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1 Abstract—Deep neural networks (DNNs) are rapidly evolv-
2 ing from streamlined single-modality single-task (SMST) to
3 multimodality multitask (MMMT) with large variations for
4+ different layers and complex data dependencies among layers.
s To support such models, hardware systems also evolved to
s be heterogeneous. The heterogeneous system comes from the
7 prevailing trend to integrate diverse accelerators into the system
s for lower latency. FPGAs have high-computation density and
9 communication bandwidth and are configurable to be deployed
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with different designs of accelerators, which are widely used
for various machine-learning applications. However, scaling from
SMST to MMMT on heterogeneous FPGAs is challenging
since MMMT has much larger layer variations, a massive
number of layers, and complex data dependency among different
backbones. Previous mapping algorithms are either inefficient
or over-simplified which makes them impractical in general
scenarios. In this work, we propose CHEF to enable efficient
implementation of MMMT models in realistic heterogeneous
FPGA clusters, i.e., deploying heterogeneous accelerators on
heterogeneous FPGAs (A2F) and mapping the heterogeneous
DNNs on the deployed heterogeneous accelerators (M2A).
We propose CHEF-A2F, a two-stage accelerators-to-FPGAs
deployment approach to co-optimize hardware deployment and
accelerator mapping. In addition, we propose CHEF-M2A,
which can support general and practical cases compared to
previous mapping algorithms. To the best of our knowledge,
this is the first attempt to implement MMMT models in real
heterogeneous FPGA clusters. Experimental results show that
the latency obtained with CHEF is near-optimal while the search
time is 10000x less than exhaustively searching the optimal
solution.

Index Terms—Heterogeneous FPGA clusters, multimodality
multitask (MMMT).
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I. INTRODUCTION

EEP neural networks (DNNs) are increasingly used in
D complex machine learning applications, requiring diverse
models and advanced hardware to meet new challenges [1].
On one hand, DNNSs are rapidly evolving from simple, single-
task systems to more complex, multitask systems, especially in
fields like robotics [2], human—computer interactions [3], [4],
virtual reality (VR)/augmented reality (AR) [5], [6], etc.
Fig. 1(a) shows an example of an multimodality multitask
(MMMT) model with three modality nets fusing at the end.
The circle 1.1 represents the first layer of the first modal-
ity. As shown in Fig. 1(a), such MMMT models involve
complex interblock connections between multiple backbones
of different sizes [1], [7]. On the other hand, heterogeneous
hardware acceleration components are increasingly integrated
into state-of-the-art (SOTA) systems. FPGAs, known for
their high-computing power and high flexibility, have been
widely used for various machine-learning applications both
at the edge level and at the cloud level [8], [9], [10],
[11], [12], [13], [14]. For example, VMSS [12], an edge
server composed of Xilinx U504+U30 FPGAs is proposed to
build efficient video analytics in smart cities. Compared to
other platforms, such as GPUs, TPUs, etc., VMSS can be
reconfigured to satisfy codecs, streaming protocols, specialized
DNNs, and other smart application needs efficiently. At the
cloud level, UIUC XACC [13] has been designed to support
high-performance computing, machine learning, and genomics
applications equipped with modern FPGAs. However, while
deploying single-modality single-task (SMST) DNNs on such
multiaccelerator clusters has been well studied, scaling them
into MMMT DNN applications has not been comprehensively
investigated.

Compared with SMST, MMMT is more complex, with
varied layers, a massive number of layers, and intricate data
dependencies, presenting new challenges in accelerator design.
First, MMMT models have much larger variations in terms of
layer type and layer shape. For example, VFS [16], a typical
MMMT model, involves convolutional (Conv) layers, and fully
connected (FC) layers, and contains VGG and VD-CNN back-
bones. The input size of the VGG backbone is 3 x 224 x 224,
while the input size of the VD-CNN backbone is 64 x 1014 x 4.
When calculating the computation-to-communication (CTC)
ratio of all Conv layers on a monolithic accelerator on the
Xilinx U280 FPGA, the CTC ratio for VGG ranges from
48 to 448, while the CTC ratio of Conv layers in VD-CNN
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Fig. 1. (a) Abstracted MMMT model with three modalities. A circle
represents a layer of a modality net and an arrow represents data dependency
between two layers. The index a.b in the circle represents the bth layer of
the ath modality. MMMT models include complex interblock connections
between multiple backbones. (b) Latency comparison for MAGMA [15] and
CHEF (ours) on VLocNet [2], an MMMT model. MAGMA focuses on
mapping multiple DNNs on multiple accelerators but does not involve cross-
backbone layer dependencies. Compared to MAGMA, CHEF achieves lower
latency for MMMT models with fewer PEs.

ranges from 274 to 319. Existing multiaccelerator designs for
SMST models [8], [9], [10], [11] partition available resources
for each layer, and design customized subaccelerators for
different types of layers. Such layer-wise pipelined dataflow
accelerators (DFAs) can solve the large variation for shallower
networks.

Second, since MMMT models contain multiple SMST
backbones, the number of layers is also multiple times greater
than that found in single DNNs. For example, VFS includes
48 Conv and FC layers, while VLocNet [2], another MMMT
model, is composed of 141 layers. The traditional DFAs fail to
address the large variation when the network becomes deeper
because they would necessitate the design of numerous differ-
ent small accelerators under a fixed FPGA resource constraint.
As proved in DNNExplorer [17], more accelerators lead to
fewer resources for each stage, which eventually leads to lower
performance. DNNExplorer shows that when the number of
Conv layers increases from 13 to 38, the performance of a
38-layer model decreases by 77.8% compared to a shallower
network with 13 Conv layers.

Third, MMMT models include more complex inter-
layer dependency across different SMST backbones. While
Herald [18] and MAGMA [15] were developed to alleviate
the previous two challenges by running multiple networks on
multiple accelerators in parallel instead of in pure pipeline
fashion, the complex interlayer dependency across different
SMST backbones makes them inefficient. Fig. 1(b) shows the
comparison of the latency of VLocNet, a typical MMMT
model, on MAGMA and our design. MAGMA targets a small
accelerator with 32 x 64 processing elements (PEs) and a
large accelerator with 128 x 64 PEs. CHEF targets Xilinx
U280 (1808 PEs) and U250 (2458 PEs) FPGAs. In FPGA,
five digital signal processors (DSPs) conduct a multiply-
accumulate (MAC) operation and can be considered as one

PE. As illustrated in Fig. 1(b), with fewer PEs, CHEF achieves
lower latency for MMMT models than the SOTA SMST-based
accelerator design.

H2H [1] is the first attempt to map MMMT models
to different FPGA accelerators using an iterative heuristic
algorithm. However, H2H cannot work for general scenarios
due to the following limitations. First, H2H relies on the CPU
host memory to store data when the DRAMs of FPGAs cannot
hold all data, which cannot work for edge servers without a
host. Second, in H2H, each FPGA is only deployed with one
accelerator, while in a more general case, one FPGA is feasible
to deploy with one or multiple subaccelerators. The limited
design space prevents H2H from finding a more optimal
mapping scheme with better-resource utilization. M5 [7] is
the second MMMT mapping work but has the following
limitations. First, M5 uses the number of DSPs to approximate
the resource consumption and latency, while the actual rela-
tionship between the resource consumption and latency is not
polynomial. Second, M5 only targets homogeneous clusters
rather than heterogeneous clusters. Therefore, these two works
are over-simplified and fail be applied in more compli-
cated and practical design scenarios existing in heterogeneous
systems.

