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Abstract—While vision transformers (ViTs) have shown con-
sistent progress in computer vision, deploying them for real-time
decision-making scenarios (< 1 ms) is challenging. Current
computing platforms like CPUs, GPUs, or FPGA-based solutions
struggle to meet this deterministic low-latency real-time require-
ment, even with quantized ViT models. Some approaches use
pruning or sparsity to reduce the model size and latency, but
this often results in accuracy loss. To address the aforementioned
constraints, in this work, we propose EQ-ViT, an end-to-end
acceleration framework with the novel algorithm and architec-
ture co-design features to enable the real-time ViT acceleration
on the AMD Versal adaptive compute acceleration platform
(ACAP). The contributions are four-fold. First, we perform in-
depth kernel-level performance profiling and analysis and explain
the bottlenecks for the existing acceleration solutions on GPU,
FPGA, and ACAP. Second, on the hardware level, we introduce a
new spatial and heterogeneous accelerator architecture, the EQ-
ViT architecture. This architecture leverages the heterogeneous
features of ACAP, where both FPGA and artificial intelligence
engines (AIEs) coexist on the same system-on-chip (SoC). Third,
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On the algorithm level, we create a comprehensive quantization-
aware training strategy, the EQ-ViT algorithm. This strategy
concurrently quantizes both the weights and activations into 8-bit
integers, aiming to improve the accuracy rather than compromise
it during quantization. Notably, the method also quantizes nonlin-
ear functions for efficient hardware implementation. Fourth, we
design the EQ-ViT automation framework to implement the EQ-
ViT architecture for four different ViT applications on the AMD
Versal ACAP VCK190 board, achieving accuracy improvement
with 2.4%, and average speedups of 315.0, 3.39, 3.38, 14.92, 59.5,
and 13.1x over computing solutions of Intel Xeon 8375C vCPU,
Nvidia A10G, A100, Jetson AGX Orin GPUs, AMD ZCU102, and
U250 FPGAs. The energy efficiency gains are 62.2, 15.33, 12.82,
13.31, 13.5, and 21.9x.

Index Terms—Design for space exploration, embedded
systems, FPGA, hardware/software co-design, high-level synthe-
sis, modeling, performance optimization, reconfigurable logic.

I. INTRODUCTION

ISION transformers (ViTs) [1], [2], [3] have shown
Vremarkable versatility in a broad range of application
domains, including computer vision (e.g., image classifica-
tion [1], [3], object detection [4], [5], image processing [6],
and video understanding [7]), and in complex scenarios that
involve the multimodal data. Many networks [1], [8], [9],
[10] use ViTs as the backbone [8], [9] and show superior
transferability to various downstream tasks with minor fine
tuning.

Low-Latency Real-Time Application Scenarios: Adopting
ViT inference as a key chain for low-latency real-time decision
making usually requires stringent latency requirements. For
example, in autonomous driving scenarios with a 120 km/h
speed, 1 ms latency corresponds to 3 cm between a vehicle
and a static object or 6 cm between the two moving vehi-
cles [11]. In such a life-critical system, deterministic low
latency (<1 ms) is the first-class design citizen. European
Organization for Nuclear Research (CERN) collaborates with
autonomous driving software company Zenseact to apply
CERNa™g5 decision-making algorithm acceleration on FPGA
at microsecond level to help avoid accidents in self-driving
cars [12]. Such latency (<1 ms) is required in broader
scenarios, including the edge and cloud applications. On the
edge, for example, radio access networks (RANs) [13] support
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Fig. 1. EZ2E latency comparison for DeiT-T (FP32, INTS, batch size = 6) by
using HeatViT on U250 FPGA, TensorRT on A10G GPU, CHARM on Versal
ACAP VCKI190, and EQ-VIiT (ours) on ACAP VCK190.

interactive streaming media [14], augmented reality/virtual
reality (AR/VR) [15], [16], robot systems control [17], online
error detection in the manufacturing industry [18], and indus-
trial IoT 4.0 [19]. RAN stack operates in low-latency at a
transmission time interval of 1 ms or less (based on the
5G standards). Thus, it has to make control decisions at
each millisecond [13]. In AR/VR, the latency requirement is
<1 ms as the visual reaction time for the human expected
events is only around 1 ms [20]. In the cloud, to guarantee
the quality of service, deep learning-based inference for the
cloud services in Microsoft Bing Search [21], Microsoft
Azure Cloud [22], [23], and Google Cloud [24], [25], [26],
all have a single-digit millisecond latency budget to process.
Powered by the next-generation cellular networks with 5G or
6G standard [13], optical interconnection network [27], and
optical chiplet [28], [29] technology, the latency requirement
will be more stringent. Acceleration solutions that meet
certain end-to-end (E2E) inference latency requirements and
optimize the overall system energy efficiency, i.e., performance
per watt are desired.

However, the existing works fail to fulfill such stringent
low-latency requirements, hindering the ViT deployment in
low-latency application scenarios. We measure the E2E low
batch inference latency for the representative ViT model
DeiT-T [2] using the state-of-the-art (SOTA) acceleration
frameworks on the FPGA and GPU, including HeatViT [30] on
AMD U250 FPGA, and TensorRT [31] on Nvidia A10G GPU.
As shown in Fig. 1, in terms of E2E inference latency under
single-precision floating-point (FP32) precision, U250 FPGA
takes 50.3 ms, which far exceeds the low-latency real-time
requirement, e.g., <1 ms, while A10G GPU takes 2.21 ms. We
can achieve a lower inference latency by quantization [32] and
deploying the 8-bit integer (INT8) inference on U250 FPGA
and A10G GPU. Then, the inference latency reduces to 7.3 ms
on U250 FPGA and 1.78 ms on A10G GPU.

Based on the requirements of deterministic E2E inference
latency and the initial profiling results of the existing solutions,
several research questions arise as follows.

1) What are the limitations of the existing acceleration

platforms in satisfying the low-latency demands?

2) With quantization optimization, do we have a better
computing solution to achieve lower latency than FPGAs
and GPUs?'

3) If so, how to achieve that?

4) Can we also improve the accuracy with integer quanti-

zation?

Our answer to the second question is “Yes.” We propose
the EQ-VIiT architecture and our implemented EQ-ViT design
on the AMD Versal adaptive compute acceleration platform
(ACAP) VCKI190 achieves a latency as low as 0.56 ms,
which has 3.2x latency improvement over A10G GPU and
13.1x over U250 FPGA. However, achieving latency as low
as 0.56 ms on the heterogeneous Versal ACAP system-on-chip
(SoC) involves a lot of design efforts. To ease the programming
efforts, we propose the EQ-ViT design automation framework
to perform the design space exploration and automatic code
generation to facilitate the implementation. In addition, we
propose the EQ-ViT algorithm to improve the inference
accuracy after the INT8 quantization and EQ-ViT algorithm-
hardware co-design to meet the hardware constraints without
hurting the algorithm accuracy. Our contributions are summa-
rized below.

1) Detailed Profiling and Bottleneck Analysis: To under-
stand the performance constraints of the existing
solutions, we perform in-depth kernel-level performance
profiling of ViTs on FPGA, GPU, and ACAP in
Section II. Based on the bottlenecks for the existing
solutions, we propose our solution principles.

EQ-ViT Accelerator and Mapping: We propose a novel
spatial and heterogeneous accelerator template and pro-
gramming mapping solution to take advantage of the
ACAP heterogeneous features: the coexistence of FPGA
and artificial intelligence engine (AIE) vector cores on
the same SoC in Section IV. Our accelerator architecture
features multiple spatial accelerators to improve the AIE
core utilization and fine-grained pipeline to overlap the
execution time of the accelerators that run on the FPGA
and AIEs of the ACAP.

