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Abstract

The task of tuning regularization coefficients in regularized regression models with
provable guarantees across problem instances still poses a significant challenge
in the literature. This paper investigates the sample complexity of tuning regular-
ization parameters in linear and logistic regressions under `1 and `2-constraints
in the data-driven setting. For the linear regression problem, by more carefully
exploiting the structure of the dual function class, we provide a new upper bound
for the pseudo-dimension of the validation loss function class, which significantly
improves the best-known results on the problem. Remarkably, we also instantiate
the first matching lower bound, proving our results are tight. For tuning the regular-
ization parameters of logistic regression, we introduce a new approach to studying
the learning guarantee via an approximation of the validation loss function class.
We examine the pseudo-dimension of the approximation class and construct a uni-
form error bound between the validation loss function class and its approximation,
which allows us to instantiate the first learning guarantee for the problem of tuning
logistic regression regularization coefficients.

1 Introduction

Regularized linear models, including the Elastic Net [1], and Regularized Logistic Regression
[2, 3, 4], as well as their variants [5, 6, 7], have found widespread use in diverse fields and numerous
application domains. Thanks to their simplicity and interpretability, those methods are popular
choices for controlling model complexity, improving robustness, and preventing overfitting by
selecting relevant features [4, 8, 9]. Moreover, regularized linear models can be adapted to the
non-linear regime using kernel methods [10, 11], significantly expanding their applicability to a wide
range of problems. In typical applications, one needs to solve not only a single regression problem
instance, but several related problems from the same domain. Can we learn how to regularize with
good generalization across the related problem instances?

Suppose we have a regression dataset (X, y) 2 Rm⇥p
⇥ Y

m, where X is a design matrix with
m samples and p features, and y is a target vector. Regularized linear models aim to compute an
estimator �̂(X,y)(�) by solving the optimization problem

�̂(X,y)(�) = argmin
�2Rp

⇥
l(�, (X, y)) + �1 k�k1 + �2 k�k

2
2

⇤
, (1)

where (�1,�2) 2 R2
�0 are the regularization coefficients. For instance, if � 2 R2

>0, y 2 Rm,
and l(�, (X, y)) = 1

2ky � X�k22 (squared-loss function), we get the well-known Elastic Net [1].
On the other hand, if � 2 {(�1, 0), (0,�2)} for �1,�2 > 0, y 2 {±1}m, and l(�, (X, y)) =
1
m

P
m

i=1 log(1 + exp(�yix>

i
�)), we obtain regularized logistic regression.
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In regularized linear models, the parameters � play a crucial role in controlling the sparsity (`1)
and shrinkage (`2) constraints, and are essential in ensuring better generalization and robustness
[9, 4, 12]. A popular approach in practice is cross-validation, which involves choosing a finite grid
of values of � and iteratively solving the regression problem for multiple values of � and evaluating
on held-out validation sets to determine the optimal parameter. Principled techniques with theoretical
guarantees suffer from various limitations, for example require strong assumptions about the original
problem [13], or aim to search the optimal parameter over a discrete subset instead of the whole
continuous domain. Moreover, repeatedly solving the regression problem is particularly inefficient
if we have multiple problem instances from the same problem domain.

In this work, we investigate an alternative setting for tuning regularization parameters, namely
data-driven algorithm design, following the previous line of work by Balcan et al. [14]. Unlike
the traditional approach, which involves considering a single dataset (X, y), in the data-driven
approach, we analyze a collection of datasets or problem instances (X(i), y(i), X(i)

val , y
(i)
val ) drawn

from an underlying problem distribution D. Our objective is to determine the optimal regularization
parameters � so that when using the training set (X(i), y(i)) and � to select a model in Optimization
problem 1, the selected model minimizes loss on the validation set (X(i)

val , y
(i)
val ). As remarked by

Balcan et al. [14], data-driven algorithm design can handle more diverse data generation scenarios in
practice, including cross validation and multitask-learning [15, 16]. We emphasize that the data-driven
setting differs significantly from the standard single dataset setting.

In this paper, we consider the problem of tuning regularization parameters in regularized logistic
regression and the Elastic Net across multiple problem instances. Our contributions are:

• We present an improved upper bound (Theorem 3.3) on the pseudo-dimension for tuning the
Elastic Net regularization parameters across problem instances by establishing a novel structural
result for the validation loss function class (Theorem 3.2). We provide a crucial refinement to the
piecewise structure of this function class established by Balcan et al. [14], by providing a bound
on the number of distinct functional behaviors across the pieces. This enables us to describe the
computation of the validation loss function as a GJ algorithm [17], which yields an upper-bound
of O(p) on the pseudo-dimension, a significant improvement of the prior best bound of O(p2) by
Balcan et al. [14], and a corresponding improvement in the sample complexity (Theorem 3.4).

• Furthermore, we establish the tightness of our result by providing the first asymptotically matching
lower bound of ⌦(p) on the pseudo-dimension (Theorem 3.5). It is worth noting that our results
have direct implications for other specialized cases, such as LASSO and Ridge Regression.

• We further extend our results on the Elastic Net to regularized kernel linear regression problem
(Corollary 3.6).

• We propose a novel approach to analyze the problem of tuning regularization parameters in
regularized logistic regression, which involves indirectly investigating an approximation of the
validation loss function class. Using this approach, we instantiate the first learning guarantee for
this problem in the data-driven setting (Theorem 4.4).

1.1 Related work

Model selection for regularized linear models. Extensive research has focused on the selection of
optimal parameters for regularized linear models, including the Elastic Net and regularized logistic
regression. This process usually entails choosing the appropriate regularization coefficients for a given
dataset [18, 19]. Nevertheless, a substantial proportion of this research relies on heuristic approaches
that lack theoretical guarantees [20, 21]. Others have concentrated on creating tuning objectives that
go beyond validation error [22, 23], but with no clearly defined procedures for provably optimizing
them. The conventional method for selecting a tuning regularization parameter is through grid-based
selection, which aims to choose the parameter from a subset, known as a grid, within the parameter
space. While this approach provides certain guarantees [24], it falls short in delivering an optimal
solution across the entire continuous parameter space, particularly when using tuning objectives
that exhibit numerous discontinuities. Additionally, the grid-based technique is highly sensitive to
density, as selecting a grid that is either too dense or too coarse might result in inefficient search or
highly inaccurate solutions. Other guarantees require strong assumptions on the data distribution,
such as sub-Gaussian noise [25, 13]. Some studies focus on evaluating regularized linear models by
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Figure 1: The process of tuning regularization parameter � across problem instances. Given a set
of N problem instances {P (1), . . . , P (N)

} drawn from some problem distribution D, one seeks to
choose the best parameter �̂ by minimizing the total validation loss

P
N

i=1 h(P
(i);�).

constructing solution paths [26, 2, 27]. However, it is important to note that these approaches are
primarily computational in nature and do not provide theoretical guarantees.

Data-driven algorithm design. Data-driven algorithms can adapt their internal structure or parame-
ters to problem instances from unknown application-specific distributions. It is proved to be effective
for a variety of combinatorial problems, such as clustering, integer programming, auction design,
and graph-based semi-supervised learning [28, 29, 30, 31]. Balcan et al. [14] recently introduced
a novel approach to tuning regularization parameters in regularized linear regression models, such
as Elastic Net and its variants. They applied data-driven analysis to reveal the underlying discrete
structure of the problem and leveraged a general result from [32] to obtain an upper bound on the
pseudo-dimension of the problem. To provably tune the regularization parameters across problem
instances, they proposed a simple ERM learner and provided sample complexity guarantee for such
learner. However, the general techniques from [32] do not always lead to optimal bounds on the
pseudodimension. Our paper is an example of a problem where these bounds (as derived in [14]) are
sub-optimal, and more specialized techniques due to [31] result in the tighter bounds that we obtain.
Also prior work does not establish any lower bound on the pseudodimension. Furthermore, it should
be noted that their analysis heavily relies on the assumption of having a closed-form representation
of the Elastic Net estimator [27]. This approach may not be applicable in analyzing other regularized
linear models, such as regularized logistic regression, for which we propose an alternative approach.

2 Problem setting

In this section, we provide a formal definition of the problem of tuning regularization parameters
in the Elastic Net and regularized logistic regression (RLR) across multiple problem instances,
which follows the settings by Balcan et al. [14]. Given a problem instance P = (X, y,Xval, yval),
where (X, y) 2 Rm⇥p

⇥ Y
m represents the training dataset with m samples and p features, and

(Xval, yval) 2 Rm
0
⇥p

⇥ Y
m

0
denotes the validation split with m0 samples, we consider the estimator

�̂(X,y)(�) defined as:
�̂(X,y)(�) 2 argmin

�2Rp
l(�, (X, y)) + h�, R(�)i, (2)

where l(�, (X, y)) represents the objective loss function, � denotes the regularization coefficients,
and R(�) = (k�k1, k�k22) represents the regularization vector function.

