v* =
BIg MAX, ¢ yopt F(v), then F(A?,St) %F(V*) Suppose v* € ¥, the j—th partition of the
ground set; then we know that F(v*) < F(AOIE]Z}). The lemma statement now follows since

F(A ) < massy FUAGE ) < FAL2R). .

Apart from Lemma 34 we also need a slight generalization of Theorem 7 and (3) to
prove Theorem 8. The result below is straightforward to derive and we omit the proof.

Lemma 35 Let F' be a non-decreasing function with F() = 0, and let sz[%g be the index

set of cardinality k= ql returned by the batch greedy algorithm maximizing F (<) subject
to || <k =ql. Then,

o .
F(dég) > (1—e l"7"V,q’Y1/,k> <A[lst)

Here vy i is the submodularity ratio and ny 4 is the supermodularity ratio.
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Proof of Theorem 8 Let &/ = argmax F(B), where A4 =], 7% . We

BCM | B|<k i,[np,k]
know that F'(&) > max; F(;zf,b[g E])' From Lemma 35, we have
,|Mp,
b — D o
F(‘Q{i,[ip,ﬁ]) > (1 e W,qw,kl/l) F(Ai,r[:ip,k])’ (37)
= F(ﬂ?j > (1 - e_”“’/v‘ﬂ"’/’kf/l) max F(AZ?;p,k])' (38)
From Lemma 34, we know that max; F (A?I[’:Lp W) = Dt R (A‘Elgt); therefore
() > (1 . e*quW,kT/l) VZ”“F(A?,gt). (39)
Using Lemma 35 we can relate F’ (42/73 and F(o74P8) as follows:
Py 2 (1) P (0
Combining (39) and (40), we obtain the theorem statement. [ |

B.1.3 STOCHASTIC BATCH GREEDY ALGORITHM

We first provide two lemmas that will prove useful in establishing Theorem 9. The first
lemma is a bound on the probability of a certain event involving the random set drawn at
each step, and the second lemma is a bound on the expected incremental gain at each step.

Lemma 36 Given solution <7 after i—steps of the StochasticBatchGreedy algorithm, if
k< |v/m/e—1/e| and Z=2 > =L then for any set Z of size 2 log 4 sampled uniformly

2 24q
2ek log < ’

at random from ¥\ <;, we have P(|Z N *\ | > q) > (1 —¢€) %

Proof of Lemma 36 We assume that all random quantities are conditioned on A;. The set
Z consists of s elements from ¥\ &7 sampled uniformly at random (w.l.o.g. with repetition).

Let k == |@* \ |, m == |V \ ]|, and p == |ﬁ*\§$‘ = % be the probability representing
the event that any element in the random set Z is from &/* \ . We now estimate the

probability of |Z N «/* \ 7| > q by first deriving an upper bound on the complementary

43



JAGALUR-MOHAN, MARZOUK

event |Z N/ \ | < q— 1.

q—1 7
p(@ne el <a-0 =Y (5)a-p (11a)
=0
g=1 / 7\t
< 4 <ef> (1—p)*p’, (41b)
c - iy eEp '
<(1-p) 2 <1 —p) ) (41c)
d k>
Lo (i ()
e ko~
£ exp(-s2 (k). (41¢)

(2

b) holds by upper bounding the binomial coefficient (k) < (%)Z

c¢) holds because (%)Z <1 ViéeZs>p.

d) holds because of the additional assumption we impose on the cardinality constraint
k < |y/m/e—1]/e|. Using the facts that m —k + ¢ <m and k < k we can claim,

7. 2 7.2 7.2 2
ekp _ 6k~§ ek < ek < ek <1ek<| %m/e—l/ej

1—-p m—-k m+q—2k~ m—2k~ m-—2k

e) holds because,

(1-p)" = (L= F/i)* < exp(s ) < exp(~s) « i <m

We have defined 1/}(75) = ¢(%; g,m,k) =1+ (¢g—1) (nf;]‘?;k>

We now derive a lower bound for the probability of |%Z N .a7* \ 7| > q.

P(|ZNd*\ )| >q) 1 -P(|ZNF*\ | <q—1), (42a)
21— exp(—s o Y (R), (42b)
= <1 - exp(—si)lﬁ(k‘)) %, (42¢)
d k
>(1-¢ . (42d)

b) follows from (41e),
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c) Fors >m %, the function 1—exp(—s-% )1 (x) is concave in the interval z € [0, k].
2 xp(—s-% —
It can be easily verified that % >0if s>m %.