Compared to H2H and M5 which are the only two existing
works scheduling MMMT models on multiple FPGAs, our
work targets more general and practical scenarios for the
MMMT scheduling problem. It will be explained in Section III
in detail. Our main contributions are as follows.

1) We propose CHEF-A2F (Section IV), a two-
stage accelerators-to-FPGAs deployment approach
to efficiently deploy heterogeneous accelerators to
heterogeneous FPGAs supporting diverse accelerator
types (DATs) (Feature ()) and search for an efficient
solution in a nonlinear, multidimensional, multiple-
knapsack (MDMK) design space (Feature ).

We propose CHEF-M2A (Section V), an efficient map-
ping algorithm to map the MMMT models to the
deployed accelerators considering both the variation
among heterogeneous layers and the interlayer depen-
dency. Compared to H2H and M5, CHEF-M2A supports
more complicated scenarios as shown in Fig. 2(b) incor-
porating intra-FPGA bandwidth (BW) sharing (Feature
®), inter-FPGA-communication (Feature @), DRAM
budget during mapping (Feature (©)), and addressing
cross-backbone data dependencies (Feature (©)).

Based on the CHEF algorithm, we develop a sim-
ulator to estimate the latency of MMMT models
for different clusters. To the best of our knowledge,
we are the first to attempt to validate the simu-
lator with end-to-end implementation (Feature (@)).
Experimental results show that the deviation of the
simulation result is only —7.81% compared to the end-
to-end on-board measurement result, which validates
that the estimated latency of CHEEF is relatively accurate.
Therefore, our work can be used as a benchmark
for future mapping algorithms either in simulation or
implementation.

2)

3)
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TABLE I
COMPARISONS WITH SOTA HETEROGENEOUS ACCELERATORS DESIGNS

Accl  Acc2

Fig. 2. (a) Architecture for the heterogeneous cluster in H2H [1]. It contains
multiple FPGAs, and one FPGA is deployed with an accelerator. All FPGAs
are connected to a main host with unlimited memory. (b) More general
architecture is implemented in CHEF. Different from H2H, one FPGA can
be deployed with one or multiple accelerators. We only store weights and
immediate features on local DRAMs, and the memory constraint is considered.
D represents the intra-FPGA communication scheme. We support two inter-
FPGA communication schemes: @ the direct P2P communication between
two FPGAs without a host CPU and 3 the FPGAs are connected via a host.
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The development of DNNs enables easier fusing from
different input signals, which makes it appealing to evolve
from streamlined SMST models to MMMT models for better
accuracy [19]. Currently, MMMT models are promising to
be applied in various applications, such as robotics, human—
computer interaction, and VR/AR for better performance [2],
[3], [4], [5], [6], [20]. For example, VLocNet, a novel
convolutional neural network (CNN) architecture has been
proposed which takes two consecutive monocular images as
input, regresses the 6-DoF global pose and 6-DoF odome-
try simultaneously, and outperforms task-specific localization
models [2]. In the 3-D autonomous driving scenario, FULLER
takes both the point cloud and image as inputs and achieves
precision improvement in both map segmentation and 3-D
detection [21]. However, apart from better-prediction accuracy,
it is also necessary to reduce the inference implementa-
tion with the help of diverse accelerators. Compared with
implementing SMST, implementing MMMT has larger layer
variation, a massive number of layers, and more complex
interlayer dependency, which increases the difficulties of
efficiently deploying MMMT models on hardware platforms.

B. Effectiveness of Heterogeneous Accelerators in SMST
Implementation and Limitations to Be Applied in MMMT
Implementation

To solve the large variation in DNN layer shapes, hetero-
geneous accelerators are designed for better utilization and
low latency [8], [9], [10], [11], [15], [18]. Table I com-
pares SOTA heterogeneous accelerator designs considering the
seven features mentioned in Section I. CHARM [8] provides
a system-design methodology for composing heterogeneous

Features @D DAT | @ Knapsack | @ Intra-FPGA | @ Inter-FPGA | ) DRAM budget | ® Cross-backbone | (7) Implementation
CHARM [8] X MDSK v X X X v
BLAST-R [9] X MDMK X v X X X

Elastic-DF [10] v MDMK v v X X v
Algean [11] v MDMK X v X X v
Herald [18] v MDSK v X X X X

MAGMA [15] v MDSK v X X X X

H2H [1] v Fixed X v v v X

MS5 [7] v SDMK X v X v X
CHEF (ours) v MDMK v v v v v

FPGA 1

matrix multiply (MM) accelerators on the Versal ACAP chip.
Since the mapping targets a single FPGA with resource con-
straints, including PEs and on-chip block RAMs (BRAMs), the
design space can be represented as a multidimensional, single-
knapsack problem (MDSK). To efficiently map diverse sizes
of MM layers on multiple accelerators, it partitions the MM
layers of different workloads and generates resource partition
candidates based on the workload assignment. BLAST-R [9]
explores heterogeneous FPGA-based designs to effectively
leverage both task and data parallelism to achieve the mini-
mum cost while satisfying timing constraints. It models a CNN
as a task graph and partitions Conv layers into pipeline stages
by inserting buffers. Since it involves multiple FPGAs, the
design space expands to MDMK which is more complex to
find an optimal solution. However, the partition algorithms in
CHARM and BLAST-R only focus on the monotone type of
layers, while an MMMT model can be composed of Conv, FC,
long short-term memory (LSTM) layers, etc. To implement
MMMT models, a more general resource allocation approach
supporting diverse layer types is needed.

Dlastic-DF [10] and Algean [11] have achieved full end-
to-end multi-FPGA implementations for traditional SMST
models on the clusters with 100-GB/s network. They involve
inter-FPGA data communication. However, Algean only tar-
gets resource-abundant FPGA clouds whose on-chip memory
can hold all data but have not considered the memory budget
for resource-constrained edge clusters. Dlastic-DF implements
SMST models in a pipelined manner. However, as mentioned
in Section I, such a pipelined manner suffers from fewer
resources for each stage, especially for MMMT DNNss involv-
ing multiple times of layers compared to SMST DNNs.

To support evolved networks with multiple inputs,
Herald [18] and MAGMA [15] have been developed to deploy
multiple SMST DNNs on multiple accelerators, achieving
better utilization for heterogeneous layers. Unlike previous
DFAs [8], [9], [10], [11], such approaches can address the
former two challenges of MMMT models: 1) layer variation
and 2) massive number of layers. However, unlike real MMMT
models, the heterogeneous SMST models are independent of
each other. As shown in Fig. 1, ignoring the last challenge,
i.e., data dependency among different backbones will lead to
suboptimal solutions.

C. Deploying MMMT Models on Multi-FPGA Systems

To the best of our knowledge, H2H [1] and M5 [7] are
the only two works to map MMMT models to multi-FPGA
systems. H2H provides an iterative heuristic algorithm to
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map MMMT models on heterogeneous off-the-shelf FPGA-
based accelerators with four steps, including computation
prioritized mapping under zero local DRAM assumption;
weight locality optimization buffering parts of weights to local
DRAM; activation transfer optimization reducing immediate
feature transmission latency for adjacent layer allocated on
the same accelerator; and data locality aware re-mapping, to
reduce inter-FPGA data communication overhead. Different
from H2H which only assigns one accelerator on one FPGA
board, M5 explores flexible accelerator configurations and pos-
sible resource sharing among layers. However, the algorithms
of these works have not been validated on real hardware
platforms. The limitations mentioned in Section I prevent
both algorithms from being applied in practical scenarios.
The proposed CHEF will address these limitations which will
be discussed in Section III in detail. The main advantages
of CHEF compared with all existing works are presented in
Table I.

