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ABSTRACT 
 This work uses supervised learning to optimize the 

package design with validated experimental results for 

piezoelectric micromachined ultrasonic transducers 

(PMUTs) to increase and alter the sound pressure level 

(SPL). Advancements as compared to the state-of-art 

include: (1) a neural network model to achieve a mean 

squared error of less than 0.65 dB2 post 100 epochs; (2) 

increased vibration amplitude by 17.9 dBV at the first-

mode resonance frequency of 33.5 kHz; and (3) SPL 

enhancements below the 20 kHz frequency range such as 

the magnitude increases of more than 60 dBV at 5 kHz. As 

such, the package design shifts the emitting acoustic energy 

from the ultrasound to audio range in favor of various 

applications, including audio speakers. 
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INTRODUCTION 

Ultrasonic technologies, particularly the development 

of Piezoelectric Micromachined Ultrasonic Transducers 

(PMUTs), have witnessed considerable advancements in 

recent years. PMUTs, owing to their compact size and 

efficient energy conversion, have become increasingly 

crucial in diverse applications ranging from medical 

diagnostics [4], [5], communications [6], imaging [7], and 

consumer electronics. Despite the growing adoptions, 

PMUTs face inherent limitations due to their reduced size, 

which typically leads to a low Sound Pressure Level (SPL) 

[8]. This is significant as SPL is a critical factor in 

determining the effectiveness and range of applications. 

The challenge of enhancing the SPL in PMUTs has 

been a focal point of research, with efforts primarily 

directed towards structural [9] and material optimizations 

[10], [11]. There is also research on the optimization of 

vibration modes [12]. While these approaches have yielded 

improvements, the optimization of PMUT packages hasn’t 

been explored in the literature for further advancements. 

Intuitively, the acoustic outputs of PMUTs will change 

based on the package and this presents both a challenge and 

an opportunity for innovation in the field. 

Understanding and addressing this gap is crucial for 

several reasons. First, optimizing packaging design could 

offer a pathway to enhance SPL without the need for 

extensive redesigns or material changes in the PMUTs. 

Second, improvements in SPL through packaging design 

optimizations could significantly broaden the scope of 

applications for PMUTs, especially in areas where high 

acoustic pressure output is essential [13], [14]. Exploring 

the impact of packaging on PMUT performance aligns with 

the broader trend in technology development, where 

holistic design approaches that consider all aspects of a 

device, including its packaging, are becoming increasingly 

important. In this context, research that focuses on 

optimizing PMUT packaging design not only addresses a 

specific technical challenge but also contributes to the 

understanding of how integrated design approaches can 

enhance device performances. 

An intriguing aspect of PMUT packaging design is its 

ability to alter the SPL in the low-frequency range without 

the need for major structural changes to the PMUT itself. 

This capability is particularly significant for applications 

like audio speakers, where a specific frequency response is 

desirable [15], [16]. The potential to modify the frequency 

spectrum through packaging alone allows for greater 

flexibility and efficiency in tailoring PMUTs for specific 

applications, further enhancing their utility in a wide range 

of fields. This approach not only addresses the challenge of 

enhancing SPL but also adds a layer of versatility to PMUT 

design, enabling the fine-tuning of acoustic properties to 

meet diverse application needs. The integration of machine 

learning in the optimization of PMUT packaging design 

has opened new possibilities [17]. By employing machine 

learning, researchers can effectively navigate the complex 

relationship between packaging designs and acoustic 

performances, leading to PMUTs that are better suited for 

a wider range of applications. 

As such, the study of PMUT packaging design 

optimization holds significant potential for advancing the 

field of ultrasonic technology. By exploring this relatively 

uncharted area, such research can provide valuable insights 

into how packaging modifications can lead to substantial 

improvements in device performance, thereby contributing 

to the broader goal of enhancing the efficiency and 

applicability of ultrasonic transducers.  