Lo 1 epai )

o 1-ep(-s D)) 2 7 (1- sl um).

d) We choose the set Z s.t. |%Z| = s = Jtlog?Z, where 0 < € < 1. If the batch size ¢
and tolerance e are chosen s.t. >

ggk%k 1gg_21£ , then Ztlog? > m zfn(gi), ensuring
concavity of the desired function in the previous step. For the cardinality constraint

regime k < |\/m/e—1/e|, this condition on batch size and tolerance is easily satisfied.
Since ¥ (k) € [1, ¢], we now have

1 exp(—s () >

El I
I

(1-em(-s2)0w) = £ 01 -9, (43)

Lemma 37 Given solution <7 after i—steps of the StochasticBatchGreedy algorithm, if
the assumptions of Lemma 36 hold, then the expected gain E[F (1) — F(<%)] in step i+ 1
is at least (1 — €) PR p o o ().

Proof of Lemma 37 We assume that all random quantities are conditioned on A;. We
bound F(41) — F() from below. Since 2,11 = 11 \ 4 is chosen by the stochastic
batch greedy rule from 2, and if [Z N @* \ #| > q, then }_,c o | pa() is at least as
large as Y c o pa() in expectation. Here the set 2, with |2,| = ¢ is chosen uniformly
at random Z N.o/* \ 7. The set Z is equally likely to contain any each element of o7\ <.
Hence a uniform random subset 2, C Z N .o/* \ & is actually a uniformly random subset
of o/ \ 7. As a result we obtain

22, Co\t, 2aac2, Pa(Hi)

E[ag@: Pl =B (b el ’ (44a)
i\ o) (VAN g s pal

> (1—¢) Wk\d”( i \(ﬁ{lq\%{)ﬂ \e Pal ), ”

2(1—6)% Z pa(;). (440)

a€d *\;
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(44b) holds on account of Lemma 36. Using the notion of submodularity and supermodu-
larity ratios we can claim,

Elpo, ()] > nr 4l Y pa(h)], (45)
aEQH_l
> palh) = v kP, (). (46)
a€d *\;

Combining (44c), (45) and (46) we have

TV kY g4
Elpg,1 ()] 2 (1 =€) T pyes (). (47)

By taking expectation over all possible realizations of <7 we obtain the lemma. |

Proof of Theorem 9 Let &/* be a maximizer of ' with k elements, i.e., & =
argmaxgcy |g<i £'(#). By recursively using Lemma 37 for ¢ = 1,...,1, where | = k/q,
and knowing that () = 0, we obtain:

ELF (o)) 2 F(er) — (1 - (1= ) ZE10) (0 (o) — F(), (18)
> (1- e*<1*6>'wwq) F(a). (49)
|

B.1.4 MM BATCH GREEDY ALGORITHM

Proof of Theorem 12 The arguments are similar to the proof of Theorem 7. Let
&/* be a maximizer of F' with k elements. Let {a;,,...,a;, } be the ¢; elements selected
during the j-th step of the greedy algorithm. If <7 _; is the set of elements after j — 1
steps, then &7, = o7;_1 U{a;,,... ) iy, }. If there are [-steps all together, we naturally have
g +q+--+q =k Foragiven j € {1,...,l}, we denote by {b1,...,b,} the elements of
a/*\ ;1 (we must have k > m > ¢; + ¢j41 + - + ¢). We then have,

F(ar*) < F(o/* U 1), (50a)
L F(j1) + pare (1), (50b)
< F(el 1) +6j + My [por= (1)), (50c)
< F(hya) 85+ My [ (5-0)] (504)
< F(6fjoa) +0+ g (). (500)

J
< P+ ) o). (50f)
J
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a) holds because F' is non-decreasing,
b) is an identity since F'(@/* U o/;_1) — F(aj_1) = pu~ (&;—1) is the incremental gain,
c) holds by defining §; as the smallest scalar satisfying,

per (1) < 65+ My [pure (51)], (51)

d) holds because ¢; < m < k, and the g; elements in the set {a : a € <7\ /1 } maximize
My [pa (#5-1)], and hence

