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Abstract

We study low-rank matrix trace regression and
the related problem of low-rank matrix bandits.
Assuming access to the distribution of the covari-
ates, we propose a novel low-rank matrix esti-
mation method called LowPopArt and provide
its recovery guarantee that depends on a novel
quantity denoted by B(Q) that characterizes the
hardness of the problem, where @ is the covari-
ance matrix of the measurement distribution. We
show that our method can provide tighter recovery
guarantees than classical nuclear norm penalized
least squares (Koltchinskii et al., 2011) in several
problems. To perform efficient estimation with
a limited number of measurements from an arbi-
trarily given measurement set .4, we also propose
a novel experimental design criterion that mini-
mizes B(Q) with computational efficiency. We
leverage our novel estimator and design of experi-
ments to derive two low-rank linear bandit algo-
rithms for general arm sets that enjoy improved
regret upper bounds. This improves over previous
works on low-rank bandits, which make some-
what restrictive assumptions that the arm set is the
unit ball or that an efficient exploration distribu-
tion is given. To our knowledge, our experimental
design criterion is the first one tailored to low-rank
matrix estimation beyond the naive reduction to
linear regression, which can be of independent
interest.

1. Introduction and related work

In many real-world applications, data exhibit low-rank
structure. For example, in the Netflix problem (Bennett
et al., 2007), the user-movie rating matrix can be well-
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approximated by a low-rank matrix; in demographic sur-
veys (Udell et al., 2016), the respondents’ answers to the
survey questions are also oftentimes modeled as a low-rank
matrix. Motivated by these applications, estimation with
low-rank structure is one of the central themes in high-
dimensional statistics (Wainwright, 2019, Chapter 10).

We study the low-rank trace regression problem (Koltchin-
skii et al., 2011; Rohde & Tsybakov, 2011; Hamidi & Bay-
ati, 2020) and the related problem of low-rank linear ban-
dits (Jun et al., 2019; Lu et al., 2021). In the low-rank lin-
ear bandit problem, a learner sequentially learns to choose
arms from a given arm set to maximize reward. For each
time step ¢ € {1,--- ,n}, the learner chooses an arm A,
from an arm set A C R% %92 and receives a noisy reward
yr = (0%, Ay) + my, where OF is a rank-r matrix and 7,
is o-subgaussian noise. The learner’s objective is to maxi-
mize its cumulative reward, >, ; ;. This low-rank bandit
model is applicable to various practical scenarios (Natarajan
& Dhillon, 2014; Luo et al., 2017; Jun et al., 2019).

To name a few examples, in drug discovery (Luo et al.,
2017), each A; represent the outer product u;v," of the fea-
ture representations of a pair of (drug u;, protein v;), and
©* encodes the interaction between them; in online adver-
tising (Jain & Dhillon, 2013), each A; represent the outer
product of the feature representation of a pair of (user u,
product v;), and ©* models their interactions. The bandit
problem setup naturally induces an exploration-exploitation
tradeoff: as the learner does not know the reward predictor
matrix ©*, she may need to choose arms that are informa-
tive in learning ©*; on the other hand, since the learner’s
objective is maximizing the expected reward, it may also be
a good idea to choose arms that the learner believes to yield
high reward, based on the past observations.

Early studies on low-rank bandits (Jun et al., 2019; Lu et al.,
2021; Jang et al., 2021) have designed bandit algorithms
with lower regret than naive approaches that view this prob-
lem as a d;ds-dimensional linear bandit problem (Abbasi-
Yadkori et al., 2011; Abe & Long, 1999; Auer, 2002; Dani
et al., 2008). However, previous studies lack understandings
on the relationship between the geometry of the arm set
and regret bounds. Usually they assume that a “nice” explo-
ration distribution over the arm set is given (Jun et al., 2019;
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Luetal., 2021; Kang et al., 2022; Li et al., 2022), or assume
that the arm set has some curvature property (e.g., the unit
Frobenius norm ball) (Lattimore & Hao, 2021; Huang et al.,
2021). Also, some of them rely on subprocedures that are ei-
ther computationally intractable (Lu et al., 2021, Algorithm
1), or nonconvex optimization steps without computational
efficiency guarantees (Lattimore & Hao, 2021; Jang et al.,
2021); see Appendix A for more related works.! To bridge
this gap, we ask the following first question:

Can we develop computationally efficient low-rank bandit
algorithms that allow generic arm sets and provide
guarantees that adapts to the geometry of the arm set?

It is natural to apply efficient low-rank trace regression re-
sults for answering this question, since smaller estimation er-
ror leads to fewer samples for exploration thus smaller cumu-
lative regret in bandit problems. In the low-rank trace regres-
sion problem, where a learner is given a set of measurements
(X, y;) that satisfy that y; = (0%, X;) + 7;, where O* is
an unknown matrix with rank at most » < min(dy, ds),
and 7); is a zero-mean o-subgaussian noise. The goal is to
recover ©* with low error. Throughout, we will use X; for
the supervised learning setting and A; for the bandit setting.

The low-rank trace regression problem is one of the ex-
tensively studied areas within the field of low-rank matrix
recovery problems. Keshavan et al. (2010) provides recov-
ery guarantees for projection based rank-r matrix optimiza-
tion for matrix completion, and Rohde & Tsybakov (2011);
Koltchinskii et al. (2011) provide analysis of nuclear norm
regularized estimation method for general trace regression,
with Rohde & Tsybakov (2011) providing further analy-
sis on the (computationally inefficient) Schatten-p-norm
penalized least squares method. Among these approaches,
researchers regarded the nuclear norm penalized least square
(Rohde & Tsybakov, 2011; Koltchinskii et al., 2011) as the
classic approach and applied this method directly (Lu et al.,
2021) to achieve state-of-the-art algorithm for the low-rank
bandit with a general arm set. Since better estimation leads
to better bandit algorithm, we are interested in investigating
the following second question:

For low-rank trace regression, can we design estimation
algorithms that can outperform the classical nuclear norm
penalized least squares?

In this paper, we make meaningful progress in high-
dimensional low-rank regression and low-rank bandits,
which provides algorithms with arm-set-adaptive explo-
ration and regret analyses for general operator-norm-
bounded arm sets.

"We exclude (Kang et al., 2022) from our comparison since
their regret bounds involve quantities that have hidden dependence
on dimensionality; see Appendix H for details.

We assume that all arms are operator norm-bounded, and the
unknown parameter ©* is nuclear norm bounded as follows:

Assumption A1 (operator norm-bounded arm set). The arm
set Ais such that A C {A € R4 - |4, < 1}.

Assumption A2 (Bounded norm on reward predictor). The
reward predictor has a bounded nuclear norm: || ©*||, < S..

These two assumptions parallels the standard assumption
in the sparse linear model where the covariates are /.-
norm bounded and the unknown parameter is ¢;-norm
bounded (Hao et al., 2020).

First, under the additional assumption that the measurement
distribution 7 is accessible to the learner, we propose a novel
and computationally efficient low-rank estimation method
called LowPopArt (Low-rank POPulation covariance re-
gression with hARd Thresholding) and prove its estimation
error guarantee (Theorem 3.4) as follows:

Hé o @*Hop < O <O’ B(giiw))) ,

where ng is the number of samples used, and B(Q(7)) (see
Eq. (9)) is a quantity that depends on the covariance matrix
Q () of the data distribution 7 over the measurement set .A.
We show that the recovery guarantee of LowPopArt is not
worse and can sometimes be much better than the classical
nuclear norm penalized least squares method (Koltchinskii
et al., 2011) (see Section 3).

Second, motivated by the operator norm recovery bound of
LowPopArt, we propose a design of experiment objective
B(Q(m)) for finding a sampling distribution that minimizes
the error bound of LowPopArt. This is useful in settings
when we have control on the sampling distribution, such as
low-rank linear bandits, the focus of the latter part of this
paper. Applying the recovery bound to the optimal design
distribution, we obtain a recovery bound of

16— 6%l < 0 (o[ Pl

where Bpin(A) = mingea(a) B(Q(7)) depends on the
geometry of the measurement set .A. For example, letting
d := max{dy, da}, we have Byn(A) = O(d?) and O(d?)
when A is the unit operator norm ball and unit Frobenius
norm ball, respectively (See Appendix D for the proof).
Moreover, optimizing our experimental design criterion is
computationally tractable. In contrast, many prior works
on low-rank matrix recovery require finding a sampling
distribution that satisfies properties such as restricted isom-
etry property and restricted eigenvalue (Hamdi & Bayati,
2022; Koltchinskii et al., 2011; Wainwright, 2019) - all these
are computationally intractable to compute or verify and
thus hard to optimize (Bandeira et al., 2013; Juditsky &
Nemirovski, 2011), which is even harder when the measure-
ments must be limited to an arbitrarily given set .A.
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Regret bound Ko eg”f(‘%‘ Regret yhen Limitation
(Abbasi-Yadkor t al. 2011 OWVT) OWVT) | OVT)
(Jun SS;I,RZOW) O/ sty (%)3) - - Bilinear
{d angeéltjilI:BZOZ 1) O(VdT) B ) Coﬁ[f)??rfti;f:able
{d ang 2; lafl(fB2‘02 1) O(rdT) . ) Re]?lzlliliesa(r)rilcle
(LuI;(z\Zt 02%2 1 O(VrdT) O(VrdT) O(Vrd3T) Comp. intractable
woaay | O T (3)) | OGFERT) | O
Laretal. 2031) QrdvT)
LPA-ETC (Algorithm 3) O((S+7% Bunin (A)T?)'/?) O(r?3a**T?/3) | O(r*/3dT?/?)
LPA-ESTR (Algorithm 4) O(d"*/Bunin (AT (52))) O(Vd>/T) O(Vd7/2T)

Table 1. A comparison with existing results on low-rank bandits with fixed arm sets and 1-subgaussian noise. Here, A, is abbreviation
of A\(©), Q(m) is the covariance matrix defined in Eq. (1), Bop(1) is the unit operator norm ball, A is a special arm set (See
Lemma 3.6), and Biin (A) is an arm set dependent constant defined in Eq. (4). When A C Bop(1), we have Buin(A) = Q(d?) and
Amin (Q(7)) = O(%), ¥V € P(A). For the third and fourth columns, we set 7 to be the most favorable sampling distribution for prior

results as they did not specify the sampling distribution 7 but assumed favorable conditions to hold. S. is an upper bound for ||©*

Assumption A2.

Finally, using LowPopArt, we propose two computationally
efficient and arm set geometry-adaptive algorithms, for low-
rank bandits with general arm sets:

¢ Our first algorithm, LPA-ETC (LowPopArt-Explore-
Then-Commit; Algorithm 3), leverages the classic
explore-then-commit strategy to achieve a regret bound
of O((S472Bmin(A)T?)/3) (Theorem 4.1). Com-
pared with the state-of-the-art low-rank bandit algo-
rithms that allow generic arm sets (Lu et al., 2021) that
guarantees a regret order O(v/rd3T), Algorithm 3’s
guarantee is better when 7' < O(ﬁ;)%) (see Re-
mark 3 for a more precise statement).

e Our second algorithm, LPA-ESTR (LowPopArt-
Explore-Subspace-Then-Refine; Algorithm 4), works
under the extra condition that the nonzero minimum
eigenvalue of ©*, denoted by Ay, is not too small.
Algorithm 4 uses the Explore-Subspace-Then-Refine
(ESTR) framework (Jun et al., 2019) and achieves a
regret bound of O(1/d/2Buin (A)T'Ss /Amin)) (The-
orem 4.2). LPA-ESTR gives a strictly better regret
bound than previously-known computationally effi-
cient algorithms. For example, compared to LowESTR
(Lu et al., 2021), the regret of our LPA-ESTR algo-
rithm makes not only a factor of /7 improvement, but
also the dependence on the arm set dependent quantity
from m to Bumin(A); we show that the latter
is never larger than the former and that the latter can
be a factor of d smaller than the former (Lemma 3.6).

* Both of our algorithms work for general arm sets, un-
like many other low-rank bandit algorithms tailored

%, SCC€

for specific arm sets such as unit sphere (Huang et al.,
2021), symmetric unit vector pairs {uu ' : u € S}
(Kotlowski & Neu, 2019; Lattimore & Szepesviri,
2020), or even one-hot matrices {eie;'— 1,] €

[d]}(Katariya et al., 2017; Trinh et al., 2020).
We compare our regret bounds with existing results in Ta-
ble 1, which showcase how our arm set-dependent regret
bounds improve upon prior art in specific arm sets. We
also make a meticulous examination of arm set-dependent
constants on regret analysis from previous results, which we
believe will help future studies.

2. Preliminaries

Basic Notations. For a matrix M € R%*% and a set
of matrices M C R%*42 et vec(M) € R%9 be the
vectorization of the matrix M by vertically stacking its
columns and vec(M) := {vec(M) : M € M}. Denote by
reshape(-) the inverse map of vec(-); i.e., reshape(v) = M
if and only if vec(M) = v. We assume that A spans
R% %42 Define d = max(d;,ds). We denote by v;
the i-th component of the vector v and by M;; the entry
of a matrix M located at the i-th row and j-th column.
Let A\ (M) be the k-th largest singular value, and define
Amax (M) = A1 (M), which is also known as || M ||op, the
operator norm of M. Let i, (M) be the smallest nonzero

20ur bound here is a d'/* factor larger from the original paper
since our setting is operator norm bounded action set, which is
different from their Frobenius norm bounded action set. For details,
see Appendix H.3.
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singular value of M. Let | M||r = W/Z?Q Z;lil M7 and
| M|, = S3min(did2) x: (M) be the Frobenius norm of M
and nuclear norm, respectively. O is the order notation that
hides logarithmic factors. For any set .S, let P(S) be the set
of probability distributions on S. For any 7 € P(A), define
the population covariance matrix of the vectorized matrix
Q(m) € RArdzxdidz a5 follows:

Q) = Eqr [vec(a)vec(a)T )
We define Bop(R) := {a € RT1*% : ||a||,, < R}.

