
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 1

CHEF: A Framework for Deploying Heterogeneous
Models on Clusters With Heterogeneous FPGAs

Yue Tang , Yukai Song , Naveena Elango , Member, IEEE, Sheena Ratnam Priya, Member, IEEE,
Alex K. Jones , Fellow, IEEE, Jinjun Xiong , Fellow, IEEE, Peipei Zhou, Senior Member, IEEE,

and Jingtong Hu , Senior Member, IEEE

Abstract—Deep neural networks (DNNs) are rapidly evolv-1

ing from streamlined single-modality single-task (SMST) to2

multimodality multitask (MMMT) with large variations for3

different layers and complex data dependencies among layers.4

To support such models, hardware systems also evolved to5

be heterogeneous. The heterogeneous system comes from the6

prevailing trend to integrate diverse accelerators into the system7

for lower latency. FPGAs have high-computation density and8

communication bandwidth and are configurable to be deployed9

with different designs of accelerators, which are widely used10

for various machine-learning applications. However, scaling from11

SMST to MMMT on heterogeneous FPGAs is challenging12

since MMMT has much larger layer variations, a massive13

number of layers, and complex data dependency among different14

backbones. Previous mapping algorithms are either inefficient15

or over-simplified which makes them impractical in general16

scenarios. In this work, we propose CHEF to enable efficient17

implementation of MMMT models in realistic heterogeneous18

FPGA clusters, i.e., deploying heterogeneous accelerators on19

heterogeneous FPGAs (A2F) and mapping the heterogeneous20

DNNs on the deployed heterogeneous accelerators (M2A).21

We propose CHEF-A2F, a two-stage accelerators-to-FPGAs22

deployment approach to co-optimize hardware deployment and23

accelerator mapping. In addition, we propose CHEF-M2A,24

which can support general and practical cases compared to25

previous mapping algorithms. To the best of our knowledge,26

this is the first attempt to implement MMMT models in real27

heterogeneous FPGA clusters. Experimental results show that28

the latency obtained with CHEF is near-optimal while the search29

time is 10 000× less than exhaustively searching the optimal30

solution.31

Index Terms—Heterogeneous FPGA clusters, multimodality32

multitask (MMMT).33
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I. INTRODUCTION 34

DEEP neural networks (DNNs) are increasingly used in 35

complex machine learning applications, requiring diverse 36

models and advanced hardware to meet new challenges [1]. 37

On one hand, DNNs are rapidly evolving from simple, single- 38

task systems to more complex, multitask systems, especially in 39

fields like robotics [2], human–computer interactions [3], [4], 40

virtual reality (VR)/augmented reality (AR) [5], [6], etc. 41

Fig. 1(a) shows an example of an multimodality multitask 42

(MMMT) model with three modality nets fusing at the end. 43

The circle 1.1 represents the first layer of the first modal- 44

ity. As shown in Fig. 1(a), such MMMT models involve 45

complex interblock connections between multiple backbones 46

of different sizes [1], [7]. On the other hand, heterogeneous 47

hardware acceleration components are increasingly integrated 48

into state-of-the-art (SOTA) systems. FPGAs, known for 49

their high-computing power and high flexibility, have been 50

widely used for various machine-learning applications both 51

at the edge level and at the cloud level [8], [9], [10], 52

[11], [12], [13], [14]. For example, VMSS [12], an edge 53

server composed of Xilinx U50+U30 FPGAs is proposed to 54

build efficient video analytics in smart cities. Compared to 55

other platforms, such as GPUs, TPUs, etc., VMSS can be 56

reconfigured to satisfy codecs, streaming protocols, specialized 57

DNNs, and other smart application needs efficiently. At the 58

cloud level, UIUC XACC [13] has been designed to support 59

high-performance computing, machine learning, and genomics 60

applications equipped with modern FPGAs. However, while 61

deploying single-modality single-task (SMST) DNNs on such 62

multiaccelerator clusters has been well studied, scaling them 63

into MMMT DNN applications has not been comprehensively 64

investigated. 65

Compared with SMST, MMMT is more complex, with 66

varied layers, a massive number of layers, and intricate data 67

dependencies, presenting new challenges in accelerator design. 68

First, MMMT models have much larger variations in terms of 69

layer type and layer shape. For example, VFS [16], a typical 70

MMMT model, involves convolutional (Conv) layers, and fully 71

connected (FC) layers, and contains VGG and VD-CNN back- 72

bones. The input size of the VGG backbone is 3 × 224 × 224, 73

while the input size of the VD-CNN backbone is 64×1014×4. 74

When calculating the computation-to-communication (CTC) 75

ratio of all Conv layers on a monolithic accelerator on the 76

Xilinx U280 FPGA, the CTC ratio for VGG ranges from 77

48 to 448, while the CTC ratio of Conv layers in VD-CNN 78
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Fig. 1. (a) Abstracted MMMT model with three modalities. A circle
represents a layer of a modality net and an arrow represents data dependency
between two layers. The index a.b in the circle represents the bth layer of
the ath modality. MMMT models include complex interblock connections
between multiple backbones. (b) Latency comparison for MAGMA [15] and
CHEF (ours) on VLocNet [2], an MMMT model. MAGMA focuses on
mapping multiple DNNs on multiple accelerators but does not involve cross-
backbone layer dependencies. Compared to MAGMA, CHEF achieves lower
latency for MMMT models with fewer PEs.