 
Figure 1: (a) Schematic of machine learning based PMUT 

package design optimization. Data generated by a 
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COMSOL model is used to train a neural network. The 

package shapes/parameters that maximize the desired 

acoustic pressure profile are obtained. (b) The design 

pipeline for generating the optimal design.  

 

METHODOLOGY 
Employing a combination of neural network and 

optimization algorithm, a cone-shape package with a 

Bezier curve shell has been developed to augment SPL at 

targeted frequencies as shown in Fig. 1a. The cornerstone 

of the design pipeline is the neural network trained on 

simulation data and the optimization algorithm that 

provides the best set of parameters, as shown in Fig. 1b. 

The goal is to generate an optimal packaging design that 

maximizes the output SPL at the resonance frequency.  

The first step towards the optimal packaging design 

starts with a simulation model in commercial Finite 

Element Analysis software COMSOL. The 2D-

axissymmetric model includes the PMUT unit and a 

package on top in Figure 2, which is defined by a Bezier 

curve. A Bezier curve is a mathematical curve defined by a 

set of control points widely used in computer graphics. It 

can produce both straight lines and complex, smoothly 

flowing curves, making them versatile tools for creating 

various shapes in design and modeling. In the simulation 

model, the cone-shaped package is represented by a Bezier 

curve defined by 5 parameters: (r1, r2, r3, r4, h). As shown 

in Figure 3, the height of the package is denoted as h.  

There are 4 points equally spaced in the vertical direction 

along the path that defines the package geometry. For each 

point, the location is determined by a radius measured from 

the rotational axis of the model and the combinations of all 

points metamorphose into a conical shape in the space. An 

SPL measurement point is strategically positioned 3 mm 

above the PMUT.  

The generation of training data is primarily done on 

MATLAB. This includes randomly generating sets of 

parameters and passing them to the COMSOL model to get 

the corresponding SPL levels. Parameter boundaries are 

meticulously established, factoring in the limitations of the 

model and available fabrication method. The unique 

characteristics of the PMUT's wedge wire bonding and 

substrate define an upper limit of 3.5 mm to the horizontal 

coordinates.  To avoid a completely closed package with 

no opening and to make sure the package encloses the 

PMUT diaphragm completely, there is also a set of lower 

bounds to the radii (2 mm for r4 and 0.5 mm for r1, r2, and 

r3). Considering the form factor and constraints, the 

dimension of the package is limited to a 3×3 mm2 square.  

With the training data, a neural network model is 

constructed in Python using PyTorch to predict SPL based 

on the normalized design parameters. The neural network 

for regression has one input layer, two ReLU-activated 

hidden layers with 64 neurons, and an output layer. After 

the training process, the optimal designs are determined 

using stochastic gradient descent (SGD) to find designs 

that maximize the output SPL profile. 

 

 
Figure 2: (a) The design parameters of the 4 control points 

that define the Bezier curve of the package. Horizontal 

coordinates are measured from the rotational axis and the 

height is measured from the surface of the PMUT.  (b) The 

2D-axissymmetric model in COMSOL, including the 

PMUT, the PCB, and air as the medium.  

 
Figure 3: The constraint box.  

 

EXPERIMENTAL RESULTS 
A total of 3562 data sets have been generated based on 

the PMUT visualized in the COMSOL model, which has a 

resonant frequency at 107 kHz. The data set is generated in 

MATLAB, which is then used to run individual simulation 

in COMSOL to obtain the corresponding SPL output at the 

resonance frequency. Of all 3562 data, 80% were 

earmarked for training, and the remaining 20% was 

reserved for validation.  
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Figure 4: The training loss versus epochs. With 100 

epochs, the mean squared error falls below 0.65 dB2. 

With a batch size of 32, the neural network model 

exhibits a precision with a mean squared error (MSE) of 

0.65 dB2 post 100 epochs as shown in Figure 4. Stochastic 

gradient descent is used to find the optima after the neural 

network is trained. Given the non-convexity of a neural 

network model, the optimization was repeated 5 times with 

different initial guesses, and only the one yielding the 

largest SPL was selected.   