III. MOTIVATION

As introduced in Section II-C, H2H and M5 are the only
two works addressing the MMMT models to multi-FPGAs
scheduling problem. However, the limitations in Section I
prevent them from being used in a practical and general
system. This section will first introduce the general system
case and show how the H2H and M5 fail in the case. Then,
the overview of CHEF is shown, including the challenges and
solutions, to achieve MMMT models to heterogenous FPGAs
scheduling in the general case.

In H2H, it is limited to only one accelerator connection
topology with a host shown in Fig. 2(a) and ignores how to
deploy different heterogeneous accelerators to heterogeneous
FPGAs, which prevents the algorithm from being applied in
general FPGA systems. First, in Fig. 2(a), H2H only targets
the situation in which all FPGAs are connected to the main
host. The host stores weights and immediate data in the main
memory and conducts data swapping between two FPGAs.
However, numerous general cases are beyond H2H’s capabil-
ities. For example, in the cases of edge servers like VMSS,
BLAST-R, etc., FPGAs can directly communicate with each
other via diverse connection approaches, such as Ethernet,
PCle, high-speed serial (HSS), etc., [i.e., @ in Fig. 2(b)]. The
lack of main host memory makes it necessary to store all
data in the local DRAM of each FPGA. Some clusters like
UIUC XACC [13] and UCLA VAST [14] can communicate
with each other either via the main host (@ in the figure)
or directly via the PCle driver without requiring access to
the host CPU (). Second, H2H maps multimodal models
to off-the-shelf accelerators. However, different acceleration
designs adopt different scheduling methodologies, computa-
tion patterns, and communications patterns, so there is no
guarantee that these accelerators can be compatible with each
other. In addition, H2H only deploys one accelerator on
one FPGA, which is not flexible and leads to suboptimal
mapping schemes. Different from H2H, CHEF targets a more
practical and general design situation, where users have some
compatible accelerator design intellectual properties (IPs) with

self-developed analytical models. An IP is an accelerator
design that can be deployed on an FPGA with a given
parallelism degree. This scenario is common in system design.
For example, Xilinx has developed a group of parameterizable
IP cores called deep-learning processor units (DPUs) which
are preimplemented on FPGAs [22]. Since our work requires
finding an optimized scheduling scheme during the design time
before hardware implementation, an accurate analytical model,
including the resource costs and latency for specific layers,
is also indispensable. Given one or multiple FPGA platforms,
users can select IPs and deploy them to the system based on
application requirements. As shown in Fig. 2(b), an FPGA is
flexible to either accommodate one big accelerator or multiple
smaller accelerators that can execute independent layers in
parallel.

M5 [7] is the second work to deploy the MMMT model
on multiple FPGAs but is oversimplified and only targets
homogeneous clusters. First, M5 is oversimplified which
only uses the utilized DSPs for each accelerator to profile
the resource consumption and latency. In practical system
design, the relationship between latency and resource costs
is not polynomial, which makes the mapping problem more
complicated. Second, M5 only targets homogeneous clusters
of FPGAs, while mapping heterogeneous models to heteroge-
neous clusters of FPGAs introduces a larger design space. To
sum up, H2H and MS5 fail to be applied in more complicated
design scenarios existing in heterogeneous systems.

Compared to H2H and M5 which are the only two existing
works scheduling MMMT models on multiple FPGAs, our
work targets more general and practical scenarios. As shown
in Fig. 2(b), we have a cluster with heterogeneous FPGAs,
and each FPGA has a particular on-chip resource constraint,
i.e., available DSPs and BRAMSs. Each FPGA also has a fixed
DRAM size and on-chip to off-chip communication scheme
D. All the data are stored in DRAMs and different FPGAs
can achieve peer-to-peer (P2P) communication directly @).
The host is only used to call the functions for the on-chip
accelerator kernels. It should be noted that this architecture can
be extended to solve the architecture in Fig. 2(a) by using half
of the BW parameter in @ as the P2P communication BW,
i.e., data between two FPGAs are relayed via the main CPU
host. Therefore, this architecture can support general scenarios,
including cloud, edge, and on-device clusters. Given the
clusters, users have developed different compatible candidate
template accelerator IPs with diverse computation resource
costs and performance models. Unlike M5, which relies on a
simple performance model only considering the computation
parallelism of MAC based on the number of DSPs, our
performance model involves accurate profiling of on-chip
computation and on-chip to off-chip communication. The
model can be calibrated during on-board experiments.

The main goal of this study is to optimize both hardware
setup and accelerator mapping to ensure the efficient inference
performance of multitask DNNs. Therefore, we introduce
CHEF, a framework designed for the effective deployment
of varied accelerators to FPGAs (CHEF-A2F) and for map-
ping complex DNNs to these accelerators (CHEF-M2A). The
overview is shown in Fig. 3.
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CHEF

Challenge 2: how to map MMMT
DNNs s with large layer variations,
huge layer numbers, and complex
data dependencies on the deployed
accelerators?

Challenge 1: how to co-optimize
the hardware deployment and
MMMT mapping in the cluster?

CHEF-A2F CHEF-M2A
. ”, . C ion and C.
Coarse-Grained Initial Deploying - Aware Mapping

Idle Aware Re-deploying Data Locality Aware Re-mapping
4 1

L |

Fig. 3. Overview of CHEF. It includes CHEF-A2F to deploy heterogeneous
accelerators on different FPGAs and CHEF-M2A to map MMMT DNNs
on the deployed accelerators. CHEF-A2F includes two steps: coarse-grained
initial deploying and idle aware re-deploying. CHEF-M2A includes two
steps: computation and communication aware mapping and data locality
aware re-mapping. CHEF-M2A mapping is conducted in every deploying
to re-deploying iteration of CHEF-A2F. The four steps form a close-
loop optimization workflow and work iteratively until no more beneficial
scheduling scheme is acquired.

In the general and practical case shown in Fig. 2(b), we aim
to select efficient accelerators to be deployed on heterogeneous
FPGAs under hardware constraints and then map the MMMT
model to the deployed accelerators for low latency. As shown
in Fig. 3, the deploying and mapping problems need to be co-
optimized. We use a running example of scheduling VFS on
VMSS to illustrate CHEF.

There are two main challenges. The first is how to co-
optimize the hardware deployment and accelerator mapping
in the cluster. An FPGA can be deployed with one big
accelerator or multiple small accelerators running in paral-
lel. Different deployment leads to different mapping results,
which is shown in Fig. 5. Balancing between accelerator
architectures and available hardware resources is a tradeoff.
To address this challenge, we propose CHEF-A2F, a two-stage
accelerators-to-FPGAs deployment approach. It starts mapping
with Coarse-Grained Initial Deploying and then conducts Idle
Aware re-deploying based on the mapping results. It supports
diverse layer types (Feature (D)) and models the search space
as an MDMK problem (Feature ). This approach will be
introduced in detail in Section IV.

The second challenge is that, unlike traditional streamlined
DNNs, MMMT models have large layer variations, huge layer
numbers, and complex data dependencies, so it is nontriv-
ial to map MMMT DNNs on multiple FPGAs considering
both computation and communication patterns. Given both
computation and communication constraints, previous MMMT
mapping algorithms [1], [7] are oversimplified. Therefore, we
propose CHEF-M2A, a novel MMMT models-to-accelerators
mapping algorithm. It generalizes H2H by considering the
following additional configurations. First, one FPGA can be
deployed with one or multiple accelerators, so accelerators
can communicate with each other via intraboard communica-
tion (Feature ) or interboard communication (Feature @).
Second, without relying on the host memory to buffer weights
and intermediate data, the mapping algorithm will consider the
impacts of local DRAM size (Feature (3)). Compared to the
four steps in H2H, CHEF-M2A achieves lower latency with
only two steps: 1) the computation and communication aware
mapping and 2) data locality aware re-mapping. This mapping
algorithm will be introduced in Section V.

