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Abstract

We study online meta-learning with bandit feedback, with the goal of improving
performance across multiple tasks if they are similar according to some natural
similarity measure. As the first to target the adversarial online-within-online
partial-information setting, we design meta-algorithms that combine outer learners
to simultaneously tune the initialization and other hyperparameters of an inner
learner for two important cases: multi-armed bandits (MAB) and bandit linear
optimization (BLO). For MAB, the meta-learners initialize and set hyperparameters
of the Tsallis-entropy generalization of Exp3, with the task-averaged regret
improving if the entropy of the optima-in-hindsight is small. For BLO, we learn
to initialize and tune online mirror descent (OMD) with self-concordant barrier
regularizers, showing that task-averaged regret varies directly with an action space-
dependent measure they induce. Our guarantees rely on proving that unregularized
follow-the-leader combined with two levels of low-dimensional hyperparameter
tuning is enough to learn a sequence of affine functions of non-Lipschitz and
sometimes non-convex Bregman divergences bounding the regret of OMD.

1 Introduction

Learning-to-learn [51] is an important area of research that studies how to improve the performance
of a learning algorithm by meta-learning its parameters—e.g. initializations, step-sizes, and/or
representations—across many similar tasks. The goal is to encode information from previous tasks
in order to achieve better performance on future ones. Meta-learning has seen a great deal of
experimental work [24, 49], practical impact [21, 29], and theoretical effort [11, 18, 22, 45, 20].
One important setting is online-within-online meta-learning [19, 31], where the learner performs a
sequence of tasks, each of which has a sequence of rounds. Past work has studied the full-information
setting, where the loss for every arm is revealed after each round. This assumption is not realistic in
many applications, e.g. recommender systems and experimental design, where often partial or bandit
feedback—only the loss of the action taken—is revealed. Such feedback can be stochastic, e.g. the
losses are i.i.d. from some distribution, or adversarial, i.e. chosen by an adversary. We establish the
first formal guarantees for online-within-online meta-learning with adversarial bandit feedback.

As with past full-information meta-learning results, our goal when faced with a sequence of bandit
tasks will be to achieve low regret on average across them. Specifically, our task-averaged regret
should (a) be no worse than that of algorithms for the single-task setting, e.g. if the tasks are not very
similar, and should (b) be much better on tasks that are closely related, e.g. if the same small set of
arms do well on all of them. We show that a natural way to achieve both is to initialize and tune online
mirror descent (OMD), an algorithm associted with a strictly convex regularizer whose hyperparam-
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eters have a significant impact on performance. Our approach works because it can learn the best
hyperparameters in hindsight across tasks, which will recover OMD’s worst-case optimal performance
if the tasks are dissimilar but will take advantage of more optimistic settings if they are related. As
generalized distances, the regularizers also induce interpretable measures of similarity between tasks.

1.1 Main contributions

We design a meta-algorithm (Algorithm 1) for learning variants of OMD—specifically those with
entropic or self-concordant regularizers—that are used for adversarial bandits. This meta-algorithm
combines three full-information algorithms—follow-the-leader (FTL), exponentially weighted online
optimization (EWOO), and multiplicative weights (MW)—to set the initialization, step-size, and
regularizer-specific parameters, respectively. It works by optimizing a sequence of functions that each
upper-bound the regret of OMD on a single task (Theorem 2.1), resulting in (a) interesting notions
of task-similarity because these functions depend on generalized notions of distances (Bregman
divergences) and (b) adaptivity, i.e not needing to know how similar the tasks are beforehand.

Our first application is to OMD with the Tsallis regularizer [3], a relative of Exp3 [6] that is optimal for
adversarial MAB. We bound the task-averaged regret by the Tsallis entropy of the estimated optima-
in-hindsight (Corollary 3.1), which we further extend to that of the true optima by assuming a gap
between the best and second-best arms (Corollary 3.2). Both results are the first known consequences
of the online learnability of Bregman divergences that are non-convex in their second arguments [31],
while the latter is obtained by showing that the loss estimators of a modified algorithm identify the opti-
mal arm w.h.p. As an example, our averagem-round regret across T tasks under the gap assumption is

oT (poly(m)) + 2 min
β∈(0,1]

√
Hβdβm/β + o(

√
m) (1)

where d is the number of actions and Hβ is the Tsallis entropy [52, 3] of the distribution of the
optimal actions (β = 1 recovers the Shannon entropy).1 This entropy is low if all tasks are usually
solved by the same few arms, making it a natural task-similarity notion. For example, if only s≪ d
of the arms are ever optimal then Hβ = O(s), so using β = 1/ log d in (1) yields an asymptotic
task-averaged regret of O(

√
sm log d), dropping fast terms. For s = Od(1) this beats the minimax

optimal rate of Θ(
√
dm) [5]. On the other hand, since H1/2 = O(

√
d), the same bound recovers

this rate in the worst-case of dissimilar tasks.

Lastly, we adapt our meta-algorithm to the adversarial BLO problem by setting the regularizer
to be a self-concordant barrier function, as in Abernethy et al. [2]. Our bounds yield notions of
task-similarity that depend on the constraints of the action space, e.g. over the sphere the measure
is the closeness of the average of the estimated optima to the sphere’s surface (Corollary 4.1). We
also instantiate BLO on the bandit shortest-path problem (Corollary 4.2) [50, 30].

1.2 Related work

While we are the first to consider meta-learning under adversarial bandit feedback, many have studied
meta-learning in various stochastic bandit settings [9, 34, 47, 48, 35, 13, 15, 41, 10]. The latter three
study stochastic bandits under various task-generation assumptions, e.g. Azizi et al. [10] is in a batch-
within-online setting where the optimal arms are adversarial. In contrast, we make no distributional
assumptions either within or without. Apart from this difference, the results of Azizi et al. [10] are the
ones our MAB results are most easily compared to, which we do in detail in Section 3. Notably, they
assume that only s≪ d of the d arms are ever optimal across T tasks and show (roughly speaking)
Õ(
√
sm) asymptotic regret; we instead focus on an entropic notion of task-similarity that achieves the

same asymptotic regret when specialized to their s≪ d. However, avoiding their explicit assumption
has certain advantages, e.g. robustness in the presence of o(T ) outlier tasks (c.f. Section 3.3).

A setting that bears some similarity to online-within-online bandits is that of switching bandits [6],
and more generally online learning with dynamic comparators [4, 27, 38, 7, 55]. In such problems,
instead of using a static best arm as the comparator we use a piecewise constant sequence of
arms, with a limited number of arm switches. The key difference between such work and ours
is our assumption that task-boundaries are known; this makes the other setting more general.
However, while e.g. Exp3.S [6] can indeed be applied to online meta-learning, guarantees derived

1We use On(·) (and on(·)) to denote terms with constant (and sub-constant) dependence on n.
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from switching costs cannot improve upon just running Tsallis-INF on each task [39, Table 1].
Furthermore, these approaches usually quantify difficulty by the number of switches, whereas we
focus on task-similarity. While there exists stochastic-setting work that measures difficulty using a
notion of average change in distribution across rounds [53], it does not lead to improved performance
if this average change is Ω(T ), as is the case in e.g. the s-sparse setting discussed above.

There has been a variety of work on full-information online-within-online meta-learning [32, 12],
including tuning OMD [31, 19]. Doing so for bandit algorithms has many additional challenges,
including (1) their inherent and high-variance stochasticity, (2) the use of non-Lipschitz and even
unbounded regularizers, and (3) the lack of access to task-optima in order to adapt to deterministic,
algorithm-independent task-similarity measures. Theoretically our analysis draws on the average
regret-upper-bound analysis (ARUBA) framework [31], which observes that OMD can be tuned by
targeting its upper bounds, which are affine functions of Bregman divergences, and provide online
learning tools for doing so. Our core structural result shows that the distance generating functions ψθ

of these Bregman divergences can be tuned without interfering with meta-learning the initialization
and step-size; tuning θ is critical for adapting to settings such as that of a small set of optimal arms
in MAB. Doing so depends on several refinements of the original approach, including bounding the
task-averaged-regret via the spectral norm of∇2ψθ and expressing the loss of the meta-comparator
using only ψθ, rather than via its Bregman divergence as in prior work. Finally, applying our structural
result requires setting-specific analysis, e.g. to show regularity w.r.t. θ or to obtain MAB guarantees
in terms of the entropy of the true optimal arms. The latter is especially difficult, as Khodak et al. [31]
define task-similarity via full information upper bounds, and involves applying tools from the best-
arm-identification literature [1] to show that a constrained variant of Exp3 finds the optimal arm w.h.p.

2 Learning the regularizers of bandit algorithms

We consider the problem of meta-learning over bandit tasks t = 1, . . . , T over some fixed setK ⊂ Rd,
a (possibly improper) subset of which is the action spaceA. On each round i = 1, . . . ,m of task t we
play action xt,i ∈ A and receive feedback ℓt,i(xt,i) for some function ℓt,i : A 7→ [−1, 1]. Note that
all functions we consider will be linear and so we will also write ℓt,i(x) = ⟨ℓt,i,x⟩. Additionally, we
assume the adversary is oblivious within-task, i.e. it chooses losses ℓt,1, . . . , ℓt,m at time t. We will
also denote x(a) to be the a-th element of the vector x ∈ Rd,K◦ to be the interior ofK, ∂K its bound-
ary, and△ to be the simplex on d elements. Finally, note that all proofs can be found in the Appendix.

In online learning, the goal on a single task t is to play actions xt,1, . . .xt,m that minimize
the regret

∑m
i=1 ℓt,i(xt,i) − ℓt,i(̊xt), where x̊t ∈ argminx∈K

∑m
i=1 ℓt,i(x). Lifting this to the

meta-learning setting, our goal as in past work [31, 19] will be to minimize the task-averaged
regret: 1

T

∑T
t=1

∑m
i=1 ℓt,i(xi,t)− ℓt,i(̊xt). In particular, we want to use multi-task data to improve

average performance as the number of tasks T →∞. For example, we wish to attain a task-averaged
regret bound of the form oT (poly(m)) + Õ(V

√
m) + o(

√
m), where V ∈ R≥0 is a measure

of task-similarity that is small if the tasks are similar but still yields the worst-case single-task
performance—O(

√
dm) for MAB and O(d

√
m) for BLO—if they are not.

2.1 Online mirror descent as a base-learner

In meta-learning we are commonly interested in learning a within-task algorithm or base-learner,
a parameterized method that we run on each task t. A popular approach is to learn the initialization
and other parameters of a gradient-based method such as gradient descent [24, 44, 36]. If the task
optima are close, the best initialization should perform well after only a few steps on a new task.
We take a similar approach applied to online mirror descent, a generalization of gradient descent
to non-Euclidean geometries [14]. Given a strictly convex regularizer ψ : K◦ 7→ R, step-size η > 0,
and initialization xt,1 ∈ K◦, OMD has the iteration

xt,i+1 = argmin
x∈K◦

B(x||xt,1) + η
∑
j≤i

⟨∇ℓt,j(xt,j),x⟩ (2)

where B(x||y) = ψ(x)−ψ(y)− ⟨∇ψ(y),x− y⟩ is the Bregman divergence of ψ. OMD recovers
online gradient descent when ψ(x) = 1

2∥x∥
2
2, in which case B(x||y) = 1

2∥x − y∥22; another
example is exponentiated gradient, for which ψ(p) = ⟨p, logp⟩ is the negative Shannon entropy
on probability vectors p ∈ △ and B is the KL-divergence [46]. An important property of B is that
the sum over functions B(xt||·) is minimized at the mean x̄ of the points x1, . . . ,xT .
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Algorithm 1: Tunes OMDη,θ with regularizer ψθ : K◦ 7→ R and step-size η > 0, which when run
over loss estimators ℓ̂t,1, . . . , ℓ̂t,m, yielding task-optima x̂t = argminx∈K

∑m
i=1⟨ℓ̂t,i,x⟩.