For instance, if � 2 R2
>0, Y ⌘ R, and l(�, (X, y)) = lEN(�, (X, y)) = 1

2mky �X�k22, we get the
well-known Elastic Net. On the other hand, if � 2 {(�1, 0), (0,�2)} for �1,�2 > 0, y 2 {±1}m,
and l(�, (X, y)) = lRLR(�, (X, y)) = 1

m

P
m

i=1 log(1 + exp(�yix>

i
�)), we obtain RLR with `1

or `2 regularization. Note that for the Elastic Net hyperparameter tuning problem, we allows the
regularization coefficients of both `1, `2 are positive, while in the Regularized Logistic Regression
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problem, we consider either `1 or `2 as the regularization term. We then use the validation set
(Xval, yval) to calculate the validation loss h(�, P ) = l(�̂(X,y)(�), (Xval, yval)) corresponding to the
problem instance P and learned regularization parameters �.

In the data-driven setting, we receive a collection of n problem instances P (i) =

(X(i), y(i), X(i)
val , y

(i)
val ) 2 Rmi,pi,m

0
i
for i 2 [n], whereRmi,pi,m

0
i
:= Rmi⇥pi⇥Y

mi⇥Rm
0
i⇥pi⇥Y

m
0
i .

The problem space ⇧m,p is given by ⇧m,p = [m1�0,m2m,p1pRm1,p1,m2 , and we assume that
problem instance P is drawn i.i.d from the problem distribution D over ⇧m,p. Remarkably, in this
setting, problem instances can have varying training and validation sample sizes, as well as different
sets of features. This general framework applies to practical scenarios where the feature sets differ
among instances and allows one to learn regularization parameters that effectively work on average
across multiple different but related problem instances. See Figure 1 for an illustration of the setting.

The goal here is to learn the value �̂ s.t. with high probability over the draw of n problem instances,
the expected validation loss EP⇠Dh(�̂, P ) is close to min� EP⇠D[h(�, P )]. This paper primarily
focuses on providing learning guarantees in terms of sample complexity for the problem of tuning
regularization parameters in the Elastic Net and regularized logistic regression (RLR). Specifically, we
aim to address the question of how many problem instances are required to learn a value of � that per-
forms well across all problems P drawn from the problem distribution D. To achieve this, we analyze
the pseudo-dimension (in the case of the Elastic Net) or the Rademacher Complexity (for RLR) of
the validation loss function classH = {h(�, ·) | � 2 ⇤}, where ⇤ represents the search space for �.

3 Tight pseudo-dimension bounds for Elastic Net hyperparameter tuning

In this section, we will present our results on the pseudo-dimension upper and lower bounds for
the regularized linear regression problem in the data-driven setting. Classic learning-theoretic
results [33, 34] connect the pseudo-dimension of the validation loss function class (parameterized
by the regularization coefficient) with the sample complexity of the number of problem instances
{P (1), . . . , P (n)

} drawn i.i.d. from some unknown problem distribution D needed for learning good
regularization parameters with high confidence. Let hEN(�, P ) = lEN(�̂(X,y)(�), (Xval, yval)) be the
validation loss function of the Elastic Net, and HEN = {hEN(�, P ) : ⇧m,p ! R�0 | � 2 R2

>0} be
the corresponding validation loss function class, we now present tight bounds for Pdim(HEN).

3.1 The Goldberg-Jerrum framework

Recently, Bartlett et al. [31] instantiate a simplified version of the well-known Goldberg-Jerrum (GJ)
Framework [17]. The GJ framework offers a general pseudo-dimension upperbound for a wide class
of functions in which each function can be computed by a GJ algorithm. We provide a brief overview
of the GJ Framework which is useful in establishing our improved pseudo-dimension upper bound.
Definition 1 (GJ Algorithm, [31]). A GJ algorithm � operates on real-valued inputs, and can
perform two types of operations:

• Arithmetic operators of the form v00 = v � v0, where � 2 {+,�,⇥,÷}, and

• Conditional statements of the form ”if v � 0 . . . else . . . ”.

In both cases, v and v0 are either inputs or values previously computed by the algorithm.

General speaking, each intermediate value of the GJ algorithm � can be described by a rational
function, which is a fractional between two polynomials, of the algorithm’s inputs. The degree
of a rational function is equal to the maximum degree of the polynomials in its numerator and its
denominator. We can define two quantities that represent the complexity of GJ algorithms.
Definition 2 (Complexity of GJ algorithm, [31]). The degree of a GJ algorithm is the maximum
degree of any rational function it computes of the inputs. The predicate complexity of a GJ algorithm
is the number of distinct rational functions that appear in its conditional statements.

The following theorem essentially shows that for any function class F , if we can describe any
function f 2 F by a GJ algorithm of which the degree and predicate complexity are at most� and
⇤, respectively, then we can automatically obtain the upper bound for the pseudo-dimension of F .
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Theorem 3.1 ([31]). Suppose that each function f 2 F is specified by n real parameters. Suppose
that for every x 2 X and r 2 R, there is a GJ algorithm �x,r that given f 2 F , returns "true" if
f(x) � r and "false" otherwise. Assume that �x,r has degree � and predicate complexity ⇤. Then,
Pdim(F) = O(n log(�⇤)).

3.2 Upper bound

Our work improves on prior research [14] by presenting an upper bound on the pseudo-dimension
of Elastic Net validation loss function class HEN parameterized by �. We extend the previous
piecewise-decomposable structure of the loss function by providing a bound on the number of distinct
rational piece functions for any fixed problem instance (Definition 3). This allows us to use a GJ
algorithm and Theorem 3.1 to obtain better bounds on the number of distinct predicates that need to
be computed. While prior research only used a bound on the number of distinct loss function pieces
generated by algebraic boundaries, our new observation that the loss function has a limited number
of possible distinct functional behaviors yields a tighter upper bound on the pseudo-dimension
(Theorem 3.2). In Theorem 3.5, we will demonstrate the tightness of our upper bound by providing
a novel lower bound for the problem.

We first provide a refinement of the piece-wise decomposable function class terminology introduced
by [32] which is useful for establishing our improved upper bound. Intuitively, this corresponds to
real-valued functions for which the domain is partitioned by finitely many boundary functions such
that the function is well-behaved in each piece in the partition, i.e. can be computed using a piece
function from another function class.

Figure 2: An illustration of piece-wise structure of H⇤

EN
= {h⇤

P
: HEN ! R�0 | P 2 ⇧m,p}.

Given a problem instance P , the function h⇤

P
(�) = h(P ;�) is a fixed rational function fi(�) in each

piece (piece function), that is regulated by boundary functions gri of the form {ri(�) < 0}. As
mentioned in our main result, there are at most 3p functions fi of degree at most 2p, and at most p3p
functions gri where ri is a polynomial of degree at most p.

Definition 3. A function class H ✓ RY that maps a domain Y to R is (F , kF ,G, kG)�piece-
wise decomposable for a class G of boundary functions and a class F 2 RY of piece functions
if the following holds: for every h 2 H, (1) there are kG functions g(1), . . . , g(kG)

2 G and a
function fbbb 2 F for each bit vector bbb 2 {0, 1}kG s.t. for all y 2 Y , h(y) = hbbby (y) where
bbby = {(g(1)(y), . . . , g(kG)(y))} 2 {0, 1}kG , and (2) there is at most kF different functions in F .

A key distinction from [32] is the finite bound kF on the number of different piece functions needed
to define any function in the class H. Under this definition we give the following more refined
structure for the Elastic Net loss function class by extending arguments from [14].

Theorem 3.2. Let HEN = {hEN(�, ·) : ⇧m,p ! R�0 | � 2 R2
>0} be the class of Elastic Net

validation loss function class. Consider the dual class H⇤

EN = {h⇤

P
: HEN ! R�0 | P 2 ⇧m,p},

where h⇤

P
(hEN (�, ·)) = hEN(�, P ). ThenH⇤

EN is (F , 3p,G, p3p)-piecewise decomposable, where the
piece function classF = {fq : HEN ! R} consists at most 3p rational functions fq1,q2 : hEN(�, ·) 7!
q1(�1,�2)
q2(�1,�2)

of degree at most 2p, and the boundary function class G = {gr : HEN ! {0, 1}} consists
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of semi-algebraic sets bounded by at most p3p algebraic curves gr : hEN(�, ·) 7! {r(�1,�2) < 0},
where r is a polynomial of degree at most p.

Figure 2 demonstrates the piece-wise structure of H⇤

EN, which allows us to establish an improved
upper bound on the pseudo-dimension.
Theorem 3.3. Let HEN = {hEN(�, ·) : ⇧ ! R�0 | � 2 R2

>0} be the Elastic Net validation loss
function class that maps problem instance P to validation loss hval(�, P ). Then Pdim(HEN) is O(p).

Proof Sketch. For every problem instance P 2 ⇧m,p, and a threshold r 2 R, consider the
computation {hEN(�, P )� r � 0} for any hEN(�, ·) 2 HEN. From Theorem 3.2, we can describe
{hEN(�, P )� r � 0} as a GJ algorithm �P,r which is specified by 2 parameters �1,�2, has degree

of at most 2p, and has predicate complexity of at most (p+ 1)3p (See Figure 3). Then Theorem 3.1
implies that Pdim(HEN) = O(p). ⇤

Figure 3: An illustration of how {hEN(�, P )� r � 0} is computed as a GJ algorithm. The number
of boundary (polynomial) functions kG is at most p3p, and there are at mostM = 3p distinct (rational)
piece functions. All the polynomial and rational functions are of degree at most 2p.