Low-rank bandits. Throughout, we assume that the learn-
ing agent interacts with the environment in the following
manner. At every time step ¢ € {1,...,T}, the learner
chooses an arm A; from the arm set A C R%1%d2 apd
receives reward y; = (0%, A;) + n:, where ©* is an un-
known matrix with a known upper bound of the rank at
most 7 < min(dy, dg). 1 is an independent zero-mean o-
subgaussian noise, and the inner product of two matrices are
defined as (A, B) = (vec(A),vec(B)) = tr(AT B). The
goal of the learner is to minimize its (pseudo-)regret:
T
Reg(T) i=T'max (07, 4) - ; (0%, Ay).

The following matrix generalization of Catoni’s robust mean
estimator proposed by (Minsker, 2018) will be useful for
our novel estimator.

Definition 2.1. Given a symmetric matrix M with its
eigenvalue decomposition M = UAUT where A =
diag(A1,- -+, Ag), we first define ¢p : R — R as

log(l—&—x—k%z) ifz>0
Po(2) =13 | ) otherws
—log(l — 2+ %) otherwise
and ¢ : R¥X4 — RIxd ag
G(M) = U [diag(do(M1), do(A2), -+, do(Aa))| UT
Finally, for any matrix A € R% %92 define the dilation

operator H : R1xd2 _y R(di+dz)x(di+d2) 4

0d1 X d1 A

H(A) - AT Od wd

Dilation is a common trick to allow existing estimation tools
built for real symmetric matrices to work on rectangular
matrices, as in (Huang et al., 2021; Minsker, 2018). For a
dilated matrix M € R(d1+d2)x(ditd2) (A1), refers to the
shorthand of Mj.4, d,+1:d,+ds-

3. LowPopArt: A novel low-rank matrix
estimator

In this section, we will present our novel low-rank matrix
estimation algorithm, LOW-rank Population Covariance re-

gression with hARd Thresholding (LowPopArt; Algorithm
1), which is inspired by a recent sparse linear estimation
algorithm called PopArt (Jang et al., 2022). We discuss the
differences between LowPopArt and PopArt in detail at the
end of this section.

LowPopArt takes samples {X;, Y;}°,, sample size ng, the
population covariance matrix of the vectorized matrix Q(7),
pilot estimator ©¢ and pilot estimation error bound Ry s.t.
maerA‘ (09— 0, A)] < Ry as its input. It consists of
three stages. In the first stage, PopArt creates a collec-
tion of one-sample estimator {©;}"°, from the input data

{(X;,Y;)}i0, as follows:
6, := Q(m) ' (Y; — (B0, X;))vee(X;) 2
Note that each ©); is an unbiased estimator of vec(©* — ).

Naively, one could use the average © := nio Z:;Ol 0;
as an estimator for ©* — ©g. When the number of sam-
ples is large enough, the empirical covariance matrix Q=
e Dy vee(Xy)vee(X;) T is close to Q(), which makes
© close to the d;de-dimensional ordinary least squares
(OLS) estimator. However, it is not easy to control the
tail behavior of ©, and consequently it is hard to exploit the
low-rank property when one naively uses ©. Instead, we
use the estimator of Minsker (2018, Corollary 3.1) which
symmetrizes the original matrix and computes the Catoni
function for each eigenvalue (Definition 2.1), which has the
effect of lightening the tail distribution of singular values.
We call the resulting matrix ©. Finally, we run SVD on
O and zero out all the singular values smaller than the
threshold, to exploit the knowledge that ©* is low-rank.
Remark 1. In the general estimation problem, we do not
have prior knowledge of the inverse covariance matrix of
the data, but one may attempt to estimate it if having sample
access to the covariate distribution; e.g., matrix geometric
sampling (Neu & Olkhovskaya, 2020). On the other hand,
there are some problems (such as bandits or compressed
sensing) where the agent has full control over the distri-
bution of the dataset. In these cases, LowPopArt can be
directly applied. Obtaining a precise performance guarantee
when the covariance matrix is estimated from the observed
samples is left as future work.

Analysis of Algorithm 1  We start by stating the following
recovery guarantee of the estimator ;. Detailed proofs of
this part are mainly in Appendix B.

Theorem 3.1. Suppose we run Algorithm I with the arm
set A, sample size ng, population covariance matrix of vec-
torized matrices Q, pilot estimator ©q and pilot estimation
error bound Ry, such that maXAeA|<@o — 0, A>| < Ry,
then O satisfies the following error bound with probability
at least 1 — 6:

181 — ©"[lop < O ((0+R0)1/%§)ln%‘i) )
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Algorithm 1 LowPopArt
1: Input: Samples {X;,Y;}°,, sample size n, the popu-
lation covariance matrix of the vectorized matrix Q(m),
pilot estimator © and pilot estimation error bound Ry.

Step 1: Compute one-sample estimators.
2: fort=1,...,n9do

3:  Compute O; as in Eq. (2).
4: end for
Step 2: Compute the matrix Catoni

estimator (Minsker, 2018) using {©;}}°,
5: Compute:

no

01 =0+ (% ;7/) (VH (reshape (éﬂ)))

ht

_ 1 2 2d
where v = 1R\ Bloyms In 5 .
Step 3: Hard-thresholding eigenvalues.

6: Let U134 VlT be ©1’s SVD. Let f]l be a modification
of X that zeros out its diagonal entries that are at most

/ L 2d
A i= 2(Rg + o) %{ia) where B(Q) is in Eq.
). . R
7: Return: Estimator © = U; YV, .
where
dz dl
B(Q) := max (Amx (> D) Aax (32 DS‘””))
i=1 i=1

“

where D\ = (Q7 ) [idu41:(i41) o), [i-dot1:(i+1)-do] AN
pirov) . [(Q_l)jk]j’ke{ﬂ,dl(571):£€[d2]}; see Figure 1 for

K
illustrations.

Remark 2. The intuition underlying B(Q) is as follows.
When d = 1, B(Q) is proportional to the variance of
©; for d > 1, B(Q) is, informally, proportional to
the largest variance of 6, projected onto rank-1 dyads
{uwv™ 1 u,v € ST}

From the above Theorem 3.1, one Pould deduce the final
operator norm bound of the output ©.

Theorem 3.2. Under the same assumption in Theorem 3.1,

rank(©) < r, and the following operator norm bounds hold
with probability at least 1 — 0:

In —

6=l <0 (04 R [Z20Z)

Theorem 3.2 implies the following error bounds in nuclear
norm and Frobenius norm recovery errors:

Corollary 3.3. Under the same assumption as in Theorem
3.1, the following nuclear norm and Frobenius norm bounds

dy

Dgcal) d,
)
Dgca)
Q'=
(col)
Dy,
dy i-th diagonal entry of each block
Il v B e
o L |
dafy I | i i
b
I I I 1] |
| | | | |
| | 1 | 1
OIrITAOTOTETIT T
Q—l — I PR R B
- | I | i 1
[ N ]
i t | | 1
| | | | |
L L N
proW ([
. =\ B
i o

Figure 1. Tllustration of DZ(COI) and ngw)

hold with probabiliy at least 1 — §:

In —

N 2
||®—@*|*§O((U+R0) rB(@) 2;) ©)
ng

|@—@*F§O((0+RO) TB(Q)mZd> )

no 1)

A naive application of LowPopArt with pilot estimator
04, xd, gives an estimator © such that ||© — ©*[|,, <

B—Q)); the dependence on S, is somewhat

9, ((0 +85.)
undesirable when S, > o. Motivated by this, we pro-
pose an improved version of LowPopArt whose estima-
B(Q)
no

(
no

tion error guarantee is O (a ) under mild assump-

tions, i.e. Warm-LowPopArt (Algorithm 2). Its key
idea is to first use LowPopArt to construct a coarse es-
timator ©¢ such that ||©9 — ©*||. < o, which ensures
that maXA€A|<@0 — 0, A>| < o; it subsequently calls
LowPopArt again with O as a pilot estimator, to obtain the
final estimate ©. Formally, we have the following theorem:

Theorem 3.4. Suppose that Algorithm 2 is run with
arm set A, sample size ng, failure rate 6, such
that maXAeA’(@o -0, A>| < Ry, and ng >

0 (T’QB(Q) . (%)2) then its output © is such that

rank(©) < r, and:

R 2B 2d
16 — 0%l < O <g #m 5) . ®

Comparison with nuclear norm penalty methods An
alternative and popular approach for matrix estimation is
nuclear norm penalized least squares (Koltchinskii et al.,
2011), which yields a recovery guarantee of [|© — O* ||z <
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Algorithm 2 Warm-LowPopArt: a bootstrapped version
of LowPopArt
1: Input: Samples {X;,Y;},, sample size ng, popu-
lation covariance matrix of the vectorized matrix @,
failure rate 6. -
2

2: ©g + LowPopArt({ X;,Yi},2,10/2, Q, 0dyxdys Se10/2)
3: O + LowPopArt({X;,Y;}" n, +1,n0/2,Q,@0,0, 0/2)
=7

4: Return: ©

O\ [rxrgye) and [© - €. < Oy o) We

show in Appendix I that under Assumption Al, A\pin(Q) <
é, and by Lemma 3.5 below, our error bound of LowPopArt
is always tighter than that of (Koltchinskii et al., 2011).

Lemma 3.5. B(Q) <

d
Amin(Q)

Thus, B(Q) can be viewed as a tighter measurement-
distribution-dependent quantity that characterizes the hard-
ness of the low-rank matrix recovery,

However, we can go even further — it is a natural question
to consider how much the recovery error can be reduced
when applying the best experimental design tailored to each
estimation method.

Experimental design As can be seen from Theorem 3.2,
the recovery guarantee of the LowPopArt algorithm de-
pends on the hardness B(Q). Therefore, if the agent can
design the sampling distribution over the given measure-
ment set A, a natural choice would be one that minimizes
the B(Q) value. Formally, we define the optimal B(Q) as:

Bmin(A) = 7Tén731(I}4) B(Q(Tl')) (9)
where Q() is defined in Eq. (1).

Intuitively, this quantity can be understood as a single metric
capturing the geometry of the measurement set. This opti-
mization problem is convex and can be efficiently computed
using common convex optimization tools such as cvxpy
(Diamond & Boyd, 2016).

Research on the experimental design for low-rank matrix es-
timation is surprisingly scarce. One reasonable comparison
point for our experimental design is the classical E-optimal
design (Lattimore & Hao, 2021; Hao et al., 2020; Soare
et al., 2014), well-known in experimental design for linear
regression. E-optimality aims to maximize the minimum
eigenvalue of the sampling distribution’s covariance matrix,
with optimal objective value formally defined as follows:
len(A) - ﬂIEI’}?aZ);) Am1n (Q(ﬂ-)) (10)
Now, the important question is how the recovery bounds of
LowPopArt and nuclear norm penalized least squares differ
when written in terms of Cpin(A) and Bpin (A), respec-
tively. We have established the following results between

CVmin (A) and Bmin (A)

Lemma 3.6. Suppose Assumption Al holds. Then d? <
Bhin(A) < %, and there exists an arm set Aparg for

which Buin (Apard) =~ Cnlqin.

See Appendix C for the proof of Lemma 3.5, 3.6 and the
construction of Aparg. For the arm set Aparg our guarantee is
# times tighter than the guarantee of (Koltchinskii et al.,
2011), which shows the importance of using the right arm

set geometry quantity.

Main novelty of LowPopArt compared to PopArt (Jang
et al., 2022). The major challenge is the absence of the
knowledge of a well-structured basis that the agent could
exploit a low-rank property of ©* to do better estimation.
In sparse linear bandits, the basis for testing the zeroness
is known to the agent (i.e. the canonical basis), so the
estimation procedure can simply focus on controlling the
estimation error over the d coordinates. On the other hand,
in low-rank bandits, we need to control the subspace estima-
tion error, but the potential number of subspace directions
(e, F={uw’ :uec Sh~1 vy e S=1} orits e-net) is
infinite or exponentially large (~ exp(d; + d3)). Indeed,
one of the naive extension of (Jang et al., 2022) for estima-
tion, which considers all possible directions in an e-net of
F. However, this causes computational intractability. To
get around this issue, we propose to directly upper bound
|6 — ©*||op for establishing Frobenius and nuclear norm
recovery error guarantees, which can be performed via the
method of (Minsker, 2018) in a computationally efficient
manner. This was the key observation that led to our main
result. We reiterate that our key contribution is to identify a
novel subspace exploration hardness measure of a sampling
distribution. If one has control of the sampling distribution
(e.g., in bandits), then this measure (i.e., our experimental
design criterion) can be efficiently minimized to represent
the subspace exploration hardness of the measurement set,
which, as we proved, is strictly better than a naive attempt
like E-optimality (Eq. (10)). We believe this is a significant
result given that there were no prior studies on experimental
design in the low-rank matrix estimation setting.