Input: compact set K ⊂ Rd, initialization x1 ∈ K, ordered subset Θk ⊂ R also used to index
interval bounds η, η ∈ Rk

≥0 and hyperparameters α ∈ Rk
≥0, scalar hyperparameters

ρ > 0 and λ ≥ 0, learners OMDη,θ : K 7→ Rd, projections cθ : K 7→ Kθ

for θ ∈ Θk do
w1(θ)← 1 and η1(θ)←

η(θ)+η(θ)

2 // initialize MW and EWOO

for task t = 1, . . . , T do
sample θt from Θk w.p. ∝ exp(wt) // sample from MW distribution
x̂t ← OMDηt(θt),θt(cθt(xt)) // run bandit OMD within-task

xt+1 ← 1
t

∑t
s=1 x̂s // FTL update of initialization

for θ ∈ Θk do

ηt+1(θ)←
∫ η(θ)

η(θ)
v exp(−α(θ)

∑t
s=1 U(ρ)

s (xs,v,θ))dv∫ η(θ)

η(θ)
exp

(
−α(θ)

∑t
s=1 U

(ρ)
s (xs,v,θ)

)
dv

// EWOO step-size update

wt+1(θ)← wt(θ)− λUt(xt, ηt(θ), θ) // MW update of tuning parameter

OMD on loss estimators ℓ̂t,i constructed via partial feedback forms an important class of bandit
methods [6, 2, 3]. Their regularizers ψ are often non-Lipschitz, e.g. the negative entropy, or even
unbounded, e.g. the log-barrier. Thus full-information results for tuning OMD, e.g. by Khodak
et al. [31] and Denevi et al. [19], do not suffice. We do adapt the former’s approach of online
learning a sequence Ut(x, η, θ) of affine functions of Bregman divergences from initializations x
to known points in K. We are interested in them because the regret of OMD w.r.t. a comparator
y is bounded by B(y||x)/η +O(ηm) [46, 25]. In our case the comparator is based on the estimated
optimum x̂t ∈ argminx∈K⟨ℓ̂t,x⟩, where ℓ̂t =

∑m
i=1 ℓ̂t,i, resulting from running OMD on task

t using initialization x ∈ K and hyperparameters η and θ, which we denote OMDη,θ(x). Unlike
full-information meta-learning, we use a parameter ε > 0 to constrain this optimum to lie in a subset
Kε ⊂ K◦. Formally, we fix a point x1 ∈ K◦ to be the “center”—e.g. x1 = 1d/d when K is the
d-simplex△—and define the projection cε(x) = x1 +

x−x1

1+ε mapping from K to Kε. For example,
c ε

1−ε
(x) = (1 − ε)x + ε1d/d on the simplex. This projection allows us to handle regularizers ψ

that diverge near the boundary, but also introduces ε-dependent error terms. In the BLO case it also
forces us to tune ε itself, as initializing too close to the boundary leads to unbounded regret while
initializing too far away does not take advantage of task-similarity. Thus the general upper bounds of
interest are the following functions of the initialization x, the step-size η > 0, and a third parameter
θ that is either β or ε, depending on the setting (MAB or BLO):

Ut(x, η, θ) =
Bθ(cθ(x̂t)||x)

η
+ ηg(θ)m+ f(θ)m (3)

Here Bθ is the Bregman divergence of ψθ while g(θ) ≥ 1 and f(θ) ≥ 0 are tunable constants. We
overload θ to be either β or ε for notational simplicity, as we will not tune them simultaneously; if θ =
β (for MAB) then cθ(x) = x1 +

x−x1

1+ε for fixed ε, while if θ = ε (for BLO) then Bθ is the Bregman
divergence of a fixed ψ. The reason to optimize this sequence of upper bounds Ut is because they di-
rectly bound the task-averaged regret while being no worse than the worst-case single-task regret. Fur-
thermore, an average over Bregman divergences is minimized at the average ˆ̄x = 1

T

∑T
t=1 x̂t, where

it attains the value V̂ 2
θ = 1

T

∑T
t=1 ψθ(cθ(x̂t))− ψθ(cθ(ˆ̄x)) (c.f. Claim A.1). We will show that this

quantity leads to intuitive and interpretable notions of task-similarity in all the applications we study.

2.2 A meta-algorithm for tuning bandit algorithms

To learn these functions Ut(x, η, θ)—and thus to meta-learn OMDη,θ(x)—our meta-algorithm sets
x to be the projection cθ of the mean of the estimated optima—i.e. follow-the-leader (FTL) over
the Bregman divergences in (3)—while simultaneously setting η via EWOO and θ via discrete
multiplicative weights (MW). We choose FTL, EWOO, and MW because each is well-suited to the
way Ut depends on x, η, and θ, respectively. First, the only effect of x on Ut is via the Bregman
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divergence Bθ(cθ(x̂t)||x), over which FTL attains logarithmic regret [31]. For η, Ut is exp-concave
on η > 0 so long as the first term is nonzero, but it is also non-Lipschitz; the EWOO algorithm is
one of the few methods with logarithmic regret on exp-concave losses without a dependence on the
Lipschitz constant [26], and we ensure the first term is nonzero by regularizing the upper bounds as
follows for some ρ > 0 and D2

θ = maxx,y∈Kθ
Bθ(x||y):

U
(ρ)
t (x, η, θ) =

Bθ(cθ(x̂t)||x) + ρ2D2
θ

η
+ ηg(θ)m+ f(θ)m (4)

Note that this function is fully defined after obtaining x̂t by running OMD on task t, which allows us
to use full-information MW to tune θ across the grid Θk. Showing low regret w.r.t. any θ ∈ Θ ⊃ Θk

then just requires sufficiently large k and Lipschitzness of Ut w.r.t. θ. Combining all three algorithms
together thus yields the guarantee in Theorem 2.1, which is our main structural result. It implies
a generic approach for obtaining meta-learning algorithms by (1) bounding the task-averaged
regret by an average of functions of the form Ut, (2) applying the theorem to obtain a new bound
oT (1) + minθ,η

V̂ 2
θ

η + ηg(θ)m+ f(θ)m, and (3) bounding the estimated task-similarity V̂ 2
θ by an

interpretable quantity. Crucially, since we can choose any η > 0, the asymptotic regret is always
as good as the worst-case guarantee for running the base-learner separately on each task.
Theorem 2.1 (c.f. Thm. A.1). Suppose x1 = argminx∈K ψθ(x) ∀ θ and let D, M , F , and S be
maxima over θ of Dθ, Dθ

√
g(θ)m, f(θ), and ∥∇2ψθ∥2, respectively. For each ρ ∈ (0, 1) we can set

η, η, α, and λ s.t. the expected average of the losses Ut(cθt(xt), ηt(θt), θt) of Algorithm 1 is at most

min
θ∈Θ,η>0

EV̂ 2
θ

η
+ηg(θ)m+f(θ)m+Õ

(
M
ρ +Fm
√
T

+
Lη

k
+

M

ρ2T
+min

{
ρ2D2

η
, ρM

}
+
S

ηT

)
(5)

Here V̂ 2
θ = 1

T

∑T
t=1 ψθ(cθ(x̂t)) − ψθ(cθ(ˆ̄x)) and Lη bounds the Lipschitz constant w.r.t. θ at

V̂ 2
θ /η + ηg(θ)m+ f(θ)m. The same bound plus (M/ρ+ Fm)

√
1
T log 1

δ holds w.p. ≥ 1− δ.

We keep details of the dependence on S and other constants as they are important in applying this
result, but in most cases setting ρ = 1

4√
T

yields Õ(T 3
4 ) regret. While a slow rate, the losses Ut are

non-Lipschitz and non-convex in-general, and learning them allows us to tune θ over user-specified
intervals and η over all positive numbers, which will be crucial later. At the same time, this tuning
is what leads to the slow rate, as without tuning (k = 1, Lη = 0) the same ρ yields Õ(

√
T ) regret.

Lastly, while we focus on learning guarantees, we note that Algorithm 1 is reasonably efficient,
requiring a 2k single-dimensional integrals per task; this is discussed in more detail in Section A.3.

3 Multi-armed bandits

We now turn to our first application: the multi-armed bandit problem, where at each round i of task
t we take action at,i ∈ [d] and observe loss ℓt,i(at,i) ∈ [0, 1]. As we are sampling actions from
distributions x ∈ K = △ on the k-simplex, the inner product ⟨ℓt,i,xt,i⟩ is the expected loss and the
optimal arm åt on task t can be encoded as a vector x̊t s.t. x̊t(a) = 1a=åt

.

We use as a base-learner a generalization of Exp3 that uses the negative Tsallis entropy
ψβ(p) =

1−
∑d

a=1 pβ(a)

1−β for some β ∈ (0, 1] as the regularizer; this improves regret from Exp3’s

O(
√
dm log d) to the optimal O(

√
dm) [3]. Note that −ψβ is the Shannon entropy in the limit

β → 1 and its Bregman divergence Bβ(x||·) is non-convex in the second argument. As the
Tsallis entropy is non-Lipschitz at the simplex boundary, which is where the estimated and
true optima x̂t and x̊t lie, we will project them using c ε

1−ε
(x) = (1 − ε)x + ε1d/d to the set

K ε
1−ε

= {x ∈ △ : mina x(a) ≥ ε/d}. We denote the resulting vectors using the superscript (ε),

e.g. x̂(ε)
t = c ε

1−ε
(x̂t), and also use△(ε) = K ε

1−ε
to denote the constrained simplex. For MAB we

also study two base-learners: (1) implicit exploration and (2) guaranteed exploration. The former

uses low-variance loss under-estimators ℓ̂t,i(a) =
ℓt,i(a)1at,i=a

xt,i(a)+γ for γ > 0, where xt,i(a) is the
probability of sampling a on task t round i, to enable high probability bounds [43]. On the other hand,
guaranteed exploration uses unbiased loss estimators (i.e. γ = 0) but constrains the action space
to△(ε), which we will use to adapt to a task-similarity determined by the true optima-in-hindsight.
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3.1 Adapting to low estimated entropy with high probability using implicit exploration

In our first setting, the base-learner runs OMDηt,βt
(xt,1) on γ-regularized estimators with Tsallis

regularizer ψβt , step-size ηt, and initialization xt,1 ∈ △(ε). Standard OMD analysis combined with
implicit exploration analysis [43] shows (44) that the task-averaged regret is bounded w.h.p. by

(ε+ γd)m+ Õ

(√
d

γT

)
+

1

T

T∑
t=1

Bβt
(x̂

(ε)
t ||xt,1)

ηt
+
ηtd

βtm

βt
(6)

The summands have the desired form of Ut(xt,1, ηt, βt), so by Theorem 2.1 we can bound their
average by

min
β∈[β,β],η>0

V̂ 2
β

η
+
ηdβm

β
+ Õ

(
Lη

k
+

(
d
ε

)2−β

ηT
+

(
ρ+

1

ρ
√
T

+
1

ρ2T

)
d
√
m

)
(7)

where V̂ 2
β = 1

T

∑T
t=1 ψβ(x̂

(ε)
t ) − ψβ(ˆ̄x

(ε)
) is the average difference in Tsallis entropies between

the (ε-constrained) estimated optima x̂t and their empirical distribution ˆ̄x = 1
T

∑T
t=1 x̂t, while Lη

is the Lipschitz constant of
V̂ 2
β

η + ηdβm
β w.r.t. β ∈ [β, β]. The specific instantiation of Algorithm 1

that (7) holds for is to do the following at each time t:

1. sample βt via the MW distribution ∝ exp(wt) over the discretization Θk of [β, β] ⊂ [0, 1]

2. run OMDηt,βt using the initialization xt,1 = 1
t−1

∑
s<t

x̂
(ε)
t = ε

d1d +
1−ε
t−1

∑
s<t

x̂t (FTL)

3. update EWOO at each β ∈ Θk with loss
Bβ(x̂

(ε)
t ||xt,1)+ρ2D2

β

η + ηdβm
β , where D2

β = d1−β−1
1−β

4. update pt+1 using multiplicative weights with expert losses Bβ(x̂
(ε)
t ||xt,1)
η + ηdβm

β

(8)

The final guarantee for this procedure, given in full in Theorem B.1, follows by two properties of
the Tsallis entropy −ψβ : (1) its Lipschitzness w.r.t. β ∈ [0, 1] (c.f. Lem B.1) and (2) the fact that
V̂ 2
β is bounded by the entropy Ĥβ = −ψβ(ˆ̄x) of the empirical distribution of estimated optima (c.f.

Lem B.2), which yields our first notion of task-similarity: multi-armed bandit tasks are similar if
the empirical distribution of their (estimated) optimal arms has low entropy.

We exemplify the implications of Theorem B.1 in Corollary 3.1, where we consider three regimes
of the lower bound β on the entropy parameter: β = 1, i.e. always using Exp3; β = 1/2, which
corresponds to the optimal worst-case setting [3]; and β = 1/ log d, below which the OMD
regret-upper-bound always worsens (and so it does not make sense to try β < 1/ log d).

Corollary 3.1 (c.f. Cors. B.1, B.2, and B.3). Suppose β = 1 and we set the initialization, step-size,
and entropy parameter of Tsallis OMD with implicit exploration via Algorithm 1 as in Theorem B.1.

1. If β = 1 and T ≥ d2

m we can ensure 1
T

T∑
t=1

m∑
i=1

ℓt,i(xt,i)−ℓt,i(̊xt) ≤ 2
√√
Ĥ1dm+Õ

(
d

2
3 m

2
3

3√
T

)
w.h.p.