EQ-ViT Algorithm and Algorithm-Hardware Co-Design:
On the algorithm level, we develop a full quantization-
aware training (QAT) strategy, the EQ-ViT algorithm,
to quantize both the weights and activations into 8-bit
integers in Section V. This method improves accuracy
on all the four different ViT models. More importantly,
our proposed EQ-ViT algorithm-hardware co-design
quantizes the nonlinear functions with the algorithm
optimization and realizes the efficient hardware imple-
mentation for the Softmax and GeLU.

EQ-ViT Automation and System Implementation: We
design EQ-ViT automation framework to implement the
EQ-ViT architecture for the four different ViT models
on the AMD Versal ACAP VCK190 board. Experiments

2)

3)

4)

INote that, <1 ms latency requirement in the example discussion is
for the illustration purposes. The latency requirements differ across various
application scenarios. We desire a solution that achieves lower latency than
GPUs and FPGAs under the same throughput requirement or achieves higher
throughput (or energy efficiency) than GPUs and FPGAs under the same
latency requirement. In this article, we discuss such a solution EQ-ViT.
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TABLE I
HARDWARE SPECIFICATION COMPARISONS ON PEAK PERFORMANCE FOR
DatA TYPES FP32 AND INT8, ON-CHIP MEMORY SIZE, OFF-CHIP
BANDWIDTH (BW), TDP AMONG AMD FPGA U250, NvIDIA GPU
A10G, NvIDIA GPU JETSON AGX ORIN, AND AMD VERSAL
ACAP VCK190

Hardware Spec. | (o | FP32 | INT8 | Q<P | Quechip | Ofechip 1 ppyp
AMBZEEGA l6nm | 12T | 6.95T | 77GB/s 53MB 16GB 225W
NgR SPU | 8am | 35T | 1407 | 600GBAs | 14MB | 24GB | 300W
T:t:::; g::;] 8nm 53T 85T 204GB/s 6MB 64GB 60W
AVkioo? | 7om | 64T | 102T | 25GBA | 3BMB | 8GB | <180W

185 in Section VI show EQ-ViT achieves accuracy improve-
186 ment with 2.4% and average speedups of up to 315.0,
157 3.39, 3.38, 14.93, 59.5, 13.1x over computing solutions
158 of Intel Xeon 8375C vCPU, A10G, A100, Jetson AGX
150 Orin GPUs, AMD ZCU102, and U250 FPGAs.

o 5) EQ-VIT Generality Discussion: We discuss how EQ-
161 ViT mapping framework can be applied to the other
162 architecture, e.g., FPGA and GPU, to improve the
163 performance in Section VII. We further discuss the
164 microarchitecture insights, i.e., what role reconfigurabil-
165 ity plays in the future heterogeneous architecture.

16 11. BOTTLENECK ANALYSIS AND PROPOSED SOLUTION

ez In this section, we first explain the performance bottlenecks
ses Of the current solutions on FPGA, GPU, and ACAP. Then, we
160 discuss our proposed design principles.

wo  First, FPGAs are mainly constrained by the limited
71 computation resources. Table I indicates that AMD FPGA
12 U250 (Ultrascale+, 16 nm fabrication) has the lowest peak
173 performance among the three hardware platforms, at 1.2
174 TFLOPS for FP32 and 6.95 tops for INT8 under 250 MHz.
175 When transitioning from FP32 to INTS8, the E2E latency
176 decreases from 50.3 to 7.3 ms. However, both the cases are
177 computation-bound and latency can not be further reduced
178 because of the limited computation resources from DSP/LUT
9 in FPGA.

w0 GPUs have abundant computation cores, e.g., NVIDIA
1e1 introduces Tensor cores since the volta architecture. Table I
1.2 reveals that GPU A10G (the ampere architecture, 8 nm fab-
1es rication) boasts the highest peak performance at 35 TFLOPS
s for FP32 and 140 TOPS for INT8. Tools like TensorRT
1es simplify inference streamline through the methods, such as
g6 quantization. However, Fig. 1 shows that the E2E latency
w7 on GPU A10G is 2.21 ms for FP32 and 1.78 ms for
1es INT8. This results in a modest 1.24x E2E improvement,
10 significantly smaller than the theoretical peak computation
10 performance improvement from FP32 to INT8 (4 x, calculated
101 as 140T/35T). To understand the performance bottleneck, we
12 utilize NVIDIA Nsight System [33] and depict the kernel-
1ea level time breakdown for INT8 in Fig. 2. We identify the
104 following performance constraints for using TensorRT on the
105 GPU: @ Low Tensor Cores Utilization for INT8 MM Kernels:
106 Although MM kernels constitute 34.4% of the total runtime,
17 their effective throughput is 23 tops, representing only 16%
18 utilization of the peak INT8 computation performance for

E0DR “Patch Embed ®"MM - BMM ®Reformat ®Transpose ® Softmax mLayernorm = GELU

170 us

Patch Embed . Reformat Transpose Non-MM
E?ps MM: 6125 BMM 386us Sdus 134ps Kernels 49145
NVIDIA = N
a106 34.4% [ BTt
(a)
Block 0 Block 1-11
Block O Blocks1-11  Dominate by DDR -‘\CGESIS MM covers the latency of
220us  340ps Zgg::ss : the other kernels
EQVIT —j—— i
(ours) MW 30ps ! 340 ps
1 ~_ |
0.56ms 16 us H
]
I
|

{3.18x latency reduction over A10G)

®)

Fig. 2. EZ2E inference latency comparison of using TensorRT on NVIDIA
A10G GPU and using EQ-ViT (ours) on AMD Versal VCK190 ACAP for the
representative ViT model DeiT-T with INT8 precision when batch size = 6.
(a) DeiT-T INT8 E2E latency on A10G is 1.78ms, (b) DeiT-T INT8 E2E
latency on EQ-ViT (Ours) is 0.56ms.

GPU A10G. ® TensorRT Adopts an Implicit Quantization
Policy, Which Leads to BMM Computing in FP32, Not in
INTS: Quantization enables MM and batch-MM (BMM) to
compute in INT8 for higher throughput. However, according
to the NVIDIA Nsight compute kernel-level profiling report,
BMM kernels compute in FP32. This is related to the implicit
quantization strategy applied by TensorRT [34], which will
quantize one kernel only when this kernel runs faster in INT8.
Otherwise, TensorRT will assign a higher precision to this
kernel, FP32, by default. Despite having only 1/6 of the total
operations of MM kernels, BMM kernels contribute to 21.7%
of the total runtime. We calculate their effective throughput
as 6.3 TFLOPS, which is 18% of the peak FP32 computation
performance for A10G. @ The Data Type Conversion Between
FP32 and INT8 Consumes Non-Negligible GPU Cycles: MM
kernels are processed in INT8 mode using NVIDIA Tensor
cores, while other kemels use FP32 mode with NVIDIA
CUDA cores. Data type conversions between FP32 and INTS,
known as Reformat are introduced. This operation is signifi-
cant, accounting for 5.3% of the E2E latency. @ The Nonlinear
Kernels Take Significant GPU Cycles: Non-MM kernels, such
as Softmax, GeLU, and LayerNorm, collectively contribute
27.6% of the total, despite their operations being only 1.5%
of MM kernels. This is due to these kernels involving special
functions, such as exponent functions, division, and square
root.