As illustrated in Fig. 3, the optimizations in CHEF-A2F and
CHEF-M2A form a close-loop optimization workflow. During
the initial deployment and each iteration of re-deploying in
CHEF-A2F, CHEF-M2A mapping is conducted to update
the mapping scheme based on the new accelerator-to-FPGA
deployment. CHEF stops until no more beneficial mapping
and deploying schemes can be obtained.

IV. CHEF-A2F

In this section, we propose CHEF-A2F, a two-stage
accelerators-to-FPGAs deployment approach to address the
first challenge discussed in Section III. The overall co-optimize
problem can be formulated as follows. Given i = 1,..., m
FPGAs with available DSPs and BRAMSs constraints, i.e.,
DSP; and BRAM,; for FPGA;, we have already designed ¢ =
1,...,n types of accelerator IPs, e.g., Ay Conv IPs, Ay FC
IPs, A3 LSTM IPs, etc. (Feature (D). Each IP has an analytical
model which is composed of a resource and a performance
model [23], [24]. The resource model is used to estimate its
DSPs and BRAMSs cost, e.g., DSP,—; 4, and BRAM,—1, 4,
for Conv IPs. The performance model estimates the latency
for a DNN layer of the same type. The optimization problem
can be illustrated in (1). The deployment scheme is shown
as ({Xja} 1 <a <A, 1 <t <n, 1 <i < m), where
Xita 1S the number of the ath IP for the rth accelerator type
deployed to FPGA;, and {Xj,} is a list of Xji, for all IPs. The
goal of the optimization problem is to minimize the overall
mapping latency of the deployed accelerators. The first two
constraints indicate that for each FPGA i, the sum of DSPs and
BRAMs costs of the deployed accelerators should not exceed
the available DSPs and BRAMs for each FPGA. Constraint
3 indicates that the number of accelerators deployed on each
FPGA for each IP should be a non-negative integer, and the
same IPs can be selected multiple times. The last constraint
ensures that for each type of accelerator, at least one IP should
be selected and deployed in the multi-FPGA cluster

min CHEF — M2A Mapping({Xiu}, 1 <a <A,
I<t<n, 1<i<m
Z?:l ZAt | DSPity - Xja < DSP; Vi

a=

S 30 BRAMyy, - Xia < BRAM,, Vi
Xita > 0 and integer

Z;n:] 22;1 Xita > 1, V2.

It is apparent that (1) can be represented as a nonlinear,
MDMK problem, which is NP-hard and cannot be solved
in polynomial time. Since the mapping function is also
nonpolynomial, directly applying traditional knapsack-solving
algorithms like dynamic programming (DP) to find an optimal
solution is time-consuming. Therefore, we propose a two-stage
accelerators-to-FPGAs deployment approach, CHEF-A2F, to
search for an efficient deploying scheme in an acceptable time
for this MDMK problem (Feature ).

The overview of CHEF-A2F is shown in Fig. 4. It first
allocates accelerators from the candidate IPs to the FPGA
cluster in a Coarse-Grained manner. Then, an Idle Aware re-
deploying algorithm is proposed to remove and replace some
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Fig. 4. Two-stage accelerators-to-FPGAs deployment approach (CHEF-A2F) visualization. It includes coarse-grained initial deploying and idle aware re-
deploying. In every deploying or re-deploying iteration, MMMT is mapped to the deployed or re-deployed accelerators. The re-deploying stops until no
beneficial mapping scheme can be acquired. We only show the former three Conv layers for each modality of a MMMT model.

Parallelism

Accld  degree algorithm in Section V to get an initial estimated latency. a7
sce3_omn_16_32_o1 [N R (1T Current mapping scheme of the VFS running example is 47s
2 te 10.0020 |l = shown in Fig. 5(a). o

> acc1_cnn_16_32_b0 -ED:I:I Cl

s J I Il [
cetype FPGAId, s 07 004 006 008 01 012 014 0.16 0.18 0.2 oiil(s) B. Idle Aware re-deployment ar
aecz-onn_16.32.01 ﬂ]]]ll\ |1 EE [l In Section IV-A, we use the maximum throughput to s
acel_fo_16_04_b0 1 |] D]:ﬂ approximate the mapping performance for each deployed a7
“°°-°""-“’-"“-"°ﬂmﬂ_|| || ||| || | | ‘ I | | ||H accelerator. However, the accelerators cannot achieve the aso

best performance since some of them will be idle for some 41

layers after CHEF-M2A mapping. For example, in Fig. 5(a), 4
“accl” is idle after 0.06 s. Therefore, we re-deploy some sss

Fig. 5. Gantt charts of scheduling VFS on VMSS under 15 GB/s before re- ;

deployment and after re-deployment. The “16_32" means the parallelism for accelerators based on the mapping results. We found that

the input channels is 16, while that for output channels is 32 for a Conv layer. after removing idle accelerators [i.e., accl in Fig. 5(a)] we s
Different bar colors represent layers from different modalities. (a) Mapping can leave space to replace smaller accelerators with lower- sss

scheme after coarse-grained initial deploying. (b) Mapping scheme after idle parallelism degrees [i.e., “acc0” in Fig. 5(a)] to bigger ones s
aware re-deployment. . . . . . .
with higher-parallelism degrees [i.e., accO in Fig. 5(b)]. Based 4ss
on this observation, we propose an idle-aware re-deployment aso

w4 accelerators for better utilization. The Gantt charts of the after getting the initial deployment scheme, mapping, and s

0.0 002 004 006 008 01 0.12 014 016 0.18
Lat (s)

455 mapping scheme are shown in Fig. 5. estimated initial latency Lat. We search for an optimized a4
deployment scheme by iteratively removing accelerators with a2
s A. Coarse-Grained Initial Deploying longer idle time and then replacing small accelerators with 4ss

larger and more powerful ones. We check the latency after as
mapping every time a replacement is conducted and only ass
accept the replacement with shortened latency. The proposed 496
re-deploying algorithm adopts the duty cycle to measure if an 497
accelerator is under-utilized and idle. 498

The algorithm consists of the following steps. Step I: For s
the accelerator of each type, starting from the accelerator with seo
the least duty cycle, the algorithm will attempt to remove the sor
accelerator from the located FPGA if the accelerator is not the soz
only accelerator of the same type. For example, in Fig. 5(a), sos
there are two accelerator types: Conv and FC. “acc2” is the sos
only FC accelerator, while accl has the lowest-duty cycle for sos

47 Since the Mapping function in (1) is nonpolynomial, it
458 1s time-consuming to directly apply knapsack-solving algo-
40 rithms. Therefore, we provide a coarse-grained approach to
40 select the most powerful accelerators combination with the
461 maximum overall throughput as an initial deploying strategy.
42  For each rth type of accelerator IP ra deployed in FPGA
43 [, we estimate the maximum throughput the accelerator can
464 achieve for each layer of the MMMT model hpj,. Then,
465 we approximate the mapping results in (1) using the sum
466 Of the estimated maximum throughput for all the deployed
47 accelerators. The optimization goal after approximation is

