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Abstract

Efficient multi-join query processing is crucial but remains a com-
plex, ongoing challenge for high-performance data management
systems (DBMSs). This paper studies the impact of differentmemory
distribution techniques among join operators on different classes
of multi-join query plans under different assumptions regarding
memory availability and storage devices such as HDD and SSD on
Amazon Web Services (AWS). We re-evaluate the results of one of
the early impactful studies from the 1990s that was originally done
using a simulator for the Gamma database system.

The main goal of our study is to scientifically re-evaluate and
build upon previous studies whose results have become the basis
for the design of past and modern database systems, and to provide
a solid foundation for understanding basic łjoin physics", which is
essential for eventually designing a resource-based scheduler for
concurrent complex workloads.

1 Introduction

Multi-join queries, some of themost important and common queries
in DBMSs, have been the focus of research for decades, particularly
in terms of their processing and performance evaluation. A key
challenge in processing these queries lies in selecting an appropriate
query plan, determining the join order, and employing effective
memory distribution techniques to optimize performance. Despite
years of research, they continue to be poorly understood with
respect to their dynamic behavior and memory usage due to the
complexity and multidimensional nature of multi-join queries.

For a scientific approach, it is essential to reproduce the results
of prior studies before proceeding with more complex cases. Ac-
cordingly, we decided to re-evaluate the results of a key study done
by Schneider & DeWitt [36] [10] in 1990 first in which they studied
the performance of multi-join queries for shared-nothing clusters.
They used the Hybrid Hash Join operator (which is still extensively
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used today) as their join operator and used a Gamma [10] DBMS
simulator based on HDD storage.

In this study, we evaluate various query plan shapes for multi-
join queries and examine the impact of different memory allocation
and intra-query parallelism techniques. We include the Left Deep
Tree (LDT), Right Deep Tree (RDT), Static Right Deep Tree (Static-
RDT), and a Bushy Tree (BT). Motivated by hardware advancements
and the cloud environment, we re-evaluate previous results, which
were based on simulation, using Apache AsterixDB on both HDD
and SSD on AWS.

The contributions of this paper are: 1) Re-evaluating query plan
studies from [36] and [10] with larger data sizes on real hardware, 2)
including sample BTs in query plans, 3) studying the performance
of these plans on SSDs, and 4) introducing a new evaluation metric
called Gigabyte*Seconds to compare the monetary costs of different
query plans executed in the cloud.

The remainder of this paper is organized as follows: Section 2
provides background information on stage-based query execution
and Apache AsterixDB’s design. Section 3 discusses the different
dimensions considered in our experiments for evaluating various
query plans, including query plan shapes, memory distribution
approaches, and storage architecture. Section 4 presents the settings
and results of the experiments conducted in this study. Section
5 reviews previous work related to this study, before Section 6
concludes the paper and provides directions for future research.

2 Background

2.1 Stage-Based Query Execution

In a parallel DBMS, each query tree consists of operators and data
flow connectors, forming an activity dependency graph with oper-
ators as nodes and data flow edges as links [4, 5, 15, 22, 41]. Hybrid
Hash Join (HHJ) is a two-phase join operator where the build phase
must finish before the probe phase begins, creating a blocking
dependency between the two.

An activity cluster, or pipelined stage, is a set of activities con-
nected by data flow edges that lack blocking dependencies [5],
allowing them to execute together. Fig. 1 illustrates multi-join activ-
ity cluster graphs, with dashed areas representing clusters, arrows
marking blocking dependencies, and solid lines showing data flow
connectors. When an operator introduces a blocking dependency,
such as in HHJ, a new activity cluster is created to separate stages
of execution. These dependencies can impose either a partial or
total order on a query’s execution. In Fig. 1-a, clusters are executed
sequentially from left to right, forming a total order. In contrast, Fig.
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Figure 1: Query Shapes for a Multi-Join Query

1-b shows partial ordering, where independent clusters can over-
lap. A DBMS may impose a total order using control dependencies,
dividing query execution into stages. This stage-based approach
improves predictability and resource management by allocating
memory only to the active stage’s operators.