2. If β = 1
2 and T ≥ d5/2

m we can set k = ⌈ 4
√
d
√√
T ⌉ and ensure w.h.p. that task-averaged regret is

min
β∈[ 12 ,1]

2

√
Ĥβdβm/β + Õ

(
d5/7m5/7

T 2/7
+
d
√
m

4
√
T

)
(9)

3. If β = 1
log d and T ≥ d3

m we can set k = ⌈ 4
√
d
√√
T ⌉ and ensure w.h.p. that task-averaged regret is

min
β∈(0,1]

2

√
Ĥβdβm/β + Õ

(
d3/4m3/4 + d

√
m

4
√
T

)
(10)

In all three settings, as T → ∞ the regret scales directly with the entropy of the estimated
optima-in-hindsight, which is small if most tasks are estimated to be solved by one of a few arms
and large if all arms are used roughly equally. Corollary 3.1 demonstrates the importance of tuning
β: even if tasks are dissimilar, we asymptotically recover the worst-case optimal guarantee O(

√
dm)

in cases two and three because the entropy is at most d1−β

1−β . On the other hand, if a constant s≪ d

actions are always minimizers, i.e. the empirical distribution ˆ̄x is s-sparse, then the last bound (10)
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implies that Algorithm 1 can achieve task-averaged regret oT (md) +O(
√
sm log d). At the same

time, this tuning is costly, with the last two results having an extra Õ
(

d
√
m

4√
T

)
term because of it.

Furthermore, the bound of β = 1
2 has a slightly better dependence on d, m, and T compared to that

of β = 1
log d due to the

(
d
ε

)2−β
term in the bound (7) returned for MAB by our structural result.

We can compare the s-sparse result to Azizi et al. [10], who achieve task-averaged regret
Õ(m/ 3

√
T +
√
sm log T ) for stochastic MAB. Despite our adversarial setting and no stipulations on

how tasks are related, our bounds are asymptotically comparable if the estimated and true optima are
roughly equivalent (ignoring their O(

√
log T )-factor), as we also have Õ(

√
sm) average regret as

T →∞. Their rate in the number of tasks is better, but at a cost of runtime exponential in s. Apart
from generality, we believe a great strength of our results is their adaptiveness; unlike Azizi et al.
[10], we do not need to know how many optimal arms there are to adapt to there being few of them.

3.2 Adapting to the entropy of the true optima-in-hindsight using guaranteed exploration

While the entropy of estimated optima-in-hindsight may be useful in some cases where we wish to
actually compute the task-similarity, it is otherwise generally more desirable to adapt to an intrinsic
and algorithm-independent measure, e.g. the entropy of the true optima-in-hindsight. However, doing
so is difficult without further assumptions, as the optima are both hard to identify and the measure
itself may not be fully defined in case of ties. Thus in this section we focus on the setting where we
have a nonzero performance gap ∆ > 0 between the best and second-best arms:
Assumption 3.1. For some ∆ > 0 and all tasks t ∈ [T ], 1

m

∑m
i=1 ℓt,i(a)− ℓt,i(̊at) ≥ ∆ ∀ a ̸= åt.

This assumption is common in the best-arm identification literature [28, 1], which we adapt to show
that the estimated optimal arms match the true optima, and thus so do their entropies. To do so, we
switch to unbiased loss estimators, i.e. γ = 0, and control their variance by lower-bounding the
probability of selecting an arm to be at least ε

d ; this can alternatively be expressed as running OMD
using the regularizer ψβ + I△(ε) , where for any C ⊂ Rd the function IC(x) = 0 if x ∈ C and∞
otherwise. Guaranteed exploration allows us extend the analysis of Abbasi-Yadkori et al. [1] to show
that the estimated arm is optimal w.h.p.:
Lemma 3.1 (c.f. Lem C.1). Suppose for ε > 0 and any β ∈ (0, 1] we run OMD on task t ∈ [T ] with
regularizer ψβ + I△(ε) . If m = Ω̃( d

ε∆2 ) then x̂t = x̊t w.p. ≥ 1− d exp(−Ω(ε∆2m/d)).

However, the constraint that the probabilities are at least ε
d does lead to εm additional error on each

task, with the upper bound on the task-averaged expected regret becoming

E
1

T

T∑
t=1

m∑
i=1

ℓt,i(at,i)− ℓt,i(̊at) ≤ εm+
1

T

T∑
t=1

EBβt(x̂
(ε)
t ||xt,1)

ηt
+
ηtd

βtm

βt
(11)

Moreover, we will no longer set ε = oT (1), as this would require m to be increasing in T for the best-
arm identification result of Lemma C.1 to hold. Thus, unlike in the previous section, our results will
contain “fast” terms—terms in the task-averaged regret that are o(

√
m) but not decreasing in T nor

affected by the task-similarity. They will still improve upon the Ω(
√
dm) MAB lower bound if tasks

are similar, but the task-averaged regret will not converge to zero as T →∞ if the tasks are identical.

Nevertheless, the tuning-dependent component of the upper bounds in (11) has the appropriate
form for our structural result—in fact we can use the same meta-algorithm (8) as for implicit
exploration—and so we can again apply Theorem 2.1 to get a bound on the task-averaged regret
in terms of the average difference V̂ 2

β = 1
T

∑T
t=1 ψβ(x̂

(ε)
t ) − ψβ(ˆ̄x

(ε)
) of the entropies of the

ε-constrained estimated task-optima x̂
(ε)
t and their mean ˆ̄x

(ε). The easiest way to apply Lemma C.1
to bound V̂ 2

β in terms of Hβ = 1
T

∑T
t=1 ψβ (̊xt)− ψβ (̊x̄) is via union bound on all T tasks to show

that x̂t = x̊t ∀ t w.p. ≥ 1− dT exp(−Ω(ε∆2m/d)); however, setting a constant failure probability
leads to m growing, albeit only logarithmically, in T . Instead, by analyzing the worst-case best-arm
identification probabilities, we show in Lemma C.2 that the expectation of V̂ 2

β is bounded by

Hβ + 3β (d/ε)1−β−1
1−β exp

(
− 3ε∆2m

28d

)
without resorting to m = ωT (1). Assuming m ≥ 75d

ε∆2 log
d

ε∆2

is enough (69) to bound the second term by 56
dm . Then the final result (c.f. Thm. C.1) bounds the

expected task-averaged regret as follows (ignoring terms that become oT (1) after setting ρ and k):
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εm+ min
β∈[β,β],η>0

hβ(∆)

η
+
ηdβm

β
for hβ(∆) =

{
Hβ + 56

md if m ≥ 75d
ε∆2 log

d
ε∆2

d1−β−1
1−β otherwise

(12)

If the gap ∆ is known and sufficiently large, then we can set ε = Θ( d
∆2m ) to obtain an asymptotic

task-averaged regret that scales only with the entropy Hβ and a fast term that is logarithmic in m:

Corollary 3.2 (c.f. Cor. C.3). Suppose we set the initialization, step-size, and entropy parameter of
Tsallis OMD with guaranteed exploration via Algorithm 1 as specified in Theorem C.1. If [β, β] =
[ 1
log d , 1] and m ≥ 75d

∆2 log d
∆2 , then setting ε = Θ̃

(
d

∆2m

)
, ρ = 1

3√
d

6√
mT

, and k = ⌈ 3
√
d2mT ⌉

ensures that the expected task-averaged regret is at most

min
β∈(0,1]

2
√
Hβdβm/β + Õ

(
d

∆2
+
d

4
3m

2
3

3
√
T

+
d

5
3m

5
6

T
2
3

+
d∆4m3

T

)
(13)

Knowing the gap ∆ is a strong assumption, as ideally we could set εwithout it. Note that if ε = Ω( 1
mp )

for some p ∈ (0, 1) then the condition m ≥ 75d
ε∆2 log

d
ε∆2 only fails if m ≤ poly( 1

∆ ), i.e. for gap
decreasing in m. We can use this together with the fact that minimizing over η and β in our bound
allows us to replace them with any value, even a gap-dependent one, to derive a gap-independent
setting of ε that ensures a task-similarity-adaptive bound when ∆ is not too small and falls back to
the worst-case optimal guarantee otherwise. Specifically, for indicator ι∆ = 1m≥ 75d

ε∆2 log d
ε∆2

, setting

η = Θ
(√

hβ(∆)
dβm/β

)
in (12) and using β = 1

2 if the condition ι∆ fails yields asymptotic regret at most

εm+ min
β∈(0,1]

O

(
ι∆

√√
Hβd

βm
β + (1−ι∆)

√√
dm

)
≤ εm+ Õ

(
min

{
min

β∈(0,1]

√√
Hβd

βm
β +

d

∆
√√
ε
,
√√
dm

})
(14)

Thus setting ε = Θ(
√
d/m

2
3 ) yields the desired dependence on the entropy Hβ and a fast term in m:

Corollary 3.3 (c.f. Cor. C.4). In the setting of Corollary 3.2 but with m = Ω(d
3
4 ) and unknown ∆,

using ε = Θ(
√
d/m

2
3 ) ensures expected task-averaged regret at most

min

{
min

β∈(0,1]
2
√
Hβdβm/β + Õ

(
d

3
4 3
√
m

∆

)
, 8
√
dm

}
+ Õ

(
d

4
3m

2
3

3
√
T

+
d

5
3m

5
6

T
2
3

+
d2m

7
3

T

)
(15)

While not logarithmic, the gap-dependent term is still o(
√
m), and moreover the asymptotic regret is

no worse than the worst-case optimal O(
√
dm). Note that the latter is only needed if ∆ = o(1/ 6

√
m).

The main improvement in this section is in using the entropy of the true optima, which can be much
smaller than that of the estimated optima if there are a few good arms but large noise. Our use of
the gap assumption for this seems difficult to avoid for this notion of task-similarity. We can also
compare to Corollary 3.1 (10), which did not require ∆ > 0 and had no fast terms but had a worse
rate in T ; in contrast, the O( 1

3√
T
) rates above match that of the closest stochastic bandit result [10].

As before, for s ≪ d “good” arms we obtain O(
√
sm log d) asymptotic regret, assuming the gap

is not too small. Finally, we can also compare to the classic shifting regret bound for Exp3.S [6],
which translated to task-averaged regret is O(

√
dm log(dmT )). This is worse than even running

OMD separately on each task, albeit under weaker assumptions (not knowing task boundaries). It
also cannot take advantage of repeated optimal arms, e.g. the case of s≪ d good arms.

3.3 Adapting to entropic task similarity implies robustness to outliers

While we considered mainly the s-sparse setting as a way of exemplifying our results and comparing
to other work such as Azizi et al. [10], the fact that our approach can adapt to the Tsallis entropy
minβ Hβ of the optimal arms implies meaningful guarantees for any low-entropy distribution over the
optimal arms, not just sparsely-supported ones. One way to illustrate the importance of this is through
an analysis of robustness to outlier tasks. Specifically, suppose that the s-sparsity assumption—that
optima åt lie in a subset of [T ] of size s≪ d—only holds for all butO(T p) of the tasks t ∈ [T ], where
p ∈ [0, 1). Then the best we can do using an asymptotic bound of Õ(

√
sm)—e.g. that of Azizi et al.
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[10] in the stochastic case or from naively applying minβ∈(0,1]Hβd
βm/β ≤ esm log d to any of our

previous results—is to substitute s+ T p instead of s, which will only improve over the single-task
bound if d = ω(T p), i.e. in the regime where the number of arms increases with the number of tasks.

However, our notion of task-similarity allows us to do much better, as we can show (c.f. Prop. D.1)
that in the same setting Hβ = O(s+ d1−β

Tβ(1−p) ) for any β ∈ [ 1
log d ,

1
2 ]. Substituting this result into e.g.

Corollary 3.3 yields the same asymptotic result of O(
√
sm log d), although the rate in T is a very

slow O(
√
dm/T

1−p
2 log d ). This demonstrates how our entropic notion of task-similarity simultaneously

yields strong results in the s-sparse setting and is meaningful in more general settings.

4 Bandit linear optimization

Our last application is bandit linear optimization, in which at task t round i we play xt,i ∈ K in
some convex K ⊂ Rd and observe loss ⟨ℓt,i,xt,i⟩ ∈ [−1, 1]. We will again use a variant of mirror
descent, using a self-concordant barrier for ψ and the specialized loss estimators of Abernethy
et al. [2, Alg. 1]. More information on such regularizers can be found in the literature on interior
point methods [42]. We pick this class of algorithms because of their optimal dependence on the
number of rounds and their applicability to any convex domain K via specific barriers ψ, which will
yield interesting notions of task-similarity. Our ability to handle non-smooth regularizers via the
structural result (Thm. 2.1) is even more important here, as barriers are infinite at the boundaries.
Indeed, we will not learn a β parameterizing the regularizer and instead focus on tuning a boundary
offset ε > 0. Here we make use of notation from Section 2, where cε maps points in K to a subset
Kε defined by the Minkowski function (c.f. Def. E.1) centered at x1 = argminx∈K ψ(x).