AMD Versal ACAP is a heterogeneous SoC, featuring ARM
CPUs, FPGA, and AIE vector cores. The AIEs support several
data types, including FP32, INT16, and INT8 [35]. ACAP
integrates the aspects of both the domains, that is, FPGA for
reconfigurability and AIEs for abundant computation cores.
We deployed the DeiT-T model FP32 version on the VCK190
board using CHARM [36], an SOTA deep learning inference
framework on the ACAP architecture. Fig. 1 illustrates that
CHARM has an E2E latency of 48.07 ms, which is 27x
slower than using TensorRT on GPU A10G under FP32. This
performance lag is mainly due to the significant load/store
of the feature data from/to off-chip memory, caused by the
FP32 model’s size exceeding the VCK190 on-chip storage
capacity of 33 MB. Quantizing the model into INT8 allows
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TABLE II
ARCHITECTURE AND ALGORITHM FEATURES OF EQ-VIT AND
COMPARISONS WITH PRIOR WORKS

ElEEEEEEEES|=

[ry—— | . F P P F
Mit [31], [36F439] e axchinectme and muappiag Camewecks. (3], (0], (31] ik EQ-VIT (ot} are algociib-bardnsss oodeaign loammori.

230 it to fit on-chip. However, without careful design, ACAP
240 acceleration may face similar limitations (from @ to @) as
2s1 A10G, and potentially worse due to VCK190’s limited 4.2%
242 Off-chip BW compared to A10G. This leads to the following
243 question. How can we optimize latency for INT8 ViT on
24« ACAP, given its high computation intensity but constrained
245 Off-chip BW?

26 Proposed Design Principles: We propose EQ-ViT to
247 Optimize latency for INT8 ViT, which circumvents all the
248 constraints from @ to @ typically encountered in GPU. The
240 key idea of EQ-ViT is to design multiple heterogeneous
250 MM accelerators on AIEs, design other non-MM kernels
25t on FPGA, and overlap the execution of kernels running on
252 AIEs and FPGA. Fig. 2(b) demonstrates the kernel runtime
253 overlapping in EQ-ViT. However, new challenges appear.
254 First, we need to enable explicit INT8 computation for BMMs
255 and achieve high computation utilization for both MMs and
256 BMMSs. The computation and communication requirements of
257 MMs and BMM s are different. Overlapping these two types of
258 kernels can improve both the computation and communication
250 Utilization. Second, we need to design efficient accelerators for
260 nonlinear kernels (Softmax, GeLU, and LayerNorm). Third,
261 we need to leverage the flexible on-chip memory architecture
2.2 provided by FPGA on ACAP to enable the data forwarding in
263 the adjacent kernels and further reduce the off-chip memory
264 access. Fourth, we need to carefully overlap the execution time
265 and optimize workload partitioning and resource partitioning
266 jointly, for utilization optimization, high throughput, and low
267 latency. Fifth, we need analytical models to optimize the
268 E2E latency under computation resource and communication
260 bandwidth constraints. Sixth, we need to keep the accuracy
zro after quantization and, if possible, enhance it.

271 III. BACKGROUND AND RELATED WORK

2z In this section, we first discuss the background for the
zrs ViT model architecture, and the existing quantization methods
zr4 for ViT in Section III-A. In Section III-B, we discuss prior
275 works on the hardware acceleration and mapping frameworks
276 on ASICs, FPGAs, GPUs, and ACAP. We also discuss the
2r7 algorithm-hardware co-design frameworks. We summarize our
28 proposed methodologies in hardware accelerator architecture
zro and the algorithm with the prior works in Table IL

200 A. Vision Transformer

281 Transformers were initially proposed to handle the learning
2.2 Of long sequences in NLP tasks. Great interest has surged fol-
2e3 lowing the work [1] that applies a transformer architecture for

Multi-Head
Self-Attention

Fig. 3. Computation flow of one transformer encoder.

the image classification without reliance on the convolutional
architectures (CNN). With more data, the data enhancement
techniques or extended training epochs, ViTs can achieve
significantly improved task accuracy [2]. Currently, ViTs excel
over CNNs in terms of both the speed and accuracy in various
computer vision tasks, including image classification [15],
object detection [43], and real-time object detection [44].

VIT Architectures: The input image is first divided and
arranged into a sequence of patches (or tokens). This sequence
is then passed through an L-layer Transformer encoder [45].
Each Transformer layer/block consists of two main compo-
nents (Fig. 3): 1) a multihead self-attention (MSA) module
and 2) a multilayer perceptron (FFN) module. For instance,
the DeiT-T model is composed of L = 12 Transformer blocks,
where the typical input image resolution is 224x224 with a
patch size of 16x16. Consequently, this results in a sequence
of n = 196 tokens, each token being embedded with 64x3
dimensions and utilizing # = 3 heads, and dim = 64 per head.

Quantization on Transformers: Quantization is one of
the most powerful ways to decrease neural networks’
computational operations and memory footprint. Current
quantization methods can be divided into two categories:
1) QAT [46] and 2) posttraining quantization (PTQ) [47].
NLP-oriented Transformers mainly employ PTQ for the two
reasons [48], [49], [50]: QAT needs the open dataset. If the
dataset is not publicly available, users have to use PTQ. QAT
requires significant computational resources to support the
training of large model sizes (usually over 350M), to which
academics usually have limited access. However, the compact
model size of ViT and the presence of the public datasets
make it a suitable candidate for QAT, thereby sidestepping
the notable accuracy decrease that is often associated with
PTQ. [51] proposes a QAT method for ViTs with information
rectified. However, this work does not quantize the nonlinear
operations, which causes more hardware overhead because
of the data conversion between different data types (dequan-
tizing and requantizing), and etc. Moreover, several existing
works [30], [52], [53], [54] utilize model pruning or sparsity
to reduce the computation operations in ViTs. However, these
techniques often lead to unavoidable accuracy drops. In EQ-
ViT, we aim to implement a fully quantized ViT through the
QAT algorithm and to improve the accuracy.

B. Transformer Accelerators on Hardware

Hardware acceleration for neural networks spans various
platforms like ASICs, GPUs, FPGAs, and ACAPs as shown
in Table II. ACAP stands out with its high theoretical INT8
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performance but faces a challenge with its relatively low off-
chip bandwidth. This requires more design efforts due to the
high computation-to-communication (CTC) ratio on ACAP.
Nevertheless, EQ-ViT incorporates all the listed accelera-
tor and algorithm-hardware co-design features, achieving the
highest computation utilization and the lowest latency for ViT
compared to the existing works.

Hardware Acceleration and Mapping Framework:
TensorRT [31] provides a general quantization solution on
GPUs. However, TensorRT adopts an implicit quantization
policy and faces low INTS8 tensor core utilization due to
its sequential execution model, i.e., calling each kernel one
after another. Herald [37] introduces a heterogeneous system
with simultaneous spatial accelerators (accs), allowing for
optimization exploration as different accs may have varied
CTC ratios. While Herald integrates well-designed accs,
EQ-ViT goes a step further by supporting the accs hardware
specialization and jointly optimizing accs scheduling and
designing. MAGMA [38] proposes an automatic framework
for the multitenancy heterogeneous architectures but suffers
from significant latency due to the off-chip communication.
This is not ideal for scenarios that are sensitive to time. In
contrast, EQ-ViT customizes on-chip forwarding among any
two adjacent accs to optimize the off-chip access. ViA [39]
applies a well-customized spatial solution on U50 FPGA,
supporting at most two spatial accs, while EQ-ViT explores
more accs. FLAT [55] applies a tensor fusion mechanic and
a tiling method to reduce the communication in attention-
based models. CHARM proposes an open-source framework
that composes multiple specialized accelerators, but it only
supports FP32 data type and falls short of meeting real-time
requirements on ACAP. EQ-VIiT features a spatial architecture
with customized accs. The fine-grained pipeline structure and
on-chip data forwarding achieve deterministic low latency.

