
LEARNING TO RELAX: SETTING SOLVER PARAMETERS
ACROSS A SEQUENCE OF LINEAR SYSTEM INSTANCES

Mikhail Khodak
CMU
khodak@cmu.edu

Edmond Chow
Georgia Tech.
echow@cc.gatech.edu

Maria-Florina Balcan
CMU
ninamf@cs.cmu.edu

Ameet Talwalkar
CMU
talwalkar@cmu.edu

ABSTRACT

Solving a linear system Ax = b is a fundamental scientific computing primitive
for which numerous solvers and preconditioners have been developed. These come
with parameters whose optimal values depend on the system being solved and are
often impossible or too expensive to identify; thus in practice sub-optimal heuristics
are used. We consider the common setting in which many related linear systems
need to be solved, e.g. during a single numerical simulation. In this scenario,
can we sequentially choose parameters that attain a near-optimal overall number
of iterations, without extra matrix computations? We answer in the affirmative
for Successive Over-Relaxation (SOR), a standard solver whose parameter ω has
a strong impact on its runtime. For this method, we prove that a bandit online
learning algorithm—using only the number of iterations as feedback—can select
parameters for a sequence of instances such that the overall cost approaches
that of the best fixed ω as the sequence length increases. Furthermore, when
given additional structural information, we show that a contextual bandit method
asymptotically achieves the performance of the instance-optimal policy, which
selects the best ω for each instance. Our work provides the first learning-theoretic
treatment of high-precision linear system solvers and the first end-to-end guarantees
for data-driven scientific computing, demonstrating theoretically the potential to
speed up numerical methods using well-understood learning algorithms.

1 INTRODUCTION

The bottleneck subroutine in many scientific computations is a solver returning an approximate so-
lution to a linear system. For example, simulating a partial differential equation (PDE) often involves
solving sequences of high-dimensional systems to very high precision (Thomas, 1999). A vast array
of solvers and preconditioners have thus been developed, many of which have tunable parameters that
significantly affect runtime (Greenbaum, 1997; Hackbusch, 2016). There is a long literature analyzing
these algorithms, and indeed for some problems we have a strong understanding of the optimal parame-
ters for a given matrix. However, computing them can be more costly than solving the original system,
leading to an assortment of heuristics for setting good parameters (Ehrlich, 1981; Golub & Ye, 1999).
We provide an alternative to such heuristics by taking advantage of the fact that we often sequentially
solve many linear systems. In addition to numerical simulation, this occurs in graphics computations
such as mean-curvature flow (Kazhdan et al., 2012), nonlinear system solvers (Marquardt, 1963), and
beyond. A natural approach is to treat these instances as data to be passed to a machine learning (ML)
algorithm; in particular the framework of online learning (Cesa-Bianchi & Lugosi, 2006) provides a
language to reason about such sequential learning problems. For example, if we otherwise would solve
a sequence of linear systems (A1,b1), . . . , (AT ,bT) using a given solver with a fixed parameter, can
we use ML to do as well as the best choice of that parameter, i.e. can we minimize regret? Or, if the
matrices are all diagonal shifts of single matrix A, can we learn the functional relationship between
the shift ct and the optimal solver parameter for At = A+ ctIn, i.e. can we predict using context?
We investigate these questions for the Successive Over-Relaxation (SOR) solver, a generalization of
Gauss-Seidel whose relaxation parameter ω ∈ (0, 2) dramatically affects the number of iterations (c.f.
Figure 1, noting the log-scale). SOR and its symmetric variant are well-studied and often used as pre-
conditioners for Krylov methods such as conjugate gradient (CG), as bases for semi-iterative schemes,
and as multigrid smoothers. Analogous to some past setups in data-driven algorithms (Balcan et al.,
2018; Khodak et al., 2022), we sequentially set the parameter ωt for SOR to use when solving each lin-

1

ear system (At,bt). Unlike past theoretical studies of related methods (Gupta & Roughgarden, 2017;
Bartlett et al., 2022; Balcan et al., 2022), we aim to provide end-to-end guarantees—covering the full
pipeline from data-intake to efficient learning to execution—while minimizing dependence on the di-
mension (n can be 105 or higher) and precision (1/ε can be 108 or higher). We emphasize that we do
not seek to immediately improve the empirical state of the art, and also that existing research on saving
computation when solving sequences of linear systems (recycling Krylov subspaces, reusing precon-
ditioners, etc.) is complementary to our own, i.e. it can be used in addition to the ideas presented here.

1.1 CORE CONTRIBUTIONS

We study two distinct theoretical settings, corresponding to views on the problem from two different
approaches to data-driven algorithms. In the first we have a deterministic sequence of instances and
study the spectral radius of the iteration matrix, the main quantity of interest in classical analysis
of SOR (Young, 1971). We show how to convert its asymptotic guarantee into a surrogate loss that
upper bounds the number of iterations via a quality measure of the chosen parameter, in the style
of algorithms with predictions (Mitzenmacher & Vassilvitskii, 2021). The bound holds under a near-
asymptotic condition implying that convergence occurs near the asymptotic regime, i.e. when the spec-
tral radius of the iteration matrix governs the convergence. We verify the assumption and show that one
can learn the surrogate losses using only bandit feedback from the original costs; notably, despite being
non-Lipschitz, we take advantage of the losses’ unimodal structure to match the optimal Õ(T 2/3) re-
gret for Lipschitz bandits (Kleinberg, 2004). Our bound also depends only logarithmically on the preci-
sion and not at all on the dimension. Furthermore, we extend to the diagonally shifted setting described
before, showing that an efficient, albeit pessimistic, contextual bandit (CB) method has Õ(T 3/4) re-
gret w.r.t. the instance-optimal policy that always picks the best ωt. Finally, we show a similar analysis
of learning a relaxation parameter for the more popular (symmetric SOR-preconditioned) CG method.
Our second setting is semi-stochastic, with target vectors bt drawn i.i.d. from a (radially truncated)
Gaussian. This is a reasonable simplification, as convergence usually depends more strongly on
At, on which we make no extra assumptions. We show that the expected cost of running a symmetric
variant of SOR (SSOR) is O(

√
n)polylog(nε)-Lipschitz w.r.t. ω, so we can (a) compete with the

optimal number of iterations—rather than with the best upper bound—and (b) analyze more practical,
regression-based CB algorithms (Foster & Rakhlin, 2020; Simchi-Levi & Xu, 2021). We then
show Õ(3

√
T 2
√
n) regret when comparing to the single best ω and Õ(T 9/11

√
n) regret w.r.t. the

instance-optimal policy in the diagonally shifted setting using a novel, Chebyshev regression-based
CB algorithm. While the results do depend on the dimension n, the dependence is much weaker
than that of past work on data-driven tuning of a related regression problem (Balcan et al., 2022).
Remark 1.1. Likely the most popular algorithms for linear systems are Krylov subspace methods
such as CG. While an eventual aim of our line of work is to understand how to tune (many)
parameters of (preconditioned) CG and other algorithms, SOR is a well-studied method and serves
as a meaningful starting point. In fact, we show that our near-asymptotic analysis extends directly,
and in the semi-stochastic setting there is a natural path to (e.g.) SSOR-preconditioned CG, as it
can be viewed as computing polynomials of iteration matrices where SSOR just takes powers. Lastly,
apart from its use as a preconditioner and smoother, SOR is still sometimes preferred for direct use
as well (Fried & Metzler, 1978; Van Vleck & Dwyer, 1985; King et al., 1987; Woźnicki, 1993; 2001).

1.2 TECHNICAL AND THEORETICAL CONTRIBUTIONS

By studying a scientific computing problem through the lens of data-driven algorithms and online
learning, we also make the following contributions to the latter two fields:
1. Ours is the first head-to-head comparison of two leading theoretical approaches to data-driven algo-

rithms applied to the same problem. While the algorithms with predictions approach in Section 2
takes better advantage of the scientific computing literature to obtain (arguably) more interpretable
and dimension-independent bounds, data-driven algorithm design (Balcan, 2021) competes directly
with the quantity of interest in Section 3 and enables guarantees for modern CB algorithms.

2. For algorithms with predictions, our near-asymptotic approach may be extendable to other iterative
solvers, as we demonstrate with CG. We also show that such performance bounds on a (partially-
observable) cost are learnable even when the bounds themselves are too expensive to compute.

3. In data-driven algorithm design, we take the novel theoretical approach of proving continuity
of the expectation of a discrete cost, rather than showing dispersion of its discontinuities (Balcan
et al., 2018) or bounding predicate complexity (Bartlett et al., 2022).

2

Algorithm 1: Successive over-relaxation (SOR) with a relative convergence condition.
Input: A ∈ Rn×n, b ∈ Rn, parameter ω ∈ (0, 2), initial vector x ∈ Rn, tolerance ε > 0
D+ L+ LT ← A // D is diagonal, L is strictly lower triangular
Wω ← D/ω + L // compute the third normal form
r0 ← b−Ax // compute initial residual
for k = 0, . . . do

if ∥rk∥2 ≤ ε∥r0∥2 then
return k // return iteration count (for use in learning)

x = x+W−1
ω rk // update vector after solving triangular system

rk+1 ← b−Ax // compute the next residual

4. We introduce the idea of using CB to set instance-adaptive algorithmic parameters; while (linear)
instance-adaptivity was also shown via convexity by Khodak et al. (2022), we go further by taking
advantage of multi-instance structure to asymptotically do as well as the instance-optimal policy.

5. We show that standard discretization-based bandit algorithms are optimal for sequences of adver-
sarially chosen semi-Lipschitz losses that generalize regular Lipschitz functions (c.f. Appendix B).

6. We introduce a new CB method that combines SquareCB (Foster & Rakhlin, 2020) with
Chebyshev polynomial regression to get sublinear regret on Lipschitz losses (c.f. Appendix C).

1.3 RELATED WORK AND COMPARISONS

We discuss the existing literature on solving sequences of linear systems (Parks et al., 2006; Tebbens &
Tůma, 2007; Elbouyahyaoui et al., 2021), work integrating ML with scientific computing to amortize
cost (Amos, 2023; Arisaka & Li, 2023), and past theoretical studies of data-driven algorithms (Gupta
& Roughgarden, 2017; Balcan et al., 2022) in Appendix A. For the latter we include a detailed com-
parison of the generalization implications of our work with the GJ framework (Bartlett et al., 2022).
Lastly, we address the baseline of approximating the spectral radius of the Jacobi iteration matrix.

2 ASYMPTOTIC ANALYSIS OF LEARNING THE RELAXATION PARAMETER

We start this section by going over the problem setup and the SOR solver. Then we consider the
asymptotic analysis of the method to derive a reasonable performance upper bound to target as a
surrogate loss for the true cost function. Finally, we prove and analyze online learning guarantees.

2.1 SETUP

At each step t = 1, . . . , T of (say) a numerical simulation we get a linear system instance, defined by
a matrix-vector pair (At,bt) ∈ Rn×n×Rn, and are asked for a vector x ∈ Rn such that the norm of
its residual or defect r = bt−Atx is small. For now we define “small” in a relative sense, specifically
∥Atx−bt∥2 ≤ ε∥bt∥2 for some tolerance ε ∈ (0, 1); note that when using an iterative method initial-
ized at x = 0n this corresponds to reducing the residual by a factor 1/ε, which we call the precision.
In applications it can be quite high, and so we will show results whose dependence on it is at worst
logarithmic. To make the analysis tractable, we make two assumptions (for now) about the matrices
A: they are symmetric positive-definite and consistently-ordered (c.f. Hackbusch (2016, Defini-
tion 4.23)). We emphasize that, while not necessary for convergence, both are standard in the analysis
of SOR (Young, 1971); see Hackbusch (2016, Criterion 4.24) for multiple settings where they holds.
To find a suitable x for each instance in the sequence we apply Algorithm 1 (SOR), which at a
high-level works by multiplying the current residual r by the inverse of a matrix Wω—derived from
the diagonal D and lower-triangular component L of A—and then adding the result to the current
iterate x. Note that multiplication by W−1

ω is efficient because Wω is triangular. We will measure
the cost of this algorithm by the number of iterations it takes to reach convergence, which we denote
by SOR(A,b, ω), or SORt(ω) for short when it is run on the instance (At,bt). For simplicity, we
will assume that the algorithm is always initialized at x = 0n, and so the first residual is just b.
Having specified the computational setting, we now turn to the learning objective, which is to
sequentially set the parameters ω1, . . . , ωT so as to minimize the total number of iterations:∑T

t=1
SORt(ωt) =

∑T

t=1
SOR(At,bt, ωt) (1)

3

To set ωt at some time t > 1, we allow the learning algorithm access to the costs SORs(ωs) incurred
at the previous steps s = 1, . . . , t − 1; in the literature on online learning this is referred to as
the bandit or partial feedback setting, to distinguish from the (easier, but unreasonable for us) full
information case where we have access to the cost function SORs at every ω in its domain.
Selecting the optimal ωt using no information about At is impossible, so we must use a comparator
to obtain an achievable measure of performance. In online learning this is done by comparing the
total cost incurred (1) to the counterfactual cost had we used a single, best-in-hindsight ω at every
timestep t. We take the minimum over some domain Ω ⊂ (0, 2), as SOR diverges outside it. While
in some settings we will compete with every ω ∈ (0, 2), we will often algorithmically use [1, ωmax]
for some ωmax < 2. The upper limit ensures a bound on the number of iterations—required by bandit
algorithms—and the lower limit excludes ω < 1, which is rarely used because theoretical convergence
of vanilla SOR is worse there for realistic problems, e.g. those satisfying our assumptions.
This comparison-based approach for measuring performance is standard in online learning and
effectively assumes a good ω ∈ Ω that does well-enough on all problems; in Figure 1 (center-left) we
show that this is sometimes the case. However, the center-right plot in the same figure shows we might
do better by using additional knowledge about the instance; in online learning this is termed a context
and there has been extensive development of contextual bandit algorithms that do as well as the best
fixed policy mapping contexts to predictions. We will study an example of this in the diagonally
shifted setting, in which At = A+ctIn for scalars ct ∈ R; while mathematically simple, this structure
arises in natural settings, e.g. solving the heat equation with temporally variable diffusivity, and is
well-motivated by other applications (Frommer & Glässner, 1998; Bellavia et al., 2011; Baumann
& van Gijzen, 2015; Anzt et al., 2016; Wang et al., 2019). Furthermore, the same learning algorithms
can also be extended to make use of other context information, e.g. rough spectral estimates.