4. Low rank bandit algorithms

We now leverage LowPopArt to design two computationally
efficient algorithms for low-rank bandits.

Explore-then-commit based algorithm. Algorithm 3 is
based on the well-known Explore-then-Commit framework.
It uses Warm-LowPopArt as its exploration method to ob-
tain ©, an estimate of ©*, and subsequently takes the greedy
arm with respect to o.

We prove the following regret guarantee:
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Algorithm 3 LPA-ETC (LowPopArt based Explore then
commit)

Algorithm 4 LPA-ESTR (LowPopArt based Explore Sub-
space Then Refine)

1: Input: time horizon 7', arm set .4, exploration lengths
ng, regularization parameter v, pilot estimator O

2: Solve the optimization problem in Eq. (9) and denote
the solution as 7*

3: fort=1,...,n9do

4:  Independently pull the arm A; according to 7* and

receives the reward Y;

5. end for

6: Run  Warm-LowPopArt({4;,Y;}7°,,no, Q(7*),d)
and get 6

7: fort =ng+1,...,7 do

8 Pull the arm A, = arg max 4 4 (6, A)

9: end for

Theorem 4.1 (Regret upper bound). Suppose T >
TBmin(A)(Uti)‘l. The regret upper bound of Alg. 3 with

1/3
ng = min(7T, <U2T2Bmin(A)T2/Sf) ) is as follows:

Reg(T) < O((028,7°T? Brin (A)/3)  (11)

Remark 3. To the best of our knowledge, the only algo-
rithms that can handle general arm sets with Apin(©*)-
free regret bounds are LowLOC (Lu et al., 2021) and rO-
UCB (Jang et al., 2021). Both algorithms have regret bounds
of O(ar'/2d®/?/T) but are not computationally tractable.
On the other hand, our ETC-based algorithm is computa-
tionally efficient and achieves a better regret bound when
T<O (agng*_QBmin(A)_%_l).

Explore-Subspace-Then-Refine (ESTR) based algorithm.
Although general, Algorithm 3 overlooks a favorable struc-
ture underlying many low-rank bandit problems: ©* is well-
conditioned in many settings, €.g. Amin > (S%/r). Such
structure has been exploited by many prior works (Jun et al.,
2019; Lu et al., 2021; Kang et al., 2022) to design /7T -regret
algorithms. In this part, we assume that A\, (0*) > S, for
some known S, > 0.

In this section, we use Warm-LowPopArt to design an
efficient algorithm with O(+/T') regret (Algorithm 4). Al-
gorithm 4 is based on the Explore-Subspace-Then-Refine
(ESTR) framework (Jun et al., 2019). In ESTR, we use
Warm-LowPopArt to find an estimate © such that it closely
approximates © in operator norm. We then estimate the
row and column spaces of © using an SVD over e, repre-
sented by their orthonormal bases U and V. Then, we rotate
the arm set using U and V. After this transformation, the
original linear bandit problem becomes a d; d>-dimensional
linear bandit problem with arm set A" and reward predictor

0" = (vec(UTO*V); vec(U] ©*V);
vec(UTO*V,);vec(U] ©*V)))

1: Input: time horizon T, arm set A, exploration lengths
ng, singular value lower bound S,

2: Solve the optimization problem in Eq. (9) and denote
the solution as m

3: fort=1,...,ngdo

4:  Independently pull the arm A; according to 7 and

receives the reward Y;

5: end for

6: Run  Warm- LowPopArt({Al, Y}, no, Q(m),0)
and get O with SVD result © = ULV T.

7: Let U | and VJ_ be the orthonormal bases of the orthog-
onal complement subspaces of UandV, respectively.

8: Rotate  whole arm feature set A’ =
{[UUL AV VT : Ae A}

9: Define a vectorized arm feature set so that the last (d; —
7)(d2 — r)components are from the complementary
subspaces:

A;ec = {(Vec(Allzr,lzr); VeC(A;“-&-l :dq,1: r)-
VeC(AS.!T,T+1Zd2); VeC(Ar+1 idy,r+1: dz)) E "4,}

10: Invoke LowOFUL with time horizon T' — ng, arm set

Al the low dimension k = r(dy +dz —7), A = Zzdr,

AL=T,B=5, and B, = BunlA)eS:

Crucially, by the recovery guarantee of Warm-LowPopArt
and Wedin’s Theorem (Stewart & Sun, 1990), U] U llop
and ||VIV||Op are both small; as a consequence,
|‘9:(d1+d2—7‘)+1:d1d2”2 = HVGC(UI@*VL)”F <
1T TUopll©*[| 2|V, V|lop» which is also small. In
other words, we are now faced with a linear bandit
problem with the prior knowledge that a large subset of the
coordinates of the reward predictor is small.

This motivates the usage of the LowOFUL algorithm (Jun
et al., 2019)? in the second stage, which is a modification of
OFUL (Abbasi-Yadkori et al., 2011) with heavy penaliza-
tions on the reward predictor on insignificant coordinates.
Theorem 4.2 states the overall regret upper bound of Algo-
rithm 4.

16 Bmin (A)o*

&58,.(0%)7

bound of Algorithm 4 with ng = %‘Z‘"M)T is

Theorem 4.2. Suppose T > The regret upper

Reg(T) < O <U\/§§Bmin(A)dO'5T>
with probability at least 1 — 24.

Algorithm 4 attains a v/T-order regret bound, at the cost of
introducing a dependence of S,. factor in the regret bound.

3Pseudocode of LowOFUL is in Appendix F.1, Algorithm 5.
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Remark 4. When ©* is well conditioned, ie. S, >
Q(S,/r), the above regret bound can be simplified to
O(0/12d%5 Bpin (A)T). For the case where A = Boy(1),
we can prove Bpin(A) < d?, and we have the upper bound
of order O(v/72d2-5T') when ©* is well-conditioned, which
is an improved result compared to vr3d2->T of Lu et al.
(2021) and even to the computationally inefficient result
Vrd3T of Lu et al. (2021). Plus, our algorithm is strictly
better than LowESTR (Lu et al., 2021) in any cases because
Bin(A) < m,%r € P(A) by Lemma 3.6.
Remark 5. In addition to arm set dependent constant, LPA-
ESTR also achieves an improved regret guarantee over
LowESTR (Lu et al., 2021) w.r.t. r. This is because
our LowPopArt estimator provides improved bounds on
|T]U]lop and ||V,[ V||op, Which are a factor of /7 lower
than their respective bounds in (Lu et al., 2021). This is en-
abled by the unique operator-norm based recovery guarantee
of LowPopArt and the operator norm-version of Wedin’s
Theorem; to the best of our knowledge, we are not aware
of an operator-norm-based recovery guarantee for nuclear
norm penalized least squares regression.

5. Experiments

We now evaluate the empirical performance of LowPopArt
and our proposed experimental design to validate our im-
provement. We defer unimportant details of the experimen-
tal setup in Appendix J.

Bmin_LPA (ours)

Bmin_LPA (ours)
Cmin_nuc 08 min_nuc

—— Bmin_nuc
—— Cmin_LPA

5
N

Nuclear norm errors
Nuclear norm error

6000 80 40000 60000 80000 100000
Time Time

Figure 2. Experiment results on nuclear norm error

Low-rank matrix recovery. Figure 2 presents the results
on the nuclear norm recovery error (y-axis) as a function
of the sample size (x-axis). The prefix of each line (Cmin,
Bmin) represents the experimental design for the sampling
distribution (optimal solutions of Eq. (10) and Eq. (9), re-
spectively). The suffix (LPA, nuc) indicates the estimation
method employed (LowPopArt and nuclear norm regular-
ized least squares, respectively.) In the left plot, we draw
arm matrices uniformly at random from By, (1). In the
right figure, we consider the arm set Ay, from Lemma
3.6 that has a significant disparity between By, (A) and
Cimin (A) values (see Appendix C for the definition).

As one can see in the above figures, in all cases, Bpyin (A)
based exploration generally outperforms naive E-optimal
design, and LowPopArt tends to show a better nuclear norm
recovery error than nuc.
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Figure 3. Experiment results on bandits with ETC-based (left) and
ESTR-based algorithms (right)

Low-rank matrix bandits. Figure 3 presents the results
of applying LowPopArt-based algorithms (Algorithm 3 and
4) to the low-rank bandit problem. The first graph (left)
compares Algorithm 3 with another ETC-based algorithm,
which is based on nuclear norm regularized least squares.
Please check Appendix J for the pseudocode of this algo-
rithm. Algorithm 3 achieves a significantly lower regret
with a much shorter exploration length, demonstrating more
stable results than nuclear norm regularization.

The second graph (right) compares our Algorithm 4 with
state-of-the-art algorithms based on OFUL, such as ESTR
(Junetal., 2019), rO-UCB (Jang et al., 2021), LowESTR(Lu
et al., 2021), and OFUL on the flattened d; d2-dimensional
linear bandit problem itself (Abbasi-Yadkori et al., 2011).
Once again, it is apparent that our LPA-ESTR (Algorithm 4)
outperforms other OFUL based algorithms, showing lower
and more stable cumulative regret.

6. Conclusion

‘We have proposed a novel low-rank estimation algorithm
called LowPopArt, along with a novel experimental design
that aims at minimizing LOwPOpArt’s recovery guarantees.
This new algorithm utilizes the geometry of the arm set to
conduct estimation in a different manner than conventional
approaches. Based on LowPopArt, we have designed two
low-rank bandit algorithms with general arm sets, improving
the dimensionality dependence in regret bounds.

Although general, one drawback of our algorithms is that,
when applied to special arm sets (e.g. the unit Frobenius
norm ball), its guarantees are inferior than algorithms de-
signed specifically for these settings (Lattimore & Hao,
2021; Huang et al., 2021). Designing algorithms that can
match these guarantees in these specialized settings while
maintaining generality is an interesting future direction. An-
other interesting open question is establishing regret lower
bound that depends on the geometry of the arm set in the
low-rank bandit problem.

7. Impact statement

This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
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specifically highlighted here.

References

Abbasi-Yadkori, Y., Pal, D., and Szepesvari, C. Improved
Algorithms for Linear Stochastic Bandits. In Advances
in Neural Information Processing Systems (NeurlPS), pp.
1-19, 2011.

Abe, N. and Long, P. M. Associative reinforcement learning
using linear probabilistic concepts. In Proceedings of the
International Conference on Machine Learning (ICML),
pp. 3-11, 1999.

Auer, P. Using Confidence Bounds for Exploitation-
Exploration Trade-offs. Journal of Machine Learning
Research, 3:397-422, 2002.

Bandeira, A. S., Dobriban, E., Mixon, D. G., and Sawin,
W. E. Certifying the restricted isometry property is hard.
IEEE Transactions on Information Theory, 59(6):3448—
3450, 2013.

Bennett, J., Lanning, S., et al. The netflix prize. In Proceed-
ings of KDD cup and workshop, volume 2007, pp. 35.
New York, 2007.

Camilleri, R., Jamieson, K., and Katz-Samuels, J. High-
dimensional experimental design and kernel bandits. In
International Conference on Machine Learning, pp. 1227—
1237. PMLR, 2021.

Dani, V., Hayes, T. P, and Kakade, S. M. Stochastic Linear
Optimization under Bandit Feedback. In Proceedings
of the Conference on Learning Theory (COLT), pp. 355—
366, 2008.

Diamond, S. and Boyd, S. CVXPY: A Python-embedded
modeling language for convex optimization. Journal of
Machine Learning Research, 17(83):1-5, 2016.

Eftekhari, H., Banerjee, M., and Ritov, Y. Design of c-
optimal experiments for high-dimensional linear models.
Bernoulli, 29(1):652-668, 2023.

Gales, S. B., Sethuraman, S., and Jun, K.-S. Norm-agnostic
linear bandits. In International Conference on Artificial
Intelligence and Statistics, pp. 73-91. PMLR, 2022.

Hamdi, N. and Bayati, M. On low-rank trace regression
under general sampling distribution. The Journal of Ma-
chine Learning Research, 23(1):14424-14472, 2022.

Hamidi, N. and Bayati, M. On worst-case regret of linear
thompson sampling. arXiv preprint arXiv:2006.06790,
2020.

Hao, B., Lattimore, T., and Wang, M. High-dimensional
sparse linear bandits. Advances in Neural Information
Processing Systems, 33:10753—10763, 2020.

Hardt, M. and Price, E. The noisy power method: A meta
algorithm with applications. Advances in neural informa-
tion processing systems, 27, 2014.

Horn, R. A. and Johnson, C. R. Matrix analysis. Cambridge
university press, 2012.

Huang, B., Huang, K., Kakade, S., Lee, J. D., Lei, Q., Wang,
R., and Yang, J. Optimal gradient-based algorithms for
non-concave bandit optimization. Advances in Neural
Information Processing Systems, 34:29101-29115, 2021.

Huang, R., Lattimore, T., Gyorgy, A., and Szepesviri, C.
Following the leader and fast rates in linear prediction:
Curved constraint sets and other regularities. Advances
in Neural Information Processing Systems, 29, 2016.

Jain, P. and Dhillon, I. S. Provable inductive matrix comple-
tion. arXiv preprint arXiv:1306.0626, 2013.