Algorithm-Hardware Co-Design Acceleration for ViT: ViT
architecture works [30], [40], [41] also consider algorithm
adaption, e.g., sparsity, to speed up the model inference.
ViTCoD [40] efficiently prunes and polarizes attention maps
to create denser or sparser fixed patterns, reducing atten-
tion computations. HeatViT [30] employs image-adaptive
token pruning and 8-bit quantization to eliminate the model
redundancy, resulting in improved on-device throughput. Auto-
ViT-Acc [41] utilizes network search to tune the quantization
choices for the best latency under the frame-per-second
(FPS) performance constraints. SSR [42] provides a frame-
work that explores the latency throughput tradeoff for the
transformer-based applications. While enabling the hardware
accelerator features, there is a lack of discussion about the
algorithm design and the algorithm-hardware co-design fea-
tures. However, these works have two main limitations.

1) In [40] and [41], the nonlinear operators in ViT models
are computed in FP32, leading to significant hardware
overhead. HeatViT [30] uses polynomial approximations
for GeLU and Softmax, quantizing them into INTS.
However, this approach consumes a significant amount
of FF/LUT resources due to the exponent “€” in
Softmax. EQ-ViT (ours) employs “2” as the exponent,
resulting in lower FF/LUT resource usage.

| Input | | Optimization | | Code Gen
Deep Learnin, Activation- Non-linear
Frapmeworkg ==t | aware Training Optimization |m== AJE C/C++
75 Accuracy__ ™\ SW
Hardware Latency HW|
e Spatial Specialization PLHLS
Accelerator 2 AIE&PL
Latency & Accuracy On-chip Fine-grained ARM C/C++
Forwarding Pipeline

Fig. 4. EQ-VIiT software/hardware co-design framework.

2) Task accuracy degrades. ViTCoD applies uniform prun-
ing pattern to compress the attention matrix, leading
to accuracy drops of 0.5%~1%. HeatViT and Auto-
ViT-Acc fail to consider the inherent data distribution
within ViTs, resulting in inconsistencies between the
quantization strategy and the data distribution. In con-
trast, EQ-ViT introduces a hardware-efficient nonlinear
quantization and achieves better task accuracy than
the full-precision models through the activation-aware
quantization.

IV. EQ-VIT FRAMEWORK AND ARCHITECTURE

In this section, we first illustrate the proposed framework
and the EQ-ViT heterogeneous accelerator. We then elaborate
on the detailed mapping methodology.

A. EQ-VIiT Framework Overview

Our EQ-ViT provides the optimization for the algo-
rithm/hardware co-design. In Fig. 4, our framework takes
the latency and accuracy requirement and the hardware
information from the user. These combined constraints will
decide the final quantization strategy by the activation-aware
training and mapping strategy through (1)—(7) in Section I'V-D.
Given an application, our EQ-ViT will conduct activation-
aware training and provide accuracy under 32, 16, 8, and 4
bits for both the activations and weights. Then, according to
the accuracy constraint and the hardware information, EQ-
ViT will pick a quantization strategy that meets the accuracy
requirement while best fitting the vector processors (AIEs). For
instance, Versal VEK280 provides peak performance under
the 8 bitsx4 bits mode whereas VCKI190 provides peak
performance under the 8 bitsx8 bits mode. Then, we use
(1)—(7) to optimize the throughput under the latency constraint
and the quantization strategy. If the model quantization is
insufficient to target a single board, our work can be used
in concert with partitioning approaches to map larger models
onto the multiple devices [23]. Our EQ-ViT framework also
includes a Python-based code generation toolflow. Based on
the generated mapping strategy, it can instantiate the code
template to generate the design source files, including ARM
CPU host code, FPGA high-level synthesis code, and AIE
intrinsic C/C++ code which can be directly compiled and
deployed on Versal ACAP.

B. EQ-ViT Heterogeneous Accelerator Overview

Fig. 5 shows the overall EQ-ViT architecture on ACAP. It
is composed of multiple spatial accelerators with MM units

388

380

390

am

aa2

303

304

305

306

ag7

308

300

400

401

402

403

404

405

406

407

408

400

410

411

412

413

414

415

416

4“7

418

410

420

421

422

423

424

425

426

427

428

420

430
431



6 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS
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Fig. 5. Proposed EQ-VIiT architecture overview.

AlE Local Memory

Pre-load

4
8 2
8|
8 a [N LAy LorPAg LigPAs LAy
N o
R MemO

Bocl= Accl+= Accle= Accle=
ABe By AB, ASB,

Mem L Mem
““““““““““““ MAC
AIE Registers

Store 20, / Oy
H Cycle 0 1 2 3 4 5 6
Reg A RegB Reg Acc

Fig. 6. Efficient single AIE design.

4z allocated to the AIE region and non-MM units allocated to the
4: PL region. The MM and non-MM units are connected through
44 the PLIO interface. We design specialized MM units for the
435 computation-intensive kernels, e.g., MM, BMM, and Conv by
436 exploring 3-D parallelism on the AIE array. By leveraging the
437 flexibility of the PL region, we implement non-MM units for
428 transpose, Softmax, Layernorm, and GeLu. Based on these
420 building blocks, our proposed EQ-ViT architecture has the
420 following hardware characteristics: 1) we apply spatial archi-
aa1 fecfure that multiple accelerators compute different kernels
a2 with high AIE utilization at the same time instead of using
443 one unified accelerator and launching it sequentially; 2) to
444 reduce the expensive off-chip memory access, we explore the
s on-chip data forwarding between different spatial accelerators;
46 and 3) we propose a fine-grained pipeline structure within each
447 spatial accelerator to further overlap the execution of nonlinear
423 and element-wise kernels with MMs to reduce latency. The
40 details will be elaborated in Section IV-C.

40 C. Hardware Design Methodology

41 High Utilization Matrix Multiply Design on Single AIE and
42 AIE Array: When designing the MM/BMM kernels under
ss3 the INT8 data type, efficient communication between the
454+ PL SRAM, AIE local memory, and registers is important
45 to saturate the abundant computation resource. We optimize
458 MM/BMM kernels from the two levels, the single AIE and
457 AIE array levels.

s In the single AIE level, based on the byte-level flexibility of
150 AIE, we write efficient AIE intrinsic instructions to make full
ss0 use of the 2 Kb vector register to sustain the 128 MACs/cycle
461 throughput with two 256 bits/cycle load instructions. The
462 128 MACs can be constructed as a 16x8 MAC array where
4s3 the second dimension is the reduction dimension. Under the
48+ constraints of 2 Kb vector register as well as the 256 bits/cycle
165 load bandwidth, we customize the 128 MACs into an 8x8x2
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Fig. 7. Data distribution in DeiT-T. (a) A representative normal distribution
of the weight of the 12th FC1 layer. (b) Long-tail distribution for attention
map.