2.2 ESTABLISHING A SURROGATE UPPER BOUND

Our first goal is to solve T linear systems almost as fast as if we had used the best fixed ω ∈ Ω. In on-
line learning, this corresponds to minimizing regret, which for cost functions ℓt : Ω 7→ R is defined as

RegretΩ({ℓt}Tt=1) =
∑T

t=1
ℓt(ωt)−min

ω∈Ω

∑T

t=1
ℓt(ω) (2)

In particular, since we can upper-bound the objective (1) by RegretΩ({SORt}Tt=1) plus the optimal
cost minω∈Ω

∑T
t=1 SORt(ω), if we show that regret is sublinear in T then the leading-order term

in the upper bound corresponds to the cost incurred by the optimal fixed ω.
Many algorithms attaining sublinear regret under different conditions on the losses ℓt have been
developed (Cesa-Bianchi & Lugosi, 2006; Bubeck & Cesa-Bianchi, 2012). However, few handle
losses with discontinuities—i.e. most algorithmic costs—and those that do (necessarily) need
additional conditions on their locations (Balcan et al., 2018; 2020). At the same time, numerical
analysis often deals more directly with continuous asymptotic surrogates for cost, such as convergence
rates. Taking inspiration from this, and from the algorithms with predictions idea of deriving surrogate
loss functions for algorithmic costs (Khodak et al., 2022), in this section we instead focus on finding
upper bounds Ut on SORt that are both (a) learnable and (b) reasonably tight in-practice. We can then
aim for overall performance nearly as good as the optimal ω ∈ Ω as measured by these upper bounds:

T∑
t=1

SORt(ωt) ≤
T∑

t=1

Ut(ωt) = RegretΩ({Ut}Tt=1)+min
ω∈Ω

T∑
t=1

Ut(ω) = o(T)+min
ω∈Ω

T∑
t=1

Ut(ω) (3)

A natural approach to get a bound Ut is via the defect reduction matrix Cω = In −A(D/ω + L)−1,
so named because the residual at iteration k is equal to Ck

ωb and b is the first residual. Under our
assumptions on A, Young (1971) shows that the spectral radius ρ(Cω) of Cω is a (nontrivial to com-
pute) piecewise function of ω with a unique minimum in [1, 2). Since we have error ∥Ck

ωb∥2/∥b∥2 ≤
∥Ck

ω∥2 at iteration k, ρ(Cω) = limk→∞
k
√
∥Ck

ω∥2 asymptotically bounds how much the error is re-
duced at each step. It is thus often called the asymptotic convergence rate and the number of iterations
is said to be roughly bounded by − log ε

− log ρ(Cω) (e.g. Hackbusch (2016, Equation 2.31b)). However, while
it is tempting to use this as our upper bound U , in fact it may not upper bound the number of iterations
at all, since Cω is not normal and so in-practice the iteration often goes through a transient phase
where the residual norm first increases before decreasing (Trefethen & Embree, 2005, Figure 25.6).
Thus we must either take a different approach or make some assumptions. Note that one can in-fact
show an ω-dependent, finite-time convergence bound for SOR via the energy norm (Hackbusch,

4

Figure 1: Left: comparison of different cost estimates. Center-left: mean performance of different
parameters across forty instances of form A+ 12c−3

20 In, where c ∼Beta(2, 6). Center-right: the same
but for c ∼ Beta(1/2, 3/2), which is relatively higher-variance. In both cases the dashed line indicates
instance-optimal performance, the matrix A is a discrete Laplacian of a 100× 100 square domain,
and the targets b are truncated Gaussians. Right: asymptocity as measured by the difference between
the spectral norm at iteration k and the spectral radius, together with its upper bound τ(1− ρ(Cω)).

2016, Corollary 3.45), but this can give rather loose upper bounds on the number of iterations (c.f.
Figure 1 (left)). Instead, we make the following assumption, which roughly states that convergence
always occurs near the asymptotic regime, where nearness is measured by a parameter τ ∈ (0, 1):
Assumption 2.1. There exists τ ∈ (0, 1) s.t. ∀ ω ∈ Ω the matrix Cω = In − A(D/ω + L)−1

satisfies ∥Ck
ω∥2 ≤ (ρ(Cω) + τ(1− ρ(Cω)))

k at k = min∥Ci+1
ω b∥2<ε∥b∥2

i.

This effectively assumes an upper bound ρ(Cω) + τ(1 − ρ(Cω)) on the empirically observed
convergence rate, which gives us a measure of the quality of each parameter ω for the given instance
(A,b). Note that the specific form of the surrogate convergence rate was chosen both because it is
convenient mathematically—it is a convex combination of 1 and the asymptotic rate ρ(Cω)—and
because empirically we found the degree of “asymptocity” as measured by ∥Ck

ω∥
1/k
2 − ρ(Cω) for k

right before convergence to vary reasonably similarly to a fraction of 1−ρ(Cω) (c.f. Figure 1 (right)).
This makes intuitive sense, as the parameters ω for which convergence is fastest have the least time to
reach the asymptotic regime. Finally, note that since limk→∞ ∥Ck

ω∥
1/k
2 = ρ(Cω), for every γ > 0

there always exists k′ s.t. ∥Ck
ω∥2 ≤ (ρ(Cω) + γ)k ∀ k ≥ k′; therefore, since 1 − ρ(Cω) > 0, we

view Assumption 2.1 not as a restriction on Cω (and thus on A), but rather as an an assumption on
ε and b. Specifically, the former should be small enough that Ci

ω reaches that asymptotic regime
for some i before the criterion ∥Ck

ωb∥2 ≤ ε∥b∥2 is met; for similar reasons, the latter should not
happen to be an eigenvector corresponding to a tiny eigenvalue of Cω (c.f. Figure 2 (left)).
Having established this surrogate of the spectral radius, we can use it to obtain a reasonably tight
upper bound U on the cost (c.f. Figure 1 (left)). Crucially for learning, we can also establish the
following properties via the functional form of ρ(Cω) derived by Young (1971):

Lemma 2.1. Define U(ω) = 1 + − log ε
− log(ρ(Cω)+τ(1−ρ(Cω))) , α = τ + (1 − τ)max{β2, ωmax − 1},

and ω∗ = 1 + β2/(1 +
√

1− β2)2, where β = ρ(In −D−1A). Then the following holds:

1. U bounds the number of iterations and is itself bounded: SOR(A,b, ω) < U(ω) ≤ 1 + − log ε
− logα

2. U is decreasing towards ω∗, and −(1−τ) log ε
α log2 α

-Lipschitz on ω ≥ ω∗ if τ ≥ 1
e2 or β2 ≥ 4

e2 (1−
1
e2)

Lemma 2.1 introduces a quantity α = τ+(1−τ)max{β2, ωmax−1} that appears in the upper bounds
on U(ω) and in its Lipschitz constant. This quantity will in some sense measure the difficulty of
learning: if α is close to 1 for many of the instances under consideration then learning will be harder.
Crucially, all quantities in the result are spectral and do not depend on the dimensionality of the matrix.

2.3 PERFORMING AS WELL AS THE BEST FIXED ω

Having shown these properties of U , we now show that it is learnable via Tsallis-INF (Abernethy et al.,
2015; Zimmert & Seldin, 2021), a bandit algorithm which at each instance t samples ωt from a discrete
probability distribution over a grid of d relaxation parameters, runs SOR with ωt on the linear system
(At,bt), and uses the number of iterations required SORt(ωt) as feedback to update the probability
distribution over the grid. The scheme is described in full in Algorithm 2. Note that it is a relative of the
simpler and more familiar Exp3 algorithm (Auer et al., 2002), but has a slightly better dependence on
the grid size d. In Theorem 2.1, we bound the cost of using the parameters ωt suggested by Tsallis-INF
by the total cost of using the best fixed parameter ω ∈ Ω at all iterations—as measured by the surrogate
bounds Ut—plus a term that increases sublinearly in T and a term that decreases in the size of the grid.

5

Algorithm 2: Online tuning of a linear system solver using Tsallis-INF. The probabilities can be
computed using Newton’s method (e.g. Zimmert & Seldin (2021, Algorithm 2)).
Input: solver SOLVE : Rn×n×Rn×Ω 7→ Z>0, instance sequence {(At,bt)}Tt=1⊂Rn×n×Rn,

normalization K > 0, parameter grid g ∈ Ωd, step-size η > 0
k← 0d // initialize vector of cumulative costs
for t = 1, . . . , T do

p← argminp∈△d
⟨k,p⟩ − 4K

η

∑d
i=1
√
p[i] // compute probabilities

sample it ∈ [d] w.p. p[it] and set ωt = g[it] // sample action from grid
k[it] ← k[it] + (SOLVE(At,bt, ωt)− 1)/p[it] // run solver and update cost

Theorem 2.1. Define αt = τt + (1− τt)max{β2
t , ωmax − 1}, where βt = ρ(In −D−1

t At) and τt
is the minimal τ satisfying Assumption 2.1 and the second part of Lemma 2.1. If we run Algorithm 2
using SOR initialized at x = 0n as the solver, g[i] = 1 + (ωmax − 1) i

d as the parameter grid,
normalization K ≥ − log ε

− logαmax
for αmax = maxt αt, and step-size η = 1/

√
T then the expected

number of iterations is bounded as

E
T∑

t=1

SORt(ωt) ≤ 2K
√
2dT +

T∑
t=1

− log ε

d log2 αt

+ min
ω∈(0,ωmax]

T∑
t=1

Ut(ω) (4)

Using ωmax=1+max
t

(
βt

1+
√√
1−β2

t

)2

, K= −log ε
−logαmax

, and d= 3

√
T
2 γ̄

2 log2αmax, for γ̄= 1
T

T∑
t=1

1
log2αt

, yields

E
T∑

t=1

SORt(ωt) ≤ 3 log
1

ε
3

√
2γ̄T 2

log2αmax

+ min
ω∈(0,2)

T∑
t=1

Ut(ω) ≤ 3 log
1

ε
3

√
2T 2

log4αmax

+ min
ω∈(0,2)

T∑
t=1

Ut(ω) (5)

Thus asymptotically (as T →∞) the average cost on each instance is that of the best fixed ω ∈ (0, 2),
as measured by the surrogate loss functions Ut(ω). The result clearly shows that the difficulty of
the learning problem can be measured by how close the values of αt are to one. As a quantitative
example, for the somewhat “easy” case of τt ≤ 0.2 and βt ≤ 0.9, the first term is < T log 1

ε—i.e.
we take at most log 1

ε excess iterations on average—after around 73K instances.
The proof of Theorem 2.1 (c.f. Section E) takes advantage of the fact that the upper bounds Ut are
always decreasing wherever they are not locally Lipschitz; thus for any ω ∈ (0, ωmax] the next highest
grid value in g will either be better or O(1/d) worse. This allows us to obtain the same O(T 2/3)
rate as the optimal Lipschitz-bandit regret (Kleinberg, 2004), despite Ut being only semi-Lipschitz.
One important note is that setting ωmax, K, and d to obtain this rate involves knowing bounds on
spectral properties of the instances. The optimal ωmax requires a bound on maxt βt akin to that
used by solvers like Chebyshev semi-iteration; assuming this and a reasonable sense of how many

iterations are typically required is enough to estimate αmax and then set d = 3

√
T/2

log2 αmax
, yielding

the right-hand bound in (5). Lastly, we note that Tsallis-INF adds quite little computational overhead:
it has a per-instance update cost of O(d), which for d = O(3

√
T) is likely to be negligible in practice.

2.4 THE DIAGONALLY SHIFTED SETTING

The previous analysis is useful when a fixed ω is good for most instances (At,bt). A non-fixed
comparator can have much stronger performance (c.f. the dashed lines in Figure 1 (center)), so in this
section we study how to use additional, known structure in the form of diagonal shifts: at all t ∈ [T],
At = A+ ctIn for some fixed A and scalar ct. It is easy to see that selecting instance-dependent ωt

using the value of the shift is exactly the contextual bandit setting (Beygelzimer et al., 2011), in which
the comparator is a fixed policy f : R 7→ Ω that maps the given scalars to parameters for them. Here
the regret is defined by Regretf ({ℓt}Tt=1) =

∑T
t=1 ℓt(ωt) −

∑T
t=1 ℓt(f(ct)). Notably, if f is the

optimal mapping from ct to ω then sublinear regret implies doing nearly optimally at every instance.
In our case, the policy ω∗ minimizing Ut is a well-defined function of At (c.f. Lemma 2.1) and thus
of ct (Young, 1971); in fact, we can show that the policy is Lipschitz w.r.t. ct (c.f. Lemma E.1). This
allows us to use a very simple algorithm—discretizing the space of offsets ct into m intervals and run-
ning Tsallis-INF separately on each—to obtain O(T 3/4) regret w.r.t. the instance-optimal policy ω∗:

6

Figure 2: Left: solver cost for b drawn from a truncated Gaussian v.s. b a small eigenvector of C1.4.
Center-left: cost to solve 5K diagonally shifted systems At = A+ 12ct−3

20 In for ct ∼ Beta(2, 6).
Center-right: total SSOR-preconditioned CG iterations taken while solving the 2D heat equation with
a time-varying diffusion coefficient (used as context) on different grids, as a function of the linear sys-
tem dimension. Right: (smoothed) parameters chosen at each timestep of one such simulation, over-
laid on a contour plot of the cost of solving the system at step t with parameter ω (c.f. Appendix G).

Theorem 2.2 (c.f. Theorem E.1). Suppose all offsets ct lie in [cmin, cmin + C] for some

cmin > −λmin(A), and define L = 1+βmax

βmax
√

1−β2
max

(
λmin(D)+cmin+1
λmin(D)+cmin

)2
for βmax as in Theorem 2.1.

Then there is a discretization of this interval s.t. running Algorithm 2 separately on each sequence
of contexts in each bin with appropriate parameters results in expected cost

E
T∑

t=1

SORt(ωt) ≤ 4

√
54C3L3T

log2 αmax

+
4 log 1

ε

log 1
αmax

4
√
24CLT 3 +

T∑
t=1

Ut(ω
∗(ct)) (6)

Observe that, in addition to αt, the difficulty of this learning problem also depends on the maximum
spectral radius βmax of the Jacobi matrices In −D−1(ct)A(ct) via the Lipschitz constant L of ω∗.

2.5 TUNING PRECONDITIONED CONJUGATE GRADIENT

CG is perhaps the most-used solver for positive definite systems; while it can be run without tuning, in
practice significant acceleration can be realized via a good preconditioner such as (symmetric) SOR.
The effect of ω on CG performance can be somewhat distinct from that of regular SOR, requiring a
separate analysis. We use the condition number analysis of Axelsson (1994, Theorem 7.17) to obtain
an upper bound UCG(ω) on the number of iterations required CG(A,b, ω) to solve a system. While
the resulting bounds match the shape of the true performance less exactly than the SOR bounds
(c.f. Figure 4), they still provide a somewhat reasonable surrogate. After showing that these functions
are also semi-Lipschitz (c.f. Lemma E.2), we can bound the cost of tuning CG using Tsallis-INF:

Theorem 2.3. Set µt = ρ(DtA
−1
t), µmax = maxt µt,

√
µ = 1

T

∑T
t=1

√
µ
t
, and κmax = maxt κ(At).

If mint µt − 1 is a positive constant then for Algorithm 2 using preconditioned CG as the solver
there exists a parameter grid g ∈ [2

√
2 + 2, ωmax]

d and normalization K > 0 such that

E
T∑

t=1

CGt(ωt) = O

 3

√√√√ log2
√
κmax
ε

log2
√
µmax−1√
µmax+1

√
µT 2

+ min
ω∈(0,2)

T∑
t=1

Ut(ω) (7)

Observe that the rate in T remains the same as for SOR, but the difficulty of learning now scales
mainly with the spectral radii of the matrices DtA

−1
t .