Jang, K., Jun Kwang-Sung, Y. S. Y., and Kang, W. Improved
Regret Bounds of Bilinear Bandits using Action Space
Dimension Analysis. In Proceedings of the International
Conference on Machine Learning (ICML), accepted, pp.
3163-3172, 2021.

Jang, K., Zhang, C., and Jun, K.-S. Popart: Efficient sparse
regression and experimental design for optimal sparse
linear bandits. In Advances in Neural Information Pro-
cessing Systems (NeurIPS), pp. 2102-2114. Curran Asso-
ciates, Inc., 2022.

Juditsky, A. and Nemirovski, A. On verifiable sufficient
conditions for sparse signal recovery via /; minimization.
Mathematical programming, 127:57-88, 2011.

Jun, K.-S., Willett, R., Wright, S., and Nowak, R. Bilinear
Bandits with Low-rank Structure. In Proceedings of the
International Conference on Machine Learning (ICML),
volume 97, pp. 3163-3172, 2019.

Kang, Y., Hsieh, C.-J., and Lee, T. C. M. Efficient frame-
works for generalized low-rank matrix bandit problems.
Advances in Neural Information Processing Systems, 35:
19971-19983, 2022.

Katariya, S., Kveton, B., Szepesviri, C., Vernade, C., and
Wen, Z. Bernoulli Rank-1 Bandits for Click Feedback.
In Proceedings of the International Joint Conference on
Artificial Intelligence (IJCAI), pp. 2001-2007, 2017.

Keshavan, R. H., Montanari, A., and Oh, S. Matrix Com-
pletion from Noisy Entries. J. Mach. Learn. Res., 11:
2057-2078, 2010. ISSN 1532-4435.



Efficient Low-Rank Matrix Estimation, Experimental Design, and Arm-Set-Dependent Low-Rank Bandits

Koltchinskii, V., Lounici, K., and Tsybakov, A. Nuclear-
norm penalization and optimal rates for noisy low-rank
matrix completion. Annals of Statistics, 39(5):2302-2329,
2011.

Kotlowski, W. and Neu, G. Bandit Principal Component
Analysis. In Beygelzimer, A. and Hsu, D. (eds.), Pro-
ceedings of the Thirty-Second Conference on Learning
Theory, volume 99 of Proceedings of Machine Learning
Research, pp. 1994-2024, Phoenix, USA, 2019. PMLR.

Kveton, B., Szepesviri, C., Rao, A., Wen, Z., Abbasi-
Yadkori, Y., and Muthukrishnan, S. Stochastic Low-Rank
Bandits. arXiv:1712.04644,2017.

Lattimore, T. and Hao, B. Bandit Phase Retrieval, 2021.

Lattimore, T. and Szepesvari, C. Bandit Algorithms. Cam-
bridge University Press, 2020.

Li, W., Barik, A., and Honorio, J. A simple unified frame-
work for high dimensional bandit problems. In Inter-
national Conference on Machine Learning, pp. 12619—
12655. PMLR, 2022.

Lu, Y., Meisami, A., and Tewari, A. Low-rank generalized
linear bandit problems. In International Conference on
Artificial Intelligence and Statistics, pp. 460-468. PMLR,
2021.

Luo, Y., Zhao, X., Zhou, J., Yang, J., Zhang, Y., Kuang,
W., Peng, J., Chen, L., and Zeng, J. A network integra-
tion approach for drug-target interaction prediction and
computational drug repositioning from heterogeneous
information. Nature communications, 8(1):573, 2017.

Mason, B., Camilleri, R., Mukherjee, S., Jamieson, K.,
Nowak, R., and Jain, L. Nearly optimal algorithms for
level set estimation. arXiv preprint arXiv:2111.01768,
2021.

Minsker, S. Sub-gaussian estimators of the mean of a ran-
dom matrix with heavy-tailed entries. The Annals of
Statistics, 46(6A):2871-2903, 2018.

Natarajan, N. and Dhillon, I. S. Inductive matrix completion
for predicting gene—disease associations. Bioinformatics,
30(12):160-i68, 2014.

Neu, G. and Olkhovskaya, J. Efficient and robust algorithms
for adversarial linear contextual bandits. In Conference
on Learning Theory, pp. 3049-3068. PMLR, 2020.

Rohde, A. and Tsybakov, A. B. Estimation of high-
dimensional low-rank matrices. 2011.

Rusmevichientong, P. and Tsitsiklis, J. N. Linearly Parame-
terized Bandits. Math. Oper. Res., 35(2):395-411, 2010.

10

Soare, M., Lazaric, A., and Munos, R. Best-arm identifica-
tion in linear bandits. Advances in Neural Information
Processing Systems (NeurIPS), 27:828-836, 2014.

Stewart, G. W. and Sun, J.-g. Matrix perturbation theory.
Academic press, 1990.

Trinh, C., Kaufmann, E., Vernade, C., and Combes, R. Solv-
ing bernoulli rank-one bandits with unimodal thompson
sampling. In Algorithmic Learning Theory, pp. 862—-889.
PMLR, 2020.

Udell, M., Horn, C., Zadeh, R., Boyd, S., et al. Generalized
low rank models. Foundations and Trends® in Machine
Learning, 9(1):1-118, 2016.

Valko, M., Munos, R., Kveton, B., and Kocak, T. Spectral
Bandits for Smooth Graph Functions. In Proceedings
of the International Conference on Machine Learning
(ICML), pp. 46—-54, 2014.

Wainwright, M. J. High-Dimensional Statistics: A Non-
Asymptotic Viewpoint. Cambridge Series in Statistical
and Probabilistic Mathematics. Cambridge University
Press, 2019. doi: 10.1017/9781108627771.



Efficient Low-Rank Matrix Estimation, Experimental Design, and Arm-Set-Dependent Low-Rank Bandits

Appendix

Table of Contents

A Additional Related Work

B Proof of Section 3

B.1 Proof of Theorem3.1 . ... ... ... ........
B.2 Proof of 02 < 2(0? 4+ R3)B(Q) in Theorem 3.1 . . . .
B.3 Proof of Theorem3.2 . ... ... ... ........
B.4 Proofof Corollary3.3 . . . . ... ... ... .....
B.5 Proof of Theorem3.4 . . ... .. ... ... .....

Proofs of Lemma 3.5 and 3.6

C.1 Preliminaries - Relationship between D{“°Y and D{*")

C.2 Proofof Lemma3.5 ... ... ... ..........
C.3 Proofof Lemma3.6 ... ... ... ..........

C.4 Proving that 37% € IIZ such that wf_H = 71-2%_~_1 = ...
(modd) . ... ... ..

Examples of Buin(.A) and Cin(A)

D.1 AisFrobenius normunitball . . . . ... ... ....

D.2 Aisoperatornormunitball . . . ... ... ... ...

Proof of Theorem 4.1

Results of (Jun et al., 2019)

F1 LowOFUL Algorithm . . . . ... ... ... .....

F.2 Covariance matrix of (Junetal.,2019) . ... ... ..

Proof of Theorem 4.2

G.1 Proof of Lemmas we have used in this section . . . . .

Additional discussions of related works

H.1 Discussion of Huang et al. (2021) . . . . .. . ... ..
H.2 Discussion of Kangetal. (2022) . . . . ... ... ...
H.3 Justifying (Lu et al., 2021) bound in Table 1 . . . . . .

Comparison between our algorithm and (Koltchinskii et al., 2011)

Experimental details settings

J.1  Experiment settings . . . . . . . . ... ... ... ..
J.2 Algorithm for Left figures of Figure 3 . . . . . . .. ..
J.3  Computational efficiency of Algorithm 1 . . . . .. ..

12

12
12
13
14
14
14

14
14
15
15

19

20
20
21

23

23
23
24

24
27

28
28
28
29

30

11



Efficient Low-Rank Matrix Estimation, Experimental Design, and Arm-Set-Dependent Low-Rank Bandits

A. Additional Related Work

Low-rank bandits with general arm sets The first low-rank bandit algorithm that can work with a broad range of
arm sets is proposed by Jun et al. (2019). They studied the bilinear bandit model, where the arm set A is of the form
{27, 0 € X,z € Z}, and X, Z are subsets of {z € R : |[z[2 < 1},{z € R% : ||z]|z < 1}, respectively. They pro-

posed the Explore-Subspace-Then-Refine algorithm that has a regret of O( X _T(‘g ) ’/\\““f‘"((g: )) ); this is the first algorithm

that enjoys regret rate improvements over the naive rate of O(d2 VT ) obtained by a direct reduction to d; d2-dimensional
linear bandits, which ignores the low-rank structure. Lu et al. (2021) extended the bilinear arm set to generic matrix
arm sets and proposed LowLOC, a computationally inefficient algorithm with O(\/ rd3T) regret and a computationally
efficient algorithm LowESTR with O(V7d3T /Amin) regret. They also proved a Q(rdv/T) regret lower bound for this
setting. Kang et al. (2022) designed low-rank bandit algorithms by combining Stein’s method for matrix estimation and the
Explore-Subspace-Then-Refine framework of (Jun et al., 2019), assuming the existence of a nice exploration distribution
over the arm set; their regret bound is O(\/ rd?>MT / Anin ), where M is an arm set-dependent constant. However, the M
from their given example can have hidden dimensionality dependence — when specialized to the setting of 4 being the unit
Frobenius norm ball, it is of order d;ds, which induces higher regret compared to the previous works with general arm
sets (Jun et al., 2019; Lu et al., 2021). See Appendix H for a detailed derivation. In addition, there is no known method to
optimize M. As far as we know, (Kang et al., 2022) is the first low-rank bandit paper that applies the techniques of (Minsker,
2018). For the Catoni’s estimator, several studies use Catoni’s estimator to get a variance-dependent bound on regret bound,
such as (Camilleri et al., 2021; Mason et al., 2021; Eftekhari et al., 2023).

Low-rank bandits with specific arm sets There have been lots of other variants of the low-rank bandit, exploiting more
specific structures. Katariya et al. (2017) and Trinh et al. (2020) studied rank-1 bilinear bandit problem with canonical arms,

which means A = {eiejT (i€ dy],j € [dg]}. Kveton et al. (2017) studied about low-rank bandit where the hidden matrix

is a hott topic matrix and arm setis {UV' " : U = [ug;ug; -+ ;u,],u; € A([d1]), VT = [v1;095- - 50,.], v € A[da])}.
where [u1; ug; - - - ;u,| refers to concatenation of r vectors to create a matrix. Kotlowski & Neu (2019); Lattimore & Hao
(2021); Huang et al. (2021) studied the low-rank bandit with a sphere or unit ball arm set. Though Lattimore & Hao (2021)
and Huang et al. (2021) dramatically improved the regret bounds (see Table 1), as Rusmevichientong & Tsitsiklis (2010)
have pointed out, the curvature property of the arm set (Huang et al., 2016) can help the agent to improve the regret bound -
the regret bound of ETC can be v/7" when the arm set satisfies certain curvature property. We show in Appendix H that even
when the arm set is modified slightly, the regret analysis in these works may no longer go through. In contrast, our algorithm
is applicable to general arm sets.

Low-rank contextual bandits with time-varying arm sets Li et al. (2022) studied high-dimensional contextual bandits
where at each time step, the set of available arms are drawn iid from some fixed distribution; when specialized to the
low-rank linear bandit setting, their setup is different ours due to the nature of time-varying arm sets in their work.

Sparse linear bandits As previously discussed in Section 1, the algorithm presented in this paper draws inspiration
from sparse linear bandit algorithms. Reserachers have made significant development on the field of sparse linear bandit
algorithms, e.g. (Hao et al., 2020; Jang et al., 2022). These papers extensively utilize the geometry of the arm set and
effectively mitigate the dependence on dimensionality in the regret bound.

Low-rank matrix estimation It is natural to apply efficient low-rank matrix recovery results for solving low-rank bandit,
since smaller estimation error leads fewer samples for exploration which leads smaller cumulative regret in bandit problems.
Keshavan et al. (2010) provides recovery guarantees for projection based rank-r matrix optimization for matrix completion,
and Rohde & Tsybakov (2011); Koltchinskii et al. (2011) provide analysis of nuclear norm regularized estimation method
for general trace regression, with Rohde & Tsybakov (2011) providing further analysis on the (computationally inefficient)
Schatten-p-norm penalized least squares method. In this paper, we mainly use the robust matrix mean estimator of (Minsker,
2018) us it to provide efficient matrix recovery.

B. Proof of Section 3
B.1. Proof of Theorem 3.1

Proof. First, we recall the following lemma of Minsker (2018) on robust matrix mean estimation:

12
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Lemma B.1 (Modification of Corollary 3.1, Minsker (2018)). For a sequence independent, identically distributed random
matrices (M;)I'_,, let

02 = max Z]E[MZMJ—] ) ZE[MJ—MZ]
i=1 op 171 op
Givenv = tt‘,@, let X; = ¢(vH(M;)) and let T = L (3" Xi)ne. Then, with probability at least 1 — §,
- t
T — E[Ml|lop £ —=
I~ Bl < =

To utilize this Lemma B.1, we choose M;’s so that

* E[M;] = ©* — ©g so that T estimates the hidden parameter ©* — O
* 02, is well-controlled.