The detailed proof of Theorem 3.3 can be found on Appendix B.1.2. Recent work by Balcan et al.
[14] also studied the Elastic Net, and showed the piece-wise structure of the dual function of the
validation loss function which implies an upper bound of O(p2) by employing the general tool from
[32]. We establish a tighter bound of O(p) in Theorem 3.3 by establishing additional properties of
the loss function class and giving a GJ algorithm for computing the loss functions.

To guarantee the boundedness of the considered validation loss function classes, we will have the
following assumptions for the data and regularization parameters. The first assumption is that all
features and target values in the training and validation examples are bounded. The second assumption
is that we only consider regularization coefficient values � within an interval [�min,�max]. In practice,
those assumptions are naturally satisfied by data normalization.
Assumption 1 (Bounded covariate and label). We assume that all the feature vectors and tar-
get values in training and validation set is upper-bounded by absolute constants R1 and R2, i.e.
max{kXk

1
, kXvalk1}  R1, and max{kyk

1
, kyvalk1}  R2.

Assumption 2 (Bounded Coefficient). We assume that � 2 [�min,�max]2 with �min > 0.

Under Assumptions 2, 1, Theorem 3.3 immediately implies the following generalization guarantee
for Elastic Net hyperparameter tuning.
Theorem 3.4. Let D be an arbitrary distribution over the problem instance space ⇧m,p. Under
Assumptions 1, 2, the loss functions in HEN have range bounded by some constant H (Lemma
C.1). Then there exists an algorithm s.t. for any ✏, � > 0, given N = O(H

2

✏2
(p + log( 1

�
))) sample

problem instances drawn from D, the algorithm outputs a regularization parameter �̂ such that with
probability at least 1� �, EP⇠DhEN(�̂, P ) < min� EP⇠DhEN(�, P ) + ✏.

Proof. Denote �⇤ = argmin
�
EP⇠DhEN(�, P ). From Theorems 3.3 and A.2, given n = O(H

2

✏2
(p+

log( 1
�
))) problem instances P (i) for i 2 [N ] drawn from D, w.p. 1� �, we have EP⇠DhEN(�̂, P ) <

1
N

P
N

i=1 hEN(�̂, P (i)) + ✏

2 < 1
N

P
N

i=1 hEN(�⇤, P (i)) + ✏

2 < EP⇠DhEN(�⇤, P ) + ✏.
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3.3 Lower bound

Remarkably, we are able to establish a matching lower bound on the pseudo-dimension of the
Elastic Net loss function class, parameterized by the regularization parameters. Note that every
Elastic Net problem can be converted to an equivalent LASSO problem [1]. In fact, we show
something stronger, that the pseudo-dimension of even the LASSO regression loss function class
(parameterized by regression coefficient �1) is ⌦(p), from which the above observation follows (by
taking �2 = 0 in our construction). Our proof of the lower bound adapts the “adversarial strategy”
of [35] which is used to design a worst-case LASSO regularization path. While [35] construct a
single dataset to bound the number of segments in the piecewise-linear LASSO solution path, we
create a collection of problem instances for which all above-below sign patterns may be achieved
by selecting regularization parameters from different segments of the solution path.

Theorem 3.5. Let HLASSO be a set of functions {hLASSO(�, ·) : ⇧m,p ! R�0 | � 2 R+
} that map

a regression problem instance P 2 ⇧m,p to the validation loss hLASSO(�, P ) of LASSO trained with
regularization parameter �. Then Pdim(HLASSO) is ⌦(p).

Proof Sketch. Consider N = p problem instances for LASSO regression given by
P (i) = (X(i), y(i), X(i)

val , y
(i)
val ), where the training set (X

(i), y(i)) = (X⇤, y⇤) is fixed and set using
the “adversarial strategy” of [35], Proposition 2. The validation sets are given by single examples
(X(i)

val , y
(i)
val ) = (ei, 0), where ei are standard basis vectors in Rp. We will now proceed to provide

the witnesses r1, . . . , rN and � values to exhibit a pseudo-shattering of these problem instances.

Corresponding to subset T ✓ [p] of problem instances, we will provide a value of �T such that,
we have `LASSO(�T , P (i)) > ri iff i 2 T , for each i 2 [p] and each T ✓ [p]. We set all witnesses
ri = 0 for all i 2 [p]. As a consequence of Theorem 1 in [35], the regularization path of (X⇤, y⇤)
consists of a linear segment corresponding all 2p unsigned sparsity patterns in {0, 1}p (we will not
need all the segments in the construction, but note that it is guaranteed to contain all distinct unsigned
sparsity patterns) and we select �T as any interior point corresponding to a linear segment with
sparsity pattern {(c1, . . . , cp) | ci = 0 iff i 2 T}, i.e. elements in T are exactly the ones with sparsity
pattern 0. Therefore, |�⇤

T
· ei| = 0 iff i 2 T , where �⇤

T
is the LASSO regression fit for regularization

parameter �T . This implies the desired shattering condition w.r.t. witnesses r1 = 0, . . . , rN = 0.
Therefore, Pdim(HLASSO) � p. See Appendix B.2 for a full proof.

3.4 Hyperparameter tuning in Regularized Kernel Regression

The Kernel Least Squares Regression ([4]) is a natural generalization of the linear regression problem,
which uses a kernel to handle non-linearity. In this problem, each sample has p1 feature, corresponding
to a real-valued target. Formally, each problem instance P drawn from ⇧ can be described as

P = (X, y,Xval, yval) 2 Rm⇥p1 ⇥ Rm
⇥ Rm

0
⇥p1 ⇥ Rm

0
.

A common issue in practice is that the relation between y and X is non-linear in the original
space. To overcome this issue, we consider the mapping � : Rp1 ! Rp2 which maps the original
input space to a new feature space in which we hopefully can perform linear regression. Define
�(X) = (�(x1), . . . ,�(xm))m⇥p2 , our goal is to find a vector ✓ 2 Rp2 so that the squared loss
1
2 ky � �(X)✓k22 +R(k✓k) is minimized, where the regularization term R(k✓k) is any strictly mono-
tonically increasing function of the Hilbert space norm. It is well-known from the literature (e.g. [36])
that under the Representer Theorem’s conditions, the optimal value ✓⇤ can be linearly represented
by row vectors of �(X), i.e., ✓⇤ = �(X)� =

P
m

i=1 �(xi)�i, where � = (�1, . . . ,�m) 2 Rm. This
directly includes the `2 regularizer but does not include `1 regularization. To overcome this issue,
Roth ([3]) proposed an alternative approach to regularized kernel regression, which directly restricts
the representation of coefficient ✓ via a linear combination of �(xi), for i 2 [m]. The regularized
kernel regression hence can be formulated as

�̂(X,y)
l,�

= argmin
�2Rm

1

2
ky �K�k22 + �1 k�k1 + �2 k�k

2
2 ,

where k(x, x0) = h�(x),�(x0)i is the kernel mapping, and the Gram matrix K satisfies
[K]i,j = k(xi, xj) for all i, j 2 [m].
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Clearly, the problem above is a linear regression problem. Formally, denote hKER(�, P ) =
1
2ky �K�̂(X,y)(�)k2 and letHKER = {hKER(�, ·) : ⇧m,p ! R�0 | � 2 R2

+}. The following result
is a direct corollary of Theorem 3.3, which gives an upper bound for the pseudo-dimension ofHKER.

Corollary 3.6. Pdim(HKER) = O(m).

Note thatm here denotes the training set size for a single problem instance, and Corollary 3.6 implies
a guarantee on the number of problem instances needed for learning a good regularization parameter
for kernel regression via classic results [33, 34]. Our results do not make any assumptions on the
m samples within a problem instance/dataset; if these samples within problem instances are further
assumed to be i.i.d. draws from some data distribution (distinct from problem distribution D), then
well-known results imply that m = O(k log p) samples are sufficient to learn the optimal LASSO
coefficient [37, 38], where k denotes the number of non-zero coefficients in the optimal regression fit.

4 Hyperparameter tuning for Regularized Logistic Regression

Logistic regression is more naturally suited to applications modeling probability of an event,
like medical risk for a patient [39], predicting behavior in markets [40], failure probability
of an engineering system [41] and many more applications [42]. It is a fundamental statis-
tical technique for classification, and regularization is again crucial for avoiding overfitting
and estimating variable importance. In this section, we will present learning guarantees
for tuning the Regularized Logistic Regression (RLR) regularization coefficients across in-
stances. Given a problem instance P drawn from a problem distribution D over ⇧m,p, let
hRLR(�, P ) = lRLR(�̂(X,y)(�), (Xval, yval)) be the RLR validation loss function class (defined in Sec-
tion 2), and let HRLR = {hRLR(�, ·) : ⇧m,p ! R�0 | � 2 R>0} be the RLR validation loss function
class, our goal is to provide a learning guarantee for HRLR. Besides, we also study the commonly
used 0-1 validation loss function class H0-1

RLR = {h0-1
RLR(�, ·) : ⇧m,p ! R�0 | � 2 R>0}, where

h0-1
RLR(�, P ) = 1

m0

P
m

0

i=1 {yix>

i
�̂X,y(�)  0}, which we will cover in Section 4.3. Similarly, to

guarantee the boundedness ofHRLR, we also assume that Assumptions 1 and 2 also hold in this setting.