3D-SIMD instruction. Based on our atomic 8x8x2 MAC
operation, the execution pipeline of a MM with size 8 x16x4
is shown in Fig. 6. In order to achieve back-to-back issued
MAC instructions, we allocate 8x8 and 8x4 8 bits vector
registers and use the double buffer technique to hide the
latency of loading from the local memory to the vector
registers. After two cycles of preloading the data into AIE
registers for the LHS and right-hand-side (RHS) operands, the
MAC operations can be issued without the idle cycles. Based
on this scheduling, it can also handle the MM with a larger
size at the expense of only two preload cycles.

When scaling out to the AIE array, the shape variance of
the multiple layers within a transformer block often leads to
the hardware underutilization [36], [37], [56]. Thus, for each
layer within a transformer block, we design a customized MM
unit that perfectly matches the shape of the layer. The number
of AIEs utilized in each MM unit are proportional to the total
number of operations within the layer. We propose two kinds
of MM units as shown in Fig. 5. For AIEs of Type 0 that
take both the activation and weights as their operands, we
efficiently allocate the AIE local memory to make sure the
weight of all the blocks fit and loaded during initialization
without further excessive loads. Thus, it saves the PLIO of
sending the RHS operands (weights). For the kernels that
the weights cannot fit in the AIE local memory or the two
operands are both activations (attention batch dot), we map
them to AIE design of Type 1.

Element-Wise and Nonlinear Kernel Design: Element-
wise kernels and nonlinear kernels, including Transpose,
VectorAdd, Reformat, Softmax, LayerNorm, and GeLU
account for less than 2% of the total operations. However,
they collectively contribute 40% of the total execution time as
shown in Fig. 2. To overlap the latency of these operations with
the MM operations, we apply a similar line-buffer methodol-
ogy proposed in SSR [42] to enable a fine-grained pipeline.
Beyond the proposed method, we further apply quantization to
the nonlinear kernels introduced in Section V-C, significantly
reducing the number of resources used in the PL.

D. Hardware Design Optimization

We mathematically formulate a mixed-integer-programming
(MIP) [57] optimization problem to guide the design space
exploration and determine the hardware resource partitioning
and configuration for each spatial accelerator. We denote the
number of accelerators and batches as Acc and B. The ViT
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st graph is denoted as G and the start execution time of each
st1 node included in the graph is referred to as T,. D, ,, refers to
si2 @ binary dependency matrix of the nodes in the graph, where
stz D, ,, = 1 means node, m depends on n. E, , and A, , are the
integer and binary matrix variables representing the execution
s15 time and allocation map of each node on every accelerator. (2)
limits the finish time of every node in batch 1 as the latency of
si7 the first batch should meet a certain budget, e.g., Budger as 1
ms. The goal is to maximize the overall throughput calculated
as (1) and (3); (4) and (5) guarantee each node will be mapped
s20 to only one accelerator and each time one hardware accelerator
will only execute one logic node in the graph. The execution
s22 order should follow the dependency map (6). The sum of
s23 hardware utilization should meet the hardware constraints (7)

514

516

518

510

52

524 maximize B/Latyy (1)
525 s.t. T, + Epq x Anq < Budget ¥n € (Gy) (2)
528 Latay = Ty + En,a X Ana Y1 € (G) (3)
7 YACAu=1VYneG )
528 Tm=Th+EpaxApqgor Ty =Tn+Ena XAna

520 V(n,m) e G,Yae Acc,D, ,, =0,A, ,=A,, (3)
530 Tm=Th+EpaxApa Vin,m) € G,Dp =1 (6)
531 ZURAM,AIE,PLIO,DSP}a < HW[RAM,AIE,PLIO,DSP}

532 Va € Acc. (7)
533 V. EQ-VIT ALGORITHM

s« In this section, we first probe into a comprehensive

s3s analysis of the data distribution (weight and activation) of
ViTs and arrive at several discoveries. Then, we develop
activation-aware QAT to quantize ViTs and improve accuracy.
sss Furthermore, we propose INT-Softmaxs» and I-GeLUpyp to

sa0 reduce the hardware resources.

536
537

s A. Discovery of Data Distribution Within ViTs

sst  Weight: Data follows a standard normal distribution
sz [Fig. 7(a)].
sas  Activation: Two key features impact the quantization strat-

s4a €8y, long-tail distribution and channel-wise outliers.

Long-Tail Distribution:

Attention Map: The attention map is the feature map of the

Softmax output. To preserve the informative message of the
Softmax, we plot attention maps in the real and log domain
sq0 [Fig. 7(b)], which reveals a long-tail distribution. Compared to
ss0 the uniform quantization (with 8-bit), which assigns only one
sst bin to such a large number of values, the log2 method has more
ss2 resolution (24 bins) to cover this data range. This indicates that
ssa the low-bit log2 method plays an ideal quantization choice.
Channel-Wise Outliers:
Large Interchannel Variations in the Residual Link Addition:
ss6 As shown in Fig. 8(b), the channel-wise ranges in ViTs exhibit
more significant fluctuations than in ResNets. As the channels
with outliers require larger scales than the others, using
sso common quantization methods like the layer-wise quantization
with the same parameters for all the channels would result in
an unacceptable quantization error.

545

546

547

548

54

555

557

558

560
56

Systematic and Fixed Outliers: Although outliers appear
in every sequence, they are concentrated in fixed channel
dimensions of the residual link addition as shown in Fig. 8(a)

B. Activation-Aware QAT

We propose two novel quantization methods, long-tail-
oriented quantization and outlier-predictable QAT. Assuming
the bit-width is b, the quantizer Q(X|b) can be formulated
by mapping a floating-point number XeR to the nearest
quantization bin. Among various quantizers, uniform [59] and
log2 [60] are typically used. Apart from the special data
distribution in Section V-A, we apply the layer-wise uniform
quantization on the weights and activations.

1) Long-Tail-Oriented Quantization: Log2Q on Atfention
Map: Based on Section V-A, we apply Log2Q on the attention
map to preserve the informative content as

Attng = Log2Q(Attn|b) = clip([—logZ(Atmﬂ ,0,20 — 1).
(8)

2) Outlier-Predictable QAT: We propose the outlier-
predictable training that obtains the precise channel indices of
outliers in the addition of residual links and regularizes scales
of outliers with different power-of-two coefficients (PTCs) in
channel wise.

PTCs on the Residual Link Quantization: Given the
input activation (token) X € B x L x C (B: batch size, L:
token/sequence length, C: the channel dimension of one token,
and the PTC reNC, then the quantized activation Xg is

X
Xo = Q(Xb) = clip(Lg] +12,0,20 — 1) ©)

_ max(X) — min(X) L _ min(X) b
5= —23(25 — ]) , 2= Cllp([ _max(X)-I’O’ 2 1)

(10)

where the outlier channel index is i, PTC is r € [2,3,4], 5 is
the scaling factor, and z is the zero-point.

Outlier-Predictable Training: It includes three stages:
1) initialize the PTC with the full-precision model estimated
by threec method [62]; 2) search for the channel index i and
the PTC r with the /5 regularization; and 3) fix the index i and
r obtained in stage 2 and fine tune the model.

C. Nonlinear Operations Quantization
1) INT-Softmaxyn: We replace the natural constant e inside
the Softmax with the power of 2 [63] with the integer inputs.
i represents the ith token
exp(X;) 2%i
) exp(X;)  ZE 2%

INT-Softmaxs (X) = (11)

Log2Q With INT-Softmaxyn: Similar to [64], we utilize
Log2Q on the attention map. We then integrate the power of
2 inside the Softmax and the operation can be modified as

Attng = Log2Q(Attn|b)

= clip| ~log, =f. 1231+5(,-],0, k1. (12)
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Fig. 8. (a) Channel-wise minimum and maximum values of the second residual link addition in the 9th block of DeiT-T. (b) Channel-wise ranges of the last

residual link addition in representative models. (c) Comparison of common INT-Softmax [61] and INT-Softmaxon in quantized MSA inference.