2.2 AsterixDB

Apache AsterixDB [3] is an open-source, parallel, shared-nothing
big data management system (BDMS) built to support the storage,
indexing, modifying, analyzing, and querying of large volumes of
semi-structured data. AsterixDB’s architecture consists of a Cluster
Controller (CC) and one or more Node Controllers (NC). The CC
is responsible for receiving queries, parsing and optimizing them,
and providing query plans as executable Directed Acyclic Graphs
(DAGs), a.k.a. jobs, to the NCs. The NCs are the worker nodes that
execute the job DAGs on their portions of data (data partitions) and
return the results. Each NC can have one or more data partitions,
and each job DAG will be executed on each related data partition in
parallel. AsterixDB utilizes Log-Structured Merge (LSM) trees for
storing and indexing the records in a single or multi-node cluster.
All records are hash partitioned to data partitions of the cluster
based on their primary key. AsterixDB supports various join algo-
rithms, including Block Nested Loop Join, Hybrid Hash Join (HHJ),
Broadcast Join, and Indexed Nested Loop Join. However, HHJ is the
default and primary join type for processing equijoins due to its
superior performance and wide usage in modern DBMSs.

We chose AsterixDB as our primary platform for implementing
and evaluating our proposed techniques for several reasons. First,
AsterixDB is an open-source platform that gives us the capability
to implement and evaluate our techniques and share them with
the community. More importantly, AsterixDB is a parallel big data
management system for large semi-structured data with a declara-
tive language. Finally, its similarity in structure and design to other
parallel SQL and NoSQL database systems makes our results and
techniques applicable to other systems as well.

3 Design Space

Our work studies the performance of multi-join queries in a three-
dimensional design space. The first design dimension is the query
plan shape, which includes LDT, RDT, and BT. As the next design
dimension, we consider various memory management techniques
for distributing memory between the join operators of a query,
including equal and bottom-up memory management techniques.
As the last design dimension, we consider three different storage
alternatives, including HDD and SSD, evaluating the performance

of multi-join queries executing with different values for the first
two dimensions on these storage alternatives.

In the next sections we explain these design dimensions and
their possible variations in greater depth.

3.1 Dimension 1: Query Shapes

Multi-join queries can be executed using three main query shapes:
Left-Deep Trees (LDT), Right-Deep Trees (RDT), and Bushy Trees
(BT). Fig. 1 shows examples of LDT, RDT, and BT, with each en-
closed dashed area representing an activity cluster and stage. In
LDT, the output of each probe phase feeds into the next join’s
build phase, allowing at most two joins to be active simultaneously.
This creates a sequential query plan with memory shared between
consecutive joins, with execution order defined by intra-operator
control dependencies.

RDTs offer the highest parallelism among query plans. All build
phases execute concurrently, sharing memory across joins. For 𝑛
joins, 𝑛 hash tables are created. Once all builds are complete, the
probe phases start simultaneously, with records flowing through a
pipeline from one join to the next.

BTs combine aspects of both LDTs and RDTs. They allow joins
to run in parallel or sequentially, with inputs that can be non-
base datasets. BTs benefit from independent parallelism, enabling
concurrent execution without blocking dependencies; however, the
flexibility of BTs complicates scheduling and resource estimation.
We use techniques from [28] to generate sample BTs.

3.2 Dimension 2: Memory Management

Memory significantly influences the choice of query plans for multi-
join queries. A DBMS aims to select a query plan and memory
distribution that reduces execution time.

In a LDT, memory is always distributed between two adjacent
joins in the query plan. Memory distribution in BTs must consider
overlapping join executions. A precise approach controls and or-
ders independent activity clusters, while a simpler method divides
memory equally among join operators. We chose the latter for sim-
plicity in this work. Next, we introduce the memory distribution
strategies for the RDT query shape.

3.2.1 Equal Memory Distribution. In the Equal Memory Distri-
bution strategy for an RDT, each join receives an equal share of
memory. If some joins need less memory, the excess can be used
by others. A DBMS with accurate knowledge of build input sizes
and join selectivities can statically assign memory to enable this
sharing among join operators.

3.2.2 Bottom-Up Memory Distribution. In the bottom-up Memory
Distribution strategy, the DBMS assigns each join operator its ideal
memory from the bottom of the query plan to prevent spilling.
Known as "Static-RDT" by [9], this approach avoids data spilling. In
case of insufficient memory for the whole query to fit in memory,
the query plan is łbrokenž by materializing the last fitting join’s
output, which is then used as the probe input for the next join.

3.3 Dimension 3: Storage Architecture

In the third dimension, we study the performance of multi-join
query plans across different storage types, mainly using HDDs
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and SSDs. HDDs rely on mechanical arms, making them inefficient
for random I/Os, while SSDs, made of non-volatile flash memory,
handle random I/Os more efficiently. For both HDD and SSD, base
tables and spill data are stored on the same device in separate files.