4.1 Approximate solutions of Regularized Logistic Regression

The main challenge in analyzing the regularized logistic regression, unlike the regularized logistic
regression problem, is that the solution �̂(X,y)(�) corresponding to a problem instance P and
particular value � > 0 does not have a closed form depending on �. We then propose an alternative
approach to this end, which is examining via the approximation �(✏)

(X,y)(�) of the solution �̂(X,y)(�).

Algorithm 1 Approximate incremental quadratic algorithm for RLR with `1 penalty, [2]

Set �(✏)
0 = �̂(X,y)(�min), t = 0, small constant � 2 R>0, and A = {j | [�̂(X,y)(�min)]j 6= 0}.

while �t < �max do

�t+1 = �t + ✏⇣
�(✏)
t+1

⌘

A

=
⇣
�(✏)
t

⌘

A

�

h
r

2l
⇣
�(✏)
t

, (X, y)
⌘

A

i�1
·

h
rl
⇣
�(✏)
t

, (X, y)
⌘

A

+ �t+1 sgn
⇣
�(✏)
t

⌘

A

i

⇣
�(✏)
t+1

⌘

�A

=
#»
0

A = A [ {j 6= A | rl(�(✏)
t+1, (X, y)) > �t+1}

A = A \ {j 2 A |

����(✏)
t+1,j

��� < �}

t = t+ 1

The approximation Algorithm 1 (Algorithm 2) for the solution �̂(�) of RLR under `1 (or `2)
constraint were first proposed by Rosset [26, 2]. Given a problem instance P , and a sufficiently small
step-size ✏ > 0, using Algorithms 1, 2 yields an approximation �(✏)

(X,y) of �̂(X,y) that are piece-wise
linear functions of � in total (�max � �min)/✏ [26]. Moreover, it is also guaranteed that the error
between �(✏)

(X,y) and �̂(X,y) is uniformly upper bounded for all � 2 [�min,�max].
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Algorithm 2 Approximate incremental quadratic algorithm for RLR with `2 penalty, [2]

Set �(✏)
0 = �̂(X,y)(�min), t = 0.

while �t < �max do

�t+1 = �t + ✏

�(✏)(�) = �(✏)
t

�

h
r

2l
⇣
�(✏)
t

, (X, y)
⌘
+ 2�t+1I

i�1
·

h
rl
⇣
�(✏)
t

, (X, y)
⌘
+ 2�t+1�

(✏)
t

i

t = t+ 1

Theorem 4.1 (Theorem 1, [2]). Given a problem instance P , for small enough ✏, there is a uniform
bound O(✏2) on the error k�̂(X,y)(�)� �(✏)

(X,y)(�)k2 for any � 2 [�min,�max].

Denote h(✏)
RLR(�, P ) = lRLR(�✏(�), (Xval, yval)) the approximation function of the validation loss

hRLR(�, P ). Using Theorem 4.1 and note that the loss f(z) = log(1 + e�z) is 1-Lipschitz, we can
show that the difference between h(✏)

RLR(�, P ) and hRLR(�, P ) is uniformly upper-bounded.

Lemma 4.2. The approximation error of the validation loss function is uniformly upper-bounded
|h(✏)

RLR(�, P )� hRLR(�, P )| = O(✏2) , for all � 2 [�min,�max].

We now present one of our main results, which is the pseudo-dimension bound of the approximate
validation loss function classH(✏)

RLR.

Theorem 4.3. Consider the RLR under `1 (or `2) constraint with parameter � 2 [�min,�max] that
take a problem instance P drawn from an unknown problem distribution D over ⇧m,p. Under
Assumptions 1 and 2, HRLR is bounded by some constant H (Lemma C.2). Suppose that we use
Algorithm 1 (or Algorithm 2) to approximate the solution �̂(X,y)(�) by �

(✏)
(X,y)(�) with a uniform error

O(✏2) for any � 2 [�min,�max], where ✏ is the approximation step-size. Consider the approximation
validation loss function class H(✏)

RLR = {h(✏)
RLR(�, ·) : ⇧m,p ! R�0 | � 2 [�min,�max]}, where

h(✏)
RLR(�, P ) =

1

m0

m
0X

i=1

log(1 + exp(�yix
>

i
�(✏)
(X,y)(�)))

is the approximate validation loss. Then we have Pdim(H(✏)
RLR) = O(m2 + log(1/✏)). Further, we

assume that ✏ = O(
p
H) where H is the upperbound of HRLR under Assumptions 1 and 2. Given

any set S of T problem instances drawn from a problem distribution D over ⇧m,p, the empirical
Rademacher complexity R̂(H(✏)

RLR,S) = O(H
p
(m2 + log(1/✏))/T ).

The key observation here is that the approximation solution �̂(✏)
(X,y) is piece-wise linear over

(�max��min)/✏ pieces, leading to the fact that the approximate validation loss function h(✏)
RLR(�, ·) is

a "special function" (Pfaffian function [43]) in each piece, which is a combination of exponentiation
of linear functions of �. The detailed proof of Theorem 4.3 can be found on the Appendix D.3.

4.2 Learning guarantees for Regularized Logistic Regression hyperparameter tuning

Our goal now is to use the upper bound for empirical Rademacher complexity of the validation
loss function class HRLR. We use techniques for approximate data-driven algorithm design due to
[29], combining the uniform error upper bound between validation loss function hRLR(�, P ) and
its approximation h(✏)

RLR(�, P ) (Lemma 4.2) and empirical Rademacher complexity of approximation
validation loss function classH(✏)

RLR (Theorem 4.3), to obtain a bound on the empirical Rademacher
complexity of HRLR. This allows us to give a learning guarantee for the regularization parameters
�, which is formalized by the following theorem.

Theorem 4.4. Consider the RLR under `1 (or `2) constraint. Under Assumptions 1, 2, HRLR is
bounded by some constant H (Lemma C.2). Consider the class function HRLR = {hRLR(�, ·) :
⇧m,p ! R�0 | � 2 [�min,�max]} where hRLR(�, P ) is the validation loss corresponding to problem
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instance P and the `1 (`2) parameter �. Given any set S of T problem instances drawn from a
problem distribution D over ⇧m,p, for any hRLR(�, ·) 2 HRLR, w.p. 1� � for any � 2 (0, 1), we have
�����
1

T

TX

i=1

hRLR(�, P
(i))� EP⇠D[hRLR(�, P )]

�����  O

 
H

r
m2 + log(1/✏)

T
+ ✏2 +

r
1

T
log

1

�

!
,

for some sufficiently small ✏.

The proof detail of Theorem 4.4 is included in the Appendix D.3. The above generalization guarantee
gives a bound on the average error on RLR validation loss over the problem distribution, for the
parameter � learned from T problem instances. In commonly used approaches, the validation set
size is small or a constant, and our result can be interpreted as the upper bound on the generalization
error in terms of the number of problem instances T and the step length ✏. We only consider RLR
under `1 (or `2) constraints, which are commonly studied in the literature, our analysis could be
easily extended to RLR under `q constraint for any q � 1.

4.3 An extension to 0-1 loss

Since logistic regression is often used for binary classification tasks, it is interesting to consider the
0-1 loss as the validation loss function. It has been shown that {z  0}  4 log(1 + e�z) for any
z [44]. This inequality, combined with Theorem 4.4, directly provides a learning guarantee for the
0-1 validation loss function.

Theorem 4.5. Let ⌧ > 2✏2 and � 2 (0, 1), where ✏ is the approximation step-size. Then for any
n � s(⌧/2, �) = ⌦

⇣
H

2(m2+log 1
✏ )+log 1

�
(⌧/2�✏2)2

⌘
, if we have n problem instances {P (i), . . . , P (n)

} drawn

i.i.d. from some problem distribution D over ⇧m,p to learn the regularization parameter �ERM for
RLR via ERM, then

EP⇠D(h
0-1
RLR(�

ERM , P )))  4 min
�2[�min,�max]

EP⇠D(hRLR(�, P )) + 4⌧.

The detailed proof of Theorem 4.5 can be found on Appendix D.4. It is worth noting that we are
providing learning guarantee for 0-1 validation loss function class H0-1

RLR indirectly via the validation
loss function classHRLR with cross-entropy objective function, which is arguably not optimal. The
question of how to provide a true PAC-learnable guarantee forH0-1

RLR remains an interesting challenge.