The design parameters are used to generate and print a 

3D model package for testing, as illustrated in Figure 5. 

The prototype packages were printed with a Form 3 SLA 

printer from FormLabs with standard grey and clear resin. 

This package is then mounted on a potassium sodium 

niobate (KNN) bimorph PMUT [4], which boasts an 800 

μm radius and twin mode shapes. A Brüel & Kjær 1/8" 

pressure-field microphone unit was used to measure the 

acoustic outputs with and without using the package at the 

measurement point of 3 mm above the KNN PMUT 

surface, same as in the simulation. 

Results shown in Figure 6 affirm a substantial 

alteration in the frequency spectrum due to the package. 

Particularly notable is that the vibration amplitude at first-

mode resonant frequency of 33.5 kHz increases by 17.9 

dBV, and the frequency band from 20 to 40 kHz gets a 

significant boost. Additionally, SPL enhancements are 

observed below the 20 kHz frequency, as the volume 

enclosed by the package acts as a resonance chamber. At 5 

kHz, the magnitude increases by more than 60 dBV. Such 

an improvement in the low frequency performance is a 

demonstration of how the packaging design shifts the 

energy from the ultrasound to audio range, making it 

especially suitable for speaker development. 

Comparative analysis with other randomly curated 

designs (Figure 7 and Table 1) in simulation confirms that 

the optimized package induces the most pronounced 

amplification, with one of the randomly generated 

packages even reduced the SPL. The design's compatibility 

with a large-radius KNN PMUT and its resultant 

performance gains underscore the expansive applicability 

of this design methodology. 

 

CONCLUSIONS 
      This study represents a significant advancement in 

PMUTs through the application of machine learning for 

packaging design. This approach led to a notable 

enhancement in SPL, crucial for the effectiveness of 

PMUTs in various applications.  

 

 
Figure 5: (a) The 3D-printed packages. The left most one 

is the optimal design, the others are possible shapes of the 

package. (b) The KNN PMUT used for the experimental 

validation, on which the simulation is based. (c) During 

testing, the package is placed directly on top of the PMUT 

element, and the bottom encloses the diaphragm. (d) The 

experimental setup using a microphone. The microphone is 

placed 3 mm above the KNN PMUT. 

 
Figure 6: Comparison between PMUT outputs with and 

without the package. The performance at the first-mode 

resonance is significantly improved, while the high-

frequency output is suppressed. Within the audible range 

(< 20 kHz), there is notable increase in amplitude.  
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Figure 7: Comparisons between bare PMUT, optimized 

and randomly generated designs.  

Table 1: Comparisons between different package designs.  

Setup SPL 

(dB) 

Sound 

Pressure 

(Pa) 

Pressure 

Compared to 

Bare PMUT 

Bare PMUT 102.35 2.62 - 

Optimized 112.31 8.25 +214.77% 

Random #1 109.55 6.01 +129.09% 

Random #2 104.79 3.47 +32.43% 

Random #3 75.062 0.113 -95.68% 

 

Key experimental outcomes include a 17.9 dBV 

increase in vibration amplitude at the first-mode resonance 

frequency and a remarkable SPL enhancement in the low-

frequency spectrum, such as over 60 dBV at 5 kHz. Such a 

boost in the audible range is particularly relevant for 

applications in audio technology. It also demonstrates the 

potential of optimized PMUT packaging in expanding the 

utility of these transducers in new domains, as the 

resonance output can be amplified by passive designs and 

the frequency response of the element can be fine-tuned 

without altering the material or the structure.  

The integration of machine learning into PMUT 

packaging design has not only addressed the challenge of 

enhancing SPL but has also added versatility and efficiency 

in tailoring PMUTs for specific needs, paving the way for 

more advanced and diverse applications of PMUTs. 
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