TABLE III
MODEL STRUCTURES OF FOUR DIFFERENT VIT MODELS

Model #Head | Embed. Dim | Depth | Precision | Model (MB) | MACs (G)

DeiT-T 3 192 12 INTS 5.6 1.3
DeiT-160 4 160 12 INTR 4 0.9
DeiT-256 4 256 12 INT8 74 21
LV-VIiT-T 4 240 12 INTR 6.75 1.6

ecs The exponent function is a crucial component of the Softmax,
eco but its nonlinearity makes it expensive to implement on the
s10 hardware. Combined with the Log2 quantization, the Softmax
s11 function can be executed with only addition computation and
sr2 removes division thus can be implemented by LUTs on FPGA
ers instead of AIEs. As shown in Fig. 8(c), the floating-point
st4 exponential calculation of the INT-Softmaxon is replaced with
e1s BitShift and addition and keeps integer-only data type.

86 2) I-GeLUpynp: We adapt 1-GeLU [65] to a combination
sr7 With linear kernels and lookup table under INT8 mode, since
ets 14-L(x) is an odd function within the range (0, 2)

0 if —(28-1)<x<-3
s 1-GeLUmp = { {0,0,0,0,1} if x € {-2,1,0,1,2}  (13)
x if3<x<28-1

e20 For implementation, we preload the requantized integer value
directly on-board as (13).

62

622 VI. EXPERIMENT
e2s A. Experiment Settings

e« Application and Training Framework Setup: Our experi-
e2s ments are conducted on the ImageNet-1k [66], Cifar-100,
e and Cifar-10 [67] datasets in PyTorch 3.8. We use two
ez7 representative ViTs, DeiT [2], and LV-ViT [68], in Table III.
s The baseline models with FP32 are obtained from the
e20 TorchVision. The outlier-predictable training follows Q-ViT
e with distribution-guided distillation (DGD) techniques [51],
ezt and the training process is executed on four NVIDIA V100
sz GPUs. We set stage 1 to 70 epochs and stage 2 to 30 epochs.
ess  Hardware Setup: We evaluate EQ-ViT the on AMD ACAP
g2« VCK190. We compare EQ-ViT with the other SOTA imple-
sa3s mentations on CPU, FPGA, and GPU. For each model, we
es iterate the inference for over 60 s and perform this mea-
s surement ten times to calculate the average inference latency.
ess On CPU, we measure the inference latency on an mé6i.large

instance from Amazon AWS using Pytorch 2.0.1. The instance
has two Intel Xeon 8375C vCPU cores running at 2.9 GHz
and thermal design power (TDP) is 300 W. On GPUs, we
measure the performance of TensorRT [31] on A10G (8 nm),
A100(7 nm), and Jetson AGX Orin (8 nm). We first use onnx
1.14.0 to compile the PyTorch model into the onnx format,
then use TensorRT 8.6 and its Python interface to compile the
onnx model into the TensorRT engine. To perform the INT8
inference, we enable the fensorrtf.BuilderFlag.INT8 flag in
compilation. The power consumption of the GPUs is measured
via NVIDIA-smi [69]. For the CPU and GPU experiments, the
PyTorch models are from the meta research [70].

On FPGA, we compare EQ-VIiT with HeatViT [30] on
AMD Zynq ZCU102 and AMD Alveo U250. We compare EQ-
ViT with SSR [42] on the same device VCK190. We measure
the power of VCK190 using the AMD board evaluation and
management [71]. To be noted, EQ-ViT provides the algorithm
and the algorithm/hardware co-design to explore different
quantization strategies, e.g., activations 8 bits and weights
4 bits (A8W4) without the accuracy loss. We add the new
estimated results (est.) in Table IV when using the A8W4
quantization on AMD Versal VEK280 which provides 4x 8
bits x 4 bits MAC operations/cycle/AIE over VCK190 with
8 bits x 8 bits precision. Our estimation shows that EQ-ViT
further reduces the latency by 1.67x using VEK280 over
VCKI190. This gain can not be achieved without the algorithm
and the algorithm/hardware co-design, demonstrating the key
new contribution of EQ-ViT.

B. VAT Inference Performance and Energy Efficiency Analysis

@ Performance and Energy Efficiency Comparison Among
CPU, GPU, FPGA, and ACAP: We apply our EQ-ViT frame-
work to four different ViT applications under the INTS
quantization mode and evaluate the on-board implementation
on AMD Versal VCK190. We compare EQ-ViT with six works
on CPU, GPUs, and FPGAs regarding latency and energy
efficiency on the four models in Table IV. Here, we report the
performance when setting the latency budget as 1 ms. EQ-
ViT DSE finds the optimal throughput design under this
latency constraint when the batch size is set to 6. The achieved
latencies are 0.56, 0.46, 0.89, and 0.61 ms for the four applica-
tions. In contrast, the solutions on other platforms have larger

630

641

642

643

645

647

640

650

651

652

653

654

655

656

657

658

650

660

661

662

663

664

665
666

667

668

660

670

671

672

673

674

675

676

677

678
670



DONG et al.: EQ-ViT: ALGORITHM-HARDWARE CO-DESIGN FOR END-TO-END ACCELERATION 9

TABLE IV
COMPARISON OF EQ-VIT AND WORKS ON CPU, GPU, FPGA, AND ACAP IN LATENCY AND ENERGY EFFICIENCY ON FOUR MODELS

PyTorch | TensorRT | TensorRT | TensorRT | HeatViT | HeatViT | SSR |EQ-ViT (ours) | EQ-ViT (ours)
Model |# of Batch Metric Xeon8375| AlOG A100 Orin ZCU102 | U250 |VCE1% VCEK1%0 VEK280 (est.)
10nm Snm Tnm Snm 16nm 16nm Tnm Tnm Tnm
Latency (ms) 167.68 1.78 1.84 7.97 2T 73 0.54 0.56 0.33
DeiT-T 6 FPS (image/sec.) 36 i3n 3260 753 183 822 11111 10695 18010
Energy.Eff (FPS/W) 3.8 158 18.6 17.7 194 10.2 213.7 224.7 427.8
Latency (ms) 129.01 1.78 1.73 792 29.75 6.34 0.50 0.46 0.28
DeiT-T-160 6 FPS (image/sec.) 47 3371 3468 758 202 946 11976 13187 21702
Energy.Eff (FPS/W) 49 16.9 200 19.0 219 122 206.8 280 503.5
Latency (ms) 294.61 207 2.09 10.44 3933 9.13 0.98 0.89 0.53
DeiT-T-256 6 FPS (image/sec.) 20 2899 2871 575 153 657 6122 6726 11393
Energy.Eff (FPS/W) 22 12.5 15.0 13.2 14.7 85 102.9 142.8 269.3
Latency (ms) 213 255 2.54 10.1 4321 9.36 0.85 0.61 0.37
LV-VIiT-T 6 FPS (image/sec.) 28 2353 2362 594 139 639 7059 9836 16017
Energy.Eff (FPS/W) 3 10.6 129 13.5 135 7.8 115.3 2028 359.9
TABLE V ~8-EQ-ViT VCK190 TensorRT A10G GPU
LATENCY COMPARISON BETWEEN ON-BOARD MEASUREMENTS AND 30 15=6
MIP MODELING ESTIMATIONS FOR FOUR VIT MODELS 7 25
& 20
Model # of AIE | Estimation | On-board | Error Rate § 15
DeiT-T 394 0.58 (ms) 0.56 (ms) 4% 210
DeiT-160 396 0.48 (ms) | 0.46 (ms) 5% g 5 o=t
DeiT-256 399 0.92 (ms) 0.89 (ms) 3% ".5‘ 0
LV-ViT-T 398 0.59 (ms) 0.61 (ms) -3% 0 0.5 1 15 2 2.5
Latency (ms)
TABLE VI

Fig. 9. Latency and throughput tradeoff comparison between EQ-ViT on

RESOURCE UTILIZATION OF SOFTMAX AND GELU BEFORE VERSUS VCK190 and TensorRT on A10G GPU.