4 Experimental Analysis

This section compares the performance of different query plan
shapes under various memory availability, query complexities, and
join and scan selectivities using HDD and SSD storage alternatives.
Our codebase as well as information for replicating the experiments
and generating data can be found in [37].

4.1 Datasets and Benchmark

We used an updated Wisconsin Benchmark and the JSON data gen-
erator [18] to evaluate multi-join query plans. This benchmark’s
tunability and selectivity make it ideal for our tests. We replicated
experiment conditions (queries and benchmark) from [36], adjust-
ing them for modern storage capabilities with larger record sizes.
Records are 1073B, memory frames are 32KB, and experiments vary
in dataset sizes and selectivities. Queries run on single CPU cores
of NC nodes in AWS US-West-2, using d2.xlarge (4 vCPUs, 2 CPU
cores, 2 threads per core, 2.4 GHz Intel Xeon E52676v3 Processor, 3
x 2048 GB storage, moderate network speed, 30.5GB RAM) for HDD
and i3.xlarge (4 vCPUs, 2 CPU cores, 2 threads per core, 2.3 GHz
Intel Xeon E5 2686 v4 Processor, 1 x 950 GB NVMe SSD storage,
206250 100% random read IOPS and 70000 100% random write IOPS,
1.25 GbPS baseline and 10 GbPS burst network bandwidth, 30.5GB
RAM) for the SSD setting. In our future work, we plan to explore
additional settings, including other node architectures such as AWS
EBS and AWS EBS-Hybrid, where spill data is stored on a local
SSD while base relations reside on networked SSD storage. We also
intend to utilize multiple CPU cores in a single node configuration
(NC) and experiment with clusters of varying numbers of NCs.

4.2 Experiment 1 - Unlimited Memory

In this subsection, we examine how query complexity affects the
execution time of a join query without spilling to disk, following
the łUnlimited Memoryž experiment in [36]. We used 1GB datasets
with 1,000,000 records for each build and probe, ensuring each join’s
output is also 1GB. Although fixing intermediate result sizes is unre-
alistic, it simplifies comparing different query shapes. Additionally,
such set-up keeps our re-evaluation fair to the original results of
[36] by following their settings as faithfully as possible. Our future
work will involve more complex queries using advanced bench-
marks such as JOB, TPC-H, and TPC-DS as well as queries with
higher complexity. In Experiment 1, we increased query complexity
by varying the number of joins from 1 to 8. Fig. 2-a shows results
from the Gamma simulator [36], while Fig. 2-b and 2-c present
AsterixDB results using HDD and SSD.

The Gamma simulator’s results were based on simulating HDD
storage devices from the 1990s. As Fig. 2-a shows, in the Gamma
simulator, RDT generally had a lower execution time than LDT. In
this figure from [36], disk utilization in RDT is only slightly increas-
ing, while its CPU becomes almost fully utilized as the number of
joins in the query increases. However, we would have expected
high disk utilization to be the bottleneck instead of the CPU since
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Figure 2: Experiment 1 - Execution Time

concurrently reading all the build datasets can cause high disk arm
contention in HDD. From the reported device utilization and com-
paring the reported execution times of RDT with LDT, we believe
that the Gamma simulator was not properly simulating disk arm
movement and its impact on disk performance.
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Figure 3: Experiment 1 - Resource Cost - AsterixDB

BT is another parallel query plan with shorter pipelines than
RDT. These shorter pipelines and the independent parallelism make
some build and probe phases of different joins overlap. Thus, BTs
take the middle path between RDT and LDT. The jumps in the
execution time of the BT in Figure 2 is due to the change of the
query shape when adding more joins to the query. We are using
the algorithm suggested in [28] for generating BTs, which keeps
the pipelines’ lengths to less than four joins.

In SSD storage (Fig. 2-b), BTs excel due to their parallel execution,
improving CPU utilization. This set-upmakes them superior to RDT
on arm-less storage devices. The Gamma simulator results for HDDs
resemble the AsterixDB results for SSDs, indicating that [36]’s
simulator didn’t model disk arm movement accurately. Thus, RDT’s
parallel I/O is better for SSDs when ample memory is available,
while for HDDs, LDT has a better performance due to its sequential
execution pattern and reduced I/O.