3 A STOCHASTIC ANALYSIS OF SYMMETRIC SOR

Assumption 2.1 in the previous section effectively encodes the idea that convergence will not be too
quick for a typical target vector b, e.g. it will not be a low-eigenvalue eigenvector of Cω for some oth-
erwise suboptimal ω (e.g. Figure 2 (left)). Another way of staying in a “typical regime” is randomness,
which is what we assume in this section. Specifically, we assume that bt = mtut ∀ t ∈ [T], where
ut ∈ Rn is uniform on the unit sphere and m2

t is a χ2 random variable with n degrees of freedom
truncated to [0, n]. Since the standard n-dimensional Gaussian is exactly the case of untruncated m2

t ,
b can be described as coming from a radially truncated normal distribution. Note also that the exact
choice of truncation was done for convenience; any finite bound ≥ n yields similar results.
We also make two other changes: (1) we study symmetric SOR (SSOR) and (2) we use an absolute con-
vergence criterion, i.e. ∥rk∥2 ≤ ε, not ∥rk∥2 ≤ ε∥r0∥2. Symmetric SOR (c.f. Algorithm 8) is very

7

similar to the original, except the linear system being solved at every step is now symmetric: W̆ω =
ω

2−ωWωD
−1WT

ω . Note that the defect reduction matrix C̆ω = In −AW̆−1
ω is still not normal, but

it is (non-orthogonally) similar to a symmetric matrix, A−1/2C̆ωA
1/2. SSOR is twice as expensive

per-iteration, but often converges in fewer steps, and is commonly used as a base method because of
its spectral properties (e.g. by the Chebyshev semi-iteration, c.f. Hackbusch (2016, Section 8.4.1)).

3.1 REGULARITY OF THE EXPECTED COST FUNCTION

We can then show that the expected cost EbSSOR(A,b, ω) is Lipschitz w.r.t. ω (c.f. Corollary F.1).
Our main idea is the observation that, whenever the error ∥C̆k

ωb∥2 falls below the tolerance ε, random-
ness should ensure that it does not fall so close to the threshold that the error ∥C̆k

ω′b∥2 of a nearby ω′ is
not also below ε. Although clearly related to dispersion (Balcan et al., 2018), here we study the behav-
ior of a continuous function around a threshold, rather than the locations of the costs’ discontinuities.
Our approach has two ingredients, the first being Lipschitzness of the error ∥C̆k

ωb∥2 at each iteration
k w.r.t. ω, which ensures ∥C̆k

ω′b∥2 ∈ (ε, ε+O(|ω − ω′|)] if ∥C̆k
ωb∥2 ≤ ε < ∥C̆k

ω′b∥2. The second
ingredient is anti-concentration, specifically that the probability that ∥C̆k

ωb∥2 lands in (ε, ε+O(|ω−
ω′|)] isO(|ω−ω′|). While intuitive, both steps are made difficult by powering: for high k the random
variable ∥C̆k

ωb∥2 is highly concentrated because ρ(C̆ω) ≪ 1; in fact its measure over the interval
is O(|ω − ω′|/ρ(C̆ω)

k). To cancel this, the Lipschitz constant of ∥C̆k
ωb∥2 must scale with ρ(C̆ω)

k,
which we can show because switching to SSOR makes C̆k

ω is similar to a normal matrix. The other
algorithmic modification we make—using absolute rather than relative tolerance—is so that ∥C̆k

ωb∥22
is (roughly) a sum of i.i.d. χ2 random variables; note that the square of relative tolerance criterion
∥C̆k

ωb∥22/∥b∥22 does not admit such a result. At the same time, absolute tolerance does not imply an
a.s. bound on the number of iterations if ∥b∥2 is unbounded, which is why we truncate its distribution.
Lipschitzness follows because |EbSSOR(ω) − EbSSOR(ω′)| can be bounded using Jensen’s
inequality by the probability that ω and ω′ have different costs k ̸= l, which is at most the probability
that ∥C̆k

ωb∥2 or ∥C̆l
ω′b∥2 land in an interval of lengthO(|ω−ω′|). Note that the Lipschitz bound in-

cludes an Õ(
√
n) factor, which results from C̆k

ω having stable rank≪ n due to powering. Regularity
of EbSSOR leads directly to regret guarantee for the same algorithm as before, Tsallis-INF:
Theorem 3.1. Define κmax = maxt κ(At) to be the largest condition number and βmin =
mint ρ(In−D−1

t At). Then there exists K = Ω(log n
ε) s.t. running Algorithm 2 with SSOR has regret

E
T∑

t=1

SSORt(ωt)− min
ω∈[1,ωmax]

T∑
t=1

SSORt(ω) ≤ 2K
√
2dT +

32K4T

β4
mind

√
2nκmax

π
(8)

Setting d = Θ(K2 3
√
nT) yields a regret bound of O(log2 n

ε
3
√
T 2
√
n). Note that, while this shows

convergence to the true optimal parameter, the constants in the regret term are much worse, not just
due to the dependence on n but also in the powers of the number of iterations. Thus this result can
be viewed as a proof of the asymptotic (T →∞) correctness of Tsallis-INF for tuning SSOR.

3.2 CHEBYSHEV REGRESSION FOR DIAGONAL SHIFTS

For the shifted setting, we can use the same approach to prove that EbSSOR(A+ cIn,b, ω) is Lips-
chitz w.r.t. the diagonal offset c (c.f. Corollary F.2); for n = O(1) this implies regret Õ(T 3/4

√
n) for

the same discretization-based algorithm as in Section 2.4. While optimal for Lipschitz functions, the
method does not readily adapt to nice data, leading to various smoothed comparators (Krishnamurthy
et al., 2019; Majzoubi et al., 2020; Zhu & Mineiro, 2022); however, as we wish to compete with
the true optimal policy, we stay in the original setting and instead highlight how this section’s
semi-stochastic analysis allows us to study a very different class of bandit algorithms.

In particular, since we are now working directly with the cost function rather than an upper bound,
we are able to utilize a more practical regression-oracle algorithm, SquareCB (Foster & Rakhlin,
2020). It assumes a class of regressors h : [cmin, cmin +C]× [d] 7→ [0, 1] with at least one function that
perfectly predicts the expected performance EbSSOR(A+ cIn,b,g[i]) of each action g[i] given the
context c; a small amount of model misspecification is allowed. If there exists an online algorithm that
can obtain low regret w.r.t. this function class, then SquareCB can obtain low regret w.r.t. any policy.

8

Algorithm 3: ChebCB: SquareCB with a follow-the-leader oracle and polynomial regressor class.
Input: solver SOLVE : Rn×n×Rn×Ω 7→ Z>0, instance sequence {(At,bt)}Tt=1⊂Rn×n×Rn,

context sequence {ct}Tt=1⊂ [cmin, cmin+C], learning rate η > 0, parameter grid g ∈ Ωd,
Chebyshev polynomial features f : [cmin, cmin+C] 7→ Rm+1, normalizations K,L,N > 0

for t = 1, . . . , T do

θi ← argmin
|θ[0]|≤ 1

N ,|θ[j]|≤ 2CL
KNj

t−1∑
s=1
is=i

(
⟨θ, f(cs)⟩ − ks

KN

)2 ∀ i ∈ [d] // update models

s[i] ← ⟨θi, f(ct)⟩ ∀ i ∈ [d] // compute model predictions
i∗ ← argmini∈[d] s[i]
p[i] ← 1

d+η(s[i]−s[i∗])
∀ i ̸= i∗ // compute probability of each action

p[i∗] ← 1−
∑

i̸=i∗ p[i]

sample it ∈ [d] w.p. p[it] and set ωt = g[it] // sample action
kt ← SOLVE(At,bt, ωt)− 1 // run solver and update cost

To apply it we must specify a suitable class of regressors, bound its approximation error, and specify
an algorithm attaining low regret over this class. Since m terms of the Chebyshev series suffice to ap-
proximate a Lipschitz function with error Õ(1/m), we use Chebyshev polynomials in c with learned
coefficients—i.e. models ⟨θ, f(c)⟩ =

∑m
j=0 θ[j]Pj(c), where Pj is the jth Chebyshev polynomial—

as our regressors for each action. To keep predictions bounded, we add constraints |θ[j]| = O(1/j),
which we can do without losing approximation power due to the decay of Chebyshev series coef-
ficients. This allows us to show O(dm log T) regret for Follow-The-Leader via Hazan et al. (2007,
Theorem 5) and then apply Foster & Rakhlin (2020, Theorem 5) to obtain the following guarantee:
Theorem 3.2 (Corollary of Theorem C.4). Suppose cmin > −λmin(A). Then Algorithm 3 with
appropriate parameters has regret w.r.t. any policy f : [cmin, cmin + C] 7→ Ω of

E
T∑

t=1

SSORt(ωt)−
T∑

t=1

SSORt(f(ct)) ≤ Õ

(
d
√
mnT +

T
√
dn

m
+

T
√
n

d

)
(9)

Setting d = Θ(T 2/11) and m = Θ(T 3/11) yields Õ(T 9/11
√
n) regret, so we asymptotically attain

instance-optimal performance, albeit at a rather slow rate. The rate in n is also worse than e.g. our
semi-stochastic result for comparing to a fixed ω (c.f. Theorem 3.1), although to obtain this the latter
algorithm uses d = O(3

√
n) grid points, making its overhead nontrivial. We compare ChebCB to the

Section 2.4 algorithm based on Tsallis-INF (among other methods), and find that, despite the former’s
worse guarantees, it seems able to converge to an instance-optimal policy much faster than the latter.

4 CONCLUSION AND LIMITATIONS

We have shown that bandit algorithms provably learn to parameterize SOR, an iterative linear system
solver, and do as well asymptotically as the best fixed ω in terms of either (a) a near-asymptotic
measure of cost or (b) expected cost. We further show that a modern contextual bandit method attains
near-instance-optimal performance. Both procedures require only the iteration count as feedback and
have limited computational overhead settings, making them practical to deploy. Furthermore, the
theoretical ideas in this work—especially the use of contextual bandits for taking advantage of instance
structure and Section 3.1’s conversion of anti-concentrated Lipschitz criteria to Lipschitz expected
costs—have the strong potential to be applicable to other domains of data-driven algorithm design.
At the same time, only the near-asymptotic results yield reasonable bound on the instances needed
to attain good performance, with the rest having large spectral and dimension-dependent factors; the
latter is the most obvious area for improvement. Furthermore, the near-asymptotic upper bounds are
somewhat loose for sub-optimal ω and for preconditioned CG, and as discussed in Section 2.4 do not
seem amenable to regression-based CB. Beyond this, a natural direction is to attain semi-stochastic
results for non-stationary solvers like preconditioned CG, or either type of result for the many other al-
gorithms in scientific computing. Practically speaking, work on multiple parameters—e.g. the spectral
bounds used for Chebyshev semi-iteration, or multiple relaxation parameters for Block-SOR—would
likely be most useful. A final direction is to design online learning algorithms that exploit properties
of the losses beyond Lipschitzness, or CB algorithms that take better advantage of such functions.

9

ACKNOWLEDGMENTS

We thank Akshay Krishnamurthy and Ainesh Bakshi for helpful feedback. This work was supported
in part by National Science Foundation grants IIS-1705121, IIS-1838017, IIS-1901403, IIS-2046613,
IIS-2112471, and OAC-2203821, the Defense Advanced Research Projects Agency under cooperative
agreement HR00112020003, a TCS Presidential Fellowship, and funding from Meta, Morgan Stanley,
Amazon, Google, and Jane Street. Any opinions, findings and conclusions or recommendations
expressed in this material are those of the author(s) and do not necessarily reflect the views of any
of these funding agencies.

REFERENCES

Jacob Abernethy, Chansoo Lee, and Ambuj Tewari. Fighting bandits with a new kind of smoothness.
In Advances in Neural Information Processing Systems, 2015.

Brandon Amos. Tutorial on amortized optimization. Foundations and Trends in Machine Learning,
16(5):592–732, 2023.

Hartwig Anzt, Edmond Chow, Jens Saak, and Jack Dongarra. Updating incomplete factorization
preconditioners for model order reduction. Numerical Algorithms, 73:611–630, 2016.

Sohei Arisaka and Qianxiao Li. Principled acceleration of iterative numerical methods using machine
learning. In Proceedings of the 40th International Conference on Machine Learning, 2023.

Peter Auer, Nicolò Cesa-Bianchi, Yoav Freund, and Robert E. Schapire. The nonstochastic multiarmed
bandit problem. SIAM Journal of Computing, 32:48–77, 2002.

Owe Axelsson. Iterative Solution Methods. Cambridge University Press, 1994.

Maria-Florina Balcan. Data-driven algorithm design. In Tim Roughgarden (ed.), Beyond the Worst-
Case Analysis of Algorithms. Cambridge University Press, Cambridge, UK, 2021.

Maria-Florina Balcan, Travis Dick, and Ellen Vitercik. Dispersion for data-driven algorithm design,
online learning, and private optimization. In 59th Annual Symposium on Foundations of Computer
Science, 2018.

Maria-Florina Balcan, Travis Dick, and Wesley Pegden. Semi-bandit optimization in the dispersed
setting. In Proceedings of the Conference on Uncertainty in Artificial Intelligence, 2020.

Maria-Florina Balcan, Dan DeBlasio, Travis Dick, Carl Kingsford, Tuomas Sandholm, and Ellen
Vitercik. How much data is sufficient to learn high-performing algorithms? Generalization
guarantees for data-driven algorithm design. In Proceedings of the 53rd Annual ACM SIGACT
Symposium on Theory of Computingg, 2021.

Maria-Florina Balcan, Mikhail Khodak, Dravyansh Sharma, and Ameet Talwalkar. Provably tuning
the ElasticNet across instances. In Advances in Neural Information Processing Systems, 2022.

Peter Bartlett, Piotr Indyk, and Tal Wagner. Generalization bounds for data-driven numerical linear
algebra. In Proceedings of the 35th Annual Conference on Learning Theory, 2022.

Manuel Baumann and Martin B. van Gijzen. Nested Krylov methods for shifted linear systems. SIAM
Journal on Scientific Computing, 37:S90–S112, 2015.

Stefania Bellavia, Valentina De Simone, Daniela di Serafina, and Benedetta Morini. Efficient
preconditioner updates for shifted linear systems. SIAM Journal on Scientific Computing, 33:
1785–1809, 2011.

Alina Beygelzimer, John Langford, Lihong Li, Lev Reyzin, and Robert E. Schapire. Contextual
bandit algorithms with supervised learning guarantees. In Proceedings of the 14th International
Conference on Artificial Intelligence and Statistics, 2011.

Sébastien Bubeck and Nicolò Cesa-Bianchi. Regret analysis of stochastic and nonstochastic multi-
armed bandit problems. Foundations and Trends in Machine Learning, 5(1):1–122, 2012.

10

Nicolò Cesa-Bianchi and Gábor Lugosi. Prediction, Learning, and Games. Cambridge University
Press, 2006.

Justin Y. Chen, Sandeep Silwal, Ali Vakilian, and Fred Zhang. Faster fundamental graph algorithms
via learned predictions. In Proceedings of the 40th International Conference on Machine Learning,
2022.

Xinyi Chen and Elad Hazan. A nonstochastic control approach to optimization. arXiv, 2023.

Elliott Ward Cheney. Introduction to Approximation Theory. Chelsea Publishing Company, 1982.

Giulia Denevi, Carlo Ciliberto, Riccardo Grazzi, and Massimiliano Pontil. Learning-to-learn stochas-
tic gradient descent with biased regularization. In Proceedings of the 36th International Conference
on Machine Learning, 2019.

Michael Dinitz, Sungjin Im, Thomas Lavastida, Benjamin Moseley, and Sergei Vassilvitskii. Faster
matchings via learned duals. In Advances in Neural Information Processing Systems, 2021.

Paul Dütting, Guru Guruganesh, Jon Schneider, and Joshua R. Wang. Optimal no-regret learning for
one-sided lipschitz functions. In Proceedings of the 40th International Conference on Machine
Learning, 2023.

Louis W. Ehrlich. An ad hoc SOR method. Journal of Computational Physics, 44:31–45, 1981.