M [por (F)] _ M [poy (Fi0)]

m Qj

e) holds since My [py, (#j-1)] < per, (1),
f) holds by defining 7; as the smallest scalar satisfying

s (i
5; < 0P 1) pﬂ%q( i-1). (52)
J

0; quantifies the slackness of the modular lower bound, while 7; does so relative to the

incremental gain at the current step. A simple manipulation of (50f) allows us to write the
following;:

Flo")—Fla,) < |[1—————— | (F(&") - F(a;_1)). 53

(07) = (o) < (1= 7 ) (Fler™) = () (53)

This leads to F(&/™*) — F(«) < Hé-:l <1 — ﬁ) F(a7*), and the theorem statement

J
follows. |

B.2 Proofs concerning linear Bayesian experimental design criterion

Proof of Theorem 10 Let (0;j,U;) be any generalized eigenvalue-eigenvector pair of the
definite pair (I'y — I'y|x, ['y|x). Since I'y —TI'yx = 0 and I'y|x = 0, we can claim o; > 0.
It is evident that (1405, U;) is the corresponding generalized eigenvalue-eigenvector pair of
the definite pair (I'y,I'y|x). To establish item 1 and item 2, we need to show that o; and
1 + 0, are the corresponding generalized eigenvalues of the definite pair (I'y —T' xpy, T X|y)
and (I'x,x)y), respectively. Item 1 < item 2 then holds automatically.

Using the specified linear statistical model (6), we can deduce I'y — I'y|x = GT xGT.
For the generalized eigenvalue-eigenvector pair (o, U;), we have the relationship

GIxG'U; =Ty |xUjo;. (54)
Multiplying (54) by GTF;|1X, we have
Gy GIxG'U; = G 'Ujo;. (55)
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Define 17J = aijf XGTUj, where «; is some scaling parameter to obtain the desired orthog-

onality, and rewrite (55) as
G'Ty GV, =Tx'Vo;. (56)

From (56), we claim (o}, \N/]) is a generalized eigenvalue-eigenvector pair of (GTFY‘IXG ).
Consequently, (1+0;, ‘7}) is the corresponding pair of (I'y —|—GTI‘Y'XG I'y D= (I‘)_(‘Y, F_l).
By definition the definite pairs (F;(}Y, F;(l) and (I'y,T'x|y) have the same spectrum. Fur-
le, I'y'), then (1 +
aj, I'y 1y ;) is the corresponding pair of (F x,I X|y) This completes the proof for item 2. We

ther, if (1 + oy, YN/) is a generalized eigenvalue-eigenvector pair of (I'y

could have alternatively defined I" X|YV as the generalized eigenvector without any bearing
on the spectrum. The choice we make is motivated by the orthogonality of eigenvectors we
desire.

Let us define V; = F}lvj. Then item 1 follows by recognizing that (o, V;) is the cor-
responding generalized eigenvalue-eigenvector pair of (I'x — I'xjy, Ixjy). |

Proposition 38 Let X € R” and Y € R™ be jointly Gaussian random variables as de-
fined in Section 3.6.1. Let P € R™ ¥ be a selection operator such that Yp = P'Y =
[Yisoos Ylk]T The expected symmetrized Kullback—Leiber divergence, Ery, [DKL (T x|v3 7TX)]
between the prior mx and the posterior x|y, is equal to the sum of the generalized eigen-
values o; of the definite pair (I'y, — Ty, |x,y,ix) or equivalently (U'x — Uxjy,, Ux|vp),
i.e.,

Ery, [D (7x1vp 7x)] = Eny. [Drr(mx)vpllmx) + Drn(rxlmxy,)] = D 65

Proof of Proposition 38 Since the prior and posterior are normal distributions, we can
write the expected symmetrized KL divergence analytically,

| . )
By, [P (Tx)yp, 7x)] = g(m‘ace (Cx'Txpyp) +E [M}wpfxlﬂxwp]

-1 T -1
+ trace (FX|YPFX) +E [MX‘Y’PFX|Y73’MX‘Y7’:| — 2n>. (57)

Above we have assumed without any loss of generality that the prior has zero mean. The
posterior mean fix|y, = I'xjy; G;F;; Yp is a function of the actual realization of data,
unlike the covariance operator I'x|y;, which is independent of data.