With the prevalence of cloud service providers for data storage
and querying, it is also valuable to compare different query plans
based on their (monetary) cost, considering both resource usage
and execution duration. To that end, we use a metric that accounts
for memory usage and duration, calculating the resource cost as the
product of memory usage and execution time (Gigabytes * seconds,
GBS). Fig. 3 shows that the LDT plan’s low memory requirement
makes it the most cost-effective option for a cloud setting across
various storage choices.
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4.3 Experiment 2 - Limited Memory

For the second experiment, we study the impact of the amount of
available memory on the execution times of various query shapes
and memory distribution strategies for an eight-join query. This
experiment was designed similarly to the łLimited Memory - High
Resource Contentionž experiment of [36]. We evaluate the perfor-
mance of each query plan as a function of memory availability,
thus the x-axis represents the ratio of available memory over the
amount of memory required to keep all eight joins in memory.

All inputs consist of 1 GB of data, and the size of the intermediate
results remains constant and equal to 1 GB throughout the query
plan’s joins. Each record consists of 1073B.
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As depicted in Fig. 4, ba-
sic RDT incurs the most I/O,
dividing memory among all
joins, leading to more spilling.
Static-RDT, in most cases, has
less I/O than RDT as it spills
only intermediate results at
breakpoints. The initial high
spillage in Static-RDT occurs
because all of the joins, along
with all necessary intermedi-
ate results, spill to disk. LDT,
on the other hand, shows the
least I/O, allocating memory
between just two consecutive
joins at a time. In terms of
parallelism, RDT and BT rank
high, while Static-RDT’s par-

allelism varies with the available memory, as joins within each
segment run concurrently.

Fig. 5-a shows the results of the Gamma simulator as reported
in [36], and Fig. 5-b and 5-b show the results of similar queries
executed using Apache AsterixDB on HDD and SSD. As Fig. 5-b
shows, LDT has the fastest HDD execution time since it performs
the least amount of I/O and its sequential execution pattern is disk
arm-friendly. After LDT, the Static-RDT has the lowest execution
times due to its smaller amount of I/O and sequential execution
pattern. Static-RDT’s parallelism increases with more memory.

RDT shows the poorest HDD performance when memory is
scarce, due to extensive spilling and frequent random disk access
(All of its joins build concurrently and have to split up the available
memory.) BT, second only to RDT in poor performance, suffers
from high I/O and parallel execution causing random disk access.
As Fig. 5-c shows, parallel query plans such as RDT and BT perform
better in SSD than HDD due to the lack of the disk arm issue in SSD
and its capability to handle random disk I/Os and large volumes of
I/Os efficiently. RDT, BT, and Static-RDT outperform LDT when
the available memory is very large. LDT is still one of the best-
performing query plans due to its small spilling to disk, especially
when memory is very scarce. Static-RDT performs well, especially
with more memory, due to its semi-parallel execution pattern and
relatively little spilling to disk.

Our AsterixDB results show that LDT is one of the best query
plans, especially with very limited memory. LDT outperforms other
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Figure 6: Experiment 2 - Resource Cost - AsterixDB

plans on HDD due to minimal data spilling and a disk-friendly
sequential execution pattern. On SSD, LDT remains one of the best-
performing query plans due to its low I/O and consistent average
CPU utilization (42%-48%) from overlapping disk and CPU opera-
tions. Variations of parallel query plans, including RDT, Static-RDT,
and BT, perform better as the memory increases since the amount
of their spilling to disk drops then significantly.

Comparing the AsterixDB results with the Gamma simulator
shows that RDT’s excessive data spillingmakes it theworst-performing
plan when memory is less than 80% of the required amount. This
trend matches AsterixDB results for HDD. Fig. 6 shows that, similar
to Experiment 1, the low memory usage of the LDT plan makes it
the most cost-effective option.

4.4 Experiment 3 - Non-Restrictive Selections

Next, we re-evaluate the łLarge Building Relations - Full Declus-
teringž experiment from [36] to study the performance of various
multi-join query plans with low-restrictive select conditions that
minimally reduce the base dataset sizes.