It can be checked that M; = reshape (C:)l> satisfies the condition with 02 < 2(0? + R2)B(Q)no (See Appendix B.2 for
the proof.) Substituting o2 by 2(c? + R3) B(Q)nq, and setting ¢ = 4/ 27%2‘ In 2¢ leads the desired result. O

B.2. Proof of 02 < 2(02 + R%)B(Q) in Theorem 3.1

Lemma B.2.

o = maX(Z IEMM lop, D IE[M, Milllop) < 20B(Q)(0” + RY)

=1 i=1

Proof. Note that M; = reshape (Q(7*)~(Y; — (¢, X;))vec(X;)), and all M; are iid. Therefore, 62 = n -
max(|| E[M; M ||op, | E[M," Mi]||op) and to compute the first term in the max,

E[M;M;]=E {(Yg — (©0, X;))*reshape (Q(W)_lvec(Xi)) reshape (Q(W)_lvec(Xi))T}
<28 (17 + (00 — 07, X reshape Q) vee((X,)) resape (Q(r) vee( X))
<2(c*+R)-E {reshape (Q(W)*lvec(Xi)) reshape (Q(ﬂ)lvec(Xi)>T}
where the first inequality holds since (V; — (6, X;))2 = (1; + (0% — ©p, X;))? < 2n2 4 2(0* — Oy, X;)>. Now the

main task is how to compute | E {reshape (Q(m*)~tvec(X;)) reshape (Q(m*) ~tvec(X;)) T} |lop- Here, we will simply use
the definition of the operator norm.

E {reshape (Q(’/T*)_lVCC(Xi)) reshape (Q(W*)_lvec(XZ-)> T}

op

= max u E {reshape (Q(W*)*lvec(Xi)) reshape (Q(w*)lvec(XiDT] u

ueSd1—1

ueSd1—1

do T
= max u' E |reshape (Q(w*)_lvec(Xi)) . Zef2(6f2)T - reshape (Q(w*)_lvec(Xi)) u
i=1

da

= max E > (e @ u), (Q(r") vee(X:)))?

dq—1
u€ES P

13
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o,
_ d2 T —1 (_12
= max, Zl(ei 2u) Q7 (m)(ef @ u)
i d2 d2
T (col) (col)
= max u D; u :/\max D;

Therefore, we can conclude || E[M; M, ]||op < (02 + R%))\max(Z?il DgCOI)), and similarly || E[M;" M;]||op < di(0? +
R2)Amax (D). Thus,
d2 dl
02 < 2max | Amax(Y_ D), Amax(Y_ DY) | (0% + R3)n = 2B(Q)(0® + R)n.

i=1 i=1

This concludes the proof. O

B.3. Proof of Theorem 3.2
Proof. Note thatforall j > r+1, 0y (©*) = 0. By Weyl’s Theorem (Horn & Johnson, 2012), for all j > r + 1, we have

no

o2 2 n 2d N
that 0;(©;) < 2\/(( +RE)B@) (0 %) = Am. As a consequence, © has rank at most 7.

Moreover, by construction, 6-0, llop < Awm. By triangle inequality, we have ||é — 0% lop < 2Am. O

B.4. Proof of Corollary 3.3
Proof. For any matrix M, |M|, < 7||M|op and || M|, < /7||M|/F. Substitute M to © — O* leads the desired

property. O

B.5. Proof of Theorem 3.4

Proof. By Corollary 3.3, the assumption ng > O (TQB(Q) : (%‘9*)2) guarantees that |[© — ©* ||, < O(o) where O is

the pilot estimator in Line 2 of Algorithm 2. Therefore, maxac 4 [(©¢ — ©, A)| < maxaca |©o — O|«||4|lop| < O(0).
We can get our final result by substituting Ry to O(c) in Theorem 3.2. O

C. Proofs of Lemma 3.5 and 3.6

C.1. Preliminaries - Relationship between D" and D{""
In Figure 1, DZ(COI) and Dgrow) looks quite different. However, it turns out that they are coming from the similar logic, due
to the nature of the low-rank bandit problem.

Recall the definition of the low-rank bandit problem. For each time, the agent pulls action A; € R *92 and receives reward
(©*, A;) + n;. However, one could simply transpose all the actions and define AT := {a' : a € A}, and think of the

reward as ((©*)T, A ) + n,. This does not change the nature of the problem. The definition of D{°*” and D{"*"’
from this fact.

comes

Since we need to compare the original low-rank bandit problem with ’transposed version’ of the low-rank bandit problem,
we will redefine our D{°°Y and D" as follows:

Definition C.1 (Redefine D{"*"(Q) and D\’ (Q)). For a covariance matrix Q of the action set S C R*1**2, define
S,col ) _
Dl( ‘ )(Q) = (Q 1)[i~81+11(i+1)'51],[i~81+11(i+1)'51]
S,row . _
Dz( )(Q) = [(Q 1)jk]j,ke{z'-s-sl(e-1):ee[32]}

One can check in the case of A, DY (Q) and D"")(Q) are exactly same as D\ (Q) and D™, respectively.
Moreover, the following properties also hold:

14
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* vec(a) = Pvec(a') for a fixed permutation matrix P € Rd1d2>didz

o Let Qirans(m) := Eqx[vec(a”)vec(a™)T]. Then, one could see that Ay (Q) = Amin(Qrans) since Qirans =
PTQP.

* One could check DgA’mw)(Q) = DgAT’COl)(thm) and DZ(A’COD(Q) = DgAT’mw)(thns).

Which means, though DECOI) and ngw) looks quite different, Dgrow) is the matrix that come from the same logic as DECOI),
but from the transposed problem.

)

Therefore, from now on, we will only compute DZ(COI related quantity for the scale comparison in this Section C.

C.2. Proof of Lemma 3.5

Proof. For any vector v € R%, define Ext(v,i) € R%192 as follows:
Ext(v,i) = e @ v

Then,
d2 d2
)\max(z DZ(COI)) < Z )\maX(DECOI)) (Homogeneity of degree 1 and convexity of maximum eigenvalue.)
i=1 i=1
d—2
= max UT(D£C01))U
Py veSd1—1
d—2
= max Ext(v,i) " Q 'Ext(v,1)
P vesdr—1
d—2
TH-1
da
= dpdmax(Q7") = — =
“ )\min(Q)
and the proof follows. O
C.3. Proof of Lemma 3.6
In this section, we will consider a setting where d; = do = d, and the following action set, Apag =
{reshape(ay),- - - ,reshape(aqz)} C R4*? where
l-ep Fori=1
a; ‘= .
e1 +m-e; Otherwise

Eventually, we will use [ = ﬁ, m = 1 for our final Aparq, but to demonstrate the effect of each scaling factor, we will use [
and m throughout this proof.

In this subsection, we will also use following definitions for the brevity.
e D:=d?
o m; :=m7(a;), and & := (my,me, - ,mp) forany m € P(A)
* Sym(n) be a permutation group of [n].
* For any permutation o € Sym(n)
- Forany v € R?, let o(v) := (Vo(1)s " s Vo (n))
- Forany 7 € P(A), o(m(a;)) := 7,()

for the brevity.

15
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Now, one could check that

2 D ) AT
Q(TF) = Fm +AZZ':2 T 5 n?’ﬂ.2:P (12)
M. p m? diag(7ta. p)
For the notational convenience, let § = (7, ', -+ ,7p"). Then,
1 i T
Q o) = 127 ) A mil2my —
(™) — sl g diag(gen) + ﬁqulgfl

C.3.1. CALCULATE Chyin (Anarp)

Suppose that TIC is the set of optimal experimental designs for C\,;, (Which means, the solution of Eq. (10)). Below, we
will show that there exists some 7€ in I1¢ such that 75’ = - - - = 7§,

Prove that 37¢ € I1¢ such that 7§ = --- = 1§ Note that A\, and the matrix inversion are both convex functions.
Moreover, from the symmetry of the arm set Aparq, for any permutation o’ € Sym(D) which satisfies /(1) = 1, for all

TE P(Ahard), Amax(c2(7'r)71) - /\Inax(Q(U/(Tr))il)‘ Let
1 ifi=1
o1(i) =42 ifi =D
i+ 1 Otherwise
Now, fix 7 € II; Define 7€ to be
ifi=1

Otherwise

~—

C( N 7T(a1

Then,

> Amax(Q(—=—= as ()™ (Convexity)

> Amax(Q(m)) 1) (Minimality of 7)

Therefore, 7€ € TI¢, and to calculate Cyyi, (Anard), it suffices to consider only distributions m € P(Anarg) Which satisfies
mo =73 = --- = mp. Let m; = a, and o = b for brevity.

Then, the characteristic matrix looks like this: if we let I,, be the n x n dimensional identity matrix,

PPa+(D—-1)b—X mb mb
mb

“\p =
Qlm) = Alp (m2b — \)Ip_1

mb

16
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and by the row operation,

Pa+ (D-1)b—A—(D—1)2 0 0
mb
det(Q(m) — Mp) = det
: (m2b— N Ip_;
mb

The characteristic polynomial is therefore

det(Q(m) — AI) = (m*b — \)P2(X? — (D = Db+ IPa+ m?*b)A + Pam?b)

We can therefore get two eigenvalues from quadratic equation, and D — 2 repeated eigenvalue m?2b.

For eigenvalues from the quadratic equation, note that for the quadratic equation of the form \> — BA + C = 0(B,C > 0),
the smaller eigenvalue has the order of @(%) since B < B 4+ v B? — 4C < 2B. Therefore, the order of the eigenvalue is
O (=i

am?b

m) and for the inverse, it’s of order ©(2).

When [, m < 1, one can note that the dominating terms are Db and 124 on the denominator. Therefore,

1 D
—1y _
Amax (Q(m) 1) = O(max(—r, o)
Using the fact that a 4+ (D — 1)b = 1, one can get we get optimal rate when § = @(%) and the final C| = @(%).

C.3.2. CALCULATE Byin (Anarp)

From Eq. (12),

7 — 1o
Q(m) MNid1a = 2m o T mlPmde .
_#‘n’lld_l # dlag(q2:d) + mld—l ld—l

and

_ 1 .. . 1
[Q(m) ™ Magi—1)+1:disd(i—1)+1:di = p diag(Ga(i—1)+1:di) + mldll

fori=2,--- ,d. Therefore, if we let G;() = 39" —L— fori =2,--- ,d — 1, and specially G4 (r) = Y921 —L

J=0 ma; i =1 Tgr1’
d d 1

1
G 1)
Do ) = 7)1 i idi,d(i— di = 12771 ml2ﬂ1 d—1
;21 i () ¢§=1[Q( ) d(i—1)+1:di d(i—1)+1:d leTrlld L L diag(C) + i

1411, ,

Suppose that ITZ is the set of optimal experimental designs for By, (Which means, the solution of Eq. (9)). Below, we will
show that there exists some 72 in IT? such that

e 7f =xP foralli,j #1 (mod d)
B __ B _ B
® Td+1 = T2d41 = " T(d—1)d+1
C.3.3. PROVING THAT 37" € IT” SUCH THAT > = 7P FOR ALL 7,5 # 1 (mod d)
Let G = -1 3%, Gy, and let € TIP. Let o be the permutation of [d] which is defined as

1 ifn=1 (mod d)
o(n) =142 ifn=0 (mod d)
n+ 1 otherwise

17
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and p be the permutation of [D] which is defined as

n ifn=1 (mod d)
p(n)=<n—d+2 ifn=0 (mod d)
n+1 otherwise
Then,
| 4t
B(Q(m) < 7= > B(Q(p*(m))
s=1
d— r B .
— 1 IA l2}n'1 + #Gl _77llil27'2l'1 gfl
=1 2y Ao _—ﬂfz%ﬁlld—l #diag(gS(G)g;d)+l;frﬁld_11dT_1_
(Property of permutation o)
g1 ~ ;
. l2}n'1 LGl nilﬂfrl lg 1
Amaz d 1= —njp;fl Lot i diag(o®(G)2a) + pha—la-11, 1]
(Jensen’s inequality and convexity)
d—2
- mal ml27r11 -
m127r1 ld 1 'm2 dlag(Gld 1) + l2m2ﬂ-1 15 11d 1
Plus, note that when C’ > C > 0,
1 1 d—2 1T 1 1 d—2 4T
2 G _fl — 2 72G _#1 —
Amax | |7 b yy mEm T > Amax | | md—:m b mim Ay T
_m12 ld 1 mz dlag(C ldfl) + m1d711d71 _ml271'1 1d,1 me dlag(Cld,l) + m1d711d71
Now consider the following distribution 75
B 7(ap) ifn=1 (mod d)
77 (an) = ¢ 1 Iyl
1 =2 T h .
—p=3=*— otherwise
By AM-HM inequality, we have
d
1 D—d D —d)? d(d—1
B SRS SR G (D-dp _dld-—1)
s i#1 (mod d) i#1 (modd) T 1w D io i 2
This means G > B , and naturally
1 1 d—2 4T
+ =Gy — d—1
B ) > A\ 127, m ml2my
(@(m) e _77fl2721'1 | P 2 diag(G14-1) + l2 2 ld 11d 1
Y 12;1 m2 G1 m(,il;il 1; 1
- rmes nflzg 141 i diag(-% ld 1) + 1d 1144
= B(Q(r"))

By the minimality of =, B(Q(7)) = B(Q(w
allocation 7 should satisfy 7; = 7 forall 4, # 1 (mod d).