5 Conclusion and future work

In this work, we present novel learning guarantees for tuning regularization parameters for both the
Elastic Net and Regularized Logistic Regression models, across problem instances. For the Elastic
Net, we propose fine-grained structural results that pertain to the tuning of regularization parameters.
We use them to give an improved upper bound on the pseudo-dimension of the relevant validation
loss function class of and we prove that our new bound is tight.

For the problem of tuning regularization parameters in regularized logistic regression, we propose
an alternative approach that involves analyzing the approximation of the original validation loss
function class. This approximation, characterized by a piece-wise linear representation, provides a
useful analytical tool in the absence of an exact dependence of the logistic loss on the regularization
parameters. Additionally, we employ an upper bound on the approximation error between the original
and approximated functions, to obtain a learning guarantee for the original validation loss function
class. Remarkably, our proposed approach is not restricted solely to regularized logistic regression
but can be extended to a wide range of other problems, demonstrating its generality and applicability.

It is worth noting that this work only focuses on the sample complexity aspect of the hyperparameter
tuning in the Elastic Net and Regularized Logistic Regression. The question of computational
complexity in this setting is an interesting future direction. Other interesting questions include
designing hyperparameter tuning techniques for this setting that are robust to adversarial attacks,
and hyperparameter tuning for Regularized Logistic Regression with both `1 and `2 constraints.
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A Classical Generalization Bounds

In this section, we will provide basic terminologies from classical learning theory which will be
useful in our analysis.

A.1 Pseudo-dimension

The pseudo-dimension is frequently used to analyze the learning theoretic complexity of a real-valued
function class. The formal definition is stated here for convenience.

Definition 4 (Shattering and Pseudo-dimension, [33]). Let F be a set of functions mapping from
X to R, and suppose that S = {x1, . . . , xm} ✓ X . Then S is pseudo-shattered by F if there
are real numbers r1, . . . , rm such that for each b 2 {0, 1}m there is a function fb in F with
sign(fb(xi)�ri) = bi for i 2 [m]. We say that r = (r1, . . . , rm) witnesses the shattering. We say that
F has pseudo-dimension d if d is the maximum cardinality of a subset S of X that is pseudo-shattered
byF , denoted Pdim(F) = d. If no such maximum exists, we say thatF has infinite pseudo-dimension.

The following lemma is particularly useful when we analyze the pseudo-dimension of a function
class that is a composition of a monotonic function and another simpler function class. The result
is useful in our analysis of regularized logistic regression (Section D).

Lemma A.1 ([45]). SupposeF is a class of real-valued functions and � : R ! R is a non-decreasing
function. Let �(F) denote the class {� � f : f 2 F}. Then Pdim(�(F))  Pdim(F). The equality
holds if � is a continuous and strictly increasing function.

On other hand, if � is a non-increasing function then Pdim(�(F)) � Pdim(F). The equality holds
if � is a continuous and strictly decreasing function.

A.2 (Empirical) Rademacher Complexity

Another tool for analyzing the complexity of a real-valued function is the empirical Rademacher
Complexity, which will be defined below.

Definition 5 (Empirical Rademacher Complexity, [9]). Let F be a set of functions mapping from
X to R, and let S = {x1, . . . , xT } ✓ X be a set of T samples from X . The empirical Rademacher
Complexity of F with respect to S is defined as

R̂(F , S) = E�

"
sup
f2F

TX

i=1

�if(xi)

#
,

where �i is Rademacher random variable for i 2 [T ].

A.3 Uniform Convergence

The following classical result establishes a connection between the uniform convergence and the
pseudo-dimension of real-valued function classes.

Theorem A.2 ([33]). Suppose F is a class of real-valued functions with range in [0, H] and
finite Pdim(F). Then for any ✏ > 0 and � 2 (0, 1), for any distribution D and for any set S of
m = O

⇣
H

2

✏2
(Pdim(F) + log 1

�
)
⌘
samples drawn from D, w.p. at least 1� �, we have

|Lm

S
(f)� LD(f)| < ✏, for all f 2 F .

B Lemmas, Proof Details for Section 3

In this section, we provide the details for results discussed in Section 3.

B.1 Upper bound

We will state results from prior research which are useful in establishing our pseudo-dimension upper
bound, followed by full proof details.
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B.1.1 Basic Structural Results About Elastic Net

We first present basic structural results about the Elastic Net. The result allows us to rewrite any
Elastic Net problem into an equivalent LASSO problem.

Lemma B.1 (LASSO reduction of the Elastic Net, [1]). Given (X, y) 2 Rm⇥p
⇥ Rm and

(�1,�2) 2 (0,1)⇥ [0,1), define the ElasticNet problem

min
�2Rp

ky � �Xk
2
2 + �1 k�k1 + �2 k�k

2
2 .

Define the new dataset (X 0, y0)

X 0

(n+p)⇥p
= (1 + �2)

�1/2

✓
X

p
�2Ip

◆
, y0

n+p
=

✓
y
0

◆
.

Let � = �1p
1+�2

. Then the original ElasticNet problem can be written as

min
�02Rp

ky0 �X 0�0
k
2
2 + � k�0

k1 .

Let �̂ = argmin
�2Rp ky � �Xk

2
2 + �1 k�k1 + �2 k�k

2
2 and �̂0 = argmin

�02Rp ky0 �X 0�0
k
2
2 +

� k�0
k1, then

�̂ =
1

p
1 + �2

�̂0.

The following result (Lemma B.2) characterizes the solutions of the LASSO problem. To state it,
we will need a couple definitions. The general position is a standard mild assumption on the design
matrix X .

Definition 6 (General position, [27]). A matrix X 2 Rm⇥p is said to have its columns in the
general position if the affine span of any k  m points (�ixji)i2[k],jii=J✓[p] for arbitrary signs
�[k] 2 {�1, 1}k and subset J of the columns of size k, does not contain any element of {xi|i 62 J}.

Equicorrelation set (sometimes called active set) is the set of covariates with maximum absolute
value of correlation for the LASSO fit corresponding to a given value of �1.

Definition 7 (Equicorrelation sets, [27]). Let �̂ 2 argmin
�2Rp

1
2 ky �X�k22 + �1 k�k1. The

equicorrelation set corresponding to �̂, E =
n
j 2 [p] |

���x>

j

⇣
y �X�̂

⌘��� = �1

o
is simply the set of

covariates with maximum absolute correlation. We also define the equicorrelation sign vector for
�̂ as s = sign(X>

E
(y �X�̂)) 2 {±1}|E|.

We are now ready to state the unique closed-form solution of the LASSO under general position
assumption, in terms of equicorrelation sets.

Lemma B.2 (Closed-form solution of the LASSO, [27]). If the columns ofX are in general position,
then for any y and �1 > 0, the LASSO solution is unique and is given by

�̂E = (X>

E
XE)

�1(X>

E
y � �1s), �̂[p]\E = 0

where E and s are the equicorrelation set and equicorrelation sign vector corresponding to �̂.

Therefore, the solution of Elastic Net can be written as below.

Lemma B.3 (Closed-form solution of the ElasticNet, [1]). Let X be the matrix with
columns in the general position, and � = (�1,�2) 2 R2

>0. Then the ElasticNet solution
�̂(�) 2 argmin

�2Rp ky �X�k22 + �1 k�k1 + �2 k�k2 is unique for any dataset (X, y) and satisfies

(�̂(�))E =
�
X>

E
XE + �2I|E|

��1
X>

E
y � �1

�
X>

E
XE + �2I|E|

��1
s, (�̂(�))[p]\E = 0

for some E 2 [p] and s 2 {�1, 1}p.
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The following result describes the relation between the solution of Elastic Net and the coefficient
parameters �. The proof of the result can be easily derived based on simple algebra.

Lemma B.4 ([14]). Let A be an r ⇥ s matrix. Consider B(�) = (A>A+ �Is)�1.

1. Each entry of B(�) is a rational polynomial Pij(�)/Q(�) for i, j 2 [s] with each Pij of
degree at most s� 1, and Q of degree s.

2. Further, for i = j, Pij has degree s � 1 and leading coefficient 1, and for i 6= j, Pij has
degree at most s� 2. Also, Q(�) has leading coefficient 1.

B.1.2 Proofs of Main Theorems

We now give a detailed proof for the main structural results (Theorem 3.2). We start with a useful
definition.

Definition 8 (Semi-algebraic sets, Algebraic curves). A semi-algebraic sets of Rn is a finite union of
sets of the form {x 2 Rn

| pi(x) � 0, for i 2 [m]}, where pi are polynomials. An algebraic curve
is the zero set of a polynomial in two dimensions.

We will now restate and prove Theorem 3.2.

Theorem 3.2 (restated). Let HEN = {hEN(�, ·) : ⇧m,p ! R�0 | � 2 R2
>0} the class of Elastic

Net validation loss function class. Consider the dual class H⇤

EN = {h⇤

P
: HEN ! R�0 | P 2 ⇧m,p},

where h⇤

P
(hEN (�, ·)) = hEN(�, P ). Then H

⇤

EN is (F , 3p,G, p3p)-piecewise decomposable,
where the piece function class F = {fq : HEN ! R} consists at most 3p rational func-
tion fq1,q2 : hEN(�, ·) 7!

q1(�1,�2)
q2(�1,�2)

of degree at most 2p, and the boundary function class
G = {gr : HEN ! {0, 1}} consists of semi-algebraic sets bounded by at most p3p algebraic curves
gr : hEN(�, ·) 7! {r(�1,�2) < 0}, where r is a polynomial of degree at most p.