Lakhdar Elbouyahyaoui, Mohammed Heyouni, Azita Tajaddini, and Farid Saberi-Movahed. On
restarted and deflated block FOM and GMRES methods for sequences of shifted linear systems.
Numerical Algorithms, 87:1257–1299, 2021.

Dylan J. Foster and Alexander Rakhlin. Beyond UCB: Optimal and efficient contextual bandits with
regression oracles. In Proceedings of the 37th International Conference on Machine Learning,
2020.

Isaac Fried and Jim Metzler. SOR vs. conjugate gradients in a finite element discretization. Interna-
tional Journal for Numerical Methods in Engineering, 12:1329–1332, 1978.

Andreas Frommer and Uew Glässner. Restarted GMRES for shifted linear systems. SIAM Journal
on Scientific Computing, 19:15–26, 1998.

Gene H. Golub and Qiang Ye. Inexact preconditioned conjugate gradient method with inner-outer
iteration. SIAM Journal on Scientific Computing, 21:1305–1320, 1999.

Anne Greenbaum. Iterative Methods for Solving Linear Systems. Society for Industrial and Applied
Mathematics, 1997.

Rishi Gupta and Timothy Roughgarden. A PAC approach to application-specific algorithm selection.
SIAM Journal on Computing, 46(3):992–1017, 2017.

Wolfgang Hackbusch. Iterative Solution of Large Sparse Systems of Equations. Springer International
Publishing, 2016.

Elad Hazan, Amit Agarwal, and Satyen Kale. Logarithmic regret algorithms for online convex
optimization. Machine Learning, 69:169–192, 2007.

George Em Karniadakis, Ioannis G. Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang, and Liu Yang.
Physics-informed machine learning. Nature Reviews Physics, 3:422–440, 2021.

Michael Kazhdan, Jake Solomon, and Mirela Ben-Chen. Can mean-curvature flow be modified to be
non-singular? In Eurographics Symposium on Geometry Processing 2012, 2012.

Mikhail Khodak, Maria-Florina Balcan, and Ameet Talwalkar. Adaptive gradient-based meta-learning
methods. In Advances in Neural Information Processing Systems, 2019.

Mikhail Khodak, Maria-Florina Balcan, Ameet Talwalkar, and Sergei Vassilvitskii. Learning pre-
dictions for algorithms with predictions. In Advances in Neural Information Processing Systems,
2022.

11

John B. King, Samim Anghaie, and Henry M. Domanus. Comparative performance of the conjugate
gradient and SOR methods for computational thermal hydraulics. In Proceedings of the Joint
Meeting of the American Nuclear Society and the Atomic Industrial Forum, 1987.

Robert Kleinberg. Nearly tight bounds for the continuum-armed bandit problem. In Advances in
Neural Information Processing Systems, 2004.

Akshay Krishnamurthy, John Langord, Alexandrs Slivkins, and Chicheng Zhang. Contextual ban-
dits with continuous actions: Smoothing, zooming, and adapting. In Proceedings of the 32nd
Conference on Learning Theory, 2019.

John Lafferty, Han Liu, and Larry Wasserman. Statistical machine learning.
https://www.stat.cmu.edu/ larry/=sml/Concentration.pdf, 2010.

Sören Laue, Matthias Mitterreiter, and Joachim Giesen. Computing higher order derivatives of matrix
and tensor expressions. In Advances in Neural Information Processing Systems, 2018.

Randall J. LeVeque. Finite Difference Methods for Ordinary and Partial Differential Equations.
SIAM, 2007.

Yichen Li, Peter Yichen Chen, Tao Du, and Wojciech Matusik. Learning preconditioners for conjugate
gradient PDE solvers. In Proceedings of the 40th International Conference on Machine Learning,
2023.

Zongyi Li, Nikola Borislavov Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhat-
tacharya, Andrew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial
differential equations. In Proceedings of the 9th International Conference on Learning Representa-
tions, 2021.

Tyler Lu, Dávid Pál, and Martin Pál. Contextual multi-armed bandits. In Proceedings of the 13th
International Conference on Artificial Intelligence and Statistics, 2010.

Ilay Luz, Meirav Galun, Haggai Maron, Ronen Basri, and Irad Yavneh. Learning algebraic multigrid
using graph neural networks. In Proceedings of the 37th International Conference on Machine
Learning, 2020.

Maryam Majzoubi, Chicheng Zhang, Rajan Chari, Akshay Krishnamurthy, John Langford, and
Alexandrs Slivkins. Efficient contextual bandits with continuous actions. In Advances in Neural
Information Processing Systems, 2020.

Donald Marquardt. An algorithm for least-squares estimation of nonlinear parameters. SIAM Journal
on Applied Mathematics, 11(2):431–441, 1963.

Tanya Marwah, Zachary C. Lipton, and Andrej Risteski. Parametric complexity bounds for approx-
imating PDEs with neural networks. In Advances in Neural Information Processing Systems,
2021.

Michael Mitzenmacher and Sergei Vassilvitskii. Algorithms with predictions. In Tim Roughgarden
(ed.), Beyond the Worst-Case Analysis of Algorithms. Cambridge University Press, Cambridge,
UK, 2021.

Cameron Musco and Christopher Musco. Randomized block Krylov methods for stronger and faster
approximate singular value decomposition. In Advances in Neural Information Processing Systems,
2015.

Michael L. Parks, Eric de Sturler, Greg Mackey, Duane D. Johnson, and Spandan Maiti. Recycling
Krylov subspaces for sequences of linear systems. SIAM Journal on Scientific Computing, 28(5):
1651–1674, 2006.

Shinsaku Sakaue and Taihei Oki. Discrete-convex-analysis-based framework for warm-starting
algorithms with predictions. In Advances in Neural Information Processing Systems, 2022.

Rajiv Sambharya, Georgina Hall, Brandon Amos, and Bartolomeo Stellato. End-to-end learning to
warm-start for real-time quadratic optimization. In Proceedings of the 5th Annual Conference on
Learning for Dynamics and Control, 2023.

12

Nikunj Saunshi, Yi Zhang, Mikhail Khodak, and Sanjeev Arora. A sample complexity separation be-
tween non-convex and convex meta-learning. In Proceedings of the 37th International Conference
on Machine Learning, 2020.

David Simchi-Levi and Yunzong Xu. Bypassing the monster: A faster and simpler optimal algorithm
for contextual bandits under realizability. Mathematics of Operations Research, 47, 2021.

Ali Taghibakhshi, Scott MacLachlan, Luke Olson, and Matthew West. Optimization-based algebraic
multigrid coarsening using reinforcement learning. In Advances in Neural Information Processing
Systems, 2021.

Jurjen D. Tebbens and Miroslav Tůma. Efficient preconditioning of sequences of nonsymmetric
linear systems. SIAM Journal on Scientific Computing, 29:1918–1941, 2007.

James William Thomas. Numerical Partial Differential Equations. Springer Science+Business Media,
1999.

Lloyd N. Trefethen. Is Gauss quadrature better than Clenshaw-Curtis? SIAM Review, 50(1):67–87,
2008.

Lloyd N. Trefethen and Mark Embree. Spectra and Pseudospectra: The Behavior of Nonnormal
Matrices and Operators. Princeton University Press, 2005.

L. Dale Van Vleck and D. J. Dwyer. Successive overrelaxation, block iteration, and method of
conjugate gradients for solving equations for multiple trait evaluation of sires. Jorunal of Dairy
Science, 68:760–767, 1985.

Rui-Rui Wang, Qiang Niu, Xiao-Bin Tang, and Xiang Wang. Solving shifted linear systems with
restarted GMRES augmented with error approximations. Computers & Mathematics with Applica-
tions, 78:1910–1918, 2019.

Zbigniew I. Woźnicki. On numerical analysis of conjugate gradient method. Japan Journal of
Industrial and Applied Mathematics, 10:487–519, 1993.

Zbigniew I. Woźnicki. On performance of SOR method for solving nonsymmetric linear systems.
Journal of Computational and Applied Mathematics, 137:145–176, 2001.

David M. Young. Iterative Solution of Large Linear Systems. Academic Press, 1971.

Yinglun Zhu and Paul Mineiro. Contextual bandits with smooth regret: Efficient learning in contin-
uous action spaces. In Proceedings of the 39th International Conference on Machine Learning,
2022.

Julian Zimmert and Yevgeny Seldin. Tsallis-INF: An optimal algorithm for stochastic and adversarial
bandits. Journal of Machine Learning Research, 22:1–49, 2021.

13

A RELATED WORK AND COMPARISONS

Our analysis falls mainly into the framework of data-driven algorithm design, which has a long
history (Gupta & Roughgarden, 2017; Balcan, 2021). Closely related is the study by Gupta &
Roughgarden (2017) of the sample complexity of learning the step-size of gradient descent, which
can also be used to solve linear systems. While their sample complexity guarantee is logarithmic in
the precision 1/ε, directly applying their Lipschitz-like analysis in a bandit setting yields regret with a
polynomial dependence; note that a typical setting of ε is 10−8. Mathematically, their analysis relies
crucially on the iteration reducing error at every step, which is well-known not to be the case for SOR
(e.g. Trefethen & Embree (2005, Figure 25.6)). Data-driven numerical linear algebra was studied most
explicitly by Bartlett et al. (2022), who provided sample complexity framework applicable to many
algorithms; their focus is on the offline setting where an algorithm is learned from a batch of samples.
While they do not consider linear systems directly, in Appendix A.1 we do compare to the guarantee
their framework implies for SOR; we obtain similar sample complexity with an efficient learning pro-
cedure, at the cost of a strong distributional assumption on the target vector. Note that generalization
guarantees have been shown for convex quadratic programming—which subsumes linear systems—
by Sambharya et al. (2023); they focus on learning-to-initialize, which we do not consider because for
high precisions the initialization quality usually does not have a strong impact on cost. Note that all
of the above work also does not provide end-to-end guarantees, only e.g. sample complexity bounds.

Online learning guarantees were shown for the related problem of tuning regularized regression by Bal-
can et al. (2022), albeit in the easier full information setting and with the target of reducing error rather
than computation. Their approach relies on the dispersion technique (Balcan et al., 2018), which often
involves showing that discontinuities in the cost are defined by bounded-degree polynomials (Balcan
et al., 2020). While possibly applicable in our setting, we suspect using it would lead to unacceptably
high dependence on the dimension and precision, as the power of the polynomials defining our deci-
sion boundaries is O(n− log ε). Lastly, we believe our work is notable within this field as a first exam-
ple of using contextual bandits, and in doing so competing with the provably instance-optimal policy.

Iterative (discrete) optimization has been studied in the related area of learning-augmented algorithms
(a.k.a. algorithms with predictions) (Dinitz et al., 2021; Chen et al., 2022; Sakaue & Oki, 2022), which
shows data-dependent performance guarantees as a function of (learned) predictions (Mitzenmacher
& Vassilvitskii, 2021); these can then be used as surrogate losses for learning (Khodak et al., 2022).
Our construction of an upper bound under asymptotic convergence is inspired by this, although unlike
previous work we do not assume access to the bound directly because it depends on hard-to-compute
spectral properties. Algorithms with predictions often involve initializing a computation with a
prediction of its outcome, e.g. a vector near the solution A−1b; we do not consider this because
the runtime of SOR and other solvers depends fairly weakly on the distance to the initialization.

A last theoretical area is that of gradient-based meta-learning, which studies how to initialize and
tune other parameters of gradient descent and related methods (Khodak et al., 2019; Denevi et al.,
2019; Saunshi et al., 2020; Chen & Hazan, 2023). This field focuses on learning-theoretic notions
of cost such as regret or statistical risk. Furthermore, their guarantees are usually on the error after
a fixed number of gradient steps rather than the number of iterations required to converge; targeting
the former can be highly suboptimal in scientific computing applications (Arisaka & Li, 2023). This
latter work, which connects meta-learning and data-driven scientific computing, analyzes specific
case studies for accelerating numerical solvers, whereas we focus on a general learning guarantee.

Empirically, there are many learned solvers (Luz et al., 2020; Taghibakhshi et al., 2021; Li et al., 2023)
and even full simulation replacements (Karniadakis et al., 2021; Li et al., 2021); to our knowledge,
theoretical studies of the latter have focused on expressivity (Marwah et al., 2021). Amortizing the
cost on future simulations (Amos, 2023), these approaches use offline computation to train models
that integrate directly with solvers or avoid solving linear systems altogether. In contrast, the methods
we propose are online and lightweight, both computationally and in terms of implementation; unlike
many deep learning approaches, the additional computation scales slowly with dimension and needs
only black-box access to existing solvers. As a result, our methods can be viewed as reasonable
baselines, and we discuss an indirect comparison with the CG-preconditioner-learning approach of Li
et al. (2023) in Appendix G. Finally, note that improving the performance of linear solvers across a
sequence of related instances has seen a lot of study in the scientific computing literature (Parks et al.,
2006; Tebbens & Tůma, 2007; Elbouyahyaoui et al., 2021). To our knowledge, this work does not give
explicit guarantees on the number of iterations, and so a direct theoretical comparison is challenging.

14

A.1 SAMPLE COMPLEXITY AND COMPARISON WITH THE GOLDBERG-JERRUM FRAMEWORK

While not the focus of our work, we briefly note the generalization implications of our semi-stochastic
analysis. Suppose for any α > 0 we have T = Õ(1

α2 polylogn
δ) i.i.d. samples from a distribution

D over matrices At satisfying the assumptions in Section 2.1 and truncated Gaussian targets bt.
Then empirical risk minimization ω̂ = argminω̂∈g

∑T
t=1 SSOR(At,bt, ω) over a uniform grid

g ∈ [1, ωmax]
d of size d = Õ(

√
nT) will be α-suboptimal w.p. ≥ 1− δ:

Corollary A.1. Let D be a distribution over matrix-vector pairs (A,b) ∈ Rn×n × Rn where
A satisfies the SOR conditions and for every A the conditional distribution of D given A over
Rn is the truncated Gaussian. For every T ≥ 1 consider the algorithm that draws T samples
(At,bt) ∼ D and outputs ω̂ = argminω̂∈g

∑T
t=1 SSORt(ω), where g[i] = 1 + (ωmax − 1) i−1/2

d

and d = L
√
T

K for L as in Corollary F.1. Then T = Õ
(

1
α2 polylog n

εδ

)
samples suffice to ensure

EDSSOR(A,b, ω̂) ≤ minω∈[1,ωmax] SSOR(A,b, ω) + α holds w.p. ≥ 1− δ.

Proof. A standard covering bound (see e.g. Lafferty et al. (2010, Theorem 7.82)) followed by an
application of Corollary F.1 implies that w.p. ≥ 1− δ

EDSSOR(A,b, ω̂) ≤ min
ω∈g

EDSSOR(A,b, ω) + 3K

√
2

T
log

2d

δ

= min
ω∈g

EA[EbSSOR(A,b, ω)|A] + 3K

√
2

T
log

2d

δ

≤ min
ω∈[1,ωmax]

EA

[
EbSSOR(A,b, ω) +

L

d

∣∣∣∣A]+ 3K

√
2

T
log

2d

δ

= min
ω∈[1,ωmax]

EDSSOR(A,b, ω) +
L

d
+ 3K

√
2

T
log

2d

δ

≤ min
ω∈[1,ωmax]

EDSSOR(A,b, ω) + 4K

√
2

T
log

2LT

Kδ

(10)

Noting that by Corollary F.1 we have L = O(K4
√
n) = O(

√
n log4 n

ε) yields the result.