Echoing Schneider and DeWitt’s approach, our four-join query
used relations with cardinalities and selectivities as follows: 106

records at 50%, 106 records at 50%, 106 records at 20%, 5 × 10
5

records at 10%, and 2 × 10
5 records at 25%. For a direct comparison

to their results, we also set join selectivities to yield intermediate
join results of 5 × 10

4, 5 × 10
4, 105, and 10

5 tuples each.
The corresponding Gamma simulator results in Fig. 7-a show

that RDT had the worst performance with very limited memory
due to spilling a large amount of data to disk, while LDT was the
best-performing query plan shape due to its minimal spilling to
disk. Static-RDT performed similarly to LDT when the available
memory is significant. As Fig. 7-b shows, RDT performs the worst
on HDD in AsterixDB due to high data spilling and disk contention
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from concurrent builds. BT performs better by using smaller inter-
mediate results and less parallelism. LDT and Static-RDT are the
best performers on HDD.
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LDT excels in low-memory
scenarios by sharing mem-
ory between two joins, which
helps avoid disk contention.
Static-RDT improves over
RDT by cutting parallelism
and reducing data spilling.
On HDD, AsterixDB results
match those from Gamma,
where RDT lags behind LDT
due to excessive spilling. How-
ever, on SSD, RDT performs
better with reduced I/O costs,
though CPU usage is incon-
sistent (Fig. 7-c). Neverthe-
less, LDT remains one of the
best performers, efficiently
handling memory and CPU
with its sequential execution,

while BT and Static-RDT also achieve strong results with semi-
parallel execution.
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Figure 9: Experiment 3 - Resource Cost - AsterixDB

Large input datasets with minimal selection predicates and small
join outputs are more in favor of LDT over more parallel plans such
as RDT that require more memory and spill more data to disk when
memory is limited. Fig. 8 shows the amount of spilling for different
query plan shapes, while Fig. 9 presents the resource cost based on
memory and execution time. LDT remains one of the lowest-cost
plans for HDD due to efficient memory use and low execution time,
with similar costs to other plans on SSD.

4.5 Experiment 4 - Non-Restrictive Joins

Next, we study the performance of different query plan shapes
with non-restrictive join conditions, where each join can produce
numerous output records per input record. This setup favors plan
shapes such as RDT that use base datasets as inputs for their build
phases. Similar to the łHigh Join Selectivityž experiment of [36],
the base datasets have original sizes of 106, 106, 106, 5 × 10

5, and
2 × 10

5 records with scan selectivities of 50%, 50%, 20%, 10%, and
25%, respectively. These join selectivities cause the joins to produce
5 × 10

4, 2 × 10
5,4 × 10

5, and 5 × 10
5 records as their outputs.

As Fig. 10 shows, RDT’s spilling decreases with more memory,
but it requires more overall memory since it divides memory among
all joins. Although LDTwas expected to spill more data due to using
large intermediate results for builds, it actually spills less since
memory is shared between only two joins at a time. The amount of
spilling in Static-RDT is dependent on the location of the breaking
points in the query tree.
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Data Spilling - AsterixDB

In Fig. 11-a, RDT has the
highest execution time due
to extensive spilling to disk
when memory is limited in
the original Gamma simu-
lator. However, its parallel
nature allowed RDT to out-
perform LDT and Static-RDT
when a large amount of mem-
ory memory was available.
Unfortunately, the [36]’s fig-
ure does not show data points
for highly scarce memory
conditions.

As Fig. 11-b shows, the
high disk arm contention
caused by parallel access to
disk makes RDT one of the

worst-performing query plan shapes in AsterixDB when the under-
lying storage system is HDD. The performance of RDT improves
as more memory becomes available. Despite using large non-base
relations as build inputs, LDT performs well by dividing memory
between only two consecutive joins and following a sequential disk
access pattern. As Fig. 11-b and 11-c exhibit, there are two spikes
in the performance of Static-RDT where the increment of memory
has shifted the breaking point to a higher point in the tree with a
larger intermediate result size. This highlights the importance of
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considering intermediate result sizes when setting breaking points
in Static-RDT. Similar observations were expected in the Gamma
simulator results but were not reflected or discussed in [36].

Parallel query plans perform better than sequential ones with
SSD in this experiment. As shown in Fig. 11-c, RDT is the top
performer due to its small build inputs, which result in low memory
usage, and its parallel execution, benefiting from SSD’s random-
access efficiency. LDT also performs well despite its sequential
pattern, as each join spills less data and the pipeline between join
phases improves CPU utilization.
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Figure 12: Experiment 4 - Resource Cost - AsterixDB

As in previous experiments, LDT is the lowest-cost query plan
on HDD due to its low execution time and memory usage (Fig. 12),
while RDT is one of the most cost-efficient plans on SSD.