From Abernethy et al. [2] we have an upper bound on the expected task-averaged regret of their
algorithm run from initializations xt,1 ∈ K◦ with step-sizes ηt > 0 and offsets εt > 0:

E
1

T

T∑
t=1

m∑
i=1

⟨ℓt,i,xt,i − x̊t⟩ ≤
1

T

T∑
t=1

EB(cεt(x̂t)||xt,1)

ηt
+ (32ηtd

2 + εt)m (16)

We can show (88) that D2
ε = maxx,y∈Kε B(x||y) ≤ 9ν

3
2 K

√
S1

ε , where ν is the self-concordance
constant of ψ and S1 = ∥∇2ψ(x1)∥2 is the spectral norm of its Hessian at the center x1 of K.
Restricting to tuning ε ∈ [ 1m , 1]—which is enough to obtain constant task-averaged regret above if
the estimated optima x̂t are identical—we can now apply Algorithm 1 via the following instantiation:

1. sample εt via the MW distribution ∝ exp(wt) over the discretization Θk of [ 1m , 1]

2. run OMDηt,εt using the initialization xt,1 = 1
t−1

∑
s<t

cεt(x̂t) = x1 +
∑

s<t x̂t−x1

(1+εt)(t−1) (FTL)

3. update EWOO at each ε ∈ Θk with loss B(cε(x̂t)||xt,1)+ρ2D2
ε

η + 32ηd2 for D2
ε = 9ν

3
2 K

√
S1

ε

4. update pt+1 using multiplicative weights with expert losses B(cε(x̂t)||xt,1)
η + εm

(17)

Note the similarity to the MAB case (8), with the difference being the upper bound passed to EWOO
and MW. Our structural result bounds the expected task-averaged regret as follows (c.f. Thm. E.1):

E min
ε∈[ 1

m ,1],η>0

V̂ 2
ε

η
+ (32ηd2 + ε)m+ Õ

(
m2

T + 1
k

η
+
m

k
+mmin

{
ρ2

η
, dρ

}
+
dm

ρ

√√
log k

T
+
dm

ρ2T

)
(18)

For ρ = oT (1) and k = ωT (1) this becomes oT (poly(m))+Eminε∈[ 1
m ,1],η>0

V̂ 2
ε

η +32ηd2m+ εm,

where V̂ 2
ε = 1

T

∑T
t=1 ψ(cε(x̂t) − ψ(cε(ˆ̄xt). Then by tuning η we get an asymptotic (T → ∞)

regret of 4dV̂ε
√
2m+ εm for any ε ∈ [ 1m , 1]. Our analysis removes the explicit dependence on

√
ν

that appears in the single-task regret [2]; as an example, ν equals the number of inequalities defining
a polytope K, as in the bandit shortest-path application below.

The remaining challenge is to interpret V̂ 2
ε , which as we did for MAB we do via specific examples,

in this case concrete action domains K. Our first example is for BLO over the unit sphere K = {x ∈
Rd : ∥x∥2 ≤ 1} using the appropriate log-barrier regularizer ψ(x) = − log(1− ∥x∥22):
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Corollary 4.1 (c.f. Cor. E.1). For BLO on the sphere, Algorithm 1 has expected task-averaged regret

Õ

(
dm

3
2

T
3
4

+
dm
4
√
T

)
+ min

ε∈[ 1
m ,1]

4d

√
2m log

(
1 +

1− E∥ˆ̄x∥22
2ε+ ε2

)
+ εm (19)

The bound above is decreasing in E∥ˆ̄x∥22, the expected squared norm of the average of the estimated
optima x̂t. We thus say that bandit linear optimization tasks over the sphere are similar if the norm
of the empirical mean of their (estimated) optima is large. This makes intuitive sense: if the tasks’
optima are uniformly distributed, we should expect E∥ˆ̄x∥22 to be small, even decreasing in d. On the
other hand, in the degenerate case where the estimated optima x̂t are the same across all tasks t ∈ [T ],
we have E∥ˆ̄x∥22 = 1, so the asymptotic task-averaged regret is 1 because we can use ε = 1

m . Perhaps
slightly more realistically, if it is 1

mp -away from 1 for some power p ≥ 1
2 then setting ε = 1√

m
can

remove the logarithmic dependence on m. These two regimes illustrate the importance of tuning ε.

As a last application, we apply our meta-BLO result to the shortest-path problem in online
optimization [50, 30]. In its bandit variant [8, 17], at each step i = 1, . . . ,m the player must choose
a path pi from a fixed source u ∈ V to a fixed sink v ∈ V in a directed graph G(V,E). At the same
time the adversary chooses edge-weights ℓi ∈ R|E| and the player suffers the sum

∑
e∈pt

ℓi(e) of
the weights in their chosen path pt. This can be relaxed as BLO over vectors x in a set K ⊂ [0, 1]|E|

defined by a set C of O(|E|) linear constraints (a, b) ⟨a,x⟩ ≤ b enforcing flows from u to v; u to v
paths can be sampled from any x ∈ K in an unbiased manner [2, Proposition 1]. On a single-instance,
applying the BLO method of Abernethy et al. [2] ensures O(|E| 32

√
m) regret on this problem.

In the multi-instance setting, comprising a sequence t = 1, . . . , T of shortest path instances with m
adversarial edge-weight vectors ℓt,i each, we can attempt to achieve better performance by tuning the
same method across instances. Notably, we can view this as the problem of learning predictions [33]
in the algorithms with predictions paradigm from beyond-worst-case analysis [40], with the OMD
initialization on each instance being effectively a prediction of its optimal path. Our meta-learner
then has the following average performance across bandit shortest-path instances:
Corollary 4.2 (c.f. Cor. E.2). For multi-task bandit online shortest path, Algorithm 1 with regularizer
ψ(x) = −

∑
a,b∈C log(b− ⟨a,x⟩) attains the following expected average regret across instances

Õ

(
|E|4m 3

2

T
3
4

+
|E| 52m 5

6

4
√
T

)
+ min

ε∈[ 1
m ,1]

4|E|E

√√√√√
√√√√√2m ∑

a,b∈C

log

 1
T

∑T
t=1 b− ⟨a, cε(x̂t)⟩

T

√∏T
t=1 b− ⟨a, cε(x̂t)⟩

+εm (20)

Here the asymptotic regret scales with the sum across all constraints a, b ∈ C of the log of the
ratio between the arithmetic and geometric means across tasks of the distances b − ⟨a, cε(x̂t)⟩
from the estimated optimum flow cε(x̂t) to the constraint boundary. As it is difficult to separate
the effect of the offset ε, we do not state an explicit task-similarity measure like in our previous
settings. Nevertheless, since the arithmetic and geometric means are equal exactly when all entries
are equal—and otherwise the former is larger—the bound does show that regret is small when
the estimated optimal flows x̂t for each task are at similar distances from the constraints, i.e. the
boundaries of the polytope. Indeed, just as on the sphere, if the estimated optima are all the same
then setting ε = 1

m again yields constant averaged regret.

5 Conclusion and limitations

We develop and apply a meta-algorithm for learning to initialize and tune bandit algorithms, obtaining
task-averaged regret guarantees for both multi-armed and linear bandits that depend on natural,
setting-specific notions of task similarity. For MAB, we meta-learn the initialization, step-size,
and entropy parameter of Tsallis-entropic OMD and show good performance if the entropy of the
optimal arms is small. For BLO, we use OMD with self-concordant regularizers and meta-learn
the initialization, step-size, and boundary-offset, yielding interesting domain-specific task-similarity
measures. Some natural directions for future work involve overcoming some limitations of our results:
can we adapt to a notion of task-similarity that depends on the true optima without assuming a gap
for MAB, or at all for BLO? Alternatively, can we design meta-learning algorithms that adapt to both
stochastic and adversarial bandits, i.e. a “best-of-both-worlds” guarantee? Beyond this, one could
explore other partial information settings, such as contextual bandits or bandit convex optimization.
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A Structural results

A.1 Properties of the Bregman divergence

Lemma A.1. Let ψ : C 7→ R be a strictly convex function with maxx∈C ∥∇2ψ(x)∥2 ≤ S over
a convex set C ⊂ Rd over size maxx∈C ∥x∥2 ≤ K, and let B(·||·) be the Bregman divergence
generated by ψ. Then for any points x1, . . . ,xT ∈ C the actions y1 = argminx∈C ψ(x) and
yt =

1
t−1

∑
s<t xs have regret

T∑
t=1

B(xt||yt)−B(xt||yT+1) ≤
T∑

t=1

8SK2

2t− 1
≤ 8SK2(1 + log T ) (21)

Proof. Note that

∇yB(x||y) = −∇ψ(y)−∇y⟨∇ψ(y),x⟩+∇y⟨∇ψ(y),y⟩ = diag(∇2ψ(y))(y − x) (22)

so B(xt||y) is 2SK-Lipschitz w.r.t. the Euclidean norm. Applying Khodak et al. [31, Prop. B.1]
yields the result (note that its assumption of strong convexity of the regularizer can be replaced with
strict convexity without changing the proof or result).

Claim A.1. Let ψ : K 7→ R be a strictly-convex function with Bregman divergence B(·||·) over a
convex set K ⊂ Rd containing points x1, . . . ,xT . Then their mean x̄ = 1

T

∑T
t=1 xt satisfies

T∑
t=1

B(xt||x̄) =
T∑

t=1

ψ(xt)− ψ(x̄) (23)

Proof.

T∑
t=1

B(xt||x̄) =
T∑

t=1

ψ(xt)− ψ(x̄)− ⟨∇ψ(x̄),xt − x̄⟩

=
T∑

t=1

ψ(xt)− ψ(x̄)− ⟨∇ψ(x̄),
T∑

t=1

xt − x̄⟩ =
T∑

t=1

ψ(xt)− ψ(x̄)

(24)

A.2 Tuning the step-size

Lemma A.2. Let ℓ1, . . . , ℓT : R>0 7→ R>0 be a sequence of functions of form ℓt(x) =
B2

t

x +G2x
for adversarially chosen Bt ∈ [0, D] and some G > 0. Then for any ρ ≥ 0, the actions of
EWOO [26, Fig. 4] with parameter 2ρ2

DG run on the modified losses B2
t+ρ2D2

x +G2x over the domain[
ρD
G , DG

√
1 + ρ2

]
achieves regret w.r.t. any x > 0 of

T∑
t=1

ℓt(x)− ℓt(x) ≤ min

{
ρ2D2

x
, ρDG

}
T +

DG(1 + log(T + 1))

2ρ2
(25)

Proof. By Khodak et al. [31, Prop. C.1] the modified functions are 2ρ2

DG -exp-concave. Then Khodak
et al. [31, Cor. C.2] with Bt set to Bt

G , D to D
G , αt = G2, and ε = ρD

G yields the result.
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Lemma A.3. For x̂1, . . . , x̂T ∈ ∂K consider a sequence of functions of form

Ut(x, η) =
B(cε(x̂t)||x)

η
+ ηG2m (26)

where B is the Bregman divergence of a strictly convex d.g.f. ψ : K◦ 7→ R and where x1 =
argminx∈K ψ(x) defines the projection cε(x) = x1 + x−x1

1+ε for some ε > 0 . Suppose we play

xt+1 ← cε

(
1
t

∑t
s=1 x̂s

)
and set ηt using the actions of EWOO [26, Fig. 4] with parameter 2ρ2

DG for

some ρ,Dε > 0 s.t. B(cε(x̂t)||x) ≤ D2
ε ∀ x ∈ Kε on the functions B(cε(x̂t)||xt)+ρ2D2

ε

η +ηG2m over

the domain
[

ρDε

G
√
m
, Dε

G

√
1+ρ2

m

]
, with η1 being at the midpoint of the domain. Then Ut(xt, ηt) ≤

DεG
√
m
(

1
ρ +

√
1 + ρ2

)
∀ t ∈ [T ] and

T∑
t=1

Ut(xt, ηt) ≤ min
η>0,x∈K

T∑
t=1

B(cε(x̂t)||x)
η

+ ηG2m

+min

{
ρ2D2

ε

η
, ρDεG

}
T +

DεG(1 + log(T + 1))

2ρ2
+

8SεK
2(1 + log T )

η
(27)

for K = maxx∈K ∥x∥2 and Sε = maxx∈Kε
∥∇2ψ(x)∥2.

Proof. The first claim follows by directly substituting the worst-case values of η into Ut(x, η). For
the second, apply Lemma A.2 followed by Lemma A.1:

T∑
t=1

Ut(xt, ηt)

=
T∑

t=1

B(cε(x̂t)||xt)

ηt
+ ηtG

2m

≤ min
η>0

min

{
ρ2D2

ε

η
, ρDεG

}
T +

DεG(1 + log(T + 1))

2ρ2
+

T∑
t=1

B(cε(x̂t)||x)
η

+ ηG2m

≤ min
η>0

min

{
ρ2D2

ε

η
, ρDεG

}
T +

DεG(1 + log(T + 1))

2ρ2
+

8SεK
2(1 + log T )

η

+ min
x∈Kε

T∑
t=1

B(cε(x̂t)||x)
η

+ ηG2m

(28)

Conclude by noting that the sum of Bregman divergence to cε(x̂t) is minimized on their convex hull,
a subset of Kε.