18
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C.4. Proving that 377 € I1” such that 7, =}, = ... =} ), andnf =P foralli,j # 1 (mod d)
Suppose that 7 € I1# which satisfies 7; = ; forall 7, j 1 (mod d)). We aim to construct a 72 such that in addition to
this property, 7 satisfies 7, ) = 73 = ... =T 4y,

Define 72 as

E?—2ﬂ—j Q.
=i=2J =2 ... .d
7_‘_B: d—1 ) el

e Otherwise

L |
=2 5= Gir”)

=
i=2 Zz 2T =9 i

and therefore, B(Q(n)) > B(Q(7?)) (we need to change only G to G1(7?) from the above calculation) and therefore
B e b,

C.4.1. CALCULATING Bpyin(A)

From the above observations, to calculate Byyin(Anarg), it suffices to restrict to those 7’s of the following form:

e T =a

® Td+1 = T2d+1 = *** = T(d—1)d+1 =b

e my=---mwp=cforalli Z1 (mod d).
ca+(d-—1b+(D—-d)c=1

. GQZN-:Gd:GZ:d%bl,Gl:d;l.

To compute the maximum eigenvalue, we should solve the following characteristic equation:

det #a t e Ch el ~ M| =0
Iy diag(Gla) + il LHlL
LGy — —d-2 4T ]
= det l2 ) mil2q -d—1 =0
mlzald—l diag((-% — N)1a-1) + lzi;mgld—lldtl_
14 1y (d=2)y2 1 1
saer | [ |7 T A G e ’ =0
_il}ild—l dlag((i —Mlg-1) + l2am2 14— 11d 1]
(Determinant is invariant under row operation)
1 1 (d—2) 1 . G d—1
< (3, 5G1 (2, ) @y ) - det (dlag((mg = Mla-1) + WldI]‘;—l) =0
m2Z A+ 12am?2
(Determinant cofactor formula)
1 1 (d—2), 1 G (d—1)2 G d—2
S (—+—5G — A (= -2+ ) (— — A =0
(Z2CL + m2 1 ( ml2 ) 7n2 A + lgw,ln); ) (m2 + l2am2 ) (mQ )
1 1 G (d—1)2 (d—2), G
Sl(—+—G1—-A) - (— -2 — — = A =0
Kl% + m2 ) (m2 + [2am? )= ml2a ) I (m2 )

From the above characteristic polynomial, we can notice there are d — 2 repeated eigenvalues of size G, and the remaining
two eigenvalues are the solution of the following quadratic equation:
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1 1 G (d-1) (d—2),
(g + oG =N = A+ o) = (e 1 =0
After rearrangement, this formula looks like this:
AN _BAX+C=0
2 o2
where B = %+ﬁ+m2+(d212 and €' = #[(%—h} ) (G+(d = ) (74(122) ] - éz(GIG-i—Gl(d Dk +G+21€41;23) >0

and we know that the largest solution of the above quadratic equation is of order B, since C' > 0 and 0 < B? — 4C < B?
and therefore B < Z+Y5"=1C < 9B Now one could note that B = O (max(Z, -G —&_)), or

m2°' m2’ m2l2qa

B = O(max (d, i, d2>)

m2b’ m2¢’ m2l2a

After optimizing the scale, a = ©(%), ¢ = ©(b) and from the constraint a + (d — 1)b + (D — d)c =

1
1 d
L @< + D)
b
and B = © <m2l2 + "12) and so as Buyin(Aharg) = © (vrfl;lz + ml) When applying | = L andm = 1, we get

Nz
min (Ahard) =0 (dd)

Recall that we have shown that Cmm(Ahard) =0 (77:1;2) with this choice of [ and m, C. (Anarg) = ©(d?). Therefore,
for Ahards Bmin (Ahard) ( min (-Ahard))

D. Examples of B,,;,(.A) and C,,;,,(.A)

D.1. A is Frobenius norm unit ball

Claim 1. If A is the unit ball in Frobenius norm: A = {4 € R%*4 : ||A||p < 1}, then Cpin(A) = d11d2 and
Bpin(A) = dadad.

Proof. We will prove Cpyin (A) = ﬁ by proving Cpin(A) < ﬁ and Cpin (A) > d11d2.

Proving Cy,in (A) > ﬁ: Let B = {reshape(ek) :k=1,---,dids}. Note that vec(B) is a d1 d> dimensional canonical

(
basis, and for any m € A(B), Q(7) = Zfl”{? mieie; = diag(my, - -, Taydy) and Apin (@ )) min{m;}$1%2. Let 7 be a
uniform distribution over B. Then, Apin(Q (7)) = dl z; and this fact leads to Cinin(A) > 7

Proving Cpin(A) < gt Fix any distribution 7 over A.  Therefore, tr(E,.,[vec(a)vec(a)']) =
Eqr tr(|| vec(a) vec(a)T)] < 1 since for all @ € A, ||al|r < 1 and tr(vec(a) vec(a)") = ||vec(a)|? = [ja]|% < 1.
Therefore, by the minimality of Ay, 4, we get Ay, 4, (Q(7)) < ﬁ tr(Q(m)) = ﬁ

Proving B,in(A) > didad:  From the definition of B(Q) (Eq. 4),

d2 dl
B(Q) = max | Amax [ 3D | Amax | S DI
i=1 j=1
d2 dl
1 (col) 1 (row) 1 : d
> max | —tr D; , —1r D: Amax (M) > Ltr(M) for any matrix M € R4x9)
(2 A Ormax (M) 2 Jr(M) for any

20
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= max (;tr (Q(w)_l) , dltr (Q(w)_l)) (From the definition of DECOI) and Dﬁ“’w))
1 2
_ 1 ~1
~ min(d;, dg)tr (Q(W) )
1 (d1ds)?

> — AM-HM inequality on the spectrum of Q (7)1
> (s, da) T (Q()) ( quality p Q(m)™)

Here, note that A C Bp,op(1), which means

tr (Q(m)) = tr(Eqnr[vec(a)vec(a) '])
<[tr(vec(a)vec(a) )] (Linearity of expectation)

= ]EaN

= Eqnrlllal[7]
S anﬂ—[l] (a € A C BFrob(l))
=1

Therefore, B(Q) > % = dydad for any m € P(A)

Proving Bp,in(A) < dydad:  Consider

r(a) i ﬁ ifvec(a) € {e; :i=1,---dida}
0 Otherwise

(Recall that e; is a canonical basis where only i-th entry is 1 and all other entries are 0.) Obviously = € P(.A). On the other

hand, Q(7) = ﬁ[dldw which means Q(7) ™! = dyda14,4, and B(Q) = dydad. Therefore, Byin(A) < dydad by the

minimality of B, (A). O

D.2. A is operator norm unit ball

Claim 2. If A is the unit ball in operator norm: A = {A € R%*42 : || Ao, < 1}, then Crpin(A) = @(m) and
Bmin(A) = max(dl, d2)2.

Proof. We will prove that C i, (A) = @(m) by proving Cpin(A) = O(m) and Cpin (A) = Q(m).
WLOG dy > d;.

Proving Cpin(A) > ——24——~: Without loss of generality, assume that do > d;; we will show that Cpi, (A) > é.

S max(dida)

Consider a distribution 7 € A(A) which draws a matrix A € A by following process:
e LetU ~ o(dy) and V = [v1;02;...;v4,] ~ o(d2) where o(d) denotes the Haar measure over d x d orthogonal
matrices and [v1; v2;. .. ; g, ] is a concatenation of dy vectors.
o Letd = [Idl 04, x(drdl)] where I; denotes d-dimensional identity matrix and 0, x; denotes a x b dimensional
Zero matrix.
e Let A=UXV T =Ulvy;-+ ;v4,] . Since U and V are all orthogonal matrices, we have || Ao, = 1.
Note that A has the same distribution as [vy;- - - ;v4,]". This is because AAT = UU T = I, so those rows are mutually
orthonormal, and for any v; where j > dq, Av; = UX[v1;- -« ;vq,] T vj = UX04g, x1 = Og, x1 which implies that all rows
in A and vg, 41, - - , U4, forms an orthogonal basis. Therefore we can conclude
U o
0 I

d

[Ul;-”;'l)dz}' :[’Ul;...;’l)dz]

and A < [vy;- - ;v4,]7 . Now we should check the covariance matrix of A, E [vec(A) vec(A)]. As mentioned in Ap-
pendix C.1, there exists a permutation matrix P € R%192%d142 quch that P vec(A) = vec(A") and E [vec(A) vec(A) ] =
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PTE [vec(AT)vec(AT)T] P. In our case it is easier to compute E [vec(AT) vec(AT)T]. Since A 2wy svg,)s
Vii - Vi,
E [VCC(AT)VGC(AT)T} =E| : :
Va,u - Viaa,
where V;; = viva. We can easily note that

0 .

B[] = o (T
d72]d2 1= .7

and therefore E [vec(A T )vec(A") "] = F-1a,d,xdy > As aresult,

1 1 1
E [VCC(A)VCC(A)T} = PT 7Id1d2><d1d2 P = fPTP = 7Id1d2><d1d2'
do do do
. . . 1
This implies that Cpin (A) > ()
Proving Cpin(A) < O(m): We know that nuclear norm is a convex function.  Therefore,
| Eqor[vec(a) vec(a) M|« < Equrl|| vec(a) vec(a) " ||.] < di + da since for all @ € A, |lallop < 1 means ||al|p <
min(ds, dz), and || vec(a) vec(a) " || = || vec(a) vec(a) " |lop = || vec(a)||? = |lal|% < min(di, d2). Therefore, by the

minimality of \g, 4, we get A\g, 4, (Q(7)) < ﬁ“@(ﬂ)“* = m.

Proving By,in(A) > max(dy,d2)?:  From the definition of B(Q) (Eq. 4),

dg dl
B(Q) = max | Amax (Z DY) Amax | S DY
: =

=1
1 do 1 dy
> max — | S v, ot S phrew) max (M) > Str(M) for any matrix M € R**%)
1 i=1 2 \j=1
1 1
— max <tr (@m), -t (Q(ﬂ)1>> (From the definition of D and D))
dy ds
1 -1
= tr
min(dl, dg)t (Q(W) )
1 (d1ds)?

(AM-HM inequality on the spectrum of Q(7)~1)

~ min(dy, dz) tr (Q())
Here, note that A = By, (1) C Brrop(y/min(dy,d2)). Then,

tr (Q(w)) = tr(Eq~r[vec(a)vec(a) "))

= Eqnr[tr(vec(a)vec(a) )] (Linearity of expectation)
= Eqnrlllal[Z]
S anﬂ- [min(dl, dg)] (a S .A C BFrob( min(dl, dQ)))
= min(dl, d2)

Therefore, B(Q) > % = max(dy,dy)? for any 7 € P(A)

Proving By,in(A) < max(dy,d2)?:  From Lemma 3.6, Bpyin(A) < %&?) < max(dy, ds)?.
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E. Proof of Theorem 4.1
Proof. First, if T < w, we have T'S, < (U2S*T2Bmin(A)T2)l/3), therefore

Reg(T) < TS, < O((02S5,7% Buin (A)T?)1/3)
trivially holds.

2 2
Bunin .
MS%‘;‘(A). In this case, ng =

Therefore, throughout the reset of the proof we focus on the case when 7' >

*

S2

*

2p 1/3
(M) < T, and by our assumption that 7 > 72 Bpyin (A) (755 )4, we have ng > 72 Bpyin (A) (ZHmax )2,

This range of n( satisfies the condition of Theorem 3.2, which gives the following recovery bound on © with probability
1—¢:

(Bmin (A) In M)

16 — 0%, <216 — ©*|lop < 20
No

For the rest of the rounds, we can bound the instantaneous regret of the exploitation as follows:
(0%, A" — A)) = (0" — O, A%) + (0, A%) — (6%, A,)
< (O —0,A%) + (6 — 0%, A) (Definition of A;)
< [10% = Ol (14" lop + | Atllop) (Holder’s inequality)

< 20r\/(23‘“i“(“4) n 2Lt d2)) x 2

o 1)

Therefore, we can conclude the upper bound of the total regret bound as follows:
T
Reg(T) = 3 (67, 4" — Ay)

t=1

(B (A) In 25421 )

no

S HOS* +T'8UT

. . . 272 Binin (A)T? 1/3
The final regret bound of Theorem 4.1 follows by plugging in the setting of ng = <+) . O

F. Results of (Jun et al., 2019)
F.1. LowOFUL Algorithm

Algorithm 5 LowOFUL (Jun et al., 2019)
1: Input: time horizon 7", arm set .A’, lower dimension k, regularization parameter A1, failure rate §, positive constants

B,Bi,\ M|
Set A = diag(\, -+, A, AL, -+, A1) where X occupies the first k diagonal entries, and set Vy = A, 0y = vec (04, xd, )-
fort=1,---,7" do

VB; = o4/log ‘I‘//(“‘élzl +VAB+VALB,

Co={0:0 = 0i—1llvi_, < VBi}

Compute a; = arg max,c 4’ maxgpec, (a,6)

Pull arm a; and receive reward y;.