5 Related Work

Resource management and multi-join query scheduling have been
studied for over three decades. In the 1990s, various query plan
shapes and resource allocation techniques were prevalent. Schnei-
der and DeWitt (1990) explored trade-offs between query shapes
for multi-join queries using the Gamma system, focusing on Left
Deep Tree (LDT) and Right Deep Tree (RDT) plans [10, 36]. They
proposed Static-RDT, showing that RDT performs best with high
parallelism if most build inputs remain in memory. Philip Yu et al.
proposed Segmented-RDT, a BT composed of smaller RDT subtrees
[6]. This approach showed performance benefits through simula-
tions, indicating Segmented-RDT can outperform other query plan
shapes, including RDT. The ZigZag Tree, a competitor to Static-RDT,
reduces I/O by avoiding intermediate result materialization [44].
Wilschut et al. used PRISMA/DB to examine processor assignment
and scheduling strategies for multi-join queries on an 80-processor
system [39]. They evaluated various query plans and found sequen-
tial plans better for systems with fewer processors, while parallel
plans suited systems with many processors. Aguilar-Saborit et al.
addressed memory allocation for concurrent operations in query
execution plans, proposing a post-optimization phase to identify
concurrent operations and find near-optimal memory allocations
[2]. This technique improved execution times, especially for multi-
join queries involving LDT, RDT, and BTs. Gravelle et al. developed
PipeSched, a fast resource scheduling algorithm for physical opera-
tor pipelines [14]. This group of studies are the most related works
to our study. Below we highlight other works that are complemen-
tary to the memory management and plan shape enumeration.

Another group of studies focused on dynamic memory manage-
ment techniques and their algorithm designs. A significant part

of this research involved designing memory-adaptive operators,
with studies on adaptive and dynamic sort [12, 26, 33] and join
[7, 17, 34, 38, 42] operators using simulators due to limited DBMS
resources. Additionally, dynamic workload management was stud-
ied alongside query memory management [1, 8, 16, 23, 24, 43].

Another group of works that indirectly impact query memory
usage has focused on join ordering and plan enumeration. Leis et al.
optimized join orders and algorithms using advanced techniques,
benefiting highly parallel databases [27]. More recent research
applies deep learning and machine learning to optimize DBMSs,
including cardinality estimation [21, 31] and join correlations [40].

6 Conclusion and Future Work

In this study, we re-evaluated Schneider and DeWitt’s [36] semi-
nal analysis of multi-join queries on shared-nothing clusters using
HDD. Using Apache AsterixDB with both HDD and SSD, we re-
visited their results from the Gamma database simulator and also
analyzed the performance of a BT plan.

RDT has long been considered efficient due to its parallel execu-
tion, but our studies show that it excels in SSD-based systems mainly

for queries with few joins and when memory can accommodate over

80% of the build datasets. Static-RDT may spill less data to disk
than RDT when there is enough memory for each build dataset. If
multiple build phases fit into memory, Static-RDT requires careful

placement of break points in the tree, avoiding joins that produce large

outputs. LDT was seen to perform best overall, spilling less data and

maintaining steady CPU utilization (42%-48%) from overlapping disk
and CPU operations. In contrast, RDT shows greater variability in

CPU usage, with lower utilization during the I/O-bound build phase
(28%-35%) and higher during the probe phase (75%-88%), where
CPU usage fluctuates depending on whether disk spilling occurs.
Static-RDT’s CPU utilization approaches that of LDT with limited
memory (due to more sequential operations) and resembles RDT
when memory is abundant. BTs, on the other hand, achieve more

consistent CPU utilization than both RDT and Static-RDT by overlap-

ping subtrees, but they require careful input selection during the build

phase. CPU utilization was generally lower on HDDs, as disk I/O
became the primary bottleneck. Our results emphasize the need to

consider storage architecture and periodically re-evaluate past studies

due to hardware advancements.

To enable a meaningful comparison, we designed our experi-
ments similarly to [36]. While simple, these experiments are crucial
for understanding "join physics." Future work will explore realistic
queries from benchmarks such as JOB, TPC-H, and TPC-DS, testing
various configurations, storage setups such as AWS EBS, and clus-
ter sizes to analyze scalable query performance. Additionally, com-
paring memory management techniques between Volcano-style
execution and modern approaches such as vectorized and code-
generation methods is essential for today’s DBMSs.
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