468 shown in (2), while the constraints remain unchanged

I3

all Conv accelerators. 506

nom A Step 2: For the remaining accelerators on the same FPGA, sor

469 max Z Z Z thpita - Xita.- () the algorithm attempts to pick one and replace it with another sos
=1 i=1 a=1 candidate TP as long as the DSPs and BRAMs constraints sos

470 This problem is changed to a standard linear programming are met (e.g., replace accO on “b0” in Fig. 5(a) to accO in sio
471 (LP) problem and can be solved by off-the-shelf LP tools. Fig. 5(b). 511

472 In this work, PuLP [25] is used as the LP solver. After the Step 3: For each replacement in step 2, we re-map the si2
473 LP-based deployment, we apply the CHEF-M2A mapping MMMT DNN using CHEF-M2A and choose the deployment si3
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Fig. 6. Gantt charts of scheduling VFS on VMSS under 15 GB/s before
re-mapping and after re-mapping under coarse-grained initial deploying.
(a) Mapping scheme after computation and communication aware mapping.
(b) Mapping scheme after data locality aware re-mapping.

s14 parameters {Xj,} with the lowest latency (e.g., the lowest Lat
s15 is shortened from 0.222 to 0.188 s in Fig. 5(b).

sie  Step 4: If the overall latency is shortened after steps 1-3,
7 we accept such replacement. The re-deploying scheme, re-
s mapping scheme, and Lat are updated. Then, we return to
o step 1 using the updated duty cycle for the next re-deploying
s20 iteration. If the latency is not shortened after the replacement,
s21 we will remove another accelerator with the second least-
s22 duty cycle and repeat steps 2 and 3. If no accelerator can
s23 be removed for lower-resultant latency, [e.g., Lat cannot be
s2« shorter than that in Fig. 5(b)], the algorithm will stop.

5

5

5

525 V. CHEF-M2A

s26 This section will introduce the details of CHEF-M2A,
s27 which maps MMMT models to the accelerators obtained in
s2s Section IV. The input of the CHEF-M2A algorithm includes
s20 the model graph Gpodel and accelerator-to-FPGA deploying
ss0 information {F;{Acc;}}. The nodes in Gpodel represent the
sa1 layers of the MMMT model, while the edges represent
> layer dependencies. Unlike SMST, Gpgdel involves multiple
ss3 branches with complex data dependency. We use the same
ss running example to illustrate the CHEF-M2A algorithm, and
s35 the Gantt charts are shown in Fig. 6.

sss ~ Unlike H2H which only lists the performance models
s37 for each accelerator, CHEF-M2A models the accelerators-to-
sss FPGAs deploying information {F;{Acc;}} which is obtained
s9 from ({Xiw} 1 <a < A, 1 <t <n, 1 <i < m). For
se0 each FPGA Fj, it includes the list of deployed accelerators
san {Accj}, the number of DDR/HBM channels, and available
s« DRAM size. Acc; is the jth accelerator deployed in F;. Each
s accelerator Acc; records which IP it is applied to which FPGA
s44 and has a performance model Perf; using the layer information,
s¢s BW between the FPGA chip and the DRAM BWpgrawm [i-e.,
sss (D in Fig. 2(c)], and the interaccelerators BW BWiy, [i.e.,
se7 @ or @ in Fig. 2(c)] as inputs. The output of the mapping
ses algorithm is a multiaccelerator graph G:ys = {GZCCJ,}, where
s49 each accelerator j holds a mapping graph G*ACC’_ representing
sso the hardware dependency for each layer. Each node of Gf\ccj
ss1 has the information on which layer the accelerator is mapped
ss2 to, the start time of the layer, and the end time, while the edges
ss3 show the dependencies and orders of these mapped layers. An

ss+ example of G is shown in Fig. 6. The mapping latency Lar

5

@

iy

5

b

is the maximum value of the end time in Gg.
minimize Lat.

As introduced in Section III, H2H has four processes:
1) computation prioritized mapping; 2) weight locality
optimization; 3) activation transfer optimization; and 4) data
locality aware re-mapping. It assumes all data are stored in
the host memory which is hypothetically unlimited in the first
process and then buffers only a proportion of these data to
the local DRAM s in the second and third processes to remove
the data transmission latency. However, in a more general
case without host memory, the zero local DRAM assumption
cannot be applied, so data transmission between layers should
be involved at the beginning. Therefore, compared to H2H,
CHEF-M2A first conducts Computation and Communication
Aware Mapping, which considers weights locality and acti-
vation transmission together. After that, Data Locality Aware
re-mapping is applied to further shorten the overall latency.

Our goal is to

A. Computation and Communication Aware Mapping

Since MMMT models involve cross-backbone dependency,
each layer will have multiple predecessors and successors
(Feature ®). To tackle this, in the initial mapping, we first
consider all unmapped nodes without predecessors in the
model graph and find the best-mapping combinations, and
then the mapped nodes are removed from the graph. The
detailed steps are as follows. In step 1, for all the unmapped
nodes without predecessors in Gmodel, W€ enumerate all the
mapping combinations to allocate these nodes on {F;{Acc;}}.
Unlike H2H which assumes zero DRAM locality by storing
all weights and immediate features in the host memory at the
beginning and moving a proportion of these data to DRAM
under the DRAM budget later, CHEF-M2A stores all data
in DRAM. Therefore, CHEF needs to guarantee the DRAM
budget can hold all data during mapping. Thus, in step 2,
we conduct DRAM budget check (Feature (), i.e., for each
mapping candidate, we check if the current DRAM budget for
FPGA is possible to accommodate weights and features for
the rest of the layers. Only if for all layer types, the DRAM
cost for the rest of the layers of the same type is smaller than
the DRAM size for the FPGAs deployed with corresponding
types of accelerators, and the FPGA with maximum DRAM
budget can hold the data of the layer with maximum DRAM
cost, CHEF-M2A will accept current mapping candidate and
move to the next step.

Step 3 is to calculate the latency increment ALat for all
the accepted mapping candidates. Assume layer / is mapped
to accelerator Accj, and its predecessor layer /’ in the MMMT
model is mapped to accelerator Accy. For layer [, its layer
latency (e.g., the length of a box in Fig. 6) involves the
intra-accelerator latency estimated by Perf; and the data trans-
mission latency among accelerators. Unlike H2H, we store
weights of [ in the local DRAM of Fj, so there is no weight
transmission. For feature transmission, the situation is also
more complicated since we consider the fact that multiple
accelerators are located on one FPGA. The detailed analysis
is as follows (Features 3 and @®). First, if Acc; and Accy
share the same DDR/HBM bank of the same FPGA, there is
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no feature transmission latency, but BWpram will be divided
by the number of accelerators sharing the same bank. Second,
if they are on the same FPGA but connect to different banks,
features are transmitted among banks via the FPGA chip.
Third, if Acc; and Accy are located on different FPGAs, the
feature transmission latency is calculated via BWyyer. ALat is
the maximum layer latency of these unmapped nodes. In step
4, we select the mapping candidate that results in the minimum
ALat and remove the mapped nodes from the MMMT model
graph. G:‘ys is also updated with new mapped nodes.

B. Data Locality Aware re-mapping

Next, CHEF-M2A conducts a re-mapping operation that
reallocates a layer from its source accelerator to a new
destination accelerator, on which its neighbors (predecessors
or successors) are mapped with the following steps.

Step 1: For all the nodes in Gmodel, if its neighbor is not
on the same accelerator, we attempt to re-map the node to
its neighbor’s accelerator [e.g., the circled layer on accO in
Fig. 6(a) is moved to accl in Fig. 6(b)].