AFTER EQ-VIT ALGORITHM CHANGES FOR HARDWARE EFFICIENT
IMPLEMENTATION ON VCK 190

Operations | § (6] | INTS %) | GeLU [36] | INT-GeLU(ours)
REG 62415 (4.17x) 14962 22238 (137x) 162

LUTLogic 94739 (14.48x) 6545 14222 (142x) 100

LUTMem 37668 (18834x) 2 1392 (-) 0 ; - .
RAM 147 (9.19%) 16 16) 3 (3)The Effect of Batch Size on [ﬂrency_ Throughput Tradeoff: 0
DSP 196 (7.00x) 28 1280 0 We can leverage the MIP-based analytical model to perform o7

the latency-throughput tradeoff in EQ-ViT, e.g.,, find the 7o

designs that achieve the highest throughput under the latency 7o
eso latency and do not meet the latency constraint under the same constraints. Fig. 9 shows the latency-throughput Pareto fronts 710
est batch size. For all the four applications, the average latency of EQ-ViT on VCK190 and TensorRT on A10G GPU. EQ-
ez gains are 315.0, 3.39, 3.38, 14.93, 59.5, and 13.1x, and the ViT achieves a better Pareto front than that of GPU. 712
ess gains of energy efficiency are 62.2, 15.33, 12.82, 13.31, 13.5, Resource Utilization Before Versus After EQ- 11
e« and 21.9x when comparing to the Intel Xeon 8375C vCPU, ViT Hardware-Efficient Algorithm Adaption for Two Non-MM 114
es A10G, A100 GPUs, AMD ZCU102, and U250 FPGAs. We Kernels Softmax and GeLU: We compare the hardware uti- 715
ess further analyze the latency improvement from the four features lization of the optimized Softmax and GeLU implementation 71s
ee7 (4.2X, 3.4x, 2.3x, and 2.7x) in Section VIII, together achieving with the previous FP32 design reported in CHARM [36]. We 717
ess 89x latency reduction from 50 ms using the FP32 model normalize the number of processing units to 16, the same as 7
eo With CHARM to 0.56 ms using the INT8 model with EQ- the implementation in CHARM. As shown in Table VI, we 71
sw VIT on VCKI190. We also applies the int8§ GEMM solution normalize one URAM as eight BRAM and report the total 720
so1 proposed by [35]. For DeiT-T with batch equals 6, it achieves number of RAM used in both the designs. For the Softmax 7z
sz 12.1 ms latency as it only implement a monolithic accelerator layer, since we replace the resource-demanding operations, 722
ess and requires the weights and activation to be accessed from i.e., exponential and division, we saved the number of DSP 723
e+ the off-chip memory. By applying the on-chip data forwarding, and LUT by 7.0 and 14.48x, respectively. Instead of using 724
ees fine-grained pipeline and multiple spatial accelerators, EQ-ViT the double buffer technique applied in CHARM [36], by using 725
ess achieves 21.6x performance improvement. the streaming pipelined architecture within this kernel, we 72
o7 (2Analytical ~Model  Versus EQ-ViT  On-Board save the LUTMem by 18 834x and total RAM by 9.19x. For 7z
ess Implementation: We evaluate the latency of the four ViT the GeLU kernel, with the LUT optimization, it no longer 7zs
eeo models on AMD Versal VCK190 and compare them with consumes LUTMem, RAM, and DSP and reduces REG and 720
70 the proposed MIP modeling. Guided by the MIP, all the four LUT by 137 and 142x. We show the overall implementation 73
701 cases utilize over 98.5% AIE. The error rate in percentage layout of DeiT-T in Fig. 10 containing ten MM units and non- 7a
72 refers to the difference between the estimated latency by MIP MM modules, including AXI DMA, Transpose, and nonlinear 7z
7e3 and our real on-board implementation. On average, the MIP  kernels. 733
70+ modeling achieves a high prediction accuracy and has less @Can We Leverage EQ-ViT When Model Sizes Do Not 7
705 than 4% error rate as shown in Table V. Fit On-Chip? If a model can not fit on a single board, we can 735
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Fig. 10. EQ-ViT implementation layout on VCK190 with kernels highlighted
in the FPGA and AIE portion of ACAP.

TABLE VII
COMPARISON OF THE TOP-1 (%) ACCURACY WITH SOTA METHODS ON
MULTIPLE DATASETS

FTQ QAT
Model | FP32 I Max [EMA [ Percentile [ OM i i i
ImageNet Dataset
DaiT-T | 722 70.9 712 T1.5 71.3 716 [715] 736 74.5
DeiT-160 | 68.1 67 67.6 67.8 67.9 68 [679] T0.1 70.5
Deil-256 | 772 | 725 | 723 74 724 | 766 |T759] 776 78.2
LV-VIiT-T| 79.1 75.4 754 76.9 75.3 774 [78.7[ 801 80.5
Cifar-100 Dataset
Deil-T | 856 85 85.1 853 85.1 854 [B53] 862 86.6
DeiT-160 | 83.5 83 833 8313 834 835 [835| B44 84.4
DeiT-256| 87.1 | 858 | 859 86.5 85.7 87 [869] &8 88.3
LV-Vi-T[ 881 ] 873 [874 87.5 87.2 | 881 [8B4] 892 89.5
Cifar-10 Dataset
Deil-T [978] 975 [ 978 973 974 ] 978 [97.7] 981 98.3
DeiT-160] 963 | 9.1 [ 962 96.3 96.1 964 965 969 96.9
DeiT-256 | 98.1 98 98 983 97.9 98.1 98 98.7 98.9
LV-Vil-T| 987 ] 98.6 | 986 98.7 985 | 988 [986] 992 99.4
ote: ¥ indicates our reproduced results with quantized nonlinear operations for a fair

comparison; And all the models (except FP32) are quantized into 8-bit precision,

736 leverage EQ-ViT to explore how the model is most effectively
77 partitioned onto the multiple devices, which is our future work.

s C. Inference Accuracy Comparisons

70 We compare EQ-ViT accuracy with the popular PTQ meth-
70 ods [59], [72], [73] and the SOTA QAT methods [51], [74].
741 For the sake of fairness, we reproduced the results of Q-ViT
742 with quantized GeLU and Softmax.