A.3 Computational and space complexity

Algorithm 1 implicitly maintains a separate copy of FTL for each hyperparameter in the continuous
space of EWOO and the grid Θk over the domain of θ, but explicitly just needs to average the estimated
task-optima x̂t; this is due to the mean-as-minimizer property of Bregman divergences and the linear-
ity of cε. Thus the memory it uses isO(d+k), where k is size of the discretization of Θ and should be
viewed as sublinear in T , e.g. for MAB with implicit exploration and BLO k = O( 4

√
d
√
T ). Computa-

tionally, at each timestep t and for each grid point we must compute two single-dimensional integrals;
the integrands are sums of upper bounds that just need to be incremented once per round, leading to a
total per-iteration complexity of O(k) (ignoring the running of OMD). Although outside the scope of
this work, it may be possible to avoid integration by tuning η with MW as well, rather than EWOO,
but likely at the cost of worse regret because it would not take advantage of the exp-concavity of U (ρ)

t .
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A.4 Main structural result

Theorem A.1. Consider a family of strictly convex functions ψθ : K◦ 7→ R parameterized by θ lying
in an interval Θ ⊂ R of radiusRΘ that are all minimized at the same x1 ∈ K◦, and for x̂1, . . . , x̂T ∈
∂K consider a sequence of functions of form Ut(x, η, θ) (3), as well as the associated regularized up-
per bounds U (ρ)

t (4). Define the maximum divergence D = maxθ∈ΘDθ, radius K = maxx∈K ∥x∥2,

and Lη the Lipschitz constant w.r.t. θ ∈ Θ of V̂ 2
θ

η +ηg(θ)m+f(θ)m. Then Algorithm 1 with Θk ⊂ Θ

the uniform discretization of Θ s.t. maxθ∈Θ minθ′∈Θk
|θ − θ′| ≤ RΘ

k , ρ ∈ (0, 1), η(θ) = ρDθ√
g(θ)m

,

η(θ) = Dθ

√
1+ρ2

g(θ)m , α(θ) = 2ρ2

Dθ

√
g(θ)m

, and λ =
(
M
(

1
ρ +

√
1 + ρ2

)
+ Fm

)−1√
log k
2T leads to

a sequence (xt, ηt(θt), θt) s.t. E
∑T

t=1 Ut(xt, ηt(θt), θt) is bounded by

E min
θ∈Θ,η>0

8SK2(1 + log T )

η
+

(
V̂ 2
θ

η
+ ηg(θ)m+ f(θ)m+

LηRΘ

k
+min

{
ρ2D2

η
, ρM

})
T

+

(
4M

ρ
+ Fm

)√
T log k +

M(1 + log(T + 1))

2ρ2

(29)

and
∑T

t=1 Ut(xt, ηt(θt), θt) is bounded w.p. ≥ 1− δ1k>1 by

min
θ∈Θ,η>0

8SK2(1 + log T )

η
+

(
V̂ 2
θ

η
+ ηg(θ)m+ f(θ)m+

LηRΘ

k
+min

{
ρ2D2

η
, ρM

})
T

+

(
4M

ρ
+ Fm

)(√
T log k + 1k>1

√
T

2
log

1

δ

)
+
M(1 + log(T + 1))

2ρ2

(30)

Proof. In the following proof, we first consider online learning Ut(·, ·, θ) for fixed θ ∈ Θk. To tune
η, we online learn the one-dimensional losses Bθ(cθ(x̂t)||cθ(xt))/η + ηg(θ), where cθ(x̂t) is the
(ηt(θ)-independent) action of FTL at time t. As discussed, the corresponding regularized losses U (ρ)

t

are exp-concave, and so running EWOO yields Õ
(
M/ρ2 +min

{
ρ2D2/η, ρM

}
T
)

regret w.r.t. the
original sequence [31, Cor. C.2]. At the same time, we show that FTL has logarithmic regret on the
sequence Bθ(cθ(x̂t)||·) that scales with the spectral norm S of ∇2ψθ (c.f. Lem. A.1), and that the
average loss of the optimal comparator is V̂ 2

θ (c.f. Claim A.1). Thus, since we only care about a fixed
comparator η, dividing by ηT yields the first and last terms (5). We run a copy of these algorithms
for each θ ∈ Θk; since their losses are bounded by Õ(M/ρ+ Fm), textbook results for MW yield
O(
√
T log k) regret w.r.t. θ ∈ Θk, which we then extend to Θ ⊃ Θk using Lη-Lipschitzness.

Formally, we have that

E
T∑

t=1

Ut(xt, ηt(θt), θt)

= E
T∑

t=1

Bθt(cθt(x̂t)||xt)

ηt(θt)
+ ηt(θt)g(θ)m+ f(θ)m

≤
(
M

(
1

ρ
+
√
2

)
+ Fm

)√
2T log k + E min

θ∈Θk

T∑
t=1

Bθ(cθ(x̂t)||xt)

ηt(θ)
+ ηt(θ)g(θ)m+ f(θ)m

≤
(
4M

ρ
+ Fm

)√
T log k + E min

θ∈Θk,η>0,x∈K

T∑
t=1

Bθ(cθ(x̂t)||x)
η

+ ηg(θ)m+ f(θ)m

+min

{
ρ2D2

θ

η
, ρDθ

√
g(θ)m

}
T +

Dθ

√
g(θ)m(1 + log(T + 1))

2ρ2
+

8SK2(1 + log T )

η
(31)
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where the first inequality is the regret of multiplicative weights with step-size λ [46, Cor. 2.14] and
the second is by applying Lemma A.3 for each θ. We then simplify and apply the definition of V̂ 2

θ
via Claim A.1 and conclude by applying Lipschitzness w.r.t. θ:

E
T∑

t=1

Ut(xt, ηt(θt), θt)

≤
(
4M

ρ
+ Fm

)√
T log k + E min

θ∈Θk,η>0

V̂ 2
θ T

η
+ ηg(θ)mT + f(θ)mT

+min

{
ρ2D2

η
, ρM

}
T +

M(1 + log(T + 1))

2ρ2
+

8SK2(1 + log T )

η

≤ E min
θ∈Θ,η>0

8SK2(1 + log T )

η
+

(
V̂ 2
θ

η
+ ηg(θ)m+ f(θ)m+

LηRΘ

k
+min

{
ρ2D2

η
, ρM

})
T

+

(
4M

ρ
+ Fm

)√
T log k +

M(1 + log(T + 1))

2ρ2

(32)

The w.h.p. guarantee follows by Cesa-Bianchi and Lugosi [16, Lem. 4.1].

B Implicit exploration

B.1 Properties of the Tsallis entropy

Lemma B.1. For any ε ∈ (0, 1] and x ∈ △ s.t. x(a) ≥ ε
d ∀ a ∈ [d] the β-Tsallis entropy

Hβ(x) = −
1−

∑d
a=1 xβ(a)

1−β is d log d
ε -Lipschitz w.r.t. β ∈ [0, 1].

Proof. Let logβ x = x1−β−1
1−β be the β-logarithm function and note that by Yamano [54, Equation 6]

we have logβ x − log x = (1 − β)(∂b logβ x + logβ x log x) ≥ 0 ∀ β ∈ [0, 1]. Then we have for
β ∈ [0, 1) that

|∂βHβ(x)| =

∣∣∣∣∣−Hβ(x)−
∑d

a=1 x
β(a) log x(a)

1− β

∣∣∣∣∣
=

1

1− β

∣∣∣∣∣
d∑

a=1

xβ(a)(logβ x(a)− logx(a))

∣∣∣∣∣
=

1

1− β

d∑
a=1

xβ(a)(logβ x(a)− logx(a))

≤ 1

1− β

(
d∑

a=1

x(a)

)β ( d∑
a=1

(logβ x(a)− logx(a))
1

1−β

)1−β

≤ 1

1− β

d∑
a=1

logβ x(a)− logx(a) ≤ d

1− β
(logβ

d

ε
− log

d

ε
) ≤ −d log d

ε

(33)

where the fourth inequality follows by Hölder’s inequality, the fifth by subadditivity of xa for
a ∈ (0, 1], the sixth by the fact that ∂x(logβ x − log x) = x−β − 1/x ≤ 0 ∀ β, x ∈ [0, 1), and

the last line by substituting β = 0 since ∂β
(

logβ x−log x

1−β

)
= 2(x−xβ)−(1−β)(xβ+x) log x

xβ(1−β)3
≤ 0 ∀ β ∈

[0, 1), x ∈ (0, 1/d]. For β = 1, applying L’Hôpital’s rule yields

lim
β→1

∂βHβ(x) = −
1

2
lim
β→1

d∑
a=1

xβ(a) log2 x(a)(1− (1− β) logx(a)) = −1

2

d∑
a=1

x(a) log2 x(a)

(34)
which is bounded on [−2d/e2, 0].
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Lemma B.2. Consider x1, . . . ,xT ∈ △ s.t. xt(at) = 1 for some at ∈ [d], and let x̄ = 1
T

∑T
t=1 xt

be their average. For any ε ∈ (0, 1] and β ∈ (0, 1] we have that for every t ∈ [T ]

Hβ(x̄
(ε))−Hβ(x

(ε)
t ) ≤ Hβ(x̄) (35)

where recall that x(ε) = c ε
1−ε

(x) = 1d/d+ (1− ε)(x− 1d/d) = (1− ε)x+ ε
d1d.

Proof. Assume w.l.o.g. that x̄(1) ≤ x̄(2) ≤ . . . ≤ x̄(d) and at = 1, so that x(ε)
t = e

(ε)
1 . We take the

derivative

∂εHβ

(
(1− ε)x̄+

ε

d
1d

)
− ∂εHβ

(
e
(ε)
1

)
=

d

1− β

d−1∑
a=1

(
1

((1− ε)x̄(a) + ε/d)1−β
− 1

(ε/d)1−β

)

+
d

1− β

d−1∑
a=1

(
1

((1− ε) + ε/d)1−β
− 1

((1− ε)x̄(d) + ε/d)1−β

)

+
d2

1− β

d−1∑
a=1

x̄(a)

(
1

((1− ε)x̄(d) + ε/d)1−β
− 1

((1− ε)x̄(a) + ε/d)1−β

)
(36)

By the assumption that x̄(a) is non-decreasing in a, each of the summands above become non-positive.
So for ε ∈ (0, 1] the derivative is non-positive, and for ε→ 0+ it goes to −∞. Thus the l.h.s. of the
bound is monotonically non-increasing in ε for all ε ∈ [0, 1]. The result then follows from the fact
that for ε = 0 we have Hβ

(
(1− ε)x̄+ ε

d1d

)
−Hβ

(
e
(ε)
1

)
= Hβ(x̄).

B.2 Implicit exploration bounds

Lemma B.3. Suppose we play OMDβ,η with regularizer ψβ the negative Tsallis entropy and initial-
ization x1 ∈ △ on the sequence of linear loss functions ℓ1, . . . , ℓT ∈ [0, 1]d. Then for any x ∈ △ we
have

T∑
t=1

⟨ℓt,xt − x⟩ ≤ Bβ(x||x1)

η
+
η

β

d∑
a=1

x2−β
t (a)ℓ2t (a) (37)

Proof. Note that the following proof follows parts of the course notes by Luo [37], which we
reproduce for completeness. The OMD update at each step t involves the following two steps: set
yt+1 ∈ △ s.t. ∇ψβ(yt+1) = ∇ψβ(xt) − ηℓt and then set xt+1 = argminx∈△Bβ(x,yt+1) [25,
Algorithm 14]. Note that by Hazan [25, Equation 5.3] and nonnegativity of the Bregman divergence
we have

T∑
t=1

⟨ℓt,xt − x⟩ ≤ Bβ(x||x1)

η
+

1

η

T∑
t=1

Bβ(xt||yt+1) (38)

To bound the second term, note that when ψβ is the negative Tsallis entropy we have

Bβ(xt||yt+1)

=
1

1− β

d∑
a=1

(
yβ
t+1(a)− xβ

t (a) +
β

y1−β
t+1 (a)

(xt(a)− yt+1(a)

)

=
1

1− β

d∑
a=1

(
(1− β)yβ

t+1(a)− xβ
t (a) + β

(
1

x1−β
t (a)

+
1− β
β

ηℓt(a)

)
xt(a)

)

=
d∑

a=1

(
yβ
t+1(a)− xβ

t (a) + ηxt(a)ℓt(a)
)

(39)
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Plugging the following result, which follows from (1+x)α ≤ 1+αx+α(α− 1)x2 ∀ x ≥ 0, α < 0,
into the above yields the desired bound.

yβ
t+1(a) = xβ

t (a)

(
yβ−1
t+1 (a)

xβ−1
t (a)

) β
β−1

= xβ
t (a)

(
1 +

1− β
β

ηx1−β
t (a)ℓt(a)

) β
β−1

≤ xβ
t (a)

(
1− ηx1−β

t (a)ℓt(a) +
η2

β
x2−2β
t (a)ℓt(a)

2

)
= xβ

t (a)− ηxt(a)ℓt(a) +
η2

β
x2−β
t (a)ℓt(a)

2

(40)

Theorem B.1. In Algorithm 1, let OMDη,β be online mirror descent with the Tsallis entropy regularizer
ψβ over γ-offset loss estimators, Θk is a subset of [β, β] ⊂ [ 1

log d , 1], and

Ut(x, η, β) =
Bβ(x̂

(ε)
t ||x)
η

+
ηdβm

β
(41)

where x̂
(ε)
t = (1− ε)x̂t + ε1d/d. Note that U (ρ)

t (x, η, β) = Ut(x, η, β) +
ρ2(d1−β−1)

η(1−β) . Then there
exists settings of η, η, α, λ s.t. for all ε, ρ, γ ∈ (0, 1) we have w.p. ≥ 1− δ that

T∑
t=1

m∑
i=1

ℓt,i(at,i)− ℓt,i(̊at)

≤ (ε+ γd)mT +
2 +

√
d log d
em

γ
log

5

δ
+

8d
√
m

ρ

(
1k>1

√
T log

5k

δ
+

1 + log(T + 1)

16ρ

)

+ min
β∈[β,β],η>0

8
(
d
ε

)2−β
(1 + log T )

η
+

(
Ĥβ

η
+
ηdβm

β
+
Lη(β − β)

2k
+ dmin

{
ρ2

2η
, ρ
√
m

})
T

(42)

for Lη =
(

log d
ε

η + ηm log2 d
)
d.