ranges from 274 to 319. Existing multiaccelerator designs for79

SMST models [8], [9], [10], [11] partition available resources80

for each layer, and design customized subaccelerators for81

different types of layers. Such layer-wise pipelined dataflow82

accelerators (DFAs) can solve the large variation for shallower83

networks.84

Second, since MMMT models contain multiple SMST85

backbones, the number of layers is also multiple times greater86

than that found in single DNNs. For example, VFS includes87

48 Conv and FC layers, while VLocNet [2], another MMMT88

model, is composed of 141 layers. The traditional DFAs fail to89

address the large variation when the network becomes deeper90

because they would necessitate the design of numerous differ-91

ent small accelerators under a fixed FPGA resource constraint.92

As proved in DNNExplorer [17], more accelerators lead to93

fewer resources for each stage, which eventually leads to lower94

performance. DNNExplorer shows that when the number of95

Conv layers increases from 13 to 38, the performance of a96

38-layer model decreases by 77.8% compared to a shallower97

network with 13 Conv layers.98

Third, MMMT models include more complex inter-99

layer dependency across different SMST backbones. While100

Herald [18] and MAGMA [15] were developed to alleviate101

the previous two challenges by running multiple networks on102

multiple accelerators in parallel instead of in pure pipeline103

fashion, the complex interlayer dependency across different104

SMST backbones makes them inefficient. Fig. 1(b) shows the105

comparison of the latency of VLocNet, a typical MMMT106

model, on MAGMA and our design. MAGMA targets a small107

accelerator with 32 × 64 processing elements (PEs) and a108

large accelerator with 128 × 64 PEs. CHEF targets Xilinx109

U280 (1808 PEs) and U250 (2458 PEs) FPGAs. In FPGA,110

five digital signal processors (DSPs) conduct a multiply-111

accumulate (MAC) operation and can be considered as one112

PE. As illustrated in Fig. 1(b), with fewer PEs, CHEF achieves 113

lower latency for MMMT models than the SOTA SMST-based 114

accelerator design. 115

H2H [1] is the first attempt to map MMMT models 116

to different FPGA accelerators using an iterative heuristic 117

algorithm. However, H2H cannot work for general scenarios 118

due to the following limitations. First, H2H relies on the CPU 119

host memory to store data when the DRAMs of FPGAs cannot 120

hold all data, which cannot work for edge servers without a 121

host. Second, in H2H, each FPGA is only deployed with one 122

accelerator, while in a more general case, one FPGA is feasible 123

to deploy with one or multiple subaccelerators. The limited 124

design space prevents H2H from finding a more optimal 125

mapping scheme with better-resource utilization. M5 [7] is 126

the second MMMT mapping work but has the following 127

limitations. First, M5 uses the number of DSPs to approximate 128

the resource consumption and latency, while the actual rela- 129

tionship between the resource consumption and latency is not 130

polynomial. Second, M5 only targets homogeneous clusters 131

rather than heterogeneous clusters. Therefore, these two works 132

are over-simplified and fail be applied in more compli- 133

cated and practical design scenarios existing in heterogeneous 134

systems. 135

Compared to H2H and M5 which are the only two existing 136

works scheduling MMMT models on multiple FPGAs, our 137

work targets more general and practical scenarios for the 138

MMMT scheduling problem. It will be explained in Section III 139

in detail. Our main contributions are as follows. 140

1) We propose CHEF-A2F (Section IV), a two- 141

stage accelerators-to-FPGAs deployment approach 142

to efficiently deploy heterogeneous accelerators to 143

heterogeneous FPGAs supporting diverse accelerator 144

types (DATs) (Feature 1©) and search for an efficient 145

solution in a nonlinear, multidimensional, multiple- 146

knapsack (MDMK) design space (Feature 2©). 147

2) We propose CHEF-M2A (Section V), an efficient map- 148

ping algorithm to map the MMMT models to the 149

deployed accelerators considering both the variation 150

among heterogeneous layers and the interlayer depen- 151

dency. Compared to H2H and M5, CHEF-M2A supports 152

more complicated scenarios as shown in Fig. 2(b) incor- 153

porating intra-FPGA bandwidth (BW) sharing (Feature 154

3©), inter-FPGA-communication (Feature 4©), DRAM 155

budget during mapping (Feature 5©), and addressing 156

cross-backbone data dependencies (Feature 6©). 157

3) Based on the CHEF algorithm, we develop a sim- 158

ulator to estimate the latency of MMMT models 159

for different clusters. To the best of our knowledge, 160

we are the first to attempt to validate the simu- 161

lator with end-to-end implementation (Feature 7©). 162

Experimental results show that the deviation of the 163

simulation result is only −7.81% compared to the end- 164

to-end on-board measurement result, which validates 165

that the estimated latency of CHEF is relatively accurate. 166

Therefore, our work can be used as a benchmark 167

for future mapping algorithms either in simulation or 168

implementation. 169



TANG et al.: CHEF: A FRAMEWORK FOR DEPLOYING HETEROGENEOUS MODELS ON CLUSTERS 3

TABLE I
COMPARISONS WITH SOTA HETEROGENEOUS ACCELERATORS DESIGNS

(a) (b)

Fig. 2. (a) Architecture for the heterogeneous cluster in H2H [1]. It contains
multiple FPGAs, and one FPGA is deployed with an accelerator. All FPGAs
are connected to a main host with unlimited memory. (b) More general
architecture is implemented in CHEF. Different from H2H, one FPGA can
be deployed with one or multiple accelerators. We only store weights and
immediate features on local DRAMs, and the memory constraint is considered.
1© represents the intra-FPGA communication scheme. We support two inter-
FPGA communication schemes: 2© the direct P2P communication between
two FPGAs without a host CPU and 3© the FPGAs are connected via a host.