Proof. Given a problem instance P = (X, y,Xval, yval) 2 ⇧m,p, from Lemma B.3, for each �, the
solution �̂(�) of the Elastic Net can be characterized as follow

�̂(�) = (X>

E
XE + �2I|E|)

�1X>

E
y � �1(X

>

E
XE + �2I|E|)

�1s,

for some E 2 [p] and s 2 {±1}p. Therefore, the prediction ŷ on any validation example with
features x 2 Rp is

ŷ = x�̂(�) = x[(X>

E
XE + �2I|E|)

�1X>

E
y � �1(X

>

E
XE + �2I|E|)

�1s].

This implies that: for any region R ⇢ R2
>0, if the equicorrelation set and sign vector (E , s) is fixed

over R, then the solution �̂(�) and the prediction y corresponding to x is also fixed. Consequently,
within any region R where (E , s) remains unchanged, Lemma B.4 establishes that the validation
loss function hEN(�, P ) (associated with a given problem instance P ) is a constant rational function
of the form q1(�1,�2)

q2(�1,�2)
, where q1 and q2 are polynomials of degree at most 2p (since 2 |E|  2p by

definition). Notably, there are at most 3p distinct values of (E , s), which implies that hEN(�, P ) can
take on at most 3p different polynomial forms.

The only remaining task is to examine the semi-algebraic sets and algebraic curves that separates
region R. Consider such region R, in which the equicorrelation set and sign (E , s) is fixed.

• Condition for a feature enters E : consider a feature j 62 E , the condition for j to enters E is
(x⇤

j
)>(y⇤ �X⇤

E
(c1 � c2�

⇤

1)) = ±�⇤

1

where c1 = (X⇤

E

>X⇤

E
)�1, c2 = (X⇤

E

>X⇤

E
)�1s, X⇤ = 1

p
1+�2


X

p
�2Ip

�
, y⇤ =

2

664

y
0
...
0

3

775. Simplifying

the equation above, we have

�⇤

1 �
(x⇤

j
)>X⇤

E
(X⇤

E
X⇤

E
)�1(X⇤

E
)>y⇤ � (x⇤

j
)>y⇤

(x⇤

j
)>X⇤

E
(X⇤

E

>X⇤

E
)�1s± 1

= 0, or

�1(x
>

j
(XEX

⇤

E

>)�1XEs± 1)� x>

j
XE(X

>

E
XE + �2I|E|)

�1X>

E
y � x>

j
y = 0,
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which is an algebraic curve with the RHS is a polynomial of degree at most p.

• Condition for a feature leaves E : consider a feature j0 2 E . Similar to the previous case, the
condition for j0 to leave E can be described by an algebraic curve with the RHS as a polynomial
of degree at most p.

Finally, notice that there are at most
P

p

i=0

�
p

i

�
((p � i) + i) = p3p curves, across which the

equicorrelation set and sign (E , s) might change, which concludes the proof.

Using the GJ framework (Theorem 3.1), one can show that if a function classH has its dual-classH⇤

is piece-wise decomposable (in the sense of Definition 3), and all the piece and boundary functions
are rational functions with upper bounded degree, then Pdim(H) is upper bounded.

Lemma B.5. Consider the function class H = {h(a, ·) : X ! R | a 2 Rn
} be a function class

parameterized by a 2 RW . Consider the dual class H⇤ = {hx(·) : Rn
! R | x 2 X}, where

hx(a) = h(a, x). Assume that H⇤ is (F , kF ,G, kG) piece-wise decomposable, and F , G contains
only rational functions in a of degree at most �. Then Pdim(F) = O(n log(�(kF + kG))).

Proof. Given an input x 2 X and a threshold t 2 R, for any function h(a, ·) 2 H corresponding
to parameter a, consider the computation �x,t : H ! {0, 1}, where

�x,t(h(a, ·)) = {h(a, x)� t � 0}, for any h(a, ·) 2 H.

Our goal now is to show that �x,t is a GJ algorithm in the sense of Definition 1.

From assumptions, we know that the dual class H⇤ is (F , kF ,G, kG) piece-wise decomposable,
where F ,G consists of rational function in a of degree at most �. This implies that for any
h(a, ·) 2 H, the function hx(a) = h(a, x) is a rational function of a, of which the form is one of
kF rational functions in F . Hence, to compute �x,t(h(a, ·)), one needs to specify the closed-form
of h(a, ·), which is determined by binary-valued vector ba = {g(1)(a), . . . , g(kG)(a)}, and can be
calculated as conditional statements in the form {g(i)(a) � 0} for i 2 kG . Therefore, we conclude
that the computation of �x,t can be described by a GJ algorithm.

The predicate complexity of �x,t is the total number of functions in F and G, which is equal to
kF + kG . The degree of �x,t is the maximum degree of rational functions in F and G, which is �
from assumptions. From Theorem 3.1, we conclude that Pdim(F) = O(n log(�(kF + kG)).

Theorem 3.3. Let HEN = {hEN(�, ·) : ⇧ ! R�0 | � 2 R2
>0} be the Elastic Net validation loss

function class that maps problem instance P to validation loss `val(�, P ). Then Pdim(HEN) is O(p).

Proof. Given a problem instance P 2 ⇧m,p and a threshold t 2 R, for any validation loss function
hEN(�, ·) 2 HEN, consider the computation �P,t : HEN ! {0, 1}, where

�P,t(h(�, ·)) = {h(�, P )� t � 0}, for any h(�, ·) 2 HEN.

From Theorem 3.2, for a given problem instance P , we know that the dual-class H
⇤

EN is
(F , 3p,G, p3p)�piecewise decomposable, where F consists at most 3p rational function of degree
at most 2p, and G consists of at most p3p algebraic curves of degree at most p. From Lemma B.5,
Pdim(HEN) = O(2 log(2p(p+ 1)3p) = O(p).

B.2 Lower bound

We now instantiate a formal proof for Theorem 3.5.

Theorem 3.5 (restated). LetHLASSO be a set of functions {hLASSO(�, ·) : ⇧m,p ! R�0 | � 2 R+
}

that map a regression problem instance P 2 ⇧m,p to the validation loss hLASSO(�, P ) of LASSO
trained with regularization parameter �. Then Pdim(HLASSO) is ⌦(p).

Proof. Our proof of the lower bound in Theorem 3.5 builds on the “adversarial strategy” due to [35],
where a data set (X, y) is constructed with the largest possible number of segments in the LASSO
regularization path, for any p. Here we will include and discuss the main results from [35] that are
useful in understanding our proof.
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Our approach is to construct N = p problem instances such that all 2N above-below patterns (w.r.t.
witness values) for the validation loss are achieved by choosing appropriate points (� values) on
the piecewise linear regularization path of the training instance, by utilizing the property that all
unsigned sparsity patterns are achieved by the construction of [35]. In more detail, recall that the
signed sparsity pattern {⌘1, . . . , ⌘k} of a piecewise-linear regularization path P for dataset (X, y)
is a sequence of vectors in {±1, 0}p corresponding to the signs of the coefficients of the LASSO
fit �̂(X,y)(�) in consecutive pieces of P , i.e. ⌘j = (sign(�̂(X,y)

i
(�j)))

p

i=1 where �j corresponds
to an interior point of the j-th piece of P . Let’s further denote by UP = {⌘

j
| 1  j  k} where

⌘
j
= (|⌘j1|, . . . , |⌘jp|) 2 {0, 1}p as the unsigned sparsity pattern of path P .

We use the same training set (X, y) (but different validation sets) across our problem instances,
namely the one with (3p + 1)/2 segments constructed by Mairal and Yu (Theorem 1 of [35]). A
useful property of this problem instance is that it achieves all the unsigned sparsity patterns, which
follows from the following proposition.

Proposition B.6 ([35]). Consider y in Rn and X in Rn⇥p such that XE is full rank for each E ✓ [p]
and y is in the span of X . Denote by P the regularization path of the Lasso problem corresponding
to (X, y), and by k the number of linear segments of P . Then, there exist y0 in Rn+1 and X 0 in
R(n+1)⇥(p+1) such that the regularization path P 0 of the Lasso problem associated to (X 0, y0) has
3k � 1 linear segments. Moreover, let {⌘1 = 0, ⌘2, . . . , ⌘k} denote the sequence of sparsity patterns
in {�1, 0, 1}p of P (the coordinate-wise signs of the solutions �̂(X,y)(�)), ordered from large to small
values of �. The sequence of sparsity patterns in {�1, 0, 1}p+1 of the new path P 0 is the following:

⇢
⌘1
0

�
,


⌘2
0

�
, . . . ,


⌘k
0

�
,


⌘k
1

�
,


⌘k�1

1

�
, . . . ,


⌘1 = 0

1

�
,


�⌘2
1

�
, . . . ,


�⌘k
1

��
.