Proof. In this setting we have g(β) = dβ/β, f(β) = 0, D2
β = d1−β−1

1−β , D ≤
√
d/2, M = d

√
m,

F = 0, S = (d/ε)2−β , and K = 1. We have that

T∑
t=1

m∑
i=1

ℓt,i(at,i)− ℓt,i(̊at)

=
T∑

t=1

m∑
i=1

⟨ℓ̂t,i,xt,i⟩ − ℓt,i(̊at) + γ
d∑

a=1

ℓ̂t,i(a)

≤
T∑

t=1

Bβt
(x̂

(ε)
t ||xt,1)

ηt
+

m∑
i=1

⟨ℓ̂t,i, x̂(ε)
t ⟩ − ℓt,i(̊at) +

ηt
βt

d∑
a=1

x2−βt

t,i (a)ℓ̂2t,i(a) + γ

d∑
a=1

ℓ̂t,i(a)

≤ εmT +

T∑
t=1

Bβt
(x̂

(ε)
t ||xt,1)

ηt
+

m∑
i=1

⟨ℓ̂t,i, x̂(ε)
t ⟩ − ⟨ℓt,i, x̊

(ε)
t ⟩

+
T∑

t=1

ηt
βt

m∑
i=1

d∑
a=1

x1−βt

t,i (a)ℓ̂t,i(a) + γ
d∑

a=1

ℓ̂t,i(a)

(43)

where the equality follows similarly to Luo [37] since ⟨ℓ̂t,i,xt,i⟩ = ℓt,i(at,i)− γ
∑d

a=1 ℓ̂t,i(a), the
first inequality follows by Lemma B.3 and the second by Hölder’s inequality and the definitions of
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ℓ̂t,i and x̂
(ε)
t,i . We next apply the optimality of ât for

∑m
i=1 ℓ̂t,i to get

T∑
t=1

m∑
i=1

ℓt,i(at,i)− ℓt,i(̊at)

≤ εmT +
T∑

t=1

Bβt
(x̂

(ε)
t ||xt,1)

ηt
+ (1− ε)

m∑
i=1

ℓ̂t,i(̊at)− ℓt,i(̊at) +
ε

d

d∑
a=1

ℓ̂t,i(a)− ℓt,i(a)

+
T∑

t=1

ηt
βt

m∑
i=1

d∑
a=1

x1−βt

t,i (a)ℓ̂t,i(a) + γ
d∑

a=1

ℓ̂t,i(a)

≤ εmT +
1 + ε

d + η
β + γ

2γ
log

5

δ
+

T∑
t=1

Bβt(x̂
(ε)
t ||xt,1)

ηt

+
T∑

t=1

ηt
βt

m∑
i=1

d∑
a=1

x1−βt

t,i (a)ℓt,i(a) + γ
d∑

a=1

ℓt,i(a)

≤ εmT +
2 +

√
d log d
em

γ
log

5

δ
+ γdmT +

T∑
t=1

Bβt
(x̂

(ε)
t ||xt,1)

ηt
+
ηtd

βtm

βt

(44)
where the the second inequality follows by Neu [43, Lemma 1] applied to each of the last four terms
and the fifth by the definition of ℓt,i and using maxβ∈[ 1

log d ,1]
η(β) ≤

√
d

em log d . Substituting into

Theorem A.1 and simplifying yields the result except with V̂ 2
β = 1

T

∑T
t=1 ψβ(x̂

(ε)
t )− ψβ(ˆ̄x

(ε)
) in

place of Ĥβ , but the former is bounded by the latter by Lemma B.2.

Corollary B.1. Let β = β = 1. Then w.h.p. we can ensure task-averaged regret at most

2

√
Ĥ1dm+ Õ

(
d
√
m+ d

2
3m

2
3

3
√
T

)
(45)

so long as mT ≥ d2 or alternatively ensure

min

{
2

√
Ĥ1dm+ Õ

(
d

3
4m

3
4 + d

√
m

4
√
T

)
, 2
√
dm log d+ Õ

(
d

3
2
√
m√
T

)}
(46)

so long as mT ≥ d.

Proof. Applying Theorem B.1, simplifying, and dividing by T yields task-averaged regret at most

(ε+ γd)m+
2 +

√
d log d
em

γT
log

5

δ
+

(
1 + log(T + 1)

2ρ2T
+min

{
ρ2

η
√
m
, ρ

})
d
√
m

+min
η>0

8d(1 + log T )

εηT
+

(
Ĥ1

η
+ ηdm

) (47)

Set γ = 1√
dmT

. Then set ε = 3

√
d2

mT and ρ = 1
3√
T

, and use η =

√
Ĥ1

dm + 1
3√
dmT

to get the first result.

Otherwise, set ε =
√

d
mT and ρ = 1

4√
T

, and use the better of η =

√
Ĥ1

dm + 1
4√
dmT

and η =
√

log d
dm

to get the second.

Corollary B.2. Let β = 1
2 and β = 1 and assume mT ≥ d

5
2 . Then w.h.p. we can ensure

task-averaged regret at most

min
β∈[ 12 ,1]

2

√
Ĥβdβm/β + Õ

(
d

5
7m

5
7

T
2
7

+
d
√
m

4
√
T

)
(48)

using k =
⌈

4
√
d
√
T
⌉

.
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Proof. Applying Theorem B.1, simplifying, and dividing by T yields task-averaged regret at most

(ε+ γd)m+
2 +

√
d log d
em

γT
log

5

δ
+

8d
√
m

ρ

√ log 5k
δ

T
+

1 + log(T + 1)

16ρT


+ min

β∈[β,β],η>0

8d
3
2 (1 + log T )

ε
3
2 ηT

+

(
Ĥβ

η
+
ηdβm

β
+

d

4k

(
log d

ε

η
+ ηm log2 d

)
+ ρd

√
m

)
(49)

Set γ = 1√
dmT

, ε = d
5
7

(mT )
2
7

, ρ = 1
4√
T

, and use η =

√
βĤβ

mdβ + 1

(dmT )
2
7

to get the result.

Corollary B.3. Let β = 1
log d and β = 1 and assume mT ≥ d3. Then w.h.p. we can ensure

task-averaged regret at most

min
β∈(0,1]

2

√
Ĥβdβm/β + Õ

(
d

3
4m

3
4 + d

√
m

4
√
T

)
(50)

using k =
⌈

4
√
d
√
T
⌉

.

Proof. Applying Theorem B.1, dividing by T , and simplifying yields

(ε+ γd)m+
2 +

√
d log d
em

γT
log

5

δ
+

8d
√
m

ρ

√ log 5k
δ

T
+

1 + log(T + 1)

16ρT


+ min

β∈[β,β],η>0

8d2(1 + log T )

ε2ηT
+

(
Ĥβ

η
+
ηdβm

β
+

d

2k

(
log d

ε

η
+ η log2 d

)
+ ρd

√
m

) (51)

Note that Ĥβ and dβ

β are both decreasing on β < 1
log d , so β in the chosen interval is optimal over all

β ∈ (0, 1]. Set γ = 1√
dmT

, ε = d
3
4

4√
mT

, ρ = 1
4√
T

, and use η =

√
βĤβ

mdβ + 1
4√
dmT

to get the result.

C Guaranteed exploration

C.1 Best-arm identification

Lemma C.1. Suppose for ε > 0 we run OMD on task t ∈ [T ] with initialization xt,1 ∈ △(ε),
regularizer ψβt

+ I△(ε) for some βt ∈ (0, 1], and unbiased loss estimators (γ = 0). If Assumption 3.1

holds and m > 28d log d
3ε∆2 then x̂t = x̊t w.p. ≥ 1− dκ, where κ = exp

(
− 3ε∆2m

28d

)
.

Proof. We extend the proof by Abbasi-Yadkori et al. [1, Appendices B and F] to arbitrary lower
bounds ε/d on the probability. First, since 0 ≤ ℓ̂t,i(a) ≤ d

ε ℓt,i(a) we have that

−d
ε
≤ −1 ≤ −ℓt,i(a) ≤ ℓ̂t,i(a)− ℓt,i(a) ≤

(
d

ε
− 1

)
ℓt,i(a) ≤

d

ε
(52)

and so |ℓ̂t,i(a) − ℓt,i(a)| ≤ d
ε . Therefore since the variance of the estimated losses is a scaled

Bernoulli we have that

Var(ℓ̂t,i(a)− ℓt,i(a)) = Var(ℓ̂t,i(a)) = xt,i(a)(1− xt,i(a))

(
ℓt,i(a)

xt,i(a)

)2

≤
ℓ2t,i(a)

xt,i(a)
≤ d

ε
(53)
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We can thus apply a martingale concentration inequality of Fan et al. [23, Corollary 2.1] to the
martingale difference sequence (MDS) ε

d (ℓ̂t,i(a)− ℓt,i(a)) ∈ [− ε
d , 1] to obtain

Pr

(
m∑
i=1

ℓ̂t,i(a)− ℓt,i(a) ≥
m∆a

2

)
= Pr

(
ε

d

m∑
i=1

ℓ̂t,i(a)− ℓt,i(a) ≥
εm∆a

2d

)

≤ Pr

max
j∈[m]

ε

d

m∑
i=j

ℓ̂t,i(a)− ℓt,i(a) ≥
εm∆a

2d


≤ exp

(
−

2
(
εm∆a

2d

)2
min

{
m(1 + ε/d)2, 4(εm/d+ εm∆a

6 )
})

≤ exp

(
−

2
(
εm∆a

2d

)2
4(εm/d+ εm∆a

6 )

)

= exp

(
− 3εm∆2

a

4d(6 + ∆a)

)
≤ exp

(
−3εm∆2

a

28d

)

(54)

where ∆a = 1
m |
∑m

i=1 ℓt,i(a)−mina′ ̸=a

∑m
i=1 ℓt,i(a

′)| is the per-arm loss gap in the last step we
apply ∆a ≤ 1. For the symmetric MDS − ε

d ≤ ℓt,i(a)− ℓ̂t,i(a) ≤ 1 we have

Pr

(
m∑
i=1

ℓ̂t,i(a)− ℓt,i(a) ≤ −
m∆a

2

)
= Pr

(
m∑
i=1

ℓt,i(a)− ℓ̂t,i(a) ≥
m∆a

2

)

≤ exp

(
−

2
(
m∆a

2

)2
4
(
dm
ε + m∆a

6

))

≤ exp

(
− 3εm∆2

a/d

4(6 + ε∆a/d)

)
≤ exp

(
−3εm∆2

a

28d

)
(55)

We can then conclude that
Pr (x̂t ̸= x̊t)

≤ Pr

(
∃ a ̸= ått :

m∑
i=1

ℓ̂t,i(a) ≤
m∑
i=1

ℓt,i(̊at)

)

≤ Pr

(
m∑
i=1

ℓ̂t,i(̊at) ≥
m∑
i=1

ℓt,i(̊at) +
m∆åt

2
∨ ∃ a ̸= åt :

m∑
i=1

ℓ̂t,i(a) ≤
m∑
i=1

ℓt,i(a)−
m∆a

2

)

≤ Pr

(
m∑
i=1

ℓ̂t,i(̊at) ≥
m∑
i=1

ℓt,i(̊at) +
m∆åt

2

)
+
∑
a ̸=åt

Pr

(
m∑
i=1

ℓ̂t,i(a) ≤
m∑
i=1

ℓt,i(a)−
m∆a

2

)

≤ exp

(
−
3εm∆2

åt

28d

)
+
∑
a ̸=åt

exp

(
−3εm∆2

a

28d

)

≤ d exp
(
−3εm∆2

28d

)
(56)

where the second-to-last line follows by substituting the bounds (54) and (55) into the left and right
terms, respectively.