II. RELATED WORKS170

A. Evolving From SMST to MMMT171

The development of DNNs enables easier fusing from172

different input signals, which makes it appealing to evolve173

from streamlined SMST models to MMMT models for better174

accuracy [19]. Currently, MMMT models are promising to175

be applied in various applications, such as robotics, human–176

computer interaction, and VR/AR for better performance [2],177

[3], [4], [5], [6], [20]. For example, VLocNet, a novel178

convolutional neural network (CNN) architecture has been179

proposed which takes two consecutive monocular images as180

input, regresses the 6-DoF global pose and 6-DoF odome-181

try simultaneously, and outperforms task-specific localization182

models [2]. In the 3-D autonomous driving scenario, FULLER183

takes both the point cloud and image as inputs and achieves184

precision improvement in both map segmentation and 3-D185

detection [21]. However, apart from better-prediction accuracy,186

it is also necessary to reduce the inference implementa-187

tion with the help of diverse accelerators. Compared with188

implementing SMST, implementing MMMT has larger layer189

variation, a massive number of layers, and more complex190

interlayer dependency, which increases the difficulties of191

efficiently deploying MMMT models on hardware platforms.192

B. Effectiveness of Heterogeneous Accelerators in SMST193

Implementation and Limitations to Be Applied in MMMT194

Implementation195

To solve the large variation in DNN layer shapes, hetero-196

geneous accelerators are designed for better utilization and197

low latency [8], [9], [10], [11], [15], [18]. Table I com-198

pares SOTA heterogeneous accelerator designs considering the199

seven features mentioned in Section I. CHARM [8] provides200

a system-design methodology for composing heterogeneous201

matrix multiply (MM) accelerators on the Versal ACAP chip. 202

Since the mapping targets a single FPGA with resource con- 203

straints, including PEs and on-chip block RAMs (BRAMs), the 204

design space can be represented as a multidimensional, single- 205

knapsack problem (MDSK). To efficiently map diverse sizes 206

of MM layers on multiple accelerators, it partitions the MM 207

layers of different workloads and generates resource partition 208

candidates based on the workload assignment. BLAST-R [9] 209

explores heterogeneous FPGA-based designs to effectively 210

leverage both task and data parallelism to achieve the mini- 211

mum cost while satisfying timing constraints. It models a CNN 212

as a task graph and partitions Conv layers into pipeline stages 213

by inserting buffers. Since it involves multiple FPGAs, the 214

design space expands to MDMK which is more complex to 215

find an optimal solution. However, the partition algorithms in 216

CHARM and BLAST-R only focus on the monotone type of 217

layers, while an MMMT model can be composed of Conv, FC, 218

long short-term memory (LSTM) layers, etc. To implement 219

MMMT models, a more general resource allocation approach 220

supporting diverse layer types is needed. 221

Dlastic-DF [10] and AIgean [11] have achieved full end- 222

to-end multi-FPGA implementations for traditional SMST 223

models on the clusters with 100-GB/s network. They involve 224

inter-FPGA data communication. However, AIgean only tar- 225

gets resource-abundant FPGA clouds whose on-chip memory 226

can hold all data but have not considered the memory budget 227

for resource-constrained edge clusters. Dlastic-DF implements 228

SMST models in a pipelined manner. However, as mentioned 229

in Section I, such a pipelined manner suffers from fewer 230

resources for each stage, especially for MMMT DNNs involv- 231

ing multiple times of layers compared to SMST DNNs. 232

To support evolved networks with multiple inputs, 233

Herald [18] and MAGMA [15] have been developed to deploy 234

multiple SMST DNNs on multiple accelerators, achieving 235

better utilization for heterogeneous layers. Unlike previous 236

DFAs [8], [9], [10], [11], such approaches can address the 237

former two challenges of MMMT models: 1) layer variation 238

and 2) massive number of layers. However, unlike real MMMT 239

models, the heterogeneous SMST models are independent of 240

each other. As shown in Fig. 1, ignoring the last challenge, 241

i.e., data dependency among different backbones will lead to 242

suboptimal solutions. 243

C. Deploying MMMT Models on Multi-FPGA Systems 244

To the best of our knowledge, H2H [1] and M5 [7] are 245

the only two works to map MMMT models to multi-FPGA 246

systems. H2H provides an iterative heuristic algorithm to 247
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map MMMT models on heterogeneous off-the-shelf FPGA-248

based accelerators with four steps, including computation249

prioritized mapping under zero local DRAM assumption;250

weight locality optimization buffering parts of weights to local251

DRAM; activation transfer optimization reducing immediate252

feature transmission latency for adjacent layer allocated on253

the same accelerator; and data locality aware re-mapping, to254

reduce inter-FPGA data communication overhead. Different255

from H2H which only assigns one accelerator on one FPGA256

board, M5 explores flexible accelerator configurations and pos-257

sible resource sharing among layers. However, the algorithms258

of these works have not been validated on real hardware259

platforms. The limitations mentioned in Section I prevent260

both algorithms from being applied in practical scenarios.261

The proposed CHEF will address these limitations which will262

be discussed in Section III in detail. The main advantages263

of CHEF compared with all existing works are presented in264

Table I.265

III. MOTIVATION266

As introduced in Section II-C, H2H and M5 are the only267

two works addressing the MMMT models to multi-FPGAs268

scheduling problem. However, the limitations in Section I269

prevent them from being used in a practical and general270

system. This section will first introduce the general system271

case and show how the H2H and M5 fail in the case. Then,272

the overview of CHEF is shown, including the challenges and273

solutions, to achieve MMMT models to heterogenous FPGAs274

scheduling in the general case.275

In H2H, it is limited to only one accelerator connection276

topology with a host shown in Fig. 2(a) and ignores how to277

deploy different heterogeneous accelerators to heterogeneous278

FPGAs, which prevents the algorithm from being applied in279

general FPGA systems. First, in Fig. 2(a), H2H only targets280

the situation in which all FPGAs are connected to the main281

host. The host stores weights and immediate data in the main282

memory and conducts data swapping between two FPGAs.283

However, numerous general cases are beyond H2H’s capabil-284

ities. For example, in the cases of edge servers like VMSS,285

BLAST-R, etc., FPGAs can directly communicate with each286

other via diverse connection approaches, such as Ethernet,287

PCIe, high-speed serial (HSS), etc., [i.e., 2© in Fig. 2(b)]. The288

lack of main host memory makes it necessary to store all289

data in the local DRAM of each FPGA. Some clusters like290

UIUC XACC [13] and UCLA VAST [14] can communicate291

with each other either via the main host ( 3© in the figure)292

or directly via the PCIe driver without requiring access to293

the host CPU ( 2©). Second, H2H maps multimodal models294

to off-the-shelf accelerators. However, different acceleration295

designs adopt different scheduling methodologies, computa-296

tion patterns, and communications patterns, so there is no297

guarantee that these accelerators can be compatible with each298

other. In addition, H2H only deploys one accelerator on299

one FPGA, which is not flexible and leads to suboptimal300

mapping schemes. Different from H2H, CHEF targets a more301

practical and general design situation, where users have some302

compatible accelerator design intellectual properties (IPs) with303

self-developed analytical models. An IP is an accelerator 304

design that can be deployed on an FPGA with a given 305

parallelism degree. This scenario is common in system design. 306

For example, Xilinx has developed a group of parameterizable 307

IP cores called deep-learning processor units (DPUs) which 308

are preimplemented on FPGAs [22]. Since our work requires 309

finding an optimized scheduling scheme during the design time 310

before hardware implementation, an accurate analytical model, 311

including the resource costs and latency for specific layers, 312

is also indispensable. Given one or multiple FPGA platforms, 313

users can select IPs and deploy them to the system based on 314

application requirements. As shown in Fig. 2(b), an FPGA is 315

flexible to either accommodate one big accelerator or multiple 316

smaller accelerators that can execute independent layers in 317

parallel. 318

M5 [7] is the second work to deploy the MMMT model 319

on multiple FPGAs but is oversimplified and only targets 320

homogeneous clusters. First, M5 is oversimplified which 321

only uses the utilized DSPs for each accelerator to profile 322

the resource consumption and latency. In practical system 323

design, the relationship between latency and resource costs 324

is not polynomial, which makes the mapping problem more 325

complicated. Second, M5 only targets homogeneous clusters 326

of FPGAs, while mapping heterogeneous models to heteroge- 327

neous clusters of FPGAs introduces a larger design space. To 328

sum up, H2H and M5 fail to be applied in more complicated 329

design scenarios existing in heterogeneous systems. 330

Compared to H2H and M5 which are the only two existing 331

works scheduling MMMT models on multiple FPGAs, our 332

work targets more general and practical scenarios. As shown 333

in Fig. 2(b), we have a cluster with heterogeneous FPGAs, 334

and each FPGA has a particular on-chip resource constraint, 335

i.e., available DSPs and BRAMs. Each FPGA also has a fixed 336

DRAM size and on-chip to off-chip communication scheme 337

1©. All the data are stored in DRAMs and different FPGAs 338

can achieve peer-to-peer (P2P) communication directly 2©. 339

The host is only used to call the functions for the on-chip 340

accelerator kernels. It should be noted that this architecture can 341

be extended to solve the architecture in Fig. 2(a) by using half 342

of the BW parameter in 3© as the P2P communication BW, 343

i.e., data between two FPGAs are relayed via the main CPU 344

host. Therefore, this architecture can support general scenarios, 345

including cloud, edge, and on-device clusters. Given the 346

clusters, users have developed different compatible candidate 347

template accelerator IPs with diverse computation resource 348

costs and performance models. Unlike M5, which relies on a 349

simple performance model only considering the computation 350

parallelism of MAC based on the number of DSPs, our 351

performance model involves accurate profiling of on-chip 352

computation and on-chip to off-chip communication. The 353

model can be calibrated during on-board experiments. 354

The main goal of this study is to optimize both hardware 355

setup and accelerator mapping to ensure the efficient inference 356

performance of multitask DNNs. Therefore, we introduce 357

CHEF, a framework designed for the effective deployment 358

of varied accelerators to FPGAs (CHEF-A2F) and for map- 359

ping complex DNNs to these accelerators (CHEF-M2A). The 360

overview is shown in Fig. 3. 361
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Fig. 3. Overview of CHEF. It includes CHEF-A2F to deploy heterogeneous
accelerators on different FPGAs and CHEF-M2A to map MMMT DNNs
on the deployed accelerators. CHEF-A2F includes two steps: coarse-grained
initial deploying and idle aware re-deploying. CHEF-M2A includes two
steps: computation and communication aware mapping and data locality
aware re-mapping. CHEF-M2A mapping is conducted in every deploying
to re-deploying iteration of CHEF-A2F. The four steps form a close-
loop optimization workflow and work iteratively until no more beneficial
scheduling scheme is acquired.