Step 2: For each re-mapping attempt, we conduct the
DRAM budget check. The latency after re-mapping is calcu-
lated only if the DRAM budget is satisfied.

Step 3: The re-mapping attempt is accepted if the MMMT
model latency is shortened (e.g., Lat in Fig. 6 is shortened
from 0.224 to 0.222 s). G is also updated.

Steps 1-3 are repeated until no node can be re-mapped for
better results.

VI. SIMULATOR

Based on CHEF-A2F and CHEF-M2A, we develop a
simulator to estimate the latency of MMMT models for
different clusters. The simulator is composed of four parts:
1) the configuration of the FPGA cluster; 2) resources and
performance models for accelerator IPs; 3) the definition of
the MMMT model; and 4) our CHEF scheduling algorithm.

The Configuration of the Cluster: In this part, we first define
the FPGAs that are used in the cluster. The information on
each FPGA includes the frequency of the FPGA, the number of
on-chip DSPs and BRAMs, the number of DDR/HBM banks
in the off-chip DRAM, the size of each DDR/HBM bank,
and the DDR/HBM BW BWpgram. Second, we include the
P2P BW between arbitrary two FPGAs BWiyer. If FPGA 1
and FPGA 2 in Fig. 2(b) are connected via ), BWipe is the
PCle BW. If they are connected via 3, which is the same as
Fig. 2(a), BWiper is half of the FPGA-to-host BW.

Accelerator IPs: Our simulator enables users to design
customized accelerator IPs with self-developed resource and
performance models. Currently, we have established model
templates for Conv IPs and FC IPs based on XFER [24]
and LSTM IPs based on [26] with different parallelism
degrees. For each template, the resource model estimates
the number of DSPs, BRAMs costs under their parallelism
degree, and the DRAM costs for each layer. The performance
model calculates the latency for each layer, both including
the features transfer with the predecessor layers and without
interlayer data communication.

TABLE II
HETEROGENEOUS EDGE CLUSTERS

Name Used in Configuration
VC707+ZCU102+ZC706+XCKU060+
Cluster 1 | H2H [1] XC7Z0454VCU118
Cluster 2 | VMSS [12] U50LV+U30
Cluster 3 | XACC [13] U280+U250
TABLE III
MMMT DNNSs
Model Backbone Layer Types | Layers
VLocNet [2] ResNet-50 variants CNN, FC 141
CASUA-SUREF [27] ResNet-18 variants CNN 44
VES [16] VGG and VD-CNN variants | CNN, FC 48
FaceBag [28] ResNet variants CNN, FC 51
CNN-LSTM [29] | ConvNet and LSTM variants | CNN, LSTM 20

Definition of the MMMT Model: In each MMMT model,
we first define layer information, including the layer type and
the layer parameters for each layer. For Conv layers, the layer
parameters include the number of output channels, the number
of input channels, output feature column size, output feature
row size, weight kernel size, stride, and padding size. For
FC layers, the parameters only involve the number of output
channels and the number of input channels. For LSTM layers,
embedded vector dimension, the number of hidden states, and
the number of LSTM cells are involved. Second, the data
dependency between different layers is defined.

CHEF Scheduling Algorithm: Based on the algorithms
introduced in Sections IV and V, we generate the optimized
scheduling strategy given the FPGA clusters, accelerator IPs,
and the MMMT model. CHEF-A2F records the accelerator-to-
FPGA deploying information {F;{Acc;}} indicating which IP
is deployed to which FPGA and how many accelerators of this
IP are on the FPGA. Given the accelerator deployment, CHEF-
M2A records the mapping scheme G’skys, including which layer,
is mapped to which accelerator, and the start and end times
for each layer. The resultant inference latency Lat is the end
time of the last layer.

VII. EXPERIMENTS

In this section, we first implement the MMMT model on
the public XACC server and compare the end-to-end latency
with that estimated by the simulator to validate the correctness
of the algorithm. Second, we analyze the effectiveness of re-
deploying and re-mapping optimization steps in CHEF on
three practical FPGA clusters both at the edge level and at
the cloud level. Then, we show the overall effectiveness of
CHEF by comparing it with the SOTA MMMT models to
heterogeneous clusters scheduling algorithm H2H. Finally, a
series of ablation studies for search time (ST) and latency
are presented to validate the effectiveness and efficiency of
CHEF-A2F and CHEF-M2A.

A. Experimental Setup

Heterogeneous Cluster of FPGAs: Table II summarizes
3 heterogeneous FPGA clusters that have been applied in
previous research and industrial applications. Cluster 1 adopts
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m = 6 different Xilinx FPGAs that are applied in H2H
with 6 developed IPs. Cluster 2 uses the VMSS edge server
developed by Xilinx for smart cities (m = 2) with 12 IPs.
The XACC in Cluster 3 is a public multi-FPGA cloud server
established by UIUC (m = 2) with 8 IPs. H2H uses a CPU
host to connect all FPGAs via Ethernet, while VMSS is
equipped with PCle interfaces for direct P2P communication.
XACC supports both P2P communication and host-to-FPGA
communication. To show the training performance on various
P2P communication BWs, we test CHEF on these clusters
with different BWiper = 0.125, 3, and 15 GB/s. 0.125
GB/s represents a low-BW communication approach, such
as Gigabit Ethernet [30] (1Gbps=0.125GB/s), while 3 GB/s
represents a medium BW connection, such as PCle (tested in
Section VII-B). 15 GB/s represents a high BW. For example,
with TCP/IP stack, the 100 GbE Smart NICs achieve around
100-140 Gbps BW with an average of 15 GB/s [31].

Heterogeneous MMMT Models: Table III summarizes 5 het-
erogeneous DNNs used in the evaluation, spanning different
domains. The models use CNNs, FCs, or LSTMs as backbones
(Feature (D) and typically involve 3 or 4 backbones with cross-
backbone data dependencies Feature ). For VLocNet, VES,
FaceBag, and CNN-LSTM, the number of layer types n = 2,
while n = 1 for CASUA-SURF.

Baselines: The baselines are as follows.

1) To show the effectiveness of the re-deploying and re-

mapping optimizations in Section VII-C, we compare
the resultant latency with the following steps: Step 1
is the latency with initial deploying in CHEF-A2F and
initial mapping in CHEF-M2A, step 2 is the latency with
re-mapping during the initial deploying; and step 3 is
the latency with both re-deploying in CHEF-A2F and
re-mapping in CHEF-M2A.
To show the overall effectiveness of CHEF in
Section VII-D, we compare it with the SOTA work H2H.
In the ablation studies in Section VII-E, to vali-
date the effectiveness of CHEF-A2F, we compare our
deployment search approach with DP, which is a com-
monly used search algorithm to find optimal solutions
for Knapsack problems. To validate the effectiveness
of CHEF-M2A, the optimal solution is provided by
enumerating all possible layer-to-accelerator mapping
combinations.