Lemma C.2. Suppose on each task t ∈ [T ] we run OMD as in Lemma C.1. Then for any β ∈ (0, 1]

we have 1
T E
∑T

t=1 ψβ(x̂
(ε)
t )− ψβ(ˆ̄x

(ε)
) ≤ −ψβ (̊x̄) +

3dκβ
1−β

((
d
ε

)1−β − 1
)

.
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Proof. We consider the expected divergence of the best initialization under the worst-case distribution
of best arm estimation, which satisfies Lemma C.1 and (56). We have by Claim A.1 and the
mean-as-minimizer property of Bregman divergences that

1

T
E

T∑
t=1

ψβ(x̂
(ε)
t )− ψβ(ˆ̄x

(ε)
) = E min

x∈△(ε)

1

T

T∑
t=1

Bβ

(
x̂
(ε)
t ||x

)
≤ min

x∈△(ε)
E
1

T

T∑
t=1

Bβ

(
x̂
(ε)
t ||x

)
= min

x∈△(ε)

1

T

T∑
t=1

d∑
a=1

P(a = ât)Bβ

(
e(ε)a ||x

)
≤ max

pt∈△,∀t∈[T ]
pt(a)≤2κ,∀t∈[T ],a ̸=åt

1−dκ≤pt(a),∀t∈[T ],a=åt

min
x∈△(ε)

1

T

T∑
t=1

d∑
a=1

pt(a)Bβ

(
e(ε)a ||x

)
(57)

To simplify the last expression, we define p̄ = 1
T

∑T
t=1 pt and again apply the (weighted) mean-as-

minimizer property, followed by Claim A.1:

min
x∈△(ε)

1

T

T∑
t=1

d∑
a=1

pt(a)Bβ

(
e(ε)a ||x

)
= min

x∈△(ε)

d∑
a=1

p̄(a)Bβ

(
e(ε)a ||x

)
=

d∑
a=1

Bβ

(
e(ε)a ||p̄(ε)

)
= ψβ(e

(ε)
1 )− ψβ(p̄

(ε))
(58)

By substituting into the previous inequality, we can bound the expected divergence for the worst-case
pt as follows:

1

T
E

T∑
t=1

ψβ(x̂
(ε)
t )− ψβ(ˆ̄x

(ε)
) ≤ ψβ

(
e
(ε)
1

)
+ max

pt∈△,∀t∈[T ]
pt(a)≤2κ,∀t∈[T ],a ̸=åt

1−dκ≤pt(a),∀t∈[T ],a=åt

−ψβ(p̄
(ε))

≤ ψβ

(
e
(ε)
1

)
+ max∑T

t=1

∑d
a=1 pt(a)=T∑T

t=1 pt(a)≥(1−dκ)̊x̄(a)T,∀a∑T
t=1 pt(a)≤(2κ(1−̊x̄(a))T +̊x̄(a)T ),∀a

−ψβ(p̄
(ε))

= ψβ

(
e
(ε)
1

)
− min

p̄∈△
p̄(a)≥(1−dκ)̊x̄(a),∀a

p̄(a)≤2κ+(1−2κ)̊x̄(a),∀a

ψβ(p̄
(ε))

(59)

We use the shorthand h(x) = ψβ

(
(1− ε)x+ ε

d1d

)
. We have

−∂x(a) (ψβ(x)) = ∂x(a)

(
1

(1− β)

(
d∑

b=1

x(b)β − 1

))

= ∂x(a)

(
1

(1− β)

(
d∑

b=1

x(b)β + βd1−β(1−
d∑

b=1

x(b))− 1

))

=
β

1− β
·
(
x(a)β−1 − d1−β

)
(60)

and therefore

∥∇h(x)∥∞ = max
a=1,...,d

∣∣∣∂x(a)ψβ

(
(1− ε)x+

ε

d
1d

)∣∣∣
≤ β

1− β
max

a=1,...,d

∣∣((1− ε)x(a) + ε/d)β−1 − d1−β
∣∣

≤ β

1− β

((
d

ε

)1−β

− 1

)
= β logβ

(
d

ε

) (61)
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Finally, by convexity of h we have

min
p̄∈△

p̄(a)≥(1−dκ)̊x̄(a),∀a
p̄(a)≤2κ+(1−2κ)̊x̄(a),∀a

h(p̄) ≥ h(̊x̄)− ∥∇h(̊x̄)∥∞ max
p̄∈△

p̄(a)≥(1−dκ)̊x̄(a),∀a
p̄(a)≤2κ+(1−2κ)̊x̄(a),∀a

∥p̄−˚̄x∥1

≥ h(̊x̄)− 3dκ∥∇h(̊x̄)∥∞

≥ h(̊x̄)− 3dκβ logβ

(
d

ε

) (62)

so we can substitute into (59) to get

1

T
E

T∑
t=1

ψβ(x̂
(ε)
t )− ψβ(ˆ̄x

(ε)
) ≤ −ψβ (̊x̄

(ε)
) +

3dκβ

1− β

((
d

ε

)1−β

− 1

)
(63)

Applying Lemma B.2 completes the proof.

C.2 Guaranteed exploration bounds

Lemma C.3. Suppose we play OMDβ,η with initialization x1 ∈ △(ε), regularizer ψβ+I△(ε) for some
β ∈ (0, 1], and unbiased loss estimators (γ = 0) on the sequence of loss functions ℓ1, . . . , ℓT ∈ [0, 1]d.
Then for any å ∈ [d] we have expected regret

E
T∑

t=1

ℓt(at)− ℓt(̊a) ≤
EBβ(x̂

(ε)||x1)

η
+
ηdβm

β
+ εm (64)

for x̂ the estimated optimum of the loss estimators ℓ̂1, . . . , ℓ̂T .

Proof.

E
T∑

t=1

ℓt(at)− ℓt(̊a) = E
T∑

t=1

ℓt(at)− ⟨ℓt, x̊⟩

≤ E
T∑

t=1

ℓt(at)− ⟨ℓt, x̊(ε)⟩+ εm

= E
m∑
t=1

ℓ̂t(at)− ⟨ℓ̂t, x̊(ε)⟩+ εm

≤ E
m∑
t=1

ℓ̂t(at)− ⟨ℓ̂t, x̂(ε)⟩+ εm

≤ E

(
Bβ(x̂

(ε)||x1)

η
+
η

β

T∑
t=1

d∑
a=1

ℓ̂2t (a)x
2−β
t (a)

)
+ εm

≤ EBβ(x̂
(ε)||x1)

η
+
ηdβm

β
+ εm

(65)

where the second inequality follows by optimality of x̂ for the estimated losses ℓ̂t, the third by
Lemma B.3 constrained to △(ε), and the fourth similarly to Theorem B.1 (note both are also
effectively shown in Luo [37]).

Theorem C.1. In Algorithm 1, let OMDη,β be online mirror descent with the regularizer ψβ + I△(ε)

over unbiased (γ = 0) loss estimators, Θk is a subset of [β, β] ⊂ [ 1
log d , 1], and

Ut(x, η, β) =
Bβ(x̂

(ε)
t ||x)
η

+
ηdβm

β
(66)
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where x̂
(ε)
t = (1− ε)x̂t + ε1d/d. Note that U (ρ)

t (x, η, β) = Ut(x, η, β) +
ρ2(d1−β−1)

η(1−β) . Then under
Assumption 3.1 there exists settings of η, η, α, λ s.t. for all ε, ρ ∈ (0, 1) we have that

E
1

T

T∑
t=1

m∑
i=1

ℓt,i(at,i)− ℓt,i(̊at)

≤ εm+
8d
√
m

ρ

(
1k>1

√
log k

T
+

1 + log(T + 1)

16ρT

)

+ min
β∈[β,β],η>0

8
(
d
ε

)2−β
(1 + log T )

ηT
+
hβ(∆)

η
+
ηdβm

β
+
Lη(β − β)

2k
+ dmin

{
ρ2

2η
, ρ
√
m

}
(67)

for Lη =
(

log d
ε

η + ηm log2 d
)
d and hβ(∆) = (Hβ + 56

dm )ι∆ + d1−β−1
1−β (1 − ι∆) for ι∆ =

1m≥ 75d
ε∆2 log d

ε∆2
.

Proof. By Lemma C.3 we have

E
T∑

t=1

m∑
i=1

ℓt,i(at,i)− ℓt,i(̊at) ≤ εmT + E
T∑

t=1

Bβt
(x̂

(ε)
t ||xt,1)

ηt
+
ηtd

βtm

βt
(68)

Since we have the same environment-dependent quantities as in Theorem B.1, we can substitute the
above bound into Theorem A.1 and then apply the Lemma C.2 bound

EV̂ 2
β ≤ Hβ +

3dκβ

1− β

((
d

ε

)1−β

− 1

)
≤ Hβ +

3d2

ε
exp

(
−3ε∆2m

28d

)
= Hβ +

3ε∆2

d2
exp

(
4 log

d

ε∆2
− 3ε∆2m

28d

)
≤ Hβ +

3ε∆2/d2

3ε∆2m
28d − 4 log d

ε∆2

≤ Hβ +
56

dm

(69)

where the last line follows by assuming m ≥ 75d
ε∆2 log

d
ε∆2 . If this condition does not hold, then we

apply the default bound of EV̂ 2
β ≤= 1

T

∑T
t=1 ψβ(x̂t)− ψβ(ˆ̄x) ≤ d1−β−1

1−β .

Corollary C.1. Let β = β = 1. Then for known ∆ and assuming m ≥ 75d
∆2 log d

∆2 we can ensure
expected task-averaged regret at most

2
√
H1dm+ 56 +

75d

∆2
W
(m
75

)
+ Õ

(
d

3
2m

3
4

√
T

+
d∆2m2

T

)
(70)

where W is the Lambert W -function, while for unknown ∆ we can ensure expected task-averaged
regret at most

2
√
H1dm+ 56 +

3

∆
3

√
50dm log d log

d2m2

150∆6 log d
+ Õ

(
d

3
2m

3
4

√
T

+
d

4
3m

5
3

T

)
(71)

so long as m2 ≥ 150d log d.

Proof. Applying Theorem C.1 and simplifying yields

εm+
8d
√
m(1 + log(T + 1))

16ρ2T
+min

η>0

8d(1 + log T )

εηT
+
h1(∆)

η
+ ηdm+

dρ2

2η
(72)

Then substitute η =
√

h1(∆)
dm and set ρ = 4

√
1

dT
√
m

and ε = 75d
∆2mW (m75 ) (for known ∆) or

ε = 3

√
150d log d

m2 (otherwise).
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Corollary C.2. Let β = 1
2 and β = 1. Then for known ∆ and assuming m ≥ 75d

∆2 log d
∆2 we can

ensure task-averaged regret at most

min
β∈[ 12 ,1]

2
√
(Hβm+ 56/d)dβ/β +

75d

∆2
W
(m
75

)
+ Õ

(
d

4
3m

2
3

3
√
T

+
d

5
3m

5
6

T
2
3

+
d∆3m

5
2

T

)
(73)

using k = ⌈ 3
√
d2mT ⌉, while for unknown ∆ we can ensure expected task-averaged regret at most

min
β∈[ 12 ,1]

2
√
(Hβm+ 56/d)dβ/β +

3

∆

3

√
50d2m log

dm2

150∆6
+ Õ

(
d

4
3m

2
3

3
√
T

+
d

5
3m

5
6

T
2
3

+
d

3
2m2

T

)
(74)

so long as m ≥ 5d
√
6.

Proof. Applying Theorem C.1 and simplifying yields

εm+
8d
√
m

ρ

(√
log k

T
+

1 + log(T + 1)

16ρT

)

+ min
β∈[β,β],η>0

8d
3
2 (1 + log T )

ε
3
2 ηT

+
hβ(∆)

η
+
ηdβm

β
+

d

4k

(
log d

ε

η
+ ηm log2 d

)
+
dρ2

2η

(75)

Then substitute η =
√

hβ(∆)
dβm/β

and set ρ = 3

√
1

d
√
mT

and ε = 75d
∆2mW (m75 ) (for known ∆) or

ε = 3

√
150d2

m2 (otherwise).