Formally, one could use a simple inductive argument to establish the above claim. In the base case
(p = 1), X = y = [1] and it is easy to verify that the regularization path P1 consists of two segments
with UP1 = {0, 1}. In the inductive case (p+ 1 features), consider the first 2k sign patterns for the
path P 0 in Proposition B.6. Using the inductive hypothesis, it is readily verified that the number
of unsigned sparsity patterns in the regularization path P 0 is |UP 0 | = 2|UP | = 2p+1.

In other words, all subsets of the p features appear as “active sets” of coefficients along the
regularization path of the training set (X, y). By carefully setting the validation sets across the
p problem instances in our proof of Theorem 3.5, we are able to ensure that the validation loss
is non-zero exactly in the subset of problems corresponding to the unsigned sparsity patterns of
�̂(X,y)(�). Thus, the property that all 2p unsigned sparsity patterns are achieved for certain values
of � implies that all 2N validation loss patterns are achieved w.r.t. witnesses 0p.

C Boundedness results for validation loss function classes of Elastic Net and

Regularized Logistic Regression

In this section, we will give a formal guarantee for the boundedness of the validation loss function
class of Elastic Net HEN and Regularized Logistic Regression HRLR, which is essential for
establishing learning guarantees for both function classes.

C.1 Boundedness of the validation loss function class of Elastic Net

The following lemma essentially shows that under mild assumptions on the value of data and the
search space of hyperparameters, the validation loss function class HEN is uniformly bounded by
some constant H > 0.

Lemma C.1. Under Assumptions 1 and 2, there exists a uniform constant H > 0 so that
for all hEN(�, ·) 2 HEN = {hEN(�, ·) : ⇧m,p ! R�0 | � 2 [�min,�max]}, we have
khEN(�, ·)k1 = supP2⇧m,p

|hEN(�, P )|  H .

Proof. For any problem instance P = (X, y,Xval, yval) 2 ⇧m,p, and for any � = (�1,�2) 2

[�min,�max]2, consider the optimization problem for training set
argmin

�

F (�), (3)
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where F (�) = 1
2m ky �X�k22 + �1 k�k1 + �2 k�k

2
2. If we set � = ~0, we have

F (~0) =
1

2m
kyk22  C,

for some constant C that only depends on R2, due to Assumption 2. Let �̂(X,y)(�) be the optimal
solution of 3, we have

C � F (�̂(X,y)(�)) � �1

����̂(X,y)(�)
���
1
+ �2

����̂(X,y)(�)
���
2

2
.

Therefore, for any problem instance P , the solution of the training optimization problem �̂(X,y)(�)

has bounded norm, i.e.
����̂(X,y)(�)

���
1
,
����̂(X,y)(�)

���
2

2


C

�min
, which implies

hEN(�, P ) =
1

2m

���yval � �̂(X,y)(�)Xval

���
2

2


1

2m
kyvalk

2
2 +

1

2m

����̂(X,y)(�)Xval

���
2

2
 H,

for some constant H (that only depends on R1, R2 and �min).

C.2 Boundedness of the validation loss function class of Regularized Logistic Regression

Using similar argument, we also have the following claim for the boundedness of validation loss
function class of Regularized Logistic Regression.

Lemma C.2. There exists a uniform constantH > 0 so that for all hRLR(�, ·) 2 HRLR = {hRLR(�, ·) :
⇧m,p ! R�0 | � 2 [�min,�max]}, we have khRLR(�, ·)k1 = supP2⇧m,p

|hRLR(�, P )|  H .

D Lemmas and Proof Details for Section 4

In this section, we present the detailed proofs of main results in Section 4.

D.1 Connected Components and Classical Results

We first present some classical results which are useful for analyzing the approximation validation
loss function classH(✏)

RLR.

We recall a well-known notion to analyze the pseudo-dimension of a function class, called the
solution set components bound [33]. The bound on the solution set components essentially refers to
the largest number of connected components within the parameter space of a parameterized function
class F . This component is generated from the solution set of a system of equations, corresponding
to zero sets of functions in F .

Definition 9 ([33]). Let F be a set of real-valued functions defined on RW . We say that F has
solution set components bound B if for any 1  K  W and any {f1, . . . , fK} ✓ F that has
regular zero-set intersections, we have

max
KW

CC

 
K\

i=1

{a 2 RW : fi(a) = 0}

!
= B

where CC(X) is the number of connected components of X .

Let us now introduce a definition for the growth function of a binary-valued class functionH. This
concept essentially quantifies the maximum number of distinct sign patterns {h(x1), . . . , h(xm)} that
can be observed when we vary the function h across H, considering a set of data points x1, . . . , xm.

Definition 10 (Growth function, [33]). Givenm samples x1, . . . , xm 2 X and let S = {x1, . . . , xm}.
Consider a class functionH, of which each h 2 H is a function from X to {�1, 1}, and let

HS = {(h(x1), . . . , h(xm)) : h 2 H}

is the total number of possible ways that S can be classified by H. Then the growth function GH(m)
is defined as

GH(m) = sup
x1,...,xm

|HS |
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The next classical result establishes a connection between the growth function and the solution set
components bound.

Theorem D.1 (Growth function bound, [33]). Suppose that F is a class of real-valued functions
defined on RW

⇥ X , and that H is defined as {sgn(f) : f 2 F}. If F is closed under addition of
constants, has solution set components boundB, and functions inF areCW in their parameters, then

GH(m)  B
⇣em
W

⌘W

for m � W .

D.2 The Empirical Rademacher Complexity of Approximate Logistic Validation Loss

We first restate important properties of the approximation solution �(✏)(�) accquired using Algorithm
1 (2) in RLR with `1 (`2) constraint.

Theorem 4.1 (restated) ([26]). Given a problem instance P = (X, y,Xval, yval) 2 ⇧m,p, for small
enough ✏, if we use Algorithm 1 (2) to approximate the solution �̂(X,y)(�) of RLR under `1 (`2)
constraint by �(✏)

(X,y)(�) then there is a uniform bound O(✏2) on the error k�̂(X,y)(�)� �(✏)
(X,y)(�)k2

for any � 2 [�min,�max].

For any � 2 [�t,�t+1], where �k = �min + k✏, the approximate solution �(✏)(�) is calculated by

�(✏)
(X,y)(�) = �(✏)

t
�

h
r

2l
⇣
�(✏)
t

, (X, y)
⌘

A

i�1
·

h
rl
⇣
�(✏)
t

, (X, y)
⌘

A

+ � sgn
⇣
�(✏)
t

⌘

A

i
= at�+ bt,

if we use Algorithm 1 for RLR under `1 constraint, or

�(✏)
(X,y)(�) = �(✏)

t
�

h
r

2l
⇣
�(✏)
t

, (X, y)
⌘
+ 2�t+1I

i�1
·

h
rl
⇣
�(✏)
t

, (X, y)
⌘
+ 2��(✏)

t

i
= a0

t
�+ b0

t
,

if we use Algorithm 2 for RLR under `2 constraint.

The uniform error bound in Theorem 4.1 directly implies the error bound between he validation
loss function h(✏)

RLR(�, P ) and its approximation h(✏)
RLR

(�, P ). As in prior work [2], we will omit
dependence on �min,�max, R in our asymptotic upper bounds below.

Lemma 4.2 (restated). The approximation error of the validation loss function is uniformly
upper-bounded

|h(✏)
RLR(�, P )� hRLR(�, P )| = O(✏2) , for all � 2 [�min,�max].

Proof. Using triangle inequality and the 1-Lipschitzness of Llog(z) := log(1 + e�z) we have that

���h(✏)
RLR(�, P )� hRLR(�, P )

��� =
1

m0

������

m
0X

i=1

[Llog(yix
>

i
�(✏)
(X,y)(�))� Llog(yix

>

i
�̂(X,y)(�))]

������


1

m0

m
0X

i=1

���Llog(yix
>

i
�(✏)
(X,y)(�))� Llog(yix

>

i
�̂(X,y)(�))

���


1

m0

m
0X

i=1

���yix>

i
�(✏)
(X,y)(�)� yix

>

i
�̂(X,y)(�)

��� .
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Using Hölder’s inequality, Assumption 1, and Theorem 4.1, for any � 2 [�min,�max], we further have
���h(✏)

RLR(�, P )� hRLR(�, P )
��� 

1

m0

m
0X

i=1

���yix>

i
�(✏)
(X,y)(�)� yix

>

i
�̂(X,y)(�)

���

=
1

m0

m
0X

i=1

���yix>

i

⇣
�(✏)
(X,y)(�)� �̂(X,y)(�)

⌘���


1

m0

m
0X

i=1

kxik2

����̂(X,y)(�)� �(✏)
(X,y)(�)

���
2



����̂(X,y)(�)� �(✏)
(X,y)(�)

���
2
max

i

kxik2

= O(✏2).

D.3 Learning the Regularization Hyperparameter in Logistic Regression

In this section, we give a formal proof for Theorem 4.3. We begin by revisiting a fundamental result
that proves invaluable when examining function classes that incorporate exponential functions.