Simplifying the above expression is easier when we evaluate EWY [,u X[YpH X|YPi|

Ery,, [1x1v0 ik s | = Dxiyp GRTY (B [YPYE | T5! (GRT iy, (58a)
© Ty GRTy L ¢ (Typix + GPIXGR) Ty Gplxpy,,  (58)
=Ty, (T + GRS < Gp ) TXGRTSY (GpTx s, (58¢)
EL NS S (Txly, = Tx) Ty (58d)
=Tx — Txyp- (58e)
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In the above set of equations, (7) holds since FYP‘X + GPFXGP =Er,, [Y’pY ] =Ty, is
the marginal of the data, and (ii) holds since I'y' + GLI';, Yo |XG7> =TIy | -, is the posterior
precision.

Using the cyclic property of trace and linearity of the expectation operator it is now
easy to see that,

Enyy |1 yaTx Hx1vp ] = trace (D5 (Tx = Txpy)) = 0 — trace (DX Txpy) o (59)

T ~1
Ery., [“XIYPFX\YPMXIYP] trace( X|vp (FX — FX|YP)> = trace( X|vp FX> n. (60)

Using (59) and (60) in (57) we have,
]EWYP [DKL (7rX|y7,,7TX)] = trace( X|vp FX> (61)

The proof is completed by recognizing that trace ( X|vp r X) is the sum of generalized eigen-

values of the definite pair (F x, I X‘yp), which we know from Theorem 10 is n+ y 0j, where
0; are the generalized eigenvalues of the definite pair (I'x — I'x|y;,'x|y;) or equivalently

(Cyp = Typx, Dy x)-
|

B.2.1 BOUNDS ON SUB/SUP-MODULARITY RATIOS

We adapt an eigenvalue interlacing result for definite pairs which will be useful in proving
Proposition 11.

Theorem 39 (Cauchy Interlacing Theorem) (Horn and Johnson, 2012; Bhatia, 1997),
(see also Kressner et al., 2014, Theorem 2.3), (see also Kovac-Striko and Veseli¢, 1995,
Theorem 2.1) Let A, B € R™*"™ with A= 0,B >0, and let y1 >3 > -+ > v; >0, n < mn,
be the eigenvalues of (A, B). For any Z € R™ P with p < n and full column-rank, let
p1 > po > >y >0, p<p, be the eigenvalues of (ZVAZ,Z"BZ). Then:

’Y’n—p—‘rkglukg’)/ka kZl)aﬁ
If additionally A = 0, then n =n and p = p.
Proof of Proposition 11 Bian et al. (2017) provide a bound on the submodularity ratio
for the Bayesian A-optimality design criterion. Our arguments use that proof as a template,
but are modified to account for the mutual information design criterion. In addition we

seek a bound for the supermodularity ratio, which intriguingly is the same.
In order to bound the submodularity ratio we need to lower bound,

Zuew’\@ pv () _ Zu@zf\gg F(vU%B) - F(#)

= , Voo , B8 C Y.
P (A) F(o UR) - F(%)
Similarly, in order to bound the supermodularity ratio we need to lower bound,
ps(B) __ F(SUB) - F(P) e

Zue,;z{\,%’ pu(%B) Zye,;zi\gé FlvU%) - F(2)
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It is clear that we can achieve the above tasks by finding lower and upper bounds for
F(o UB) — F(P) and },c 0 5 F(v U B) — F(PB) respectively.

First we introduce some notation to aid the proof. For any index set &/ with corre-
sponding selection operator P/, let (jy represent the eigenvalue of the compressed pencil
(P;FyPQy,P;F“ XP%). ¢j without any superscript will continue to represent any eigen-
value of the pencil (Fy,ry‘ X). Since we consider mutual information as the objective,
F (<) in terms of the eigenvalues ij is simply ((11) and (13)),

||

log H Cj . (62)

We now state a simple corollary of Theorem 39. We omit the proof since it is quite
trivial. For any two index sets o/, % we have,

A B AR .
Cj > Cj > C|MU&?|—|@|+jv J = 17~--,|93|- (63)

As in Theorem 39, in the above statement we have ordered the eigenvalues such that
’1% > 2 C@l and Cff UZ > ... > (7Y%  This simple result proves handy in bounding

| UB|"
F(o/ U B) — F(B).