In the general and practical case shown in Fig. 2(b), we aim362

to select efficient accelerators to be deployed on heterogeneous363

FPGAs under hardware constraints and then map the MMMT364

model to the deployed accelerators for low latency. As shown365

in Fig. 3, the deploying and mapping problems need to be co-366

optimized. We use a running example of scheduling VFS on367

VMSS to illustrate CHEF.368

There are two main challenges. The first is how to co-369

optimize the hardware deployment and accelerator mapping370

in the cluster. An FPGA can be deployed with one big371

accelerator or multiple small accelerators running in paral-372

lel. Different deployment leads to different mapping results,373

which is shown in Fig. 5. Balancing between accelerator374

architectures and available hardware resources is a tradeoff.375

To address this challenge, we propose CHEF-A2F, a two-stage376

accelerators-to-FPGAs deployment approach. It starts mapping377

with Coarse-Grained Initial Deploying and then conducts Idle378

Aware re-deploying based on the mapping results. It supports379

diverse layer types (Feature 1©) and models the search space380

as an MDMK problem (Feature 2©). This approach will be381

introduced in detail in Section IV.382

The second challenge is that, unlike traditional streamlined383

DNNs, MMMT models have large layer variations, huge layer384

numbers, and complex data dependencies, so it is nontriv-385

ial to map MMMT DNNs on multiple FPGAs considering386

both computation and communication patterns. Given both387

computation and communication constraints, previous MMMT388

mapping algorithms [1], [7] are oversimplified. Therefore, we389

propose CHEF-M2A, a novel MMMT models-to-accelerators390

mapping algorithm. It generalizes H2H by considering the391

following additional configurations. First, one FPGA can be392

deployed with one or multiple accelerators, so accelerators393

can communicate with each other via intraboard communica-394

tion (Feature 3©) or interboard communication (Feature 4©).395

Second, without relying on the host memory to buffer weights396

and intermediate data, the mapping algorithm will consider the397

impacts of local DRAM size (Feature 5©). Compared to the398

four steps in H2H, CHEF-M2A achieves lower latency with399

only two steps: 1) the computation and communication aware400

mapping and 2) data locality aware re-mapping. This mapping401

algorithm will be introduced in Section V.402

As illustrated in Fig. 3, the optimizations in CHEF-A2F and 403

CHEF-M2A form a close-loop optimization workflow. During 404

the initial deployment and each iteration of re-deploying in 405

CHEF-A2F, CHEF-M2A mapping is conducted to update 406

the mapping scheme based on the new accelerator-to-FPGA 407

deployment. CHEF stops until no more beneficial mapping 408

and deploying schemes can be obtained. 409

IV. CHEF-A2F 410

In this section, we propose CHEF-A2F, a two-stage 411

accelerators-to-FPGAs deployment approach to address the 412

first challenge discussed in Section III. The overall co-optimize 413

problem can be formulated as follows. Given i = 1, . . . , m 414

FPGAs with available DSPs and BRAMs constraints, i.e., 415

DSPi and BRAMi for FPGAi, we have already designed t = 416

1, . . . , n types of accelerator IPs, e.g., A1 Conv IPs, A2 FC 417

IPs, A3 LSTM IPs, etc. (Feature 1©). Each IP has an analytical 418

model which is composed of a resource and a performance 419

model [23], [24]. The resource model is used to estimate its 420

DSPs and BRAMs cost, e.g., DSPa=1,...,A1 and BRAMa=1,...,A1 421

for Conv IPs. The performance model estimates the latency 422

for a DNN layer of the same type. The optimization problem 423

can be illustrated in (1). The deployment scheme is shown 424

as ({Xita} 1 ≤ a ≤ At, 1 ≤ t ≤ n, 1 ≤ i ≤ m), where 425

Xita is the number of the ath IP for the tth accelerator type 426

deployed to FPGAi, and {Xita} is a list of Xita for all IPs. The 427

goal of the optimization problem is to minimize the overall 428

mapping latency of the deployed accelerators. The first two 429

constraints indicate that for each FPGA i, the sum of DSPs and 430

BRAMs costs of the deployed accelerators should not exceed 431

the available DSPs and BRAMs for each FPGA. Constraint 432

3 indicates that the number of accelerators deployed on each 433

FPGA for each IP should be a non-negative integer, and the 434

same IPs can be selected multiple times. The last constraint 435

ensures that for each type of accelerator, at least one IP should 436

be selected and deployed in the multi-FPGA cluster 437

min CHEF − M2A Mapping({Xita}, 1 ≤ a ≤ At 438

1 ≤ t ≤ n, 1 ≤ i ≤ m) 439

s.t.






∑n
t=1

∑At
a=1 DSPita · Xita < DSPi ∀i∑n

t=1
∑At

a=1 BRAMita · Xita < BRAMi,∀i
Xita ≥ 0 and integer∑m

i=1
∑At

a=1 Xita ≥ 1,∀t.

(1) 440

It is apparent that (1) can be represented as a nonlinear, 441

MDMK problem, which is NP-hard and cannot be solved 442

in polynomial time. Since the mapping function is also 443

nonpolynomial, directly applying traditional knapsack-solving 444

algorithms like dynamic programming (DP) to find an optimal 445

solution is time-consuming. Therefore, we propose a two-stage 446

accelerators-to-FPGAs deployment approach, CHEF-A2F, to 447

search for an efficient deploying scheme in an acceptable time 448

for this MDMK problem (Feature 2©). 449

The overview of CHEF-A2F is shown in Fig. 4. It first 450

allocates accelerators from the candidate IPs to the FPGA 451

cluster in a Coarse-Grained manner. Then, an Idle Aware re- 452

deploying algorithm is proposed to remove and replace some 453



6 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

Fig. 4. Two-stage accelerators-to-FPGAs deployment approach (CHEF-A2F) visualization. It includes coarse-grained initial deploying and idle aware re-
deploying. In every deploying or re-deploying iteration, MMMT is mapped to the deployed or re-deployed accelerators. The re-deploying stops until no
beneficial mapping scheme can be acquired. We only show the former three Conv layers for each modality of a MMMT model.