This matches directly applying the GJ framework of Bartlett et al. (2022, Theorem 3.3) to our problem:
Corollary A.2. In the same setting as Corollary A.1 but generalizing the distribution to any
one whose target vector support is

√
n-bounded, empirical risk minimization (running ω̂ =

argminω∈[1,ωmax]

∑T
t=1 SSORt(ω)) has sample complexity Õ

(
1
α2 polylog n

εδ

)
.

Proof. For every (A,b) pair in the support of D and any r ∈ R it is straightforward to define a
GJ algorithm (Bartlett et al., 2022, Definition 3.1) that checks if SSOR(A,b, ω) > r by computing
∥rk(ω)∥22 = ∥C̆k

ωb∥22—a degree 2k polynomial—for every k ≤ ⌊r⌋ and returning “True” if one of
them satisfies ∥rk(ω)∥22 ≤ ε2 and ”False” otherwise (and automatically return “True” for r ≥ K and
“False” for r < 1). Since the degree of this algorithm is at most 2K, the predicate complexity is at
most K, and the parameter size is 1, by Bartlett et al. (2022, Theorem 3.3) the pseudodimension of
{SSOR(·, ·, ω) : ω ∈ [1, ωmax]} is O(logK). Using the bounded assumption on the target vector—
SSOR ≤ K = O(log n

ε)—-completes the proof.

At the same, recent generalization guarantees for tuning regularization parameters of linear
regression by Balcan et al. (2022, Theorem 3.2)—who applied dual function analysis (Balcan et al.,
2021)—have a quadratic dependence on the instance dimension. Unlike both results—which use
uniform convergence—our bound also uses a (theoretically) efficient learning procedure, at the cost
of a strong (but in our view reasonable) distributional assumption on the target vectors.

15

A.2 APPROXIMATING THE SPECTRAL RADIUS OF THE JACOBI ITERATION MATRIX

Because the asymptotically optimal ω is a function of the spectral radius β = ρ(M1) of the Jacobi
iteration matrix, a reasonable baseline is to simply approximate β using an eigenvalue solver and then
run SOR with the corresponding approximately best ω. It is difficult to compare our results to this
approach directly, since the baseline will always run extra matrix iterations while bandit algorithms
will asymptotically run no more than the comparator. Furthermore, M1 is not a normal matrix, a
class for which it turns out to be surprisingly difficult to find bounds on the number of iterations
required to approximate its largest eigenvalue within some tolerance α > 0.

A comparison can be made in the diagonal offset setting by modifying this baseline somewhat
and making the assumption that A has a constant diagonal, so that M1 is symmetric and we can
use randomized block-Krylov to obtain a β̂ satisfying |β̂2 − β2| = O(ε) in Õ(1/

√
ε) iterations

w.h.p. (Musco & Musco, 2015, Theorem 1). To modify the baseline, we consider a preprocessing
algorithm which discretizes [cmin, cmin + C] into d grid points, runs k iterations of randomized block-
Krylov on the Jacobi iteration matrix of each matrix A+ cIn corresponding to offsets c in this grid,
and then for each new offset ct we set ωt using the optimal parameter implied by the approximate
spectral radius of the Jacobi iteration matrix of A+ cIn corresponding to the closest c in the grid.
This algorithm thus does Õ(dk) matrix-vector products of preprocessing, and since the upper bounds
Ut are 1

2 -Hölder w.r.t. ω while the optimal policy is Lipschitz w.r.t. β2 over an appropriate domain
[1, ωmax] it will w.h.p. use at most Õ(

√
1/k2 + 1/d) more iterations at each step t ∈ [T] compared

to the optimal policy. Thus w.h.p. the total regret compared to the optimal policy ω∗ is

T∑
t=1

SORt(ωt) = Õ
(
dk + T/d+ T/

√
k
)
+

T∑
t=1

Ut(ω
∗(ct)) (11)

Setting d = 4
√
T and k =

√
T yields the rate Õ(T 3/4), which can be compared directly to our

Õ(T 3/4) rate for the discretized Tsallis-INF algorithm in Theorem 2.2. The rate of approximating
ρ(M1) thus matches that of our simplest approach, although unlike the latter (and also unlike
ChebCB) it does not guarantee performance as good as the optimal policy in the semi-stochastic
setting, where ω∗ might not be optimal. Intuitively, the randomized block-Krylov baseline will also
suffer from spending computation on points c ∈ [cmin, cmin + C] that it does not end up seeing.

16

Algorithm 4: General form of Tsallis-INF. The probabilities can be computed using Newton’s
method (e.g. Zimmert & Seldin (2021, Algorithm 2)).

Input: loss sequence {ℓt : [a, b] 7→ [0,K]}Tt=1, action set g ∈ [a, b]d, step-sizes η1, . . . , ηT > 0
k← 0d // initialize vector of cumulative losses
for t = 1, . . . , T do

p← argminp∈△d
⟨k,p⟩ − 4K

ηt

∑d
i=1
√
p[i] // compute probabilities

sample it ∈ [d] with probability p[it] // sample index of an action
k[it] ← k[it] + ℓt(g[it])/p[it] // play action and update losses

B SEMI-LIPSCHITZ BANDITS

We consider a sequence of adaptively chosen loss functions ℓ1, . . . , ℓT : [a, b] 7→ [0,K] on an interval
[a, b] ⊂ R and upper bounds u1, . . . , uT : [a, b] 7→ R satisfying ut(x) ≥ ℓt(x) ∀ t ∈ [T], x ∈ [a, b],
where [T] denotes the set of integers from 1 to T . Our analysis will focus on the Tsallis-INF algorithm
of Abernethy et al. (2015), which we write in its general form in Algorithm 4, although the analysis
extends easily to the better-known (but sub-optimal) Exp3 (Auer et al., 2002). For Tsallis-INF, the
following two facts follow directly from known results:
Theorem B.1 (Corollary of Abernethy et al. (2015, Corollary 3.2)). If ηt = 1/

√
T ∀ t ∈ [T] then

Algorithm 4 has regret E
∑T

t=1 ℓt(g[it])−mini∈[d]

∑T
t=1 ℓt(g[i]) ≤ 2K

√
2dT .

Theorem B.2 (Corollary of Zimmert & Seldin (2021, Theorem 1)). If ηt = 2/
√
t ∀ t ∈ [T] then

Algorithm 4 has regret E
∑T

t=1 ℓt(g[it])−mini∈[d]

∑T
t=1 ℓt(g[i]) ≤ 4K

√
dT + 1.

We now define a generalization of the Lipschitzness condition that trivially generalizes regular
L-Lipschitz functions, as well as the notion of one-sided Lipschitz functions studied in the stochastic
setting by Dütting et al. (2023).
Definition B.1. Given a constant L ≥ 0 and a point z ∈ [a, b], we say a function f : [a, b] 7→ R is
(L, z)-semi-Lipschitz if f(x)− f(y) ≤ L|x− y| ∀ x, y s.t. |x− z| ≤ |y − z|.

We now show that Tsallis-INF with bandit access to ℓt on a discretization of [a, b] attains O(T 2/3)
regret w.r.t. any fixed x ∈ [a, b] evaluated by any comparator sequence of semi-Lipschitz upper
bounds ut. Note that guarantees for the standard comparator can be recovered by just setting
ℓt = ut ∀ t ∈ [T], and that the rate is optimal by Kleinberg (2004, Theorem 4.2).
Theorem B.3. If ut ≥ ℓt is (Lt, z)-semi-Lipschitz ∀ t ∈ [T] then Algorithm 4 using action space
g ∈ [a, b]d s.t. g[i] = a+ b−a

d i ∀ i ∈ [d− 1] and g[d] = z has regret

E
T∑

t=1

ℓt(g[it])− min
x∈[a,b]

T∑
t=1

ut(x) ≤ 2K
√
2dT +

b− a

d

T∑
t=1

Lt (12)

Setting d =
3

√
(b−a)2L̄2T

2K2 for L̄ = 1
T

∑T
t=1 Lt yields the bound 3 3

√
2(b− a)L̄K2T 2.

Proof. Let ⌈·⌋g denote rounding to the closest element of g in the direction of z. Then for x ∈ [a, b]

we have |⌈x⌋g − z| ≤ |x− z| and |⌈x⌋g − x| ≤ b−a
d , so applying Theorem B.1 and this fact yields

E
T∑

t=1

ℓt(g[it]) ≤ 2K
√
2dT +min

i∈[d]

T∑
t=1

ℓt(g[i]) ≤ 2K
√
2dT +min

i∈[d]

T∑
t=1

ut(g[i])

= 2K
√
2dT + min

x∈[a,b]

T∑
t=1

ut(⌈x⌋g)

≤ 2K
√
2dT +

b− a

d

T∑
t=1

Lt + min
x∈[a,b]

T∑
t=1

ut(x)

(13)

17

Algorithm 5: Contextual bandit algorithm using instances of Tsallis-INF over a grid of contexts.

Input: loss sequence {ℓt : [a, b] 7→ [0,K]}Tt=1, context sequence {ct}Tt=1 ⊂ [c, c+ C],
action set g ∈ [a, b]d, discretization h ∈ [c, c+ C]m

for j = 1, . . . ,m do
Aj = Tsallis-INF(g, { 2√

t
}Tt=1) // start m instances of Algorithm 4

for t = 1, . . . , T do
jt = min argminj∈[m] |h[j] − ct| // pick element of h closest to ct
it ← Ajt // get action from jtth instance of Algorithm 4
ℓt(g[it])→ Ajt // pass loss to jtth instance of Algorithm 4

For contextual bandits, we restrict to (Lt, b)-semi-Lipschitz functions and Lf -Lipschitz policies,
obtaining O(T 3/4) regret; this rate matches known upper and lower bounds for the case where losses
are Lipschitz in both actions and contexts (Lu et al., 2010, Theorem 1), although this does not imply
optimality of our result.
Theorem B.4. If ut ≥ ℓt is (Lt, b)-semi-Lipschitz and ct ∈ [c, c + C] ∀ t ∈ [T] then Algorithm 5
using action space g[i] = a+ b−a

d i and h[j] = c+ C
m (j − 1

2) as the grid of contexts has regret w.r.t.
any Lf -Lipschitz policy f : [c, c+ C] 7→ [a, b] of

E
T∑

t=1

ℓt(g[it])−
T∑

t=1

ut(π(ct)) ≤ m+ 4K
√
dmT +

(
CLf

m
+

b− a

d

) T∑
t=1

Lt (14)

Setting d = 4

√
(b−a)3L̄2T
4CLfK2 , m =

4

√
C3L3

f L̄
2T

4(b−a)K2 yields regret 4 4
√
4K2L̄2(b− a)CLfT 3 +

4

√
C3L3

f L̄
2T

4(b−a)K2 .

Proof. Define ⌈·⌋h to be the operation of rounding to the closest element of h, breaking ties arbitrarily,
and set [T]j = {t ∈ [T] : ⌈ct⌋h = h[j]}. Furthermore, define ⌈x⌉g to be the smallest element g[i] in
g s.t. x+

CLf

2m ≤ g[i] (or maxi∈[d] g[i] if such an element does not exist).

E
T∑

t=1

ℓt(g[it]) = E
m∑
j=1

∑
t∈[T]j

ℓt(g[it])−min
i∈[d]

∑
t∈[T]j

ℓt(g[i]) + min
i∈[d]

∑
t∈[T]j

ℓt(g[i])

≤ m+ 4
m∑
j=1

K
√
d|[T]j |+min

i∈[d]

∑
t∈[T]j

ℓt(g[i])

≤ m+ 4K
√
dmT +

m∑
j=1

min
i∈[d]

∑
t∈[T]j

ut(g[i])

≤ m+ 4K
√
dmT +

T∑
t=1

ut(⌈f(⌈ct⌋h)⌉g)

(15)

where the first inequality follows by Theorem B.2, the second applies Jensen’s inequality to the
left term and ut ≥ ℓt on the right, and the last uses optimality of each i for each j. Now since
f is Lf -Lipschitz we have by definition of ⌈·⌋h that |f(ct) − f(⌈ct⌋h)| ≤ CLf

2m . This in turn
implies that f(ct) ≤ ⌈f(⌈ct⌋h)⌉g ≤ f(ct) +

CLf

m + b−a
d by definition of g and ⌈·⌉g. Since ut is

(Lt, b)-semi-Lipschitz, the result follows.

18

C CHEBYSHEV REGRESSION FOR CONTEXTUAL BANDITS

C.1 PRELIMINARIES

We first state a Lipschitz approximation result that is standard but difficult-to-find formally. For all j ∈
Z≥0 we will use Pj(x) = cos(j arccos(x)) to denote the jth Chebyshev polynomial of the first kind.
Theorem C.1. Let f : [±1] 7→ [±K] be a K-bounded, L-Lipschitz function. Then for each integer
m ≥ 0 there exists θ ∈ Rm+1 satisfying the following properties:

1. |θ[0]| ≤ K and |θ[j]| ≤ 2L/j ∀ j ∈ [m]

2. maxx∈[±1]

∣∣∣f(x)−∑m
j=0 θ[j]Pj(x)

∣∣∣ ≤ π+ 2
π log(2m+1)

m+1 L

Proof. Define θ[0] =
1
π

∫ 1

−1
f(x)√
1−x2

dx and for each j ∈ [m] let θ[j] = 2
π

∫ 1

−1
f(x)Pj(x)√

1−x2
dx be the jth

Chebyshev coefficient. Since
∫ 1

−1
dx√
1−x2

= π we trivially have |θ[0]| ≤ K and by Trefethen (2008,
Theorem 4.2) we also have

|θ[j]| ≤
2

πj

∫ 1

−1

|f ′(x)|√
1− x2

dx ≤ 2L

πj

∫ 1

−1

dx√
1− x2

= 2L/j (16)

for all j ∈ [m]. This shows the first property. For the second, by Trefethen (2008, Theorem 4.4) we
have that

max
x∈[−1,1]

∣∣∣∣∣∣f(x)−
m∑
j=0

θ[j]Pj(x)

∣∣∣∣∣∣ ≤
(
2 +

4 log(2m+ 1)

π2

)
max
x∈[±1]

|f(x)− p∗m(x)|

≤
(
2 +

4 log(2m+ 1)

π2

)
Lπ

2(m+ 1)
=

π + 2
π log(2m+ 1)

m+ 1
L

(17)

where p∗m is the (at most) m-degree algebraic polynomial that best approximates f on [±1] and the
second inequality is Jackson’s theorem (Cheney, 1982, page 147).

Corollary C.1. Let f : [a, b] 7→ [±K] be a K-bounded, L-Lipschitz function on the interval [a, b].
Then for each integer m ≥ 0 there exists θ ∈ Rm+1 satisfying the following properties:

1. |θ[0]| ≤ K and |θ[j]| ≤ L(b−a)
j

2. maxx∈[a,b]

∣∣∣f(x)−∑m
j=0 θ[j]Pj(

2
b−a (x− a)− 1)

∣∣∣ ≤ π+ 2
π log(2m+1)

2(m+1) L(b− a)

Proof. Define g(x) = f(b−a
2 (x + 1) + a), so that g : [±1] 7→ [±K] is K-bounded and L b−a

2 -
Lipschitz. Applying Theorem C.1 yields the result.