3 Image Classification on Multiple Datasets: @ ImageNet.
744+ Recent SOTA methods for PTQ suffer a significant drop in
745 accuracy up to 3.8% (Table VII). In contrast, ours can enhance
746 the task accuracy up to 2.4% over the baseline by minimizing
747 the quantization errors and removing the model redundancy.
722 While the SOTA QAT method, Q-ViT, has made strides in
740 correcting information distribution within ViT models, it still
7s0 relies on the floating-point computations for Softmax and
75t GeLU, making it challenging for the practical and efficient
7s2 hardware deployment. In contrast, EQ-ViT leverages activation
7s3 flow fitting and optimization to achieve an additional accuracy
75+ boost of 0.4%~0.9% over Q-ViT. Furthermore, EQ-ViT sup-
755 ports efficient implementation on ACAP. @ Cifar-100 and
7s6 Cifar-10. We extend results on the Cifar datasets to showcase
7s7 our validation. For the Cifar-100 dataset, EQ-ViT can enhance
7ss accuracy up to 1.4% and achieve 0.3% ~ 0.4% higher
7s0 accuracy than Q-ViT. For the Cifar-10 dataset, EQ-ViT can

enhance accuracy up to 0.8%, and reach 0.2% higher accuracy
than Q-ViT. Q-ViT introduces DGD distillation to distill the
knowledge from the larger-size ViT to the smaller-size one,
which is integrated into our training setting. Notably, EQ-ViT
also surpasses the Q-ViT accuracy under the same training
conditions.

VII. GENERALITY DISCUSSION AND
MICROARCHITECTURE INSIGHTS

EQ-ViT performance improvements over the prior solu-

tions come from two folds as follows.

1) Software Aspect: EQ-ViT accelerator mapping and
optimization techniques that fully leverage all the het-
erogeneous microarchitecture features on ACAP. For
those, we explain how different optimization techniques
included in EQ-ViT contribute to the performance
improvements and discuss whether and how those
optimizations can be applied on the other platforms,
including FPGA and GPU.

2) Hardware Aspect: The heterogeneous microarchitecture
features from ACAP that provide flexible mapping
features to be applied on such architecture. Specifically,
those EQ-ViT mapping features that can not be ported
to FPGAs or GPUs reflect the corresponding architecture
limitations on FPGAs or GPUs.

Quantization: The performance gain from quantization
comes from two parts: 1) the improved peak computation
throughput and 2) the reduced off-chip data access. Especially,
if the model size after quantization gets across a threshold and
the weights can fit on-chip, there will be a huge improvement
since all the intermediate data can be forwarded on-chip.

Accelerators on FPGA and ACAP can fully benefit from
quantization, whereas GPU can not. Current GPU frameworks,
e.g., TensorRT, can not fully cache intermediate data across
different kernel function calls unless the users explicitly
rewrite multiple kernels into one kernel (fusion). Another GPU
software limitation is the implicit quantized kernels. In our
GPU profiling for quantized models, TensorRT generates a
mixed precision model, where the BMM kernels are computed
in FP32 and not in INS. If we can quantize the BMM, Softmax,
LayerNorm, and transpose kernels in GPU, the hypothetical
latency of DeiT-T on A10G GPU can be reduced to 1.05 ms,
which is 1.9x when compared to the EQ-ViT latency.

On-Chip Forwarding: By applying on-chip forwarding,
activations of the models can be kept inside the accelerator
chip to reduce the off-chip communication. This technique has
been applied to the Versal ACAP and FPGA platforms. On
ACAP, applying this technique gives 3x latency reduction.

For GPU, the on-chip forwarding is limited compared to
FPGA or ACAP. The flexibility in PL logic in FPGA and
ACAP allows multiple accelerators to communicate with each
other with arbitrary data forwarding per the user’s control. In
GPU, shared memory can be explicitly controlled by the user.
However, one shared memory in one stream multiprocessor
(SM) can not directly forward the data to the other shared
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TABLE VIII
COMPARISONS OF FPGA, GPU, AND ACAP WITH SOTA FRAMEWORK IMPLEMENTATIONS (IMPL.) AND EQ-VIT OPTIMIZATIONS

Mapping features FPGA+SOTA FPGA+EQ-ViT GPU+ SOTA GPU+EQ-ViT ACAP+SOTA ACAP+EQ-ViT
pping Impl. (HeatViT) Optimizations Impl. (TensorRT)  Optimizations | Impl. (CHARM) Optimization
Quantization yes yes partial partial ->yes no yes (4.2x)
On-Chip Forwarding no yes no arch limit no yes (3.4x)
Multi Spatial Accelerators no yes no arch limit yes yes (2.3x)
Fine-grained Pipelining no yes no arch limit no yes (2.7x)
Utilize Al-optimized PEs no arch limit yes yes yes yes
Estimated latency after EQ-ViT 7.3ms 3.9ms 1.8ms 1.05ms 50ms (1x) 0.561ms (89x)

memory in another SM. It has to go through the off-chip DDR
or HBM. This is the microarchitecture limitation on GPU.?

Multiple Spatial Accelerators: On FPGA and ACAP
platforms, compared with sequentially called one unified
accelerator, the spatially called multiple accelerators can reach
higher hardware utilization as each hardware accelerator has
smaller hardware resources and can be specialized for the
kernel.

In GPUs, horizontal fusion [76], [77] is motivated by similar
reasons, i.e., using multiple kernels running at the same time
instead of launching kernels sequentially. The key idea is
to allocate different groups of SM working simultaneously
whereas each SM group works on one type of the kernel.
However, such multiple spatial accelerators in GPU have
less flexibility than in FPGA and ACAP. The partition in
GPU is in the SM granularity, therefore, different hardware
resources, i.e., computation processing elements (PEs), and
on-chip storage across different accs have a fixed ratio. In
FPGA and ACAP, PL provides users with full flexibility to
partition computation PE (DSPs, LUT, and AIEs) and on-
chip storage (BRAM and URAM) with arbitrary ratios across
different accs.

Fine-Grained Pipelining: Applying the fine-grained pipelin-
ing enables execution overlap among the accelerators, and
leads to higher resource utilization and lower latency. Fine-
grained pipelining can be easily implemented in FPGA and
ACAP, on the contrary, it is not easily implemented on GPUs.
We analyse the DeiT-T inference on A10G, if we can hack
all the BMM kernels to be computed in INTS, the latency
reduces from 1.8 to 1.05 ms, however, this can not be further
reduced. The 1.05 ms latency includes MM kernels at 0.78 ms
and non-MM kemels at 0.27 ms. Unlike ACAP, which allows
full programmability and flexibility to allow AIE and FPGA
within the ACAP SoC to run simultaneously, the current
GPU programming model does not allow the simultaneous
execution between the GPU Tensor cores and GPU CUDA
cores.

VIII. SUMMARY AND CONCLUSION

We summarize our generality discussion in Table VIIL
The FPGA platforms are highly flexible and support
most of the EQ-ViT optimization methods. Without the
Al-optimized PE like tensor cores or Al engine, the

2On—n:hip forwarding between SMs can not be implemented on Nvidia
GPUs before ampere generation. However, as the successor of ampere archi-
tecture, the Hopper architecture uses distributed shared memory (DSMEM)
[75], enabling fast communication between the shared memory and potentially
providing more flexibility in on-chip forwarding among SMs on GPUs.

computing capability limits the performance of FPGAs.
GPUs have the highest theoretical throughput and band-
width, but the relatively fixed architecture limits their
performance in latency-critical situations. The ACAP plat-
form has both the flexibility and Al-optimized PE, thus
reaching the lowest latency with the optimization of
EQ-ViT.

This implies interesting research questions, e.g., what
other kinds of applications will let ACAP, a combination
of FPGA and Al-optimized SoC achieve the better of both
the worlds? Shall we introduce FPGA or reconfigurable
architecture in broader GPU architecture to improve the
latency? If FPGA is too fine grained, what is the least
reconfigurability needed in the future architecture to balance
the performance and adaptability? We leave these in our future
work.
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