Fig. 5. Gantt charts of scheduling VFS on VMSS under 15 GB/s before re-
deployment and after re-deployment. The “16_32” means the parallelism for
the input channels is 16, while that for output channels is 32 for a Conv layer.
Different bar colors represent layers from different modalities. (a) Mapping
scheme after coarse-grained initial deploying. (b) Mapping scheme after idle
aware re-deployment.

accelerators for better utilization. The Gantt charts of the454

mapping scheme are shown in Fig. 5.455

A. Coarse-Grained Initial Deploying456

Since the Mapping function in (1) is nonpolynomial, it457

is time-consuming to directly apply knapsack-solving algo-458

rithms. Therefore, we provide a coarse-grained approach to459

select the most powerful accelerators combination with the460

maximum overall throughput as an initial deploying strategy.461

For each tth type of accelerator IP ta deployed in FPGA462

i, we estimate the maximum throughput the accelerator can463

achieve for each layer of the MMMT model thpita. Then,464

we approximate the mapping results in (1) using the sum465

of the estimated maximum throughput for all the deployed466

accelerators. The optimization goal after approximation is467

shown in (2), while the constraints remain unchanged468

max
n∑

t=1

m∑

i=1

At∑

a=1

thpita · Xita. (2)469

This problem is changed to a standard linear programming470

(LP) problem and can be solved by off-the-shelf LP tools.471

In this work, PuLP [25] is used as the LP solver. After the472

LP-based deployment, we apply the CHEF-M2A mapping473

algorithm in Section V to get an initial estimated latency. 474

Current mapping scheme of the VFS running example is 475

shown in Fig. 5(a). 476

B. Idle Aware re-deployment 477

In Section IV-A, we use the maximum throughput to 478

approximate the mapping performance for each deployed 479

accelerator. However, the accelerators cannot achieve the 480

best performance since some of them will be idle for some 481

layers after CHEF-M2A mapping. For example, in Fig. 5(a), 482

“acc1” is idle after 0.06 s. Therefore, we re-deploy some 483

accelerators based on the mapping results. We found that 484

after removing idle accelerators [i.e., acc1 in Fig. 5(a)] we 485

can leave space to replace smaller accelerators with lower- 486

parallelism degrees [i.e., “acc0” in Fig. 5(a)] to bigger ones 487

with higher-parallelism degrees [i.e., acc0 in Fig. 5(b)]. Based 488

on this observation, we propose an idle-aware re-deployment 489

after getting the initial deployment scheme, mapping, and 490

estimated initial latency Lat. We search for an optimized 491

deployment scheme by iteratively removing accelerators with 492

longer idle time and then replacing small accelerators with 493

larger and more powerful ones. We check the latency after 494

mapping every time a replacement is conducted and only 495

accept the replacement with shortened latency. The proposed 496

re-deploying algorithm adopts the duty cycle to measure if an 497

accelerator is under-utilized and idle. 498

The algorithm consists of the following steps. Step 1: For 499

the accelerator of each type, starting from the accelerator with 500

the least duty cycle, the algorithm will attempt to remove the 501

accelerator from the located FPGA if the accelerator is not the 502

only accelerator of the same type. For example, in Fig. 5(a), 503

there are two accelerator types: Conv and FC. “acc2” is the 504

only FC accelerator, while acc1 has the lowest-duty cycle for 505

all Conv accelerators. 506

Step 2: For the remaining accelerators on the same FPGA, 507

the algorithm attempts to pick one and replace it with another 508

candidate IP as long as the DSPs and BRAMs constraints 509

are met (e.g., replace acc0 on “b0” in Fig. 5(a) to acc0 in 510

Fig. 5(b). 511

Step 3: For each replacement in step 2, we re-map the 512

MMMT DNN using CHEF-M2A and choose the deployment 513
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Fig. 6. Gantt charts of scheduling VFS on VMSS under 15 GB/s before
re-mapping and after re-mapping under coarse-grained initial deploying.
(a) Mapping scheme after computation and communication aware mapping.
(b) Mapping scheme after data locality aware re-mapping.