We next state regret guarantees for the SquareCB algorithm of Foster & Rakhlin (2020) in the
non-realizable setting:
Theorem C.2 (Foster & Rakhlin (2020, Theorem 5)). Suppose for any sequence of actions a1, . . . , aT
an online regression oracle A playing regressors h1, . . . , hT ∈ H has regret guarantee

RT ≥
T∑

t=1

(ℓt(ct, at)− ht(ct, at))
2 −min

h∈H

T∑
t=1

(ℓt(ct, at)− h(ct, at))
2 (18)

If all losses and regressors have range [0, 1] and ∃ h ∈ H s.t. Eℓt(a) = h(ct, a) + αt(ct, a) for
|αt(a)| ≤ α then Algorithm 6 with learning rate η = 2

√
dT/(RT + 2α2T) has expected regret w.r.t

the the optimal policy f : [a, b] 7→ g bounded as

E
T∑

t=1

ℓt(g[it])−
T∑

t=1

ℓt(h(ct)) ≤ 2
√

dTRT + 5αT
√
d (19)

19

Algorithm 6: SquareCB method for contextual bandits using an online regression oracle.

Input: loss sequence {ℓt : g 7→ [0, 1]}Tt=1, context sequence {ct}Tt=1, learning rate η > 0,
online regression oracle A
for t = 1, . . . , T do

s[i] ← A(ct,g[i]) ∀ i ∈ [d] // compute oracle prediction
i∗ ← argmini s[i]
p[i] ← 1

d+η(s[i]−s[i∗])
∀ i ̸= i∗ // compute action probabilities

p[i∗] ← 1−
∑

i̸=i∗ p[i]

sample it ∈ [d] with probability p[it] // sample index of a grid point
((ct,g[it]), ℓt(g[it]))→ A // pass context, action, and loss to oracle

Algorithm 7: SquareCB method for Lipschitz contextual bandits using Follow-the-Leader.

Input: loss sequence {ℓt : [a, b] 7→ [0,K]}Tt=1, context sequence {ct ∈ [c, c+ C]}Tt=1, learning
rate η > 0, action set g ∈ [a, b]d, featurizer f : [c, c+C] 7→ Rm, normalizations L,N > 0

for t = 1, . . . , T do

θi ← argmin
|θ[0]|≤ 1

N ,|θ[j]|≤ 2CL
KNj

∑
s∈[t−1]i

(
⟨θ, f(cs)⟩ −

ℓt(g[is])

KN

)2
∀ i ∈ [d] // update models

s[i] ← ⟨θi, f(ct)⟩ ∀ i ∈ [d] // compute model predictions
i∗ ← argmini s[i]
p[i] ← 1

d+η(s[i]−s[i∗])
∀ i ̸= i∗ // compute action probabilities

p[i∗] = 1−
∑

i̸=i∗ p[i]

sample it ∈ [d] with probability p[it] and play action g[it]

SquareCB requires an online regression oracle to implement, for which we will use the Follow-the-
Leader scheme. It has the following guarantee for squared losses:
Theorem C.3 (Corollary of Hazan et al. (2007, Theorem 5)). Consider the follow-the-leader al-
gorithm, which sequentially sees feature-target pairs (x1, y1), · · · , (xT , yT) ∈ X × [0, 1] for some
subset X ⊂ [0, 1]n and at each step sets θt+1 = argminθ∈Θ

∑T
t=1(⟨xt, θ⟩ − yt)

2 for some subset
Θ ⊂ Rn. This algorithm has regret

T∑
t=1

(⟨xt, θt⟩ − yt)
2 −min

θ∈Θ
(⟨xt, θ⟩ − yt)

2 ≤ 4B2n

(
1 + log

XDT

2B

)
(20)

for DΘ the diameter maxθ,θ′ ∥θ−θ′∥2 of Θ, X = maxt∈[T] ∥xt∥2, and B = maxt∈[T],θ∈Θ |⟨xt, θ⟩|.

C.2 REGRET OF CHEBCB

Theorem C.4. Suppose Eℓt(x) is an Lx-Lipschitz function of actions x ∈ [a, b] and an Lc-
Lipschitz function of contexts ct ∈ [c, c + C]. Then Algorithm 7 run with learning rate
η = 2

√
dT/(RT + 2α2T) for RT and α as in Equations 22 and 23, respectively, action set

g[i] = a + (b − a) i−1/2
d , Chebyshev features f[j](ct) = Pj(ct), and normalizations L = Lc

and N = 2 + 4CLc

K (1 + logm) has regret w.r.t. any policy f : [c, c+ C] 7→ [a, b] of

E
T∑

t=1

ℓt(g[it])− ℓt(f(ct)) = Õ

(
Lcd
√
mT +

LcT
√
d

m
+

LxT

d

)
(21)

Setting d = Θ(T 2/11) and m = Θ(T 3/11) yields a regret Õ(max{Lc, Lx}T 9/11).

20

Proof. Observe that the above algorithm is equivalent to running Algorithm 6 with the follow-the-

leader oracle over an d(m+ 1)-dimensional space Θ with diameter
√

d
N2

(
1 +

4C2L2
c

K2

∑m
j=1

1
j2

)
≤

√
dK2+2dC2L2

cπ
2/3

KN , features bounded by
√
1 +

∑m
j=1 Pj(ct) ≤

√
m+ 1, and predictions bounded

by |⟨f(c), θ⟩| ≤ ∥θ∥1∥f(c)∥∞ ≤ 1
N + 2CLc

KN

∑m
j=1 ≤

1
2 . Thus by Theorem C.3 the oracle has regret

at most

RT = d(m+ 1)

(
1 + log

T
√

d(m+ 1)(K2 + 2C2L2
cπ

2/3)

KN

)
(22)

Note that, to ensure the regressors and losses have range in [0, 1] we can define the former as
h(c,g[i]) = ⟨f(c), θi⟩+ 1

2 and the latter as ℓt
KN + 1

2 and Algorithm 7 remains the same. Furthermore,
the error of the regression approximation is then

α =
π + 2

π log(2m+ 1)

2KN(m+ 1)
CLc (23)

We conclude by applying Theorem C.2, unnormalizing by multiplying the resulting regret by KN ,
and adding the approximation error Lx(b−a)

2d due to the discretization of the action space.

21

D SOR PRELIMINARIES

We will use the following notation:

• Mω = In− (D/ω+L)−1A is the matrix of the first normal form (Hackbusch, 2016, 2.2.1)
• Wω = D/ω + L is the matrix of the third normal form (Hackbusch, 2016, Section 2.2.3)
• Cω = In −A(D/ω + L)−1 = In −AW−1

ω = AMωA
−1 is the defect reduction matrix

• M̆ω = In − 2−ω
ω (D/ω + LT)−1D(D/ω + L)−1A is the matrix of the first normal form

for SSOR (Hackbusch, 2016, 2.2.1)

• W̆ω = ω
2−ω (D/ω + L)D−1(D/ω + LT) is the matrix of the third normal form for

SSOR (Hackbusch, 2016, Section 2.2.3)

• C̆ω = In − 2−ω
ω A(D/ω + LT)−1D(D/ω + L)−1 = In −AW̆−1

ω = AM̆ωA
−1 is the

defect reduction matrix for SSOR
• ∥ · ∥2 denotes the Euclidean norm of a vector and the spectral norm of a matrix
• κ(A) = ∥A∥2∥A−1∥2 denotes the condition number of a matrix A ≻ 0

• ρ(X) denotes the spectral radius of a matrix X

• ∥x∥A = ∥A 1
2x∥2 denotes the energy norm of a vector x ∈ Rn associated with the matrix

A ≻ 0

• ∥X∥A = ∥A 1
2XA− 1

2 ∥2 denotes the energy norm of a matrix X ∈ Rn×n associated with
the matrix A ≻ 0

We further derive bounds on the number of iterations for SOR and SSOR using the following energy
norm estimate:
Theorem D.1 (Corollary of Hackbusch (2016, Theorem 3.44 & Corollary 3.45)). If A ≻ 0 and

ω ∈ (0, 2) then ∥Mω∥2A ≤ 1−
2−ω
ω γ

(2−ω
2ω)

2
+ γ

ω+ρ(D−1LD−1LT)− 1
4

, where γ = 1− ρ(D−1(L+ LT)).

Corollary D.1. Let Kω be the maximum number of iterations that SOR needs to reach error ε > 0.

Then for any ω ∈ (0, 2) we have Kω ≤ 1 +
− log ε

2
√

κ(A)

− log νω(A) , where νω(A) is the square root of the
upper bound in Theorem D.1.

Proof. By Hackbusch (2016, Equations 2.22c & B.28b) we have at each iteration k of Algorithm 1
that

∥rk∥2
∥r0∥2

≤ 2

∥r0∥2
∥A 1

2 ∥2∥Mk
ω∥A∥A− 1

2 r0∥2 ≤ 2
√

κ(A)∥Mω∥kA (24)

Setting the r.h.s. equal to ε and solving for k yields the result.

Corollary D.2. Let K̆ω be the maximum number of iterations that SSOR (Algorithm 8) needs to

reach (absolute) error ε > 0. Then for any ω ∈ (0, 2) we have K̆ω ≤ 1 +
− log ε

2∥b∥2
√

κ(A)

−2 log νω(A) , where
νω(A) is the square root of the upper bound in Theorem D.1.

Proof. By Hackbusch (2016, Equations 2.22c & B.28b) we have at each iteration k of Algorithm 1
that

∥rk∥2 ≤ 2∥A 1
2 ∥2∥M̆k

ω∥A∥A− 1
2 r0∥2 ≤ 2∥b∥2

√
κ(A)∥Mω∥2kA (25)

Setting the r.h.s. equal to ε and solving for k yields the result.

22

Figure 3: Values of τ and β for A+ cIn for different c.

E NEAR-ASYMPTOTIC PROOFS

E.1 PROOF OF LEMMA 2.1 AND ASSOCIATED DISCUSSION

Proof. For the first claim, suppose l = min
∥Ck

ωb∥2<ε∥b∥2

k > U(ω). Then

ε ≤ ∥C
l−1
ω b∥2
∥b∥2

≤ ∥C
l−1
ω ∥2∥b∥2
∥b∥2

≤ (ρ(Cω) + τ(1− ρ(Cω)))
l−1 < ε (26)

so by contradiction we must have min
∥Ck

ωb∥2<ε∥b∥2

k ≤ U(ω). Now note that by Hackbusch (2016,

Theorem 4.27) and similarity of Cω and Mω we have that ρ(Cω) =
1
4

(
ωβ +

√
ω2β2 − 4(ω − 1)

)2
for ω < ω∗ = 1 +

(
β

1+
√

1−β2

)2

and ω − 1 otherwise. Therefore on ω < ω∗ we have ρ(Cω) ≤

ρ(C1) = β2 and on ω ≥ ω∗ we have ρ(Cω) ≤ ωmax − 1. This concludes the second part of the
first claim. The first part of the second claim follows because ρ(Cω) is decreasing on ω < ω∗. For
the second part, we compute the derivative |∂ωU(ω)| = (τ−1) log ε

(τ+(1−τ)(ω−1)) log2(τ+(1−τ)(ω−1))
. Since

τ + (1 − τ)(ω − 1) ≥ 1
e2 by assumption—either by nonnegativity of ω − 1 if τ ≥ 1

e2 or because

otherwise β2 ≥ 4
e2 (1 −

1
e2) implies τ + (1 − τ)(ω − 1) ≥ (1 − 1

e2)

(
β

1+
√

1−β2

)2

≥ 1
e2 —the

derivative is increasing in ω and so is at most −(1−τ) log ε
α log2 α

.

Note that the fourth item’s restriction on τ and β does not really restrict the matrices our analysis
is applicable to, as we can always re-define τ in Assumption 2.1 to be at least 1/e2. Our analysis
does not strongly depend on this restriction; it is largely done for simplicity and because it does not
exclude too many settings of interest. In-particular, we find for ε ≥ 10−8 that τ is typically indeed
larger than 1

e2 , and furthermore τ is likely quite high whenever β is small, as it suggests the matrix is
near-diagonal and so ω near one will converge extremely quickly (c.f. Figure 3).

E.2 PROOF OF THEOREM 2.1

Proof. The first bound follows from Theorem B.3 by noting that Lemma 2.1 implies that the functions
Ut − 1 are

(
−(1−τt) log ε
αt log2 αt

, ωmax

)
-semi-Lipschitz over [1, ωmax] and the functions SORt − 1 ≤ Ut − 1

are − log ε
− logαt

-bounded. To extend the comparator domain to (0, ωmax], note that Lemma 2.1.2 implies
that all Ut are decreasing on ω ∈ (0, 1). To extend the comparator domain again in the second bound,
note that the setting of ωmax implies that the minimizer 1 + β2

t /(1 +
√
1− β2

t) of each Ut is at most
ωmax, and so all functions Ut are increasing on ω ∈ (ωmax, 2).

23

E.3 APPROXIMATING THE OPTIMAL POLICY

Lemma E.1. Define A(c) = A+ cIn for all c ∈ [cmin,∞), where cmin > −λmin(A). Then ω∗(c) =

1+

(
βc√

1−β2
c+1

)2

is 6βmax(1+βmax)/
√

1−β2
max(√

1−β2
max+1

)2

(
λmin(D)+cmin+1
λmin(D)+cmin

)2
-Lipschitz, where βmax = maxc βc is

the maximum over βc = ρ(In − (D+ cIn)
−1(A+ cIn)).

Proof. We first compute

∂cβc = ∂cρ(In − (D+ cIn)
−1(A+ cIn))

= ∂cλmax(In − (D+ cIn)
− 1

2 (A+ cIn)(D+ cIn)
− 1

2)

= vT
1 ∂c((In − (D+ cIn)

− 1
2 (A+ cIn)(D+ cIn)

− 1
2))v1

= −vT
1 (∂c((D+ cIn)

− 1
2)(A+ cIn)(D+ cIn)

− 1
2

+ (D+ cIn)
− 1

2 ∂c(A+ cIn)(D+ cIn)
− 1

2

+ (D+ cIn)
− 1

2 (A+ cIn)∂c((D+ cIn)
− 1

2))v1

=
1

2
vT
1 ((D+ cIn)

− 3
2 (A+ cIn)(D+ cIn)

− 1
2 − 2c(D+ cIn)

−1

+ (D+ cIn)
− 1

2 (A+ cIn)(D+ cIn)
− 3

2)v1

=
1

2
vT
1 (In + (D+ cIn)

−1)(D+ cIn)
− 1

2 (A+ cI)(D+ cIn)
− 1

2 (In + (D+ cIn)
−1)v1

− 1

2
vT
1 (D+ cIn)

− 1
2 (A+ cIn)(D+ cIn)

− 1
2v1

− 1

2
vT
1 (D+ cIn)

− 3
2 (A+ cIn)(D+ cIn)

− 3
2v1 − cvT

1 (D+ cIn)
−1v1

=
1

2
vT
1 (In + (D+ cIn)

−1)(D+ cIn)
− 1

2 (A+ cI)(D+ cIn)
− 1

2 (In + (D+ cIn)
−1)v1

− 1

2
vT
1 (D+ cIn)

− 1
2 (A+ 3cIn)(D+ cIn)

− 1
2v1

− 1

2
vT
1 (D+ cIn)

− 3
2 (A+ cIn)(D+ cIn)

− 3
2v1

(27)

The first component is positive and the matrix has eigenvalues bounded by
(
1 + 1

λmin(D)+c

)2
1+βc

2 ,
while the last term is negative and the matrix has If c ≥ 0 the positive component has spectral radius
at most 1+βc

2

(
1 + 1

(λmin(D)+c)2

)
. If the middle term is negative, subtracting 2A from the middle

matrix shows that its magnitude is bounded by 3
2 (1 + βc). If the middle term is positive—which can

only happen for negative c—its magnitude is bounded by −3c/2
λmin(D)+c ≤

3λmin(D)/2
λmin(D)+c . Combining all

terms yields a bound of 3
(

λmin(D)+c+1
λmin(D)+c

)2
(1 + βc). We then have that

|∂cω∗(c)| =
2βc/

√
1− β2

c(√
1− β2

c + 1
)2 |∂cβc| =

6βc(1 + βc)/
√
1− β2

c(√
1− β2

c + 1
)2 (

λmin(D) + c+ 1

λmin(D) + c

)2

(28)

The result follows because 2x(1+x)/
√
1−x2

(
√
1−x2+1)

2 increases monotonically on x ∈ [0, 1) and the bound itself

decreases monotonically in c

24

Figure 4: Comparison of actual cost of running SSOR-preconditioned CG and the upper bounds
computed in Section E.4 as functions of the tuning parameter ω ∈ [2

√
2− 2, 1.9] on various domains.