Lemma D.2 ([43]). Let Qi (i  m) be elements of the polynomial ringR[y1, . . . , yl, e⇤1 , . . . , e⇤q ],
where ⇤i are linear function of y1, . . . , yl. Suppose that the system

Q1 = · · · = Qm = 0

is regular for m  l. If Qi has degree at most d (in y1, . . . , yl, e⇤1 , . . . , e⇤q ), then the system above
has the connected components bound

BM = 2q(q�1)/2dl[(l + 1)(d+ 1)]l+q.

We now present the formal proof of Theorem 4.3.

Theorem 4.3 (restated). Consider the RLR under `1 (or `2) constraint with parameter
� 2 [�min,�max] that take a problem instance P drawn from an unknown problem distribution D

over ⇧m,p under Assumptions 1 and 2. Consider the approximation validation loss function class
H

(✏)
RLR = {h(✏)

RLR(�, ·) : ⇧m,p ! R�0 | � 2 [�min,�max]}, where

h(✏)
RLR(�, P ) =

1

m0

m
0X

i=1

log(1 + exp(�yix
>

i
�(✏)
(X,y)(�)))

is the approximate validation loss. Then we have Pdim(H(✏)
RLR) = O(m2 + log(1/✏)). Given any

set S of T problem instances drawn from a problem distribution D over ⇧m,p, the empirical
Rademacher complexity R̂(H(✏)

RLR,S) = O(H
p
(m2 + log(1/✏))/T ), where H is the upperbound

of original validation loss function class HRLR (under Assumptions 1 and 2)..

Proof. The proof consists of following steps.

Step 1: Simplifying the analysis ofH(✏)
RLR by considering an alternative function class.

Consider any h(�, ·) 2 H
(✏)
RLR, by definition, we have

h(�, P ) =
1

m0

m
0X

i=1

log(1 + exp(�yix
>

i
�(✏)
(X,y)(�)) =

1

m0
log

0

@
m

0Y

i=1

(1 + exp(�yix
>

i
�(✏)
(X,y)(�)))

1

A .

From Lemma A.1 and note that log(·) is a strictly monotonic, continuous function, analyzing
the pseudo-dimension of H(✏)

RLR is equivalent to analyzing the VC-dimension of the class function
GRLR = {sign(g�) : ⇧m,p ⇥ R ! {�1, 1} | � 2 [�min,�max]}, where

g�(P, ⌧) =
m

0Y

i=1

(1 + exp(�yix
>

i
�(✏)
(X,y)(�)))� ⌧, (4)
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where ⌧ is a new variable.

Step 2: Using the piece-wise linear property of approximation solution �(✏)
(X,y)(�), bounding

the number of distinct sign patterns of {sign(g�(P (1), ⌧1), . . . , sign(g�(P (N), ⌧N )}, where
(P (i), ⌧i) 2 ⇧m,p ⇥ R for i 2 [N ], when varying � 2 [�t,�t+1].

Consider N problem instances {P (1), . . . P (N)
} where P (i)

2 ⇧m,p for i 2 [N ], and
N corresponding thresholds ⌧1, . . . , ⌧N , to bound the number of distinct sign patterns
{sign(g�(P (1), ⌧1), . . . , sign(g�(P (N), ⌧N )} when varying � 2 [�t,�t+1], we can use Theo-
rem D.1 and bound the solution set components bound B, where

B = max
K1

CC

 
K\

i=1

{� 2 [�t,�t+1] : gi(�)}

!
,

where gi(�) = g�(P (i), ⌧i). From Theorem 4.3 (restated), �(✏)
(X(i),y(i))

(�) is a linear function of �,
which implies gi(�) (i 2 [1]) is element of polynomials ringR[�, e⇤1 , . . . , e⇤q ], where ⇤j is linear
function of � for j 2 [q].

Since P (i)
2 ⇧m,p, we have m0

i
 m where m0

i
is the number of validation sample in validation

set of P (i), which implies there is at mostm function ⇤j (see Eq. 4). Also from Eq. 4, we can see
that gi(�) is a polynomial (in [�, e⇤1 , . . . , e⇤q ]) of degree at mostm.

Following Lemma D.2, we conclude that B  2m(m�1)/2m(2(m+ 1))m+1. Combining with Theo-
rem D.1, we have the number of distinct sign patterns {sign(g�(P (1), ⌧1)), . . . , sign(g�(P (N), ⌧N ))}

is upper bounded by 2m(m�1)/2m(2(m+ 1))m+1
�
eN

2

�2.

Step 3: Bounding the pseudo-dimension of H(✏)
RLR.

Note that there are total (�max � �min)/✏ pieces in which �(✏)(�) is linear func-
tion of �. Therefore, using result from Step 2, the number of distinct sign patterns
{sign(g�(⌧1, P (1))), . . . , sign(g�(⌧N , P (N)))} when varying � 2 [�min,�max] is upper bounded by
�max��min

✏
2m(m�1)/2m(2(m+ 1))m+1

�
eN

2

�2. Solving the inequality

2N 
�max � �min

✏
2m(m�1)/2m(2(m+ 1))m+1

✓
eN

2

◆2

impliesN = O(m2+ log(1/✏)), which means Pdim(HRLR) = VCdim(GRLR) = O(m2+ log(1/✏)).

Step 4: Bounding the empirical Rademacher complexity of H(✏)
RLR over a set S of T problem

instances. First, note that under Assumptions 1 and 2, there exists a universal upperbound H for the
original validation loss function classHRLR. Combining with Lemma 4.2, we have the upperbound
of H +O(✏2) for the approximation loss function class H(✏)

RLR.

Using result from Step 3 and note that R̂(H(✏)
RLR,S) = O((H + O(✏2))

q
Pdim(H(✏)

RLR)/T ), and

✏ = o(
p
H), we concludes that R̂(H(✏)

RLR,S) = O(H
p
(m2 + log(1/✏))/T ) for any set S of T

problem instances drawn from problem distribution D over ⇧m,p.

We now give a detailed proof for Theorem 4.4, which establishes the learning guarantee for the
validation loss function class HRLR. We first recall an useful result by Balcan et al. [29], which
allows us to upper bound the empirical Rademacher complexity of validation loss function class
HRLR via that of its approximationH(✏)

RLR.

Theorem D.3 ([29]). Let F = {fr | r 2 R} and G = {gr | r 2 R} consist of function mapping
X to [0, 1]. For any S ✓ X , R̂(F ,S)  R̂(G,S) + 1

|S|

P
x2S

kf⇤

x
� g⇤

x
k.

Theorem 4.4 (restated). Consider the class function HRLR = {hRLR(�, ·) : ⇧m,p ! R�0 | � 2

[�min,�max]} where hRLR(�, P ) is the validation loss corresponding to problem instance P and
the `1 (`2) parameter �. Under Assumptions 1 and 2, there exists a universal upperbound for the

22



validation loss function classHRLR. Given any set S of T problem instances drawn from a problem
distribution D over ⇧m,p, for any hRLR(�, ·) 2 HRLR, w.p. 1� � for any � 2 (0, 1), we have
�����
1

T

TX

i=1

hRLR(�, P
(i))� EP⇠D[hRLR(�, P )]

�����  O

 
H

r
m2 + log(1/✏)

T
+ ✏2 +

r
1

T
log

1

�

!
.

Proof. Theorem D.3, 4.3, and Lemma 4.2 directly imply that R̂(HRLR,S) =
O(H

p
(m2 + log(1/✏))/T + ✏2), where S is a set of T problem instances drawn from

problem distribution D over ⇧m,p. Finally, classical uniform convergence bound based on
Rademacher complexity concludes the result.

D.4 An extension to 0-1 loss

We now give a formal proof for the learning guarantee of Regularized Logistic Regression
hyperparameter tuning problem under 0-1 loss.

Theorem 4.5 (restated). Let ⌧ > 2✏2 and � 2 (0, 1), where ✏ is the approximation step-size. Then
for any n � s(⌧/2, �) = ⌦

⇣
H

2(m2+log 1
✏ )+log 1

�
(⌧/2�✏2)2

⌘
, if we have n problem instances {P (i), . . . , P (n)

}

drawn i.i.d. from some problem distribution D over ⇧m,p to learn the regularization parameter
�ERM for RLR via ERM, then

EP⇠D(h
0-1
RLR(�

ERM , P )))  4 min
�2[�min,�max]

EP⇠D(hRLR)(�, P )) + 4⌧.

Proof. If ✏ <
p
⌧ , we can rearrange the result in Theorem 4.4 to get

s(⌧, �) � ⌦

✓
H2(m2 + log 1

✏
) + log 1

�

(⌧ � ✏2)2

◆

samples are sufficient for (⌧, �)�uniform convergence. Therefore, if ⌧ > 2✏2, then HRLR is
PAC-learnable with the ERM algorithm and s(⌧/2, �) samples:

EP⇠D(hRLR(�
ERM , P )))  min

�2[�min,�max]
EP⇠D(hRLR)(�, P )) + ⌧.
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