parameters {Xita} with the lowest latency (e.g., the lowest Lat514

is shortened from 0.222 to 0.188 s in Fig. 5(b).515

Step 4: If the overall latency is shortened after steps 1–3,516

we accept such replacement. The re-deploying scheme, re-517

mapping scheme, and Lat are updated. Then, we return to518

step 1 using the updated duty cycle for the next re-deploying519

iteration. If the latency is not shortened after the replacement,520

we will remove another accelerator with the second least-521

duty cycle and repeat steps 2 and 3. If no accelerator can522

be removed for lower-resultant latency, [e.g., Lat cannot be523

shorter than that in Fig. 5(b)], the algorithm will stop.524

V. CHEF-M2A525

This section will introduce the details of CHEF-M2A,526

which maps MMMT models to the accelerators obtained in527

Section IV. The input of the CHEF-M2A algorithm includes528

the model graph Gmodel and accelerator-to-FPGA deploying529

information {Fi{Accj}}. The nodes in Gmodel represent the530

layers of the MMMT model, while the edges represent531

layer dependencies. Unlike SMST, Gmodel involves multiple532

branches with complex data dependency. We use the same533

running example to illustrate the CHEF-M2A algorithm, and534

the Gantt charts are shown in Fig. 6.535

Unlike H2H which only lists the performance models536

for each accelerator, CHEF-M2A models the accelerators-to-537

FPGAs deploying information {Fi{Accj}} which is obtained538

from ({Xita} 1 ≤ a ≤ At, 1 ≤ t ≤ n, 1 ≤ i ≤ m). For539

each FPGA Fi, it includes the list of deployed accelerators540

{Accj}, the number of DDR/HBM channels, and available541

DRAM size. Accj is the jth accelerator deployed in Fi. Each542

accelerator Accj records which IP it is applied to which FPGA543

and has a performance model Perfj using the layer information,544

BW between the FPGA chip and the DRAM BWDRAM [i.e.,545

1© in Fig. 2(c)], and the interaccelerators BW BWInter [i.e.,546

2© or 3© in Fig. 2(c)] as inputs. The output of the mapping547

algorithm is a multiaccelerator graph G∗
sys = {G∗

Accj
}, where548

each accelerator j holds a mapping graph G∗
Accj

representing549

the hardware dependency for each layer. Each node of G∗
Accj

550

has the information on which layer the accelerator is mapped551

to, the start time of the layer, and the end time, while the edges552

show the dependencies and orders of these mapped layers. An553

example of G∗
sys is shown in Fig. 6. The mapping latency Lat554

is the maximum value of the end time in G∗
sys. Our goal is to 555

minimize Lat. 556

As introduced in Section III, H2H has four processes: 557

1) computation prioritized mapping; 2) weight locality 558

optimization; 3) activation transfer optimization; and 4) data 559

locality aware re-mapping. It assumes all data are stored in 560

the host memory which is hypothetically unlimited in the first 561

process and then buffers only a proportion of these data to 562

the local DRAMs in the second and third processes to remove 563

the data transmission latency. However, in a more general 564

case without host memory, the zero local DRAM assumption 565

cannot be applied, so data transmission between layers should 566

be involved at the beginning. Therefore, compared to H2H, 567

CHEF-M2A first conducts Computation and Communication 568

Aware Mapping, which considers weights locality and acti- 569

vation transmission together. After that, Data Locality Aware 570

re-mapping is applied to further shorten the overall latency. 571

A. Computation and Communication Aware Mapping 572

Since MMMT models involve cross-backbone dependency, 573

each layer will have multiple predecessors and successors 574

(Feature 6©). To tackle this, in the initial mapping, we first 575

consider all unmapped nodes without predecessors in the 576

model graph and find the best-mapping combinations, and 577

then the mapped nodes are removed from the graph. The 578

detailed steps are as follows. In step 1, for all the unmapped 579

nodes without predecessors in Gmodel, we enumerate all the 580

mapping combinations to allocate these nodes on {Fi{Accj}}. 581

Unlike H2H which assumes zero DRAM locality by storing 582

all weights and immediate features in the host memory at the 583

beginning and moving a proportion of these data to DRAM 584

under the DRAM budget later, CHEF-M2A stores all data 585

in DRAM. Therefore, CHEF needs to guarantee the DRAM 586

budget can hold all data during mapping. Thus, in step 2, 587

we conduct DRAM budget check (Feature 5©), i.e., for each 588

mapping candidate, we check if the current DRAM budget for 589

FPGA is possible to accommodate weights and features for 590

the rest of the layers. Only if for all layer types, the DRAM 591

cost for the rest of the layers of the same type is smaller than 592

the DRAM size for the FPGAs deployed with corresponding 593

types of accelerators, and the FPGA with maximum DRAM 594

budget can hold the data of the layer with maximum DRAM 595

cost, CHEF-M2A will accept current mapping candidate and 596

move to the next step. 597

Step 3 is to calculate the latency increment !Lat for all 598

the accepted mapping candidates. Assume layer l is mapped 599

to accelerator Accj, and its predecessor layer l′ in the MMMT 600

model is mapped to accelerator Accj′ . For layer l, its layer 601

latency (e.g., the length of a box in Fig. 6) involves the 602

intra-accelerator latency estimated by Perfj and the data trans- 603

mission latency among accelerators. Unlike H2H, we store 604

weights of l in the local DRAM of Fi, so there is no weight 605

transmission. For feature transmission, the situation is also 606

more complicated since we consider the fact that multiple 607

accelerators are located on one FPGA. The detailed analysis 608

is as follows (Features 3© and 4©). First, if Accj and Accj′ 609

share the same DDR/HBM bank of the same FPGA, there is 610
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no feature transmission latency, but BWDRAM will be divided611

by the number of accelerators sharing the same bank. Second,612

if they are on the same FPGA but connect to different banks,613

features are transmitted among banks via the FPGA chip.614

Third, if Accj and Accj′ are located on different FPGAs, the615

feature transmission latency is calculated via BWInter. !Lat is616

the maximum layer latency of these unmapped nodes. In step617

4, we select the mapping candidate that results in the minimum618

!Lat and remove the mapped nodes from the MMMT model619

graph. G∗
sys is also updated with new mapped nodes.620

B. Data Locality Aware re-mapping621

Next, CHEF-M2A conducts a re-mapping operation that622

reallocates a layer from its source accelerator to a new623

destination accelerator, on which its neighbors (predecessors624

or successors) are mapped with the following steps.625

Step 1: For all the nodes in Gmodel, if its neighbor is not626

on the same accelerator, we attempt to re-map the node to627

its neighbor’s accelerator [e.g., the circled layer on acc0 in628

Fig. 6(a) is moved to acc1 in Fig. 6(b)].629

Step 2: For each re-mapping attempt, we conduct the630

DRAM budget check. The latency after re-mapping is calcu-631

lated only if the DRAM budget is satisfied.632

Step 3: The re-mapping attempt is accepted if the MMMT633

model latency is shortened (e.g., Lat in Fig. 6 is shortened634

from 0.224 to 0.222 s). G∗
sys is also updated.635

Steps 1–3 are repeated until no node can be re-mapped for636

better results.637

VI. SIMULATOR638

Based on CHEF-A2F and CHEF-M2A, we develop a639

simulator to estimate the latency of MMMT models for640

different clusters. The simulator is composed of four parts:641

1) the configuration of the FPGA cluster; 2) resources and642

performance models for accelerator IPs; 3) the definition of643

the MMMT model; and 4) our CHEF scheduling algorithm.644

The Configuration of the Cluster: In this part, we first define645

the FPGAs that are used in the cluster. The information on646

each FPGA includes the frequency of the FPGA, the number of647

on-chip DSPs and BRAMs, the number of DDR/HBM banks648

in the off-chip DRAM, the size of each DDR/HBM bank,649

and the DDR/HBM BW BWDRAM. Second, we include the650

P2P BW between arbitrary two FPGAs BWinter. If FPGA 1651

and FPGA 2 in Fig. 2(b) are connected via 2©, BWinter is the652

PCIe BW. If they are connected via 3©, which is the same as653

Fig. 2(a), BWinter is half of the FPGA-to-host BW.654

Accelerator IPs: Our simulator enables users to design655

customized accelerator IPs with self-developed resource and656

performance models. Currently, we have established model657

templates for Conv IPs and FC IPs based on XFER [24]658

and LSTM IPs based on [26] with different parallelism659

degrees. For each template, the resource model estimates660

the number of DSPs, BRAMs costs under their parallelism661

degree, and the DRAM costs for each layer. The performance662

model calculates the latency for each layer, both including663

the features transfer with the predecessor layers and without664

interlayer data communication.665

TABLE II
HETEROGENEOUS EDGE CLUSTERS

TABLE III
MMMT DNNS

Definition of the MMMT Model: In each MMMT model, 666

we first define layer information, including the layer type and 667

the layer parameters for each layer. For Conv layers, the layer 668

parameters include the number of output channels, the number 669

of input channels, output feature column size, output feature 670

row size, weight kernel size, stride, and padding size. For 671

FC layers, the parameters only involve the number of output 672

channels and the number of input channels. For LSTM layers, 673

embedded vector dimension, the number of hidden states, and 674

the number of LSTM cells are involved. Second, the data 675

dependency between different layers is defined. 676

CHEF Scheduling Algorithm: Based on the algorithms 677

introduced in Sections IV and V, we generate the optimized 678

scheduling strategy given the FPGA clusters, accelerator IPs, 679

and the MMMT model. CHEF-A2F records the accelerator-to- 680

FPGA deploying information {Fi{Accj}} indicating which IP 681

is deployed to which FPGA and how many accelerators of this 682

IP are on the FPGA. Given the accelerator deployment, CHEF- 683

M2A records the mapping scheme G∗
sys, including which layer, 684

is mapped to which accelerator, and the start and end times 685

for each layer. The resultant inference latency Lat is the end 686

time of the last layer. 687

VII. EXPERIMENTS 688

In this section, we first implement the MMMT model on 689

the public XACC server and compare the end-to-end latency 690

with that estimated by the simulator to validate the correctness 691

of the algorithm. Second, we analyze the effectiveness of re- 692

deploying and re-mapping optimization steps in CHEF on 693

three practical FPGA clusters both at the edge level and at 694

the cloud level. Then, we show the overall effectiveness of 695

CHEF by comparing it with the SOTA MMMT models to 696

heterogeneous clusters scheduling algorithm H2H. Finally, a 697

series of ablation studies for search time (ST) and latency 698

are presented to validate the effectiveness and efficiency of 699

CHEF-A2F and CHEF-M2A. 700

A. Experimental Setup 701

Heterogeneous Cluster of FPGAs: Table II summarizes 702

3 heterogeneous FPGA clusters that have been applied in 703

previous research and industrial applications. Cluster 1 adopts 704
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m = 6 different Xilinx FPGAs that are applied in H2H705