Theorem E.1. Suppose ct ∈ [cmin, cmin + C] ∀ t ∈ [T], where cmin > −λmin(A), and define βmax =

maxt βt. Then if we run Algorithm 5 with losses (SORt(·) − 1)/K normalized by K ≥ − log ε
− logαmax

for αmax = maxt αt, action set g[i] = 1 + (ωmax − 1) i
d for ωmax ≥ 1 +

(
βmax

1+
√

1−β2
max

)2

, and context

discretization h[j] = cmin+
C
m

(
j − 1

2

)
, then the number of iterations will be bounded in expectation as

E
T∑

t=1

SORt(ωt) ≤ m+ 4K
√
dmT +

(
CL∗/m

ωmax − 1
+

1

d

) T∑
t=1

− log ε

log2 αt

+

T∑
t=1

Ut(ω
∗(ct)) (29)

where L∗ is the Lipschitz constant from Lemma E.1. Setting ωmax = 1 +

(
β2

max
1+
√

1−β2
max

)2

,

K = − log ε
− logαmax

, d = 4

√
γ̄2T log2 αmax

24CL , and m =
4
√
54C3L3γ̄2T log2 αmax where γ̄ = 1

T

∑T
t=1

1
log2 αt

and L̃ =
(

λmin(D)+cmin+1
λmin(D)+cmin

)2
1+βmax

βmax
√

1−β2
max

, yields

E
T∑

t=1

SORt(ωt) ≤
4

√
54C3L3γ̄2T log2 αmax + 4 log

1

ε
4

√
24CLγ̄T 3

log2 αmax

+
T∑

t=1

Ut(ω
∗(ct))

≤ 4

√
54C3L3T

log2 αmax

+
4 log 1

ε

log 1
αmax

4
√
24CLT 3 +

T∑
t=1

Ut(ω
∗(ct))

(30)

Proof. The bound follows from Theorem B.4 by noting that Lemma 2.1 implies that the functions
Ut − 1 are

(
−(1−τt) log ε
αt log2 αt

, ωmax

)
-semi-Lipschitz over [1, ωmax] and the functions SORt − 1 ≤ Ut − 1

are − log ε
− logαt

-bounded. Note that for the choice of ωmax we the interval [1, ωmax] contains the range of
the optimal policy ω∗, and further by Lemma E.1 it is L∗-Lipschitz over [cmin, cmin + C].

E.4 EXTENSION TO PRECONDITIONED CG

While CG is an iterative algorithm, for simplicity we define it as the solution to a minimization
problem in the Krylov subspace:

Definition E.1. CG(A,b, ω) = min∥Axk−b∥2≤ε k for xk = argmin
x=Pk(W̆

−1
ω A)W̆−1

ω b

∥x − A−1b∥A

where the minimum is taken over all degree k polynomials Pk : Rn×n 7→ Rn×n.

25

Lemma E.2. Let A be a positive-definite matrix and b ∈ Rn any vector. Define

UCG(ω) = 1 +

τ log

(√
κ(A)

ε +
√

κ(A)
ε2 − 1

)
− log

(
1− 4

2+
√

4
2−ω+

µ(2−ω)
ω + 4νω

2−ω

) (31)

for µ = λmax(DA−1) ≥ 1, ν = λmax((LD
−1LT −D/4)A−1) ∈ [−1/4, 0], and τ the smallest

constant (depending on A and b) s.t. UCG ≥ CG(A,b, ·). Then the following holds

1. τ ∈ (0, 1]

2. if µ > 1 then UCG is minimized at ω∗ = 2

1+
√

2
µ (1+2ν)

and monotonically increases away

from ω∗ in both directions

3. UCG is
(

µ+4ν+4
4µν+2µ−1τ

√
µ
√
2, 2
√
2− 2

)
-semi-Lipschitz on [2

√
2− 2, 2)

4. if µ ≤ µmax then UCG ≤ 1+
τ log(2

ε

√
κ(A))

− log
(
1− 2

1+
√

γ

) on [2
√
2−2, 2

1+1/
√
µmax

], where γ ≤ 7+3µmax

8 .

Proof. By Hackbusch (2016, Theorem 10.17) we have that the kth residual of SSOR-preconditioned
CG satisfies

∥rk(ω)∥2 = ∥b−Axk∥2 ≤
√
∥A∥∥A−1b− xk∥A ≤

√
∥A∥ 2xk

1 + x2k
∥A−1b− x0∥A

≤
2
√

κ(A)xk

1 + x2k
∥r0∥2

(32)

for x =

√
κ(W̆−1

ω A)−1√
κ(W̆−1

ω A)+1
= 1− 2√

κ(W̆−1
ω A)+1

. By Axelsson (1994, Theorem 7.17) we have

κ(W̆−1
ω A) ≤

1 + µ
4ω (2− ω)2 + ων

2− ω
(33)

Combining the two inequalities above yields the first result. For the second, we compute the derivative
w.r.t. ω:

∂ωU
CG

τ
=

8(2ν + 1)ω2 − 4µ(2− ω)2

(2− ω)ω
√

4
2−ω + µ(2−ω)

ω + 4νω
2−ω (µ(2− ω)2 + 4ω(νω + ω − 1))

(34)

Since ν ∈ [−1/4, 0] and µ > 1, we have that µ(2−ω)2 +4ω(νω+ω− 1) ≥ (2−ω)2 +3ω2− 4ω,
which is nonnegative. Therefore the derivative only switches signs once, at the zero of specified
in the second result. The monotonic increase property follows by positivity of the numerator on
ω > ω∗. The third property follows by noting that since UCG is increasing on ω > ω∗ we only needs
to consider ω ∈ [2

√
2− 2, ω∗], where the numerator of the derivative is negative; here we have

|∂ωUCG|
τ

≤ 4µ(2− ω)

ω
√

4
2−ω + µ(2−ω)

ω + 4νω
2−ω (µ(2− ω)2 + 4ω(νω + ω − 1))

≤ µ+ 4ν + 4

4µν + 2µ− 1

√
µ
√
2

(35)
where we have used µ(2 − ω)2 + 4ω(νω + ω − 1) ≥ 16µν+8µ−4

µ+4ν+4 and ω ≥ 2
√
2 − 2. For the last

result we use the fact that κ(W̆−1
ω A) is maximal at the endpoints of the interval and evaluate it on

those endpoints to bound γ ≤ 1
2 +

max{(µmax+1)
√
2,3

√
µmax}

4 ≤ 1
2 + 3(µmax+1)

8 .

We plot the bounds from Lemma E.2 in Figure 4. Note that τ ∈ (0, 1] is an instance-dependent
parameter that is defined to effectively scale down the function as much as possible while still being
an upper bound on the cost; it thus allows us to exploit the shape of the upper bound without having
it be too loose. This is useful since upper bounds for CG are known to be rather pessimistic, and we
are able to do this because our learning algorithms do not directly access the upper bound anyway.
Empirically, we find τ to often be around 3/4 or larger.

26

E.4.1 PROOF OF THEOREM 2.3

Proof. By Lemma E.2 the functions Ut − 1 ≥ CGt − 1 are
(

µt+4νt+4
4µtνt+2µt−1

√
µt

√
2, 2
√
2− 2

)
-semi-

Lipschitz and log(2
ε

√
κmax)

log
√

6µmax+14+4√
6µmax+14−4

-bounded on [2
√
2 − 2, 2

1+1/
√
µmax

]; note that by the assumption on

mint µt and the fact that νt ≥ 1/4 the semi-Lipschitz constant is O(√µt). Therefore the desired
regret w.r.t. any ω ∈ [2

√
2− 2, 2

1+1/
√
µmax

] follows, and extends to the rest of the interval because
Lemma E.2.2 also implies all functions Ut are increasing away from this interval.

27

F SEMI-STOCHASTIC PROOFS

F.1 REGULARITY OF THE CRITERION

Lemma F.1. ∥C̆k
ωb∥2 is ρ(C̆ω)

k−1∥b∥2k
√
κ(A)

(
1

2−ωmax
+ 2ρ(DA−1)

)
-Lipschitz w.r.t. ω ∈ Ω.

Proof. Taking the derivative, we have that

|∂ω∥C̆k
ωb∥2| =

|∂ω[(C̆k
ωb)

T C̆k
ωb]|

∥C̆k
ωb∥2

=

∣∣∣(C̆k
ωb)

T
∑k

i=1

[
C̆i−1

ω (∂ωC̆ω)C̆
k−i
ω b

]∣∣∣
∥C̆k

ωb∥2

≤

∥∥∥∥∥
k∑

i=1

C̆i−1
ω (∂ωC̆ω)C̆

k−i
ω b

∥∥∥∥∥
2

≤
k∑

i=1

∥∥∥C̆i−1
ω (∂ωC̆ω)C̆

k−i
ω b

∥∥∥
2

=
k∑

i=1

∥∥∥A 1
2A− 1

2 C̆i−1
ω A

1
2A− 1

2 (∂ωC̆ω)A
1
2A− 1

2 C̆k−i
ω A

1
2A− 1

2b
∥∥∥
2

≤ ∥b∥2
√
κ(A)

k∑
i=1

∥(A− 1
2 C̆ωA

1
2)i−1∥2∥A− 1

2 (∂ωC̆ω)A
1
2 ∥2∥(A− 1

2 C̆ωA
1
2)k−i∥2

= ρ(C̆ω)
k−1∥b∥2k∥A− 1

2 (∂ωC̆ω)A
1
2 ∥2
√
κ(A)

(36)
where the first inequality is due to Cauchy-Schwartz, the second is the triangle inequality, and the
third is due to the sub-multiplicativity of the norm. The last line follows by symmetry of A− 1

2 C̆ωA
1
2 ,

which implies that the spectral norm of any of power equals that power of its spectral radius, which
by similarity is also the spectral radius of C̆ω . Next we use a matrix calculus tool (Laue et al., 2018)
to compute

∂ωC̆ω =

(
1

ω
+

2− ω

ω2

)
A(D/ω + LT)−1D(D/ω + L)−1

− 2− ω

ω3
A(D/ω + LT)−1D(D/ω + LT)−1D(D/ω + L)−1

+
2− ω

ω3
A(D/ω + LT)−1D(D/ω + L)−1D(D/ω + L)−1

=

(
1

2− ω
+

1

ω

)
AW̆−1

ω −
1

ω2
A(D/ω + LT)−1DW̆−1

ω −
1

ω2
AW̆−1

ω D(D/ω + L)−1

(37)

so since ∥A 1
2W̆−1

ω A
1
2 ∥2 = ∥In −A− 1

2 C̆ωA
1
2 ∥2 ≤ 1 + ρ(A− 1

2 C̆ωA
1
2) ≤ 2 and

∥A 1
2 (D/ω + LT)−1DW̆−1

ω A
1
2 ∥2 = ∥A 1

2W̆−1
ω D(D/ω + L)−1A

1
2 ∥2

= ∥W̆−1
ω DW−1

ω A∥A
≤ ∥W̆−1

ω D∥A∥In −Mω∥A
≤ 2∥W̆−1

ω A∥A∥A− 1
2DA− 1

2 ∥2
= 2ρ(DA−1)∥In − M̆ω∥A ≤ 4ρ(DA−1)

(38)

we have by applying ω ∈ [1, ωmax] that

∥A− 1
2 (∂ωC̆ω)A

1
2 ∥2 ≤

2

2− ω
+

2

ω
+

8ρ(DA−1)

ω2
≤ 4

2− ωmax
+ 8ρ(DA−1) (39)

28

Algorithm 8: Symmetric successive over-relaxation with an absolute convergence condition.
Input: A ∈ Rn×n, b ∈ Rn, parameter ω ∈ (0, 2), initial vector x ∈ Rn, tolerance ε > 0
D+ L+ LT ← A // D is diagonal, L is strictly lower triangular

W̆ω ← ω
2−ω (D/ω + L)D−1(D/ω + LT) // compute third normal form

r0 ← b−Ax // compute initial residual
for k = 0, . . . do

if ∥rk∥2 > ε then
return k // return iteration count (for use in learning)

x = x+ W̆−1
ω rk // solve two triangular systems and update vector

rk+1 ← b−Ax // compute the next residual

Output: k

Lemma F.2. ∥C̆k
ω(c)b∥2 is 10

λmin(A)+cmin
ρ(C̆ω)

k−1(c)∥b∥2k
√

κ(A)-Lipschitz w.r.t. all c ≥ cmin >

−λmin(A(c)), where (c) denotes matrices derived from A(c) = A+ cIn.

Proof. We take the derivative as in the above proof of Lemma F.1:

|∂c∥C̆k
ω(c)b∥2| = ρ(C̆ω(c))

k−1∥b∥2k∥A− 1
2 (c)(∂cC̆ω(c))A

1
2 (c)∥2

√
κ(A(c)) (40)

We then again apply the matrix calculus tool of Laue et al. (2018) to get

∂cC̆ω(c) = −
2− ω

ω
(D(c)/ω + LT)−1D(c)(D(c)/ω + L)−1

+
2− ω

ω2
A(c)(D(c)/ω + LT)−2D(c)(D(c)/ω + L)−1

− 2− ω

ω
A(c)(D(c)/ω + LT)−1(D(c)/ω + L)−1

+
2− ω

ω2
A(c)(D(c)/ω + LT)−1D(c)(D(c)/ω + L)−2

= −2− ω

ω
(W̆−1

ω (c) +A(c)W−T
ω (c)W−1

ω (c))

+
2− ω

ω2
A(c)(W−T

ω (c)W̆−1
ω (c) + W̆−1

ω (c)W−1
ω (c))

(41)

By symmetry of W̆−1
ω (c) we have

∥A− 1
2 (c)W̆−1

ω (c)A
1
2 (c)∥2 = ∥W̆−1

ω (c)∥A(c) ≤ ∥W̆−1
ω (c)A(c)∥A(c)∥A−1(c)∥2

= ∥In − M̆ω(c)∥A(c)ρ(A
−1(c)) ≤ 2ρ(A−1(c))

(42)

Furthermore

∥A 1
2 (c)W−T

ω (c)W−1
ω (c)A

1
2 (c)∥2 = ∥A− 1

2 (c)(In −MT
ω (c))(In −Mω(c))A

− 1
2 (c)∥2

≤ ∥A−1∥2∥In −Mω(c)∥2A(c) ≤ 4ρ(A−1(c))
(43)

and

∥A 1
2 (c)W−T

ω (c)W̆−1
ω (c)A

1
2 (c)∥2 = ∥A 1

2 (c)W̆−1
ω (c)W−1

ω (c)A
1
2 (c)∥2 ≤ 4ρ(A−1(c)) (44)

so by the lower bound of 1
λmin(A)+cmin

on ρ(A−1(c)) we have the result.