Corollary C.3. Let β = 1
log d and β = 1. Then for known ∆ and assuming m ≥ 75d

∆2 log d
∆2 we can

ensure task-averaged regret at most

min
β∈(0,1]

2
√

(Hβm+ 56/d)dβ/β +
75d

∆2
W
(m
75

)
+ Õ

(
d

4
3m

2
3

3
√
T

+
d

5
3m

5
6

T
2
3

+
d∆4m3

T

)
(76)

using k = ⌈ 3
√
d2mT ⌉, while for unknown ∆ we can ensure expected task-averaged regret at most

min
β∈(0,1]

2
√
(Hβm+ 56/d)dβ/β +

3

∆

3

√
50d2m log

dm2

150∆6
+ Õ

(
d

4
3m

2
3

3
√
T

+
d

5
3m

5
6

T
2
3

+
d

5
3m

7
3

T

)
(77)

so long as m ≥ 5d
√
6.

Proof. Applying Theorem C.1 and simplifying yields

εm+
8d
√
m

ρ

(√
log k

T
+

1 + log(T + 1)

16ρT

)

+ min
β∈[β,β],η>0

8d2(1 + log T )

ε2ηT
+
hβ(∆)

η
+
ηdβm

β
+

d

2k

(
log d

ε

η
+ ηm log2 d

)
+
dρ2

2η

(78)

Then substitute η =
√

hβ(∆)
dβm/β

and set ρ = 3

√
1

d
√
mT

and ε = 75d
∆2mW (m75 ) (for known ∆) or

ε = 3

√
150d2

m2 (otherwise).

Corollary C.4. Let β = 1
log d and β = 1. Then for unknown ∆ and assuming m ≥ max{d 3

4 , 56}
we can ensure task-averaged regret at most

min
β∈(0,1]

min

{
8
√√
dm, 2

√√(
Hβm+

56

d

)
dβ

β
+

21d
3
4 3
√
m

∆
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3 log

dm

∆2

}
+Õ

(
d

4
3m

2
3

3
√
T

+
d

5
3m

5
6

T
2
3

+
d2m

7
3

T

)
(79)

using k = ⌈ 3
√
d2mT ⌉.
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Proof. Applying Theorem C.1 and simplifying yields

εm+
8d
√
m

ρ

(√
log k

T
+

1 + log(T + 1)

16ρT

)

+ min
β∈[β,β],η>0

8d2(1 + log T )

ε2ηT
+
hβ(∆)

η
+
ηdβm

β
+

d

2k

(
log d

ε

η
+ ηm log2 d

)
+
dρ2

2η

(80)

Then substitute η =
√

hβ(∆)
dβm/β

and set ρ = 3

√
1

d
√
mT

and ε =
√
d

3√
m2

.

D Robustness to outliers

Proposition D.1. Suppose there exists a constant p ∈ [0, 1] and a subset S ⊂ [T ] of size s such that
åt ∈ S for all but O(T p) MAB tasks t ∈ [T ]. Then if β ∈ [ 1

log d ,
1
2 ] we have Hβ = O(s+ d1−β

Tβ(1−p) ).

Proof. Define the vector eS ∈ [0, 1]d s.t. eS[a] = 1a∈S . Then by Claim A.1 and the mean-as-
minimizer property of Bregman divergences we have

Hβ = −ψβ (̊x̄)

=
1

T

T∑
t=1

ψβ (̊xt)− ψβ (̊x̄)

=
1

T

T∑
t=1

Bβ (̊xt||̊x̄)

= min
x∈△d

1

T

T∑
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Bβ (̊xt||̊x̄)

≤ min
δ∈(0,1)

1

T

T∑
t=1

Bβ

(̊
xt

∣∣∣∣∣∣∣∣1− δs eS +
δ

d
1d

)

= min
δ∈(0,1)

1

T

T∑
t=1

1

1− β

d∑
a=1

(
1− δ
s

1a∈S +
δ

d

)β

− x̊β
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s 1a∈S − δ

d )

( 1−δ
s 1s∈S + δ
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β

= min
δ∈(0,1)

1

T

T∑
t=1

d∑
a=1

(
1− δ
s

1a∈S +
δ

d

)β

−
x̊β
t[a]

1− β
+

βx̊β
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(1− β)( 1−δ
s 1a∈S + δ

d )
1−β

≤ min
δ∈(0,1)

s1−β + δβd1−β +
β

(1− β)T

T∑
t=1

d∑
a=1

1a=åt

(1− β)( 1−δ
s 1a∈S + δ

d )
1−β

≤ min
δ∈(0,1)

s1−β

1− β
+ δβd1−β +O

(
β(dδ )

1−β

(1− β)T 1−p

)

= O
(
s+

d1−β

T β(1−p)

)

(81)

where the last line follows by considering δ = 1/T 1−p.
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E Online learning with self-concordant barrier regularizers

E.1 General results

Lemma E.1. Let K ⊂ Rd be a convex set and ψ : K◦ 7→ Rd be a self-concordant barrier. Suppose
ℓ1, . . . , ℓT are a sequence of loss functions satisfying |⟨ℓt,x⟩| ≤ 1 ∀ x ∈ K. Then if we run OMD
with step-size η > 0 as in Abernethy et al. [2, Alg. 1] on the sequence of estimators ℓ̂t our estimated
regret w.r.t. any x ∈ Kε for ε > 0 will satisfy

T∑
t=1

⟨ℓ̂t,xt − x⟩ ≤ B(x||x1)

η
+ 32d2ηT (82)

Proof. The result follows from Abernethy et al. [2] by stopping the derivation on the second inequality
below Equation 10.

Definition E.1. For any convex set K and any point y ∈ K, πy(x) = inf
t≥0,y+ x−y

t ∈K
t is the

Minkowski function with pole y.

Lemma E.2. For any x ∈ K ⊂ Rd and ψ : K◦ 7→ R a ν-self-concordant regularizer with minimum
x1 ∈ K◦, the quantity ψ(cε(x)) is ν

√
2-Lipschitz w.r.t. ε ∈ [0, 1].

Proof. Consider any ε, ε′ ∈ [0, 1] s.t. ε′ − ε ∈ (0, 12 ] Note that for t = ε′−ε
1+ε we have

cε′(x) +
cε′(x)− cε(x)

t
= x1 +

x− x1

1 + ε′
+

x1 +
x−x1

1+ε − x1 − x−x1

1+ε′

t
= x ∈ K (83)

so πcε′ (x)
(cε(x)) ≤ ε′−ε

1+ε ≤ ε′ − ε. Therefore by Nesterov and Nemirovskii [42, Prop. 2.3.2] we
have

ψ(cε(x))−ψ(cε′(x)) ≤ ν log
(

1

1− πcε′ (x)
(cε(x))

)
≤ ν log

(
1

1 + ε− ε′

)
≤ ν(ε′−ε)

√
2 (84)

where for the last inequality we used − log(1− x) ≤ x
√
2 for x ∈ [0, 12 ]. The case of ε′ − ε ∈ (0, 1]

follows by considering ε′′ = ε′+ε
2 and applying the above twice.
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Theorem E.1. In Algorithm 1, let OMDη,ε be online mirror descent over loss estimators specified in
Abernethy et al. [2] with a ν-self-concordant barrier regularizer ψ : K◦ 7→ R that satisfies ν ≥ 1
and ∥∇2ψ(x1)∥2 = S1 ≥ 1. Let Θk be a subset of [ 1m , 1] and

Ut(x, η, ε) =
B(cε(x̂)||x)

η
+ 32ηd2 + εm (85)

Note that U (ρ)
t (x, η, ε) = Ut(x, η, ε) +

9ν
3
2 ρ2Km

√
S1

η . Then there exists settings of η, η, α, λ s.t. for
all ε, ρ ∈ (0, 1) we have expected task averaged regret at most

E min
ε∈[ 1

m ,1],η>0

512ν2K2S1m
2(1 + log T )

η
+

(
V̂ 2
ε

η
+ 32ηd2m+ εm+

ν
√
2/η +m

k

)
T

+ 3ν
3
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{
3ρ2ν

3
4K
√
S1

η
, 4dρ

√
2K
√
S1

}
T

+
7dm

ρ

√
2K
√
ν3S1

(
7
√
T log k +

1 + log(T + 1)

ρ

)
(86)

Proof. Let ε = 1
m . For any ε ∈ [ε, 1] and x ∈ K we have πx1(cε(x)) ≤ 1

1+ε , so by Nesterov and
Nemirovskii [42, Prop. 2.3.2] we have

∥∇2ψ(cε(x))∥2 ≤
(

1 + 3ν

1− πx1
(cε(x))

)2

∥∇2ψ(x1)∥2 ≤
64ν2S1

ε2
(87)

Thus S = maxx,y∈K,ε∈[ε,1] ∥∇2ψ(cε(x))∥2 = 64ν2S1

ε2 and also

D2
ε = max

x,y∈K
B(cε(x)||cε(y))

= max
x,y∈K

ψ(cε(x))− ψ(cε(y))− ⟨∇ψ(cε(y)),x− y⟩

≤ max
x,y∈K

ν log

(
1

1− πx1(cε(x))

)
+
√
ν∥∇2ψ(cε(y))∥2∥x− y∥2

≤ ν log 2

ε
+

8ν
3
2K
√
S1

ε

≤ 9ν
3
2K
√
S1

ε

(88)

where the first inequality follows by Nesterov and Nemirovskii [42, Prop. 2.3.2] and the definition
of a self-concordant barrier [2, Def. 5]. In addition, we have g(ε) = 32d2, f(ε) = ε, M =

12d
√
2Km/ε 4

√
ν3S1, and F = 1. We have

E
T∑

t=1

m∑
i=1

⟨ℓt,i,xt,i − x̊t⟩ ≤ E
T∑

t=1

εtm+
m∑
i=1

⟨ℓt,i,xt,i − cεt (̊xt)⟩

≤ E
T∑

t=1

εtm+

m∑
i=1

⟨ℓ̂t,i,xt,i − cεt (̊xt)⟩

≤ E
T∑

t=1

εtm+

m∑
i=1

⟨ℓ̂t,i,xt,i − cεt(x̂t)⟩

≤
T∑

t=1

EB(cεt(x̂t||xt,1)

ηt
+ (32ηtd

2 + εt)m

(89)

where the first inequality follows by Abernethy et al. [2, Lem. 8], the second by Abernethy et al. [2,
Lem. 3], the third by optimality of x̂t, and the fourth by Lemma E.1. Substituting into Theorem A.1
and simplifying yields the result.
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E.2 Specialization to the unit sphere

Corollary E.1. Let K be the unit sphere with the self-concordant barrier ψ(x) = − log(1− ∥x∥22).
Then Algorithm 1 attains expected task-averaged regret bounded by

Õ

(
dm

3
2

T
3
4

+
dm
4
√
T

)
+ min

ε∈[ 1
m ,1]

4d

√
2m log

(
1 +

1− E∥ˆ̄x∥22
2ε+ ε2

)
+ εm (90)

using k =
⌈√

T
⌉

.

Proof. Using the fact the ν = 1 and K = S1 = 2, we apply Theorem E.1 and simplify to obtain

E min
ε∈[ 1

m ,1],η>0
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+ 32ηd2m+ εm+ Õ
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(91)

Then substitute η = V̂ε

4
√
2dm

+
√
m

d
4√
T

, set ρ = 1
4√
T

, and note that

EV̂ε = E
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√∏T
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)

≤

√
log

(
1 +

1− E∥ˆ̄x∥22
2ε+ ε2

) (92)

where we use the fact that ∥x̂t∥2 = 1 and the inequality is Jensen’s.

E.3 Specialization to polytopes, specifically the bandit online shortest-path problem

Corollary E.2. Let K = {x ∈ [0, 1]|E| : ⟨a,x⟩ ≤ b ∀ (a, b) ∈ C} be the set of flows from u to v
on a graph G(V,E), where C ⊂ R|E| × R is a set of O(|E|) linear constraints. Suppose we see T
instances of the bandit online shortest path problem with m timesteps each. Then sampling from
probability distributions over paths from u to v returned by running Algorithm 1 with regularizer
ψ(x) = −

∑
a,b∈C log(b− ⟨a,x⟩) attains the following expected average regret across instances

Õ
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(93)
using k =

⌈√
T
⌉

.

Proof. Using the fact that d = |E|, ν = O(|E|), K =
√
|E|, and S1 ≤

∑
a,b∈C

∥aaT ∥2

(⟨a,1|E|/|E|⟩−b)2 =

O(|E|3), we apply Theorem E.1 and simplify to obtain
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1√
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+
1

ρT

)) (94)

Then substitute η = V̂ε

4
√
2dm

+ |E|2
√
m

4√
T

, set ρ = 4

√
|E|
T

6
√
m, and note that

V̂ 2
ε =

∑
a,b∈C

log

 b− ⟨a, cε(ˆ̄x)⟩
T

√∏T
t=1 b− ⟨a, cε(x̂t)⟩

 =
∑
a,b∈C

log
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T
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 (95)
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