|/ U ||
F(o URB)— log H SIB _ logl_ICJ ) (64a)
. \y{u,%|—|,%’| . || C@U% )
. Par o il ]
= 5 log H G707 + S log H - (64b)
7=1 Jj=1 J
|/ \B| oz
<> log H Y2 - (63) > % <1, (64c)
j
|/ \ | g 2 .
<= 1og< ‘”Uﬂ) o Y > Y7 g, (64d)
o y
< ‘;| log (7Y%, (64e)
|/ U] —| ] El (o
F(o/ U %) — F(%) = log I &5+ : (65a)
j=1 Jj=1
|\ B Cwuz
> - log H oy, o (63) = = (65b)
J
2 \ |7\ 2 2 .
> log (cf%ﬂ) R Sy i (65
o\ B
> 17\ % | Cfé%é (65d)
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Specializing (63) to the case when the set < is a singleton set consisting of the element
v we have the following result,

G, =149 (66)

Using (66) we can bound the term }_, ¢ 4 F(v U %) — F(%) using similar arguments as
n (64) and (65).

|2|+1 |2
Z FvU%AB)— F(AB) = Z log H vz flogHCj , (67a)
ved\#B veEA\B
1 P | 2| CVUJ
veA\B
,!Z{ % V-I— p CVU%
> | ; | og CL@Tﬁ, C‘% >1, (67¢)
where v = arg min, e o 5 C{;}J“fl.
|’3| VU%
Y Fwu®)-F(B)= ). log Yz 4 , (68a)
ved\B ved\ B
of . vU%A
S | \‘@| lo viuz .. C.7+1 < 1 (68b)

1 ) .
o

where ¥ = arg MaX, ¢\ 2 (VY7 Gathering the results from (64), (65), (67) and (68) we
have,

o \ B Ut AN\E viug

| \ ‘ gw‘uﬁ < Z (vURB) - F(B) < | ; |10g e, (69)
veA\AB

i ;‘@ [ log GO < F(AUB)-F(B) < Wlog Sl (70)

Using (69) and (70) we have,

viuZz
> veaz F'(vUB) — F(B) S log Cm\uﬁ - 10g Gmin

. 71
F(o/ UB) — F(B) ~ log (Y7 T log Cmax )
F(o/UB)—F(#) 18G50 108 Gun 72
Y veanzg FvUPB) — F(B) ~ log (V'V% = 10g (max
|
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B.3 Proofs concerning MM algorithms for linear Bayesian experimental design

This subsection is devoted to proving Proposition 13 and its corollaries. We begin by stating
certain standard results in linear algebra, subsequently deducing useful corollaries, and some
helpful lemmas from them, all of which contribute to the argument of the main result.

Theorem 40 (Hadamard’s inequality) (Horn and Johnson, 2012) Let A € R™*™ be
any positive definite Hermitian matriz, with a;; representing its individual entries. Then,

det A <aiy--- Gmm

Corollary 41 Let A € R™*™ be any positive definite Hermitian matriz, and P € R™F* k <
m be a selection operator (Definition 2), then:

log <det (PTAP>> < trace (PT log (diag (A)) P)

Proof of Corollary 41 The corollary follows immediately from Theorem 40. |

Remark 42 The logdet of a principal submatriz is a submodular function with respect
to the indices defining the submatrices (Gantmacher and Krein, 1960; Kotelyanskiiv, 1950;
Fan, 1967, 1968; Kelmans and Kimelfeld, 1983; Johnson and Barrett, 1985). We know
that submodularity implies subadditivity for nonnegative functions, thus the modular upper
bound in the statement of Corollary 41 can be understood in that sense as well.

Theorem 43 (Operator concave inequality) (Davis, 1957; Hansen, 1980; Hansen and
Kjergard Pedersen, 1982; Hansen and Pedersen, 2003; Bourin, 2006) Let A be any Hermi-
tian operator defined on a Hilbert space, and K be an isometry on a subspace of the Hilbert
space. Denote the compression of A by K as K*AK, then for any operator concave function
o(-) we have that,

K*¢(A)K < ¢(K*AK)

Theorem 44 (Matrix versions of the Cauchy and Kantorovich inequalities) (Marshall
and Olkin, 1990; Mond and Pecari¢, 1994; Bourin, 2005) Let A € R™*™ be any positive
definite Hermitian matriz, with eigenvalues contained in the interval [As, Nj] C Rso. If K

s an isometry then:

AN e ol < (K AR) T < KA
()\5 + >\l)

As pointed out by Marshall and Olkin (1990), if K is merely a selection operator, then the
upper bound of Theorem 44 reduces to a standard result in linear algebra, first established
by Chollet (1982) and now a common theorem in texts (see Horn and Johnson, 2012,
Theorem 7.7.15.); the inverse of a principal submatrix of any definite matrix is less than or
equal to the corresponding submatrix of the inverse.
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Corollary 45 Let A € R™*™ be any positive definite Hermitian matrix with an eigenvalue
interval [Ag, ;] as prescribed in Theorem 44. Define the scalar parameter g = AAsdy f

As+M)*
K e R™*F | < m is an isometry, K*K = I, then:

trace (K*log (A) K) < logdet (K*AK) < trace (K™ (log (A) — I, log (0)) K)

Proof of Corollary 45 Since A > 0, its compression by K, K*AK > 0. Hence we

have the identity trace (log (K*AK)) = logdet (K*AK). Since log is a concave function,

we claim using Theorem 43 log (K*AK) > K*log (A) K, and this implies the lower bound.
To prove the upper bound, we begin by using the identity

log det (K*AK) = —logdet (K*AK) ™! = —trace <log (K*AK)_1> . (73)
Using the lower bound in Theorem 44 we have,

log det (oK*A™'K) < logdet (K*AK) ™. (74)
= —trace (log (K*AK)_1> < —trace (log (K*A™'K)) — trace (I log (0)) . (75)

K*A~'K is a compression by K of A~! = 0. Using Theorem 43 we claim,

log (K*AT'K) = K*log (A™") K = —K*log (A) K. (76)
= —trace (log (K*A™'K)) < trace (K*log (A4) K). (77)

Using (77) in (75) we have,
—trace (log (K*AK)A) < trace (K™ log (A) K) — trace (I log (o)) - (78)

The upper bound in the corollary statement is now immediately obtained by linearity of
the trace operator and the isometry property of K. |

Proof of Proposition 13 Equation (13) provides an expression for the mutual information
I(X;Yp),

det (PTT'yP
I(X;Yp):;10g< t (P TyP) )

det (PTry‘XP)

The proposition statement and the alternative modular bounds in (20) are easily obtained
by using Corollaries 41 and 45 on the two log det terms. |

Proof of Corollary 15 Eq. (21) is simply a restatement of the lower bound in Propo-
sition 13. The equivalence between (21) and (22) is trivial. Rewriting (22) with Y\ Yp as
the argument, and subtracting that term from Z(X;Y) we obtain (21). In a similar way we
can obtain (22) from (21). [ ]
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Proof of Corollary 14 IfY;, |X are independent, then we know I'y|x is diagonal, and
hence log diag (Fy‘ X) = log (Fy| X). Thus the corollary statement is apparent as a conse-
quence of Corollary 15. |

Proof of Proposition 16 Observe that
(XY \Yp|Yp,) —Z(X; Y\ Yp, Yp,) = Z(Yp; Y \ Yp, Y, [ X) = Z(Yp; Y \ Yp, Yp,). (79)
This implies
IL(X;Y \Yp|Yp,) — Z(X; Y \ Yp,Yp,) < Z(Yp,; YV \ Y, Yp, | X). (80)
Using (80), we have

I(Xa Y|Y771) _I(X; Y\YPUYP) < I(Xa Y’YP1) _I(X; Y\YP‘YPJ +I(YP1;Y\YP7 Yp, |X)

(81)
Consider the term Z(X;Y|Yp,) —Z(X;Y \ Yp|Yp,); adapting the result in Corollary 15 we
have the following bound:

(XY |Vp,) — T(X; Y \ Yp|Vp,) < trace (73T (1og (FY%I) ~log (ry| Xypl)) 73)
+ trace (73€T (log diag (Fy|X7YP1) — log (Fy|X7y7,1>) ﬁc) .
(82)

Now consider the term Z(Yp,;Y \ Yp,Yp, | X). Using Corollaries 41 and 45 we have the
following bound:

I(Yp,: Y\ Yp, Yp, | X) < trace (730T (1og diag (FY\YP1| X) —log (ry| X,Ypl)) 73) . (83)

Adding (80) and (82), we get the proposition statement. [ ]
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