29

F.2 ANTI-CONCENTRATION

Lemma F.3. Let X ∈ Rn×n be a nonzero matrix and b = mu be a product of independent random
variables m ≥ 0 and u ∈ Rn with m2 ∈ [0, n] a χ2-squared random variable with n degrees of
freedom truncated to the interval [0, n] and u distributed uniformly on the surface of the unit sphere.

Then for any interval I = (ε, ε+∆] ⊂ R for ε,∆ > 0 we have that Pr(∥Xb∥2 ∈ I) ≤ 2∆
ρ(X)

√
2
π .

Proof. Let f be the p.d.f. of b and g be the p.d.f. of g ∼ N (0n, In). Then by the law of total
probability and the fact that b follows the distribution of g conditioned on ∥b∥22 ≤ n we have that

Pr(∥Xb∥2 ∈ I) =

∫
∥x∥2

2≤n

Pr(∥Xb∥2 ∈ I|b = x)df(x)

=

∫
∥x∥2

2≤n
Pr(∥Xb∥2 ∈ I|b = x)dg(x)∫

∥x∥2
2>n

dg(x)

≤ 2

∫
∥x∥2

2≤n

Pr(∥Xg∥2 ∈ I|g = x)dg(x)

≤ 2

∫
Rn

Pr(∥Xg∥2 ∈ I|g = x)dg(x) = 2Pr(∥Xg∥2 ∈ I)

(45)

where the second inequality uses the fact that a χ2 random variable with n degrees of freedom has
more than half of its mass below n. Defining the orthogonal diagonalization QTΛQ = XTX and
noting that Qg ∼ N (0n, In), we then have that

∥Xg∥22 = (Qg)TΛQg =
n∑

i=1

Λ[i,i]χ
2
i (46)

for i.i.d. χ1, . . . , χn ∼ N (0, 1). Let h, h1, and h−1 be the densities of
∑n

i=1 Λ[i,i]χ
2
i , Λ[1,1]χ

2
1, and∑n

i=2 Λ[i,i]χ
2
i , respectively, and let u(a) be the uniform measure on the interval (a, a+ 2ε∆+∆2].

Then since the density of the sum of independent random variables is their convolution, we can apply
Young’s inequality to obtain

Pr(∥Xg∥2 ∈ I) = Pr(∥Xg∥22 ∈ (ε2, (ε+∆)2])

≤ max
a≥ε2

∫ a+2ε∆+∆2

a

h(x)dx

= max
a≥ε2

∫ ∞

−∞
u(x− a)h(x)dx

= ∥u ∗ h∥L∞([ε,∞))

= ∥u ∗ h1 ∗ h−1∥L∞([ε,∞))

≤ ∥u ∗ h1∥L∞([ε,∞))∥h−1∥L1([ε,∞))

≤ max
a≥ε2

∫ a+2ε∆+∆2

a

h1(x)dx

= max
a≥ε

∫ a+2ε∆+∆2

a

e
− x

2Λ[1,1]√
2πΛ[i,i]x

dx

≤ max
a≥ε2

√
2(a+ 2ε∆+∆2)

πΛ[i,i]
−
√

2a

πΛ[i,i]
= ∆

√
2

πΛ[i,i]

(47)

Substituting into the first equation and using Λ[i,i] = ∥X∥22 ≥ ρ(X)2 yields the result.

30

F.3 LIPSCHITZ EXPECTATION

Lemma F.4. Suppose b = mu, where m and u are independent random variables with u distributed
uniformly on the surface of the unit sphere and m2 ∈ [0, n] a χ2-squared random variable with n
degrees of freedom truncated to the interval [0, n]. Define K as in Corollary D.2, β = minx ρ(In −
D−1

x Ax), and SSOR(x) = min∥C̆k
xb∥2≤ε k to be the number of iterations to convergence when the

defect reduction matrix depends on some scalar x ∈ X for some bounded intervalX ⊂ R. If ∥C̆k
xb∥2

is Lρ(C̆x)
k−1-Lipschitz a.s. w.r.t. any x ∈ X then ESSOR is 32K3L

√
2/π

β4 -Lipschitz w.r.t. x.

Proof. First, note that by Hackbusch (2016, Theorem 6.26)

ρ(C̆x) = ρ(M̆x) = ∥M̆2
x∥Ax

≥ ρ(Mx)
2 ≥

(
β

1 +
√

1− β2

)4

≥ β4

16
(48)

Now consider any x1, x2 ∈ X s.t. |x1 − x2| ≤
εβ4
√

π/2

2K3L , assume w.l.o.g. that x1 < x2, and pick
x′ ∈ [x1, x2] with maximal ρ(C̆x). Then setting ρx′ = ρ(C̆x′) we have that ∥C̆k

xi
b∥2 is Lρk−1

x′ -
Lipschitz for both i = 1, 2 and all k ∈ [K]. Therefore starting with Jensen’s inequality we have
that

|ESSOR(xi)− ESSOR(x′)|
≤ E|SSOR(xi)− SSOR(x′)|

=
K∑

k=1

K∑
l=1

|k − l|Pr(SSOR(xi) = k ∩ SSOR(x′) = l)

≤ K
K∑

k=1

(∑
l<k

Pr(∥C̆l
xi
b∥2 > ε ∩ ∥C̆l

x′b∥2 ≤ ε) +
∑
l>k

Pr(∥C̆k
xi
b∥2 ≤ ε ∩ ∥C̆k

x′b∥2 > ε)

)

≤ K
K∑

k=1

∑
l<k

Pr(∥C̆l
x′b∥2 ∈ (ε− Lρl−1

x′ |xi − x′|, ε])

+K
K∑

k=1

∑
l>k

Pr(∥C̆k
x′b∥2 ∈ (ε, ε+ Lρk−1

x′ |xi − x′|])

≤ K
K∑

k=1

(∑
l<k

2Lρl−1
x′

√
2/π

ρ(C̆l
x′)

|xi − x′|+
K∑

k=1

∑
l>k

2Lρk−1
x′

√
2/π

ρ(C̆k
x′)

|xi − x′|

)

≤
2K3L

√
2/π

ρx′
|xi − x′| ≤

32K3L
√
2/π

β4

(49)

where the second inequality follows by the definition of SSOR, the third by Lipschitzness, and the
fourth by the anti-concentration result of Lemma F.3. Since this holds for any nearby pairs x1 < x2,
taking the summation over the interval X completes the proof.

Corollary F.1. Under the assumptions of Lemma E.1, the function EbSSOR(A,b, ω) is
32K4
√

2nκ(A)/π

β4

(
1

2−ωmax
+ 2ρ(DA−1)

)
-Lipschitz w.r.t. ω ∈ [1, ωmax] ⊂ (0, 2).

Proof. Apply Lemmas F.1 and E.1, noting that ∥b∥2 ≤
√
n by definition.

Corollary F.2. Under the assumptions of Lemma E.1, the function EbSSOR(A(c),b, ω) is

maxc
320K4

√
2nκ(A(c))/π

β4(λmin(A)+cmin)
-Lipschitz w.r.t. c ≥ cmin > −λmin.

Proof. Apply Lemma F.2 and E.1, noting that ∥b∥2 ≤
√
n by definition.

31

Figure 5: Average across forty trials of the time needed to solve 5K diagonally shifted systems
with At = A+ 12c−3

20 In for c ∼ Beta(12 ,
3
2) (center) and c ∼ Beta(2, 6) (otherwise).

G EXPERIMENTAL DETAILS

All numerical results were generated in MATLAB on a laptop and can be re-generated by running
the scripts available at https://github.com/mkhodak/learning-to-relax. Note that,
since we do not have access to problem parameters, we experimented with a few approaches to
setting them automatically or heuristically on the simplest (low variance) setting below and then
used the same settings for the rest of the experiments (high variance and heat equation). Furthermore,
because the default step-size/learning rate settings in both algorithms are rather pessimistic, we use
more aggressive time-varying approaches in practice. For Tsallis-INF we set ηt = 2/

√
t, which is

what is used in the anytime variant (Zimmert & Seldin, 2021). As for ChebCB, we use an increasing
schedule ηt = O(t); note that Simchi-Levi & Xu (2021) also use an increasing learning rate schedule
for setting inverse gap-weighted probabilities.

G.1 BASIC EXPERIMENTS

For the experiments in Figure 2 (center-left), we sample T = 5K scalars ct ∼ Beta(2, 6) and run
Tsallis-INF, Tsallis-INF-CB ChebCB, the instance optimal policy ω∗(c), and five values of ω—evenly
spaced on [1, 1.8]—on all instances At = A+ 12ct−3

20 In, in random order. Note that Figure 5 (left)
contains results of the same setup, except with ct ∼ Beta(12 ,

3
2), the higher-variance setting from

Figure 1. The center and right figures contain results for the sub-optimal fixed ω parameters,
compared to Tsallis-INF. For both experiments the matrix A is again the 100× 100 Laplacian of a
square-shaped domain generated in MATLAB, and the targets b are re-sampled at each instance from
the Gaussian truncated radially to have norm ≤ n. The reported results are averaged of forty trials.

G.2 ACCELERATING A 2D HEAT EQUATION SOLVER

We then consider applying our methods to the task of numerical simulation of the 2D heat equation

∂tu(t,x) = κ(t)∆xu(t,x) + f(t,x) (50)

over the domain x ∈ [0, 1]2 and t ∈ [0, 5]. We use a five-point finite difference discretization with
size denoted nx = 1/∆x, so that when an implicit time-stepping method such as Crank-Nicolson is
applied with timestep ∆t the numerical simulation requires sequentially solving a sequence of linear
systems (At,bt) with At = I(nx−1)2 − κ((t+ 1/2)∆t)A for a fixed matrix A (that depends on ∆t

and ∆x) corresponding to the discrete Laplacian of the system (LeVeque, 2007, Equation 12.29).
Each At is positive definite, and moreover note that mathematically the setting is equivalent to
an instantiation of the diagonal offset setting introduced in Section 2.4, since the linear system is
equivalent to ctI(nx−1)2 −A = ctbt for ct = 1/κ((t+ 1/2)∆t). However, for simplicity we will
simply pass κ((t+ 1/2∆t)) as contexts to CB methods.

To complete the problem specification, define the bump function bc,r(x) centered at c ∈ R2 with

radius r > 0 to be exp
(
− 1

1−∥x−c∥2
2/r

2

)
if ∥x−c∥2 < r and 0 otherwise. We set the initial condition

u(0,x) = b(1
2

1
2),

1
4
(x), forcing function f(t,x) = 32b(1

2+cos(16πt)/4, 12+cos(16πt)/4),1/8(x), and
diffusion coefficient κ(t) = max{0.01 sin(2πt)),−10 sin(2πt)}. The forcing function—effectively
a bump circling around the center of the domain—is chosen to ensure that the linear system solutions

32

https://github.com/mkhodak/learning-to-relax

Figure 6: Diffusion coefficient as a function of time (left) and normalized total wallclock time
required to run 5K steps of the numerical simulation (center and right). The numbers within the
middle plot corresponding to the average number of seconds required to run a step of the simulation
using vanilla CG. The right-hand plot shows 95% confidence intervals across the three trials for
Tsallis-INF and ChebCB at the three higher-dimensional evaluations.

are not too close to each other or to zero, and the diffusion coefficient function—plotted in Figure 6
(left)—is chosen to make the instance-optimal ω behave roughly periodically (c.f. Figure 2 (right)).

We set ∆t = 10−3, thus making T = 5000, and evaluate our approach across five spatial discretiza-
tions: nx = 25, 50, 100, 200, 400. The resulting linear systems have size n = (nx − 1)2. At each
timestep, we solve each linear system using CG to relative precision ε = 10−8. The baselines we
consider are vanilla (unpreconditioned) CG and SSOR-CG with ω = 1 or ω = 1.5; as comparators
we also evaluate performance when using the best fixed ω in hindsight at each round, and when
using the instance-optimal ω at each round. Recall that we showed that Tsallis-INF has sublinear
regret w.r.t. the surrogate cost of the best fixed ω of SSOR-CG (Theorem 2.3), and that ChebCB
has sublinear regret w.r.t. the instance-optimal ω for SOR in the semi-stochastic setting of Section 3.
Since both methods are randomized, we take the average of three runs.

In Figure 2 (center-right) we show that both methods substantially outperform all three baselines,
except at nx = 25 and nx = 50, when ω = 1.5 almost recovers the best fixed parameter in hindsight;
furthermore, ChebCB does better then the best fixed ω in hindsight in most cases. In Figure 6 (right)
we also show that—at high-enough dimensions—this reduction in the number of iterations leads to
an overall improvement in the runtime of the simulation. Several other pertinent notes include:

1. At lower dimensions the learning-based approaches have slower overall runtime because of
overhead associated with learning; ChebCB in particular solves a small constrained linear
regression at each step. However, this overhead does not scale with matrix dimension, and
we expect data-driven approaches to have the greatest impact in higher dimensions.

2. Vanilla (unpreconditioned) CG is faster than SSOR-preconditioned CG with ω = 1 despite
having more iterations because each iteration is more costly.

3. To get a comparative sense of the scale of the improvement, we can consider the results in Li
et al. (2023, Table 1), who learn a (deep-learning-based) preconditioner for CG to simulate
the 2D heat equation. In the precision 10−8 case their solver takes 2.3 seconds, while
Gauss-Seidel (i.e. SSOR with ω = 1) takes 2.995 seconds, a roughly 1.3x improvement.
In our most closely comparable setting, Tsallis-INF and ChebCB are roughly 2.4x and 3.5x
faster than Gauss-Seidel, respectively (and have other advantages such as simplicity and
being deployable in an online fashion without pretraining). We caveat this comparison by
noting that Li et al. (2023) consider a statistical, not online, learning setup, and their matrix
structure may be significantly different—it results from a finite element method rather than
finite differences. The only way to achieve a direct comparisons is via access to code; as
of this writing it is not public.

Lastly, we give additional details for the plot in Figure 2 (right), which shows the actions taken
by the various algorithms for a simulation at nx = 100. For clarity all lines are smoothed using a
moving average with a window of 25, and for Tsallis-INF and ChebCB we also shade ± one standard
deviation computed over this window. The plot shows that Tsallis-INF converges to an action close
to the best fixed ω in hindsight, and that ChebCB fairly quickly follows the instance-optimal path,
with the standard deviation of both decreasing over time.

33

	Introduction
	Core contributions
	Technical and theoretical contributions
	Related work and comparisons

	Asymptotic analysis of learning the relaxation parameter
	Setup
	Establishing a surrogate upper bound
	Performing as well as the best fixed
	The diagonally shifted setting
	Tuning preconditioned conjugate gradient

	A stochastic analysis of symmetric SOR
	Regularity of the expected cost function
	Chebyshev regression for diagonal shifts

	Conclusion and limitations
	Related work and comparisons
	Sample complexity and comparison with the Goldberg-Jerrum framework
	Approximating the spectral radius of the Jacobi iteration matrix

	Semi-Lipschitz bandits
	Chebyshev regression for contextual bandits
	Preliminaries
	Regret of ChebCB

	SOR preliminaries
	Near-asymptotic proofs
	Proof of Lemma 2.1 and associated discussion
	Proof of Theorem 2.1
	Approximating the optimal policy
	Extension to preconditioned CG
	Proof of Theorem 2.3

	Semi-stochastic proofs
	Regularity of the criterion
	Anti-concentration
	Lipschitz expectation

	Experimental details
	Basic experiments
	Accelerating a 2D heat equation solver