2)

3)

B. End-to-End Implementation (Feature (D)

The proposed work is evaluated on the public UIUC HACC
Cluster [13] with one U280 and one U250 FPGA shown
in Fig. 2(b). The working frequency for U280 is 200 MHz,
while U250 works on 150 MHz. The U280 is equipped
with 32 HBM banks, while the U250 is equipped with 4
DDR banks. We first measure the on-board BWpram. The
HBM BW is around 12 GB/s under 200 MHz, and the DDR
BW is around 8 GB/s under 150 MHz. Then, we test the
PCle-based P2P communication BW BWinter, and BWinter
is measured to be 3 GB/s. To validate the accuracy and
correctness of CHEF, we conduct end-to-end implementation
on the CASUA-SURF [27], VFS [16], and FaceBag [28]

TABLE IV
END-TO-END RUNTIME OF MMMT MODELS ON HACC: MODELING
VERSUS ON-BOARD MEASUREMENT

Model Modeling (s) | On-board Measurement(s) | Error Rate
CASUA-SURF 0.0307 0.0336 -8.63%
VFS 0.1475 0.1600 -7.81%
FaceBag 0.0159 0.0168 -5.36%

models, and each model contains more than 40 layers. We
developed eight candidate IPs and established analytical mod-
els. Each IP is designed and coded with TAPA [32]. The
obtained IP cores have bitstream generated in Xilinx Vitis
(v2022.2). For each IP, we compare the latency estimated
by the performance model and that measured on-board. The
deviations for estimated latency compared to on-board tested
latency for these IPs range from —0.94% to —6.66%, which
proves that the performance models are accurate for latency
estimation.

With the configuration of the FPGA cluster, the acceleration
IPs, and the definition of the MMMT model, we apply
CHEF to acquire the scheduling information, including the
accelerator deploying information {F;{Acc;}} and the mapping
scheme Gg, automatically generated by the simulator. The
simulator also generates an estimated latency Lat. Then,
we implement end-to-end inference of the three models on
the cluster using the scheduling information and measure
the on-board execution latency. As shown in Table IV, the
deviation for the end-to-end testing of each complete model
is less than 10% which validates that the estimated latency of
CHEF is relatively accurate. After validating the correctness
of the CHEF and the accuracy of its simulator, we use the
simulator for a series of comparisons and ablation studies in
the following experiments.

C. Effectiveness of re-deploying and re-mapping

Fig. 7 shows the system latency of the MMMT models
listed in Table III. The x-axis represents different optimization
steps in CHEF, i.e., without re-deploying or re-mapping,
with only re-mapping, and with both re-deploying and re-
mapping. We test the latency of the three clusters listed in
Table II under various P2P BWs. It can be seen that the re-
deploying in CHEF-A2F and re-mapping in CHEF-M2A can
significantly reduce the overall latency in these cases. For
example, in Fig. 7(a) for Cluster 1, the maximum latency
reductions caused by the combination of re-deploying and re-
mapping are 84%, 87%, and 88% under low, medium, and high
P2P BW, respectively. re-deploying and re-mapping effectively
improve the inference performance for different FPGA clusters
under various P2P BWs.

D. Comparison With H2H [1]

Fig. 8 shows the inference latency speedup of the MMMT
models compared to H2H [1]. We compare the latency on
the three heterogeneous cluster platforms under low, medium,
and high BW. H2H adopts fixed accelerators, while our work
searches optimized accelerator combinations and deploys them
on the clusters. The inference latency achieved by CHEF is
significantly shortened compared to the H2H baseline.
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Fig. 7.

Latency comparison of re-deploying and re-mapping. The x-axis represents three optimization steps: Step 1 is after initial deploying and initial

mapping, step 2 is after the re-mapping under the initial accelerator deployment, and step 3 is the final result after both re-deploying and re-mapping.
(a) Comparisons for Cluster 1. (b) Comparisons for Cluster 2. (c) Comparisons for Cluster 3. The re-deploying in CHEF-A2F and re-mapping in CHEF-M2A

can significantly decrease the resultant inference latency for these clusters.
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Fig. 8. Latency speedup compared to H2H. (a) Speedup in Cluster 1.
(b) Speedup in Cluster 2. (c) Speedup in Cluster 3. Compared to H2H, the
proposed CHEF achieves 1.09—49.43 inference speedup in these clusters.

The speedup comes from two aspects. On one hand,
H2H deploys one fixed accelerator on one FPGA, while
our proposed CHEF is flexible to deploy one or multiple

accelerators on each FPGA. Take Cluster 2 under the low-
P2P BW as an example, CHEF deploys 3 accelerators for
VLocNet and 5 accelerators for CASUA-SURF. Compared to
H2H, CHEEF considers a larger design space, and it is feasible
to search for a beneficial deployment scheme with superior
mapping results.

On the other hand, H2H suffers from an intenser inter-FPGA
communication bottleneck compared to CHEF. In CHEEF, all
weights are stored in local DRAM, while H2H stores parts
of weights in the host memory which leads to extra weights
transfer workload (Feature (3)). Besides, immediate features
are transmitted back and forth via the CPU host if adjacent
layers are not located on the same accelerators. However,
as mentioned in Section V, in CHEF, features do not need
to be moved as long as two adjacent layers share the same
HBM/DDR bank (Feature @). If data-dependent layers are
not allocated to the same memory bank but are mapped to
accelerators on the same FPGA, features are transmitted via
the FPGA chip. The on-chip transmission is more efficient
than FPGA-to-FPGA transmission. Only when adjacent layers
mapped to different FPGAs, the interboard feature transmis-
sion is required (Feature @)). Therefore, as presented in Fig. 8,
CHEF achieves significant speedup, especially under lower-
P2P BW. To further validate that Features 3-Q) of CHEF
successfully reduces communication overhead, we present
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TABLE V
INTERACCELERATOR COMMUNICATION RATIO BETWEEN H2H AND
CHEF (OURS)
Cluster 1 Cluster 2 Cluster 3
Model 1P2P BW > CHEF [ H2H [ CHEF | H2H [CHEF
low |54.91% |14.07% [82.76% | 2.22% |83.22% |0.05%
VLocNet | medium | 11.76% | 2.88% [12.83% | 5.62% |13.20% |4.04%
high 2.87% | 0.61% | 2.86% | 1.85% | 2.95% [0.41%
CASUA low |49.16% | 5.40% |75.44% |11.43% |71.33% |5.82%
SURE medium | 11.22%| 0.94% |11.34% | 4.30% | 9.39% |1.89%
high 2.88% | 0.80% | 2.50% | 0.93% | 2.03% [0.61%
low |49.97%| 3.72% [82.60% | 9.74% |79.86% |0.30%
VES | medium | 6.11% | 0.74% [17.75% | 3.12% | 15.85% |0.58%
high 1.60% | 0.24% | 3.98% | 0.84% | 3.30% [0.33%
low [80.92% | 3.19% [90.84% | 0.00% |89.21% |0.00%
FaceBag | medium |22.74%| 0.89% [28.55% | 1.82% [24.99% |1.70%
high | 6.61% | 0.23% | 7.10% | 0.52% | 5.99% [0.04%
CNN- low |22.47% | 0.10% [79.36% | 0.10% |76.51% |0.06%
LSTM medium | 4.98% | 0.83% [13.85% | 0.00% |11.95% |0.00%
high 1.07% | 0.17% | 3.11% | 0.04% | 2.65% |0.00%
TABLE VI
DEPLOYMENT PERFORMANCE AND ST COMPARISON
DP (Optimal) CHEF-A2F (ours)
Model |FPGAs| Lat. (s) ST (s) Lat. (s) ST (s)
2 0.0446 3.62 (16X) 0.0505 (1.13X) | 0.220
VLocNet* 3 0.0386 223 (326X) 0.0386 (1X) 0.683
4 0.0304 | 1.97E4 (9610X) 0.0304 (1X) 2.05
CASUA 2 0.0119 3.24 21X) 0.0131 (1.10X) | 0.151
_SURF* 3 0.00838 196 (261X) 0.00838 (1X) |0.750
4 0.00691 | 1.72E4 (9556X) | 0.00691 (1X) 1.80
2 0.0257 9.27 (22X) 0.0260 (1.01X) | 0.424
VES* 3 0.0212 810 (323X) 0.0212 (1X) 2.48
4 0.0212 [9.62E4 (10378X)| 0.0212 (1X) 9.27
2 0.000955 3.87 (18X) 0.00117 (1.23X) | 0.220
FaceBag* 3 0.000888 226 (309X) 0.000931 (1.05X)| 0.732
4 0.000808 | 1.93E4 (9650X) [ 0.000808 (1X) [ 2.00
CNN- 2 0.0103 2.61 (17X) 0.0110 (1.07X) | 0.154
LSTM* 3 0.0103 184 (322X) 0.0103 (1X) 0.572
4 0.0103 [1.65E4 (10060X)| 0.0103 (1X) 1.64

the interaccelerator communication ratio of CHEF and H2H
in Table V. The ratio is calculated using the sum of the
accelerator-to-accelerator communication latency divided by
the accumulation of layer time costs for each accelerator.