with 6 developed IPs. Cluster 2 uses the VMSS edge server706

developed by Xilinx for smart cities (m = 2) with 12 IPs.707

The XACC in Cluster 3 is a public multi-FPGA cloud server708

established by UIUC (m = 2) with 8 IPs. H2H uses a CPU709

host to connect all FPGAs via Ethernet, while VMSS is710

equipped with PCIe interfaces for direct P2P communication.711

XACC supports both P2P communication and host-to-FPGA712

communication. To show the training performance on various713

P2P communication BWs, we test CHEF on these clusters714

with different BWinter = 0.125, 3, and 15 GB/s. 0.125715

GB/s represents a low-BW communication approach, such716

as Gigabit Ethernet [30] (1Gbps=0.125GB/s), while 3 GB/s717

represents a medium BW connection, such as PCIe (tested in718

Section VII-B). 15 GB/s represents a high BW. For example,719

with TCP/IP stack, the 100 GbE Smart NICs achieve around720

100–140 Gbps BW with an average of 15 GB/s [31].721

Heterogeneous MMMT Models: Table III summarizes 5 het-722

erogeneous DNNs used in the evaluation, spanning different723

domains. The models use CNNs, FCs, or LSTMs as backbones724

(Feature 1©) and typically involve 3 or 4 backbones with cross-725

backbone data dependencies Feature 6©). For VLocNet, VFS,726

FaceBag, and CNN-LSTM, the number of layer types n = 2,727

while n = 1 for CASUA-SURF.728

Baselines: The baselines are as follows.729

1) To show the effectiveness of the re-deploying and re-730

mapping optimizations in Section VII-C, we compare731

the resultant latency with the following steps: Step 1732

is the latency with initial deploying in CHEF-A2F and733

initial mapping in CHEF-M2A, step 2 is the latency with734

re-mapping during the initial deploying; and step 3 is735

the latency with both re-deploying in CHEF-A2F and736

re-mapping in CHEF-M2A.737

2) To show the overall effectiveness of CHEF in738

Section VII-D, we compare it with the SOTA work H2H.739

3) In the ablation studies in Section VII-E, to vali-740

date the effectiveness of CHEF-A2F, we compare our741

deployment search approach with DP, which is a com-742

monly used search algorithm to find optimal solutions743

for Knapsack problems. To validate the effectiveness744

of CHEF-M2A, the optimal solution is provided by745

enumerating all possible layer-to-accelerator mapping746

combinations.747

B. End-to-End Implementation (Feature 7©)748

The proposed work is evaluated on the public UIUC HACC749

Cluster [13] with one U280 and one U250 FPGA shown750

in Fig. 2(b). The working frequency for U280 is 200 MHz,751

while U250 works on 150 MHz. The U280 is equipped752

with 32 HBM banks, while the U250 is equipped with 4753

DDR banks. We first measure the on-board BWDRAM. The754

HBM BW is around 12 GB/s under 200 MHz, and the DDR755

BW is around 8 GB/s under 150 MHz. Then, we test the756

PCIe-based P2P communication BW BWinter, and BWinter757

is measured to be 3 GB/s. To validate the accuracy and758

correctness of CHEF, we conduct end-to-end implementation759

on the CASUA-SURF [27], VFS [16], and FaceBag [28]760

TABLE IV
END-TO-END RUNTIME OF MMMT MODELS ON HACC: MODELING

VERSUS ON-BOARD MEASUREMENT

models, and each model contains more than 40 layers. We 761

developed eight candidate IPs and established analytical mod- 762

els. Each IP is designed and coded with TAPA [32]. The 763

obtained IP cores have bitstream generated in Xilinx Vitis 764

(v2022.2). For each IP, we compare the latency estimated 765

by the performance model and that measured on-board. The 766

deviations for estimated latency compared to on-board tested 767

latency for these IPs range from −0.94% to −6.66%, which 768

proves that the performance models are accurate for latency 769

estimation. 770

With the configuration of the FPGA cluster, the acceleration 771

IPs, and the definition of the MMMT model, we apply 772

CHEF to acquire the scheduling information, including the 773

accelerator deploying information {Fi{Accj}} and the mapping 774

scheme G∗
sys automatically generated by the simulator. The 775

simulator also generates an estimated latency Lat. Then, 776

we implement end-to-end inference of the three models on 777

the cluster using the scheduling information and measure 778

the on-board execution latency. As shown in Table IV, the 779

deviation for the end-to-end testing of each complete model 780

is less than 10% which validates that the estimated latency of 781

CHEF is relatively accurate. After validating the correctness 782

of the CHEF and the accuracy of its simulator, we use the 783

simulator for a series of comparisons and ablation studies in 784

the following experiments. 785

C. Effectiveness of re-deploying and re-mapping 786

Fig. 7 shows the system latency of the MMMT models 787

listed in Table III. The x-axis represents different optimization 788

steps in CHEF, i.e., without re-deploying or re-mapping, 789

with only re-mapping, and with both re-deploying and re- 790

mapping. We test the latency of the three clusters listed in 791

Table II under various P2P BWs. It can be seen that the re- 792

deploying in CHEF-A2F and re-mapping in CHEF-M2A can 793

significantly reduce the overall latency in these cases. For 794

example, in Fig. 7(a) for Cluster 1, the maximum latency 795

reductions caused by the combination of re-deploying and re- 796

mapping are 84%, 87%, and 88% under low, medium, and high 797

P2P BW, respectively. re-deploying and re-mapping effectively 798

improve the inference performance for different FPGA clusters 799

under various P2P BWs. 800

D. Comparison With H2H [1] 801

Fig. 8 shows the inference latency speedup of the MMMT 802

models compared to H2H [1]. We compare the latency on 803

the three heterogeneous cluster platforms under low, medium, 804

and high BW. H2H adopts fixed accelerators, while our work 805

searches optimized accelerator combinations and deploys them 806

on the clusters. The inference latency achieved by CHEF is 807

significantly shortened compared to the H2H baseline. 808
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Fig. 7. Latency comparison of re-deploying and re-mapping. The x-axis represents three optimization steps: Step 1 is after initial deploying and initial
mapping, step 2 is after the re-mapping under the initial accelerator deployment, and step 3 is the final result after both re-deploying and re-mapping.
(a) Comparisons for Cluster 1. (b) Comparisons for Cluster 2. (c) Comparisons for Cluster 3. The re-deploying in CHEF-A2F and re-mapping in CHEF-M2A
can significantly decrease the resultant inference latency for these clusters.

Fig. 8. Latency speedup compared to H2H. (a) Speedup in Cluster 1.
(b) Speedup in Cluster 2. (c) Speedup in Cluster 3. Compared to H2H, the
proposed CHEF achieves 1.09–49.43 inference speedup in these clusters.