Update V; = Vi1 +ara , A= [ay; - sa,y = [y, -+, ) 0, = VT Ay
end for

R A
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F.2. Covariance matrix of (Jun et al., 2019)

Consider 7 to be the uniform distribution of Xy x 2y, where Xy = {X1,...,Xg, } and Zy = {Zy, ..., Zg, } are sets of
linearly independent vectors in X and Z, respectively. This is exactly how (Jun et al., 2019) have sampled. They achieved
the regret bound of on O(|| X ™Y op|| Z 7 |opd®/ V7T where X := [Xy;--- ,; X4, ] and Z == X = [Zy;-++ ,; Za,]. In

this section, we show that this || X ||, | Z 7" ||op is actually 4/ m, and therefore must be larger than or equal to

1
\V did2Cumin(A)°

dy  do

di1daQ = Z Z(Xz ®Z)(X; ® Z;)"
i=1j=1
dy dso

=> Y (X0 Z)X @z
i=1 j=1
d] d2

=> Y (xix;"He(Zz))

dy
=) (X @(227)

= (XX ®zz")

Therefore,
1
mll@’l\lop =(XXT) @ (ZZ")] lop
= [[(XXT) " @(ZZT) llop
= 1IXX T opllIZZ 71 lop
=IX 2 Z7H13,
G. Proof of Theorem 4.2

Proof. Let’s divide the regret of Algorithm 4 into two terms. Let R; be the regret occured by the procedure before calling
Algorithm 5, and let R» be the regret occured by invoking LowOFUL.

Part 1: Bounding R;. For R, since each instantaneous regret is bounded as follows:
(07, A = Ay) < [|O7[|L[| A" = Agllop < 1O [l (| A" [[op + [[Aellop) < 2[|O7 |

Therefore, we can safely bound Ry < n¢||0*||« < 10Sk.

Bmin(A)o?
no :
Here, we will use the following operator norm version of Wedin’s Theorem (Stewart & Sun, 1990, Theorem 4.4); this is

sometimes tighter than the Frobenius norm version of Wedin’s Theorem (Stewart & Sun, 1990, Theorem 4.1).

Part 2: bounding subspace estimation error. From the analysis on Section 3, we have [|© — ©*|,, <

Theorem G.1 (Wedin Theorem). Let M and M™ be two dy X do matrices with the following SVD:

X O (d r)} v
M=\U U 2
[ ! L] |:0(d1r)><'r E2 VI
. 5 Opx(da—ry | | (VI)T
M*=\Uy Uy (d2—r) L
[ ! L] O(dl—r)xr b (VJ_)T

Where

o« ¥y, % represents top-r singular values for M and M*
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o 35,5, represents the rest of singular values for M and M*

o (U1, V1), (U, VY) be the corresponding singular vectors for 1 and 31

o (UL, V1), (Ut,V]) be the corresponding singular vectors for o and ¥y
respectively. Suppose that there are numbers o, § > 0 such that

M(E1) > a4+ 6, and )\max(ig) <«
Then,
max{[|(U7) " (M — M*)|3,, (M — M*)V |13,
52

max{[|[U L Uyl [V Vi lI5) <

Now, substitute parameters as follows: suppose the SVD of ©* = U*¥*V'*
M =6,M* =06
U, =U,,U"=U"
Vi=V,V=V"*
Y =%, =%

Plus, note that
181 = ©%(15, = €1 — OIS IVI*II2, = [[(©1 — ©%) Vi3,
01 — O0*[|% > |[Uf (01 — ©*)||% . Now Wedin’s theorem implies that
1© — 6|3,
52

and similarly,

T T
max(||U LUy [|3, IV Vi lI5) <

We can check that by the assumption that 7" > %, ng > W. Thus by Weyl’s Theorem, /\T((:)) >

A (O0%) — 1/%{?‘0‘72 > %, therefore, choosing § = %, o = 0 satisfies the condition, since the rank of O is r and
therefore A\;(32) =0 forall j =+ 1,...,min(d;, d2). With the result of Theorem 3.4, we can conclude

. 1 |Buin(A)o? - 1 |Buin(A)o?
UTu*|,, < —,/ =¥ V7 oy Ty*||, < —, | Znyyz
107U lp < | 22T VTV oy < oy | 222
A ¥ A % i a?|e* min (A)o? S,
Therefore, |77 OV [|p <[0T Ullop - [ - [V TV lop < Brnl DO < Bumllg™s. _; 3,

Part 3: bounding R,. Recall thatweset A\ = L B, = 22 Buin(A)Ss 1 1ow-OFUL

n053

Let reg; be the instantaneous pseudo-regret at time step t: reg; = (0*, A* — A;) = (vec(©*), vec(A*) — vec(A;)) where
A* = argmaxge 4 (0%, A). From the fact that ©* € C; and using Cauchy-Schwarz inequality, we have

regr = (vec(©"), vec(A*) — vec(A;))

< Jnax (vec(®) — vec(O), vec(A)) (Definition of A;)
€Ci—1

< - * .

< max |[vee(®) — vec(©")];_, | vee( Al (13)

< 2V/B| VeC(At)|\V111 (Definition of Cy)

< /Bl vee( A1)y, (14)

Now, define Hy := {t € [T] : t > no, || A¢|ly,~1 > 1} and Hy := {t € [T] : t > ng, || A¢]|;,-1 < 1}. Then,
t—1 t—1

T
Rem Y req

t=no+1
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T T
= Z reg:1{t € Hr} + Z reg:1{t € Hr}
t=no+1 t=no+1
T
= Z reg;1{t € Hr} + 2S.|Hr| (reg: < 285,)
t=no+1
< |||Hr| Z reg? + 25.|Hr| (Cauchy-Schwarz)
teHr
< JIHzlBr Y I vee(An)ly,- +28.|Hr| (Eq. (14))
teHrp
< | 1H7|Br Z min(1, || vec(Ay)|ly-1) + 25, Hr | (15)
t=ng+1

Now for the first term of Eq. (15), we can use the elliptic potential lemma (Abbasi-Yadkori et al., 2011; Lattimore &
Szepesvari, 2020):

Lemma G.2 ((Lattimore & Szepesviri, 2020), Lemma 19.4). >} | min(1, || Vec(At)HV ) < 2log V7l

For the second term, S.|Hr|, we can use the slight modification of the elliptical potential count lemma in (Gales et al.,
2022):

Lemma G.3 (Modification of Lemma 7, (Gales et al., 2022)). |Hr| < log 5 log( 5)
Overall, we have
|VT| 2d
Ry <4 —S dlog 16
2 <44/ fPr |A| — VT + (10g2) (16)

where /B = B\f+BM//\l+o,/log‘|‘//\"
Vr|

Now the minor difference comes from the computation of log AT simply because we have different bounds on the /5 norm
of the actions (note that for all a € A’, ||al|s = |[reshape(a)|| < V/d|[reshape(a)||op < V/d.)
Lemma G.4 (Modification of Valko et al. (2014), Lemma 5). Forany T, let A = diag([A\1,- -, \p]). Then,

|Vr| dt;
log —— A < max{Zlog 1+ )\—)}

where the maximum is taken over all possible positive real numbers tq,- - - ,t, such that Zle t;="1T.

Note that in comparison with (Valko et al., 2014) (which originally assumes ||a:||2 < 1 for all ), we added a factor of d
inside the log because Vi = Zle ata; and each |||z < v/d. Detailed proof is in Appendix G.1.1

The only difference from the original lemma is that our Frobenius norm of ||a|| is bounded by v/d, so we need to
compensate that scale difference inside the logarithm. Using our A = diag(\,--+ , A, AL, -+, A1) with Lemma G.4 we can
induce the following result:

Lemma G.5 (Jun et al. (2019), Lemma 3). If A, = ary» then

T __
'IOg(l"rT

T
log ||A| < 2klog(1 + 7)

Proof.

|Vr| dt;
lo < log(l+ —
og —— A max{g og( Y )Y
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<klog1+— 21g1+—
1=k+1
p p
dT
Zlogl—i——gz )\L <—<klo( T)

i=k+1

One can note that the additional d factor from Lemma G.4 leads A\ | should have order %, not like % in Jun et al. (2019).
Combining Lemma G.5 with Eq. (16), regret occured by the LowOFUL algorithm is
Ry < O((ckV'T + BVENT + B, \/kX, T))
< O(ordVT + TVdB))
02d°5 Biin (A) S

<O(ordVT +T 5 )
Part 4: putting it together. Therefore, the total regret of ESTR can be bounded by
) Tdo.sBmin -A 25*
Regr = R1 + R2 <O <n05* + U?‘d\/f—‘,— 5(2 )O’
nao;

B 058 .
<O [ ordVT + 0\/Sde§l2m(A)T

with the setting of ng = /-~ ZminA T in the algorithm. O

G.1. Proof of Lemmas we have used in this section
G.1.1. PROOF OF LEMMA G.4

Proof. We need the following lemma of Valko et al. (2014)

Lemma G.6 (Modification of Valko et al. (2014), Lemma 4). Let A = diag(\1, ..., Ap) be any diagonal matrix with strictly
positive entries. Then for any vectors (a,)1<i<7 such that ||a;||2 < C for some constant C for all 1 < t <T, we have that
the determinant |Vp| is maximized when all a; are aligned with the axes.

The proof of Lemma G.6 is exactly the same as Valko et al. (2014), Lemma 4. Now, in our case, foreach 1 < ¢ < T,
xy = vec Xy and ||zl2 < || Xt||7 < \/3||Xt||op < v/d. Now,

T
[Vl = [A+ 3w |

T
< max A+ Zataﬂ

(ai)i_y:llaill2<Vd =1
T
max A+ Z aa | (Lemma G.6)
(az)l 1°@i e{Vdei, \/Eep} t=1
S max ()\z + dtl)
(ta)i_ 20,500 t=T
and dividing |V | by |A| and taking logarithm leads the result of Lemma G.4. O
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H. Additional discussions of related works
H.1. Discussion of Huang et al. (2021)

The result of Huang et al. (2021) is mainly based on the noisy power method (Hardt & Price, 2014). After using noisy
power method to estimate © such that ||© — ©* | £ < €[|©||F, they use the fact that their arm set is a sphere and therefore
the empirical best arm (greedy) is explicitly A = © /6| ¢ and the true best arm A* = ©*/[|©* | &.

16 - ©7||r < [|©7||r
)
16*][r
and by trigonometry, one can deduce that || A — A*||» < . See Huang et al. (2021, Appendix B.2) for details.

= | —A"|lr <e

They then use the fact A = ©/(|©||p and A* = ©*/||©* || to achieve the instantaneous regret bound of &2 as follows:

(0%, A%) o .. _ le*lr| e 2 )
9 _ JA)) = —15 < |9||re (17)
> e M= |lels 11

F
This small £ error guarantee (as opposed to, say, ¢ described below) is crucial for obtaining their regret bound.

—A

(0", 4%) — (07, 4) =

To summarize, a key property Huang et al. (2021) used was the fact when ©* and O are close enough, then A* and A s also
close enough in their setting. This is true when the arm set A has a smooth curvature. However, without curvature on the
arm set, the greedy arm A= arg max ¢ 4 <@ A) can only be guaranteed such that

(0", 4%) — (0", 4) < 2?33(‘@ - 0%, 4)[ < 0(e)

Here’s one example that shows the importance of the Frobenius norm unit ball arm set for their anaylsis. Suppose that arm
set A = BU {diag(1,1,0,---,0)}, where B = {M € R¥?: ||M||p < 1}. Consider ©* = diag(1,¢,0,--- ,0) for some
small €. Suppose that we run the algorithm of Huang et al. (2021) using B. Then, for an arbitrary estimation error &y, the for
the estimator using Huang et al. (2021), ©,, we have guarantee ||©), — ©*|| < £,]|0*||» when ng = O(d?r); %, %) is
number of total exploration steps (From Theorem 3.8 of (Huang et al., 2021)). As we have stated above, Huang et al. (2021)
converted this to a bound of || A — A* ||z when the arm set was 5B. However, in the case when the arm set is A, A and A* can
be close enough only when (©},)s5 is positive. If not, then we have (0% diag(1,1,0,-- ,0)) — maxacp (0%, A) = Q(e)
and this incurs €7 exploitation regret. To guarantee €, < ¢, we need to spend O(d2r/\r_ 2¢=2) samples for exploration.
Thus, with this analysis, the best regret upper bound we can hope for is

d?r

min(ET, W)

Choosing ¢ that maximizes this leads to O((d*rT2A2)'/3) regret upper bound. This is much worse than their previous
bound O(Vd?rT/A.).
H.2. Discussion of Kang et al. (2022)

The result of Kang et al. (2022) is directly associated with a sampling distribution constant called M, which was treated
as a constant unrelated to dimensionality in the paper. However, we explain here that M, has hidden dependence on the
dimensionality.

To see this, consider the reward model y; = (©*, X;) + n; where 1, ~ N(0,0?). It lies in the (conditional) canonical
exponential family:

po- (Yt | Xi) = exp (M;m

+ C(Z/t#ﬁ)) ;

where 8 = (0%, X;),b(8) = 182, ¢ = 02, c(y, ¢) = In (ﬁ) — 2— The inverse link function is u(8) = Vb(B) = B.