As illustrated in Table V, the interaccelerator communica-
tion ratio is less than 15% under various P2P BWs for different
clusters, while the ratio for H2H is severely impacted by the
P2P BW. For example, under low BW, the interaccelerator
communication takes up 22%-91% of the accumulated infer-
ence latency. Compared to H2H, CHEF suffers less from the
cross-accelerator communication overhead.

E. Analysis of CHEF-A2F and CHEF-M2A Algorithms

As mentioned in Section IV, finding an optimal solution
is time-consuming, SO we propose a two-stage accelerators-
to-FPGAs deployment approach to co-optimize hardware
deployment as well as accelerator mapping and thus search
for a near-optimal solution. In this section, we validate the
effectiveness and efficiency of CHEF-A2F and CHEF-M2A
solving the MDMK problem in (1) by comparing the resultant
inference latency (Lat.) and ST with the optimal solution
(Feature (@). Results show that CHEF can achieve near-
optimal solutions with significantly less searching time.

TABLE VII
MAPPING PERFORMANCE AND ST COMPARISON

Optimal CHEF-M2A (ours)

Model | Accs. | Lat. (s) ST (s) Lat. (s) ST (s)
2 0.0547 2.85 (130X) | 0.0555 (1.01X) | 0.0220

VLocNet* | 3 0.0555 159 (6115X) | 0.0599 (1.08X) |0.0260
4 0.0522 | 3107 (21727X) | 0.0522 (1.00X) | 0.1430

CASUA 2 0.0133 1.23 (87.9X) | 0.0134 (1.01X) | 0.0140
_SURF* 3 0.0125 | 46.4 (1719X) | 0.0128 (1.02X) | 0.0270
4 0.0125 694 (8165X) | 0.0128 (1.02X) | 0.0850

2 0.0235 2.75 (131X) | 0.0261 (1.11X) | 0.0210

VES* 3 0.0212 157 (1826X) | 0.0246 (1.16X) | 0.0860
4 0.0212 | 3453 (11472X) | 0.0212 (1X) |0.3010

2 0.00120 | 2.68 (223X) |0.00121 (1.01X) | 0.0120

FaceBag* 3 0.00109 | 158 (4647X) |0.00120 (1.10X) | 0.0340
4 10.000997 | 3390 (25299X) | 0.00117 (1.17X) | 0.1340

CNN- 2 0.0104 2.21 (205X) | 0.0110 (1.06X) | 0.0108
LSTM* 3 0.0104 127 (5799X) 0.0104 (1X) |[0.0219
4 0.0103 |[2295 (18811X)| 0.0103 (1X) 0.122

We first validate the effectiveness of the proposed CHEF-
A2F deployment approach. Table VI shows the deployment
comparison of CHEF-A2F and DP. We compare the estimated
system latency and the ST on Cluster 3 with three candidate
IPs and increase the number of FPGAs m from 2 to 4. For both
DP and the proposed CHEF-A2F deployment approach, we
apply the same CHEF-M2A mapping algorithm to generate the
mapping scheme for each iteration of hardware deployment.
Since DP searches all possible deployment schemes and finds
an optimal solution, it will be time-consuming to map all
layers of the MMMT models in each iteration. Therefore, we
perform the comparison mapping subnetworks that contain
only 9 or 10 layers for different models, and we use * to indi-
cate only part of the layers is involved in the models in later
results. As shown in Table VI, CHEF-A2F can achieve near-
optimal performance for all the scenarios, while searching for
an optimal deploying scheme demands a great mass of time.
For example, when the number of FPGAs increases to 4, DP
takes nearly 27 h to find an optimal solution for a subnetwork
of VES with ten layers, which is 10378 times compared to
CHEF-A2F. Thus, searching for an optimal solution via DP
for the whole VFS with 48 layers is estimated to take around 5
days, which is inefficient in practical applications. Compared
to DP, CHEF-A2F can find a near-optimal solution for the
whole VFES in 15.6 s. It should be noted that we only consider
three IP candidates. When we increase the IPs to 4, DP fails
to complete the search within 15 days even for subnetworks,
while CHEF is efficient in searching for complete MMMT
models with more IPs in an acceptable time. The ST will be
discussed in detail in Fig. 9.

Then, we validate the effectiveness of CHEF-M2A.
Table VII shows the mapping comparison of CHEF-M2A and
the optimal solution in terms of estimated system latency and
ST when the number of deployed accelerators increases from
2 to 4. The optimal solution is obtained by enumerating all
possible mapping combinations and finding the one with the
shortest system latency. Given N available accelerators and an
MMMT model with M layers, the complexity of finding the
optimal solution is NM. Mapping all layers of MMMT models
with four accelerator candidates ranging from 40 layers to
150 layers is time-consuming. Therefore, we also compare the
performance mapping only 9 and 10 layers for the MMMT
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Fig. 9. ST of CHEF with eight candidate IPs when the number of FPGAs
increases to 4. The ST ranges from 0.66 to 78 s.

models. As shown in Table VII, CHEF-M2A achieves near-
optimal performance for all the scenarios, while searching
for an optimal mapping scheme requires tremendous time.
For example, deployed with 4 accelerators, finding an optimal
solution mapping a mere 10-layer VLocNet takes nearly 1 h,
while CHEF-M2A costs only 0.1430 s. CHEF-M2A achieves
21727 times speedup in ST for mapping. If we search for the
optimal solution for the whole 141 layers, the optimal solution
is estimated to take 6.4 x 1¢78 h, which is impossible to apply
in practical applications, while CHEF-M2A can find a near-
optimal solution in 13.5 s.

To further present the overall efficiency of CHEF, we display
the ST when CHEEF is applied to schedule complete MMMT
models on m = 4 FPGAs with eight candidate IPs. As can
be seen in Fig. 9, CHEF searches for near-optimal deploying
and mapping schemes for MMMT models ranging from 20
layers to 141 layers in minutes or seconds. If new models are
given in the application, our proposed approach is feasible and
efficient to generate the scheduling scheme in an acceptable
design time.

VIII. CONCLUSION

This work proposes CHEF to enable efficient heterogeneous
MMMT models deploying on heterogeneous clusters with
FPGAs. We propose CHEF-A2F, a two-stage accelerators-to-
FPGAs deployment approach to select efficient accelerators
IPs and deploy them on given heterogeneous clusters of
FPGAs considering the mapping performance. Then, we pro-
pose CHEF-M2A to map MMMT models to the deployed
accelerators. We are the first attempt to implement end-to-end
MMMT model inference in heterogeneous clusters of FPGAs
which provides benchmarks and baselines for future works.
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