The speedup comes from two aspects. On one hand,809

H2H deploys one fixed accelerator on one FPGA, while810

our proposed CHEF is flexible to deploy one or multiple811

accelerators on each FPGA. Take Cluster 2 under the low- 812

P2P BW as an example, CHEF deploys 3 accelerators for 813

VLocNet and 5 accelerators for CASUA-SURF. Compared to 814

H2H, CHEF considers a larger design space, and it is feasible 815

to search for a beneficial deployment scheme with superior 816

mapping results. 817

On the other hand, H2H suffers from an intenser inter-FPGA 818

communication bottleneck compared to CHEF. In CHEF, all 819

weights are stored in local DRAM, while H2H stores parts 820

of weights in the host memory which leads to extra weights 821

transfer workload (Feature 5©). Besides, immediate features 822

are transmitted back and forth via the CPU host if adjacent 823

layers are not located on the same accelerators. However, 824

as mentioned in Section V, in CHEF, features do not need 825

to be moved as long as two adjacent layers share the same 826

HBM/DDR bank (Feature 3©). If data-dependent layers are 827

not allocated to the same memory bank but are mapped to 828

accelerators on the same FPGA, features are transmitted via 829

the FPGA chip. The on-chip transmission is more efficient 830

than FPGA-to-FPGA transmission. Only when adjacent layers 831

mapped to different FPGAs, the interboard feature transmis- 832

sion is required (Feature 4©). Therefore, as presented in Fig. 8, 833

CHEF achieves significant speedup, especially under lower- 834

P2P BW. To further validate that Features 3©– 5© of CHEF 835

successfully reduces communication overhead, we present 836
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TABLE V
INTERACCELERATOR COMMUNICATION RATIO BETWEEN H2H AND

CHEF (OURS)

TABLE VI
DEPLOYMENT PERFORMANCE AND ST COMPARISON

the interaccelerator communication ratio of CHEF and H2H837

in Table V. The ratio is calculated using the sum of the838

accelerator-to-accelerator communication latency divided by839

the accumulation of layer time costs for each accelerator.840

As illustrated in Table V, the interaccelerator communica-841

tion ratio is less than 15% under various P2P BWs for different842

clusters, while the ratio for H2H is severely impacted by the843

P2P BW. For example, under low BW, the interaccelerator844

communication takes up 22%-91% of the accumulated infer-845

ence latency. Compared to H2H, CHEF suffers less from the846

cross-accelerator communication overhead.847

E. Analysis of CHEF-A2F and CHEF-M2A Algorithms848

As mentioned in Section IV, finding an optimal solution849

is time-consuming, so we propose a two-stage accelerators-850

to-FPGAs deployment approach to co-optimize hardware851

deployment as well as accelerator mapping and thus search852

for a near-optimal solution. In this section, we validate the853

effectiveness and efficiency of CHEF-A2F and CHEF-M2A854

solving the MDMK problem in (1) by comparing the resultant855

inference latency (Lat.) and ST with the optimal solution856

(Feature 2©). Results show that CHEF can achieve near-857

optimal solutions with significantly less searching time.858

TABLE VII
MAPPING PERFORMANCE AND ST COMPARISON

We first validate the effectiveness of the proposed CHEF- 859

A2F deployment approach. Table VI shows the deployment 860

comparison of CHEF-A2F and DP. We compare the estimated 861

system latency and the ST on Cluster 3 with three candidate 862

IPs and increase the number of FPGAs m from 2 to 4. For both 863

DP and the proposed CHEF-A2F deployment approach, we 864

apply the same CHEF-M2A mapping algorithm to generate the 865

mapping scheme for each iteration of hardware deployment. 866

Since DP searches all possible deployment schemes and finds 867

an optimal solution, it will be time-consuming to map all 868

layers of the MMMT models in each iteration. Therefore, we 869

perform the comparison mapping subnetworks that contain 870

only 9 or 10 layers for different models, and we use * to indi- 871

cate only part of the layers is involved in the models in later 872

results. As shown in Table VI, CHEF-A2F can achieve near- 873

optimal performance for all the scenarios, while searching for 874

an optimal deploying scheme demands a great mass of time. 875

For example, when the number of FPGAs increases to 4, DP 876

takes nearly 27 h to find an optimal solution for a subnetwork 877

of VFS with ten layers, which is 10378 times compared to 878

CHEF-A2F. Thus, searching for an optimal solution via DP 879

for the whole VFS with 48 layers is estimated to take around 5 880

days, which is inefficient in practical applications. Compared 881

to DP, CHEF-A2F can find a near-optimal solution for the 882

whole VFS in 15.6 s. It should be noted that we only consider 883

three IP candidates. When we increase the IPs to 4, DP fails 884

to complete the search within 15 days even for subnetworks, 885

while CHEF is efficient in searching for complete MMMT 886

models with more IPs in an acceptable time. The ST will be 887

discussed in detail in Fig. 9. 888

Then, we validate the effectiveness of CHEF-M2A. 889

Table VII shows the mapping comparison of CHEF-M2A and 890

the optimal solution in terms of estimated system latency and 891

ST when the number of deployed accelerators increases from 892

2 to 4. The optimal solution is obtained by enumerating all 893

possible mapping combinations and finding the one with the 894

shortest system latency. Given N available accelerators and an 895

MMMT model with M layers, the complexity of finding the 896

optimal solution is NM . Mapping all layers of MMMT models 897

with four accelerator candidates ranging from 40 layers to 898

150 layers is time-consuming. Therefore, we also compare the 899

performance mapping only 9 and 10 layers for the MMMT 900
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Fig. 9. ST of CHEF with eight candidate IPs when the number of FPGAs
increases to 4. The ST ranges from 0.66 to 78 s.

models. As shown in Table VII, CHEF-M2A achieves near-901

optimal performance for all the scenarios, while searching902

for an optimal mapping scheme requires tremendous time.903

For example, deployed with 4 accelerators, finding an optimal904

solution mapping a mere 10-layer VLocNet takes nearly 1 h,905

while CHEF-M2A costs only 0.1430 s. CHEF-M2A achieves906

21727 times speedup in ST for mapping. If we search for the907

optimal solution for the whole 141 layers, the optimal solution908

is estimated to take 6.4×1e78 h, which is impossible to apply909

in practical applications, while CHEF-M2A can find a near-910

optimal solution in 13.5 s.911

To further present the overall efficiency of CHEF, we display912

the ST when CHEF is applied to schedule complete MMMT913

models on m = 4 FPGAs with eight candidate IPs. As can914

be seen in Fig. 9, CHEF searches for near-optimal deploying915

and mapping schemes for MMMT models ranging from 20916

layers to 141 layers in minutes or seconds. If new models are917

given in the application, our proposed approach is feasible and918

efficient to generate the scheduling scheme in an acceptable919

design time.920

VIII. CONCLUSION921

This work proposes CHEF to enable efficient heterogeneous922

MMMT models deploying on heterogeneous clusters with923

FPGAs. We propose CHEF-A2F, a two-stage accelerators-to-924

FPGAs deployment approach to select efficient accelerators925

IPs and deploy them on given heterogeneous clusters of926

FPGAs considering the mapping performance. Then, we pro-927

pose CHEF-M2A to map MMMT models to the deployed928

accelerators. We are the first attempt to implement end-to-end929

MMMT model inference in heterogeneous clusters of FPGAs930

which provides benchmarks and baselines for future works.931
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