Consider arm set A = {X € R%"*% : || X | <1}. We consider D = N (0, 7% Ia,4,) (With ¢ = O(y;7)), so that T
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arms drawn iid from D all lie in X with probability 1 — O(%) With this distribution,

X2 d1da|| X ||2
p(X) x exp(fw) = lnp(X) = 7# + constant,
c
dids

Therefore, the associated score function S(X) = Vinp(X) = — 9% X,

Now, checking (Kang et al., 2022, Assumption 3.3), we have for all i, 7,
(d1d2)? dido
E[s(x3,) = 2w [x2] =

i.j 2

c

As M is chosen such that for all 4, j, E {S(X)fj} < M, M has to be at least % > dqds.

Plugging this into (Kang et al., 2022, Theorem 4.1), and note that p* = E [1/((X, ©*))] = 1, we have that given T} iid

samples from D, the estimator © has a Frobenius recovery error bound of:

(d1 d2)27‘ )
Ty '

When d; = ©(ds), this guarantee is in fact worse than the recovery bound obtained by the 0(02%7') bound provided

by nuclear norm penalty method (Lu et al., 2021, Theorem 16). We also provide an different argument on the necessity
of hidden dimensionality dependence of M or S;. Suppose not; then ©, based on iid measurements from D, achieves
16 — 0% < 0(02%'11’”). However, the information-theoretic lower bound (Koltchinskii et al., 2011, Theorem 5)
implies that for any estimator using samples drawn iid from D, there exists some © such that max; ; |©; ;| < o, and
16 — 0%2 > Qo> ht42)) The latter implies that [|© — ©*[|2. > (g2 Ztd2ldidz)

16 — ©*[|% < O((o® + %)

For Kang et al. (2022), they also stated their result based on the Frobenius norm bounded arm set: A C {A € R%*d2 :
||[A|lF < 1}. When we change the Frobenius norm bound to operator norm bound, their estimation bound (Kang et al.
(2022, Theorem 4.1)) does not change much, but their regret analysis on ESTS needs additional d%-?® factor.This additional
dimensional dependence also applies for all ESTR-based algorithms Jun et al. (2019); Lu et al. (2021) and it is because of
the log-determinant term computation - check Lemma G.5 and Lemma G.4 to see details of why additional d appears.

H.3. Justifying (Lu et al., 2021) bound in Table 1

In this section, we show that the regret bound of LowESTR (Lu et al., 2021) (originally proposed for the setting of

A C Bryob(1)), when applied to our setting (A C Bop(1)), gives a regret bound of O(d"/* r%T (%) ). First,

with the new assumption on the arm set .4, it is necessary to set A} = % instead of % in (Jun et al., 2019; Lu et al., 2021)

to ensure that log % < O(rd).

Therefore, the total regret bound of LowESTR is

O (S*no + okVT + BVENT + B“/kMT>

Next, as mentioned in Remark 3, our LPA-ESTR also achieves an improved regret guarantee over LowESTR ((Lu et al.,
2021)) not only w.r.t. d but also w.r.t. rank r too.

The main reason is that the LowPopArt provides operator norm-based recovery bound as discussed in Theorem 3.2. This
allows us to use the operator norm version of Wedin Theorem (See Section G), which means we obtained the bound
of |U]U*|lop and ||V, V*||op. From this bound, we used the fact that || AB||r < ||A|lop||B|  to derive the following
relationship:

Bmin(-A)U2||®*”F

T AT T TY
UL OVLr < ULUllop - X7 - IV Villop < SWCDE

(This is LowPopArt version.)

Remember that there’s no r term on the RHS. On the other hand, (Lu et al., 2021) used the Frobenius norm version of the
Wedin Theorem, since they mainly used the Frobenius norm bound of the nuclear norm regularized least square.

Theorem H.1 (Lemma 23 and Appendix E.2 of (Lu et al., 2021)). For the nuclear norm regularized least square estimator
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O ue, We have
A A2 o?
Onuc — OF 2 <45y —— .
|| ||F = K/QT n)\min(Q(ﬂ-))Q r

where k is the restricted strong convexity constant (in (Lu et al., 2021) it is Anin (Q(7))), and Ay, is a constant which satisfies
L300 neXellop < 22 (it is O(\/); by (Kolichinskii et al., 2011), Propositioin 2).

Under this result, they are forced to use the Frobenius version of Wedin’s Theorem and trivially bound ||U] U* ||, by
HUI U*||r (marked as (opF) in Eq. (18). This leads to the following looser estimation:

PN . . (opF) . . 0% F
UlevVie < U Ullop- IZlF- VTV < NTTUNe - ISl e - IVTV, e < ,
[ULOVLF <ULUllop - 1El[lF - IV Villp < [ULUllF-[[ZllF- |l L”F—Amin(Q(w))2~noAr(6*)Q r

(18)

Note that there’s r term on RHS now. Since m > Cl, > B‘%‘(A) > d by Lemma 3.5, LowPopArt version bound
is much tighter than Eq. (18) in all manners.

: a?|e*|r
Now from the construction, B < b (oTca N Erpy wi (LI

Therefore, the total regret of LoWESTR can be bounded by

~ Tdo'50'25*
- .
Reg(T) <O <TLOS* + JTd\/T-i- 10 min (@ (7)) 2\, (07)2 T‘)
i 40552
<O [ ordVT + 04/ 52 Ter
\/ )\min(Q(Tr))Q)‘T(@*)Q

with the optimal tuning of ng.

I. Comparison between our algorithm and (Koltchinskii et al., 2011)

Suppose we are given (A;, y;)"_; iid samples such that A; ~ II and IT is supported on {A | Alfop < 1}, and for every 1,
y; = (©*, A;) + n;, where 7;’s are independent zero-mean o-subgaussian noise. (Koltchinskii et al., 2011) considers a
nuclear-norm penalized estimator, defined as follows:

R 2 &
= 1 2 - - ZAZ * 1
6 = arg min O],y — (- > vidi,0) + Al (19)

=1
where || B 1,1y = \/Ea~n (4, B)®.

Theorem 1.1 (Adapted from (Koltchinskii et al., 2011), Corollary 1). Given the setting above, and suppose additionally
that:

e there exists C > 0 such that for all B,

BI2, a0 = CIIBI2.,
 rank-r matrix Oy is such that ||% S Ay —Eaon [(@0, A)A} llop < %

Then, there exists some absolute constant ¢ > 0 such that

A TA
|1© —©|lr < CE.

B TA
16— Oullr < Y22
Now the Lemma 1.2 below states that ©* satisfies the condition of ©¢ in Theorem I.1.

Lemma L.2. Suppose n > O(ln %). Then with probability 1 — 6,

1 n
E ZAiyi — EANH [<®*,A>A] S O (S* + 0')

i=1
op
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Proof. Let Z; = Ayy; — Eaon [(@*, A>A]. We first upper bound || Z;||op’s 1/2-Orlicz norm; to this end, first note that
1 4sillopll,, < [lwilll,,, <I[10, A, +]Imilll,,, < S+ 0
Therefore, E 1 [(©%, A)A] = E[A;y;] also satisfies that

[IBam [t 4] || <S40,

hence (| Zillos < 14 llop, + |1 Eavrt (67, 4)4] flp

<2(S, +o0).
wg_( )

Meanwhile,
* 2
IE[Z:iZ] llop < IE[A:A] 47]llop = I E[A:A] (8%, A0)° + 02)]llop < 5% + 02,
likewise,
IE[Z Zi]llop < S2 + 0.

Therefore, applying Proposition 2 of (Koltchinskii et al., 2011)* on Zy,...,Z,, withoy = S, + 0, = 2,and U éa) =
2(S, + o), t =In } gives that with probability 1 —

n 1 (a) 1 1 d
lzzi _ n(s U n5 <ol +0) In §
n = \/ \/ n

Applying the theorem to (4;,y;)"; with O set to be ©*, where A; ~ 7* as defined in (10), we can choose C' =
Cimin(A). On the other hand, Lemma 1.2 below shows that choosing A = O ((S + 0')\/ ) with probability 1 — ¢,

(13" Ay — Eacn [(©0, AYA] [lop < 5. Therefore, we conclude that with the above setting of A and IT = 7, the
nuclear norm penalized estimator © defined in Eq. (19) with satisfies that

A . ~( Si4+0o |r A . ~( Si+o [r?
_ <o(=22=%2 /L _ <O /.
|©—-0*r <O (Cmin(-A)\/;>’ |©—-0%|. <0 (Cmin(A) n)

J. Experimental details settings
J.1. Experiment settings
Common settings

* Computation resource: Apple M2 Pro, 16GB memory.
e Error bar: 1-standard deviation for the shadowed area.

* We attached our code as supplementary material and will upload a public link when this paper is accepted. Please read
README.md file before running.

J.1.1. FIGURE 2 LEFT

e Dimensiond; = dy =3

* Time steps: from 1000 to 10000, increased by 1000

* ©* = uv ', where u and v are drawn from S?~! and S%~!, respectively (S~ is the d-dimensional unit sphere.)
* Action set .4 is drawn uniformly at random from the Bg,..5(1). |.A| = 150.

* Noise 77; ~ N (0, 1), which means 02 = 1.

* Repeated the experiment 60 times

“The original proposition statement is stated for the setting of 0% = max(E[Z;Z; |, E[Z," Z:]) exactly; it can be checked that the
proposition continues to hold when 0% > max(E[Z: Z; |, E[Z;" Zi]).
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J.1.2. FIGURE 2 RIGHT

L]

L]

Dimension d; = dy = 3
Time steps: from 10000 to 100000, increased by 10000
©* = uv', where u and v are drawn from S%~! and S?2~!, respectively (S is the d-dimensional unit sphere.)
Action set A is Aj,,-q, Which is defined as follows:
reshape(%el) ifi=1

reshape(e; + %ei) ifi =23, ,dids

Noise 7; ~ N (0, 1), which means 02 = 1.
Repeated the experiment 60 times

J.1.3. FIGURE 3 LEFT

L]

Dimension d; = dy =5

Time steps: 100000

©* = uv', where u and v are drawn from S?~! and S%2~!, respectively (S~ is the d-dimensional unit sphere.)
Action set A is drawn uniformly at random from the Br,05(1). |.A] = 100.

Noise 7; ~ N (0, 1), which means 02 = 1.

Repeated the experiment 60 times

J.1.4. FIGURE 3 RIGHT

L]

Dimension d; = dy = 6

Time steps: 100000

©* = uv", where v and v are drawn from S ~1 and S%2 1, respectively (S?~! is the d-dimensional unit sphere.)
Action set A is in bilinear setting. Which means, A = {zz" : 2 € X, 2 € Z} where X and Z are drawn uniformly at
random from the S%~1 and S% 1, respectively. |X| = 4d; = 24, | Z| = 4dy = 24.

Noise 7; ~ N (0, 1), which means 02 = 1.

Repeated the experiment 60 times

J.2. Algorithm for Left figures of Figure 3

Algorithm 6 Nuc-ETC (Nuclear norm regularized least square based Explore then commit)

1:

R A A R

Input: time horizon T, arm set A, exploration lengths nj, regularization parameter A

Solve the optimization problem in Eq. (10) and denote the solution as 7*
fort=1,...,n;do

Independently pull the arm A; according to 7* and receives the reward Y;
end for .
O, 1= arg Mingepd, «d; 1300 (0, 4) — Yt)z + A9«
fort=ni+1,...,Tdo

Pull the arm X, = arg max 4 4 (O, A)
end for

J.2.1. THEORETICAL ANALYSIS OF THE EXPLORATION LENGTH 0

As discussed in Appendix I, we have the following guarantee for the nuclear norm error bound of the nuclear norm
regularized least square estimator:

oy
L)

. - 2
||@—@*||*s0(5*+“) r

Cmin (»A)
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Also, we have the following upper bound of the instantaneous regret after ng:
(O, A" — A}) = (O — O, A4%) 4 (6, 4*) — (0%, 4,)

< (O —6,A%) + (6 — 6%, A) (Definition of A;)
S ||®* - é”*(”A*Hop + HAt”op) (Holder’s inequality)
<2(0* -0l
Overall,the regret is
T ng T
Regr = (0%, A" — A;) =) (0%, A" — A) + (O A" — Ay)
t=1 t=1 t=ng+1
~( S.+o0o r2
< * [ — —nk
< Sing + 0 (Omin(A)) = (T —ng)

and the n}, which optimizes above value is n§ = (027'2T2Cmin (A)’QS;Q) 13

J.3. Computational efficiency of Algorithm 1

For estimation only (Algorithm 1), we need O(d3d3) for matrix inversion (Eq. (2)), O(no(d1dz)?) for estimators in Line 2,
and O(d2ds) for SVD in Line 3 and 4, and no more computation is needed. On the other hand, (Koltchinskii et al., 2011)
and other popular tools require optimizations that have several iterations dependent on the precision requirement of the
optimization. For (Koltchinskii et al., 2011), it requires O(ngd1ds) for each iteration. In our experiment, both were very
fast (ours: 0.3 sec, (Koltchinskii et al., 2011): 0.1 sec). For the experimental design part, no prior work explicitly studied on
experimental design in the low-rank setting as far as we know. One natural approach is to optimize the conditions of the
covariance matrix such as RIP, but there is no known computationally efficient way to directly compute these quantities
(See the last part of the second contribution in Section 1). Other naive approaches are A/D/E/G/V-optimalities that are used
in linear experimental design. They can be optimized by traditional optimization solvers like CVXPY or MOSEK. Our
algorithm could also be done in the same way since our optimization problem is also convex. (in our experiment, ours:
0.046 sec, E-optimality: 0.039 sec).
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