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Abstract

Logistic bandit is a ubiquitous framework of
modeling users’ choices, e.g., click vs. no
click for advertisement recommender system.
We observe that the prior works overlook or
neglect dependencies in S ≥ ∥θ⋆∥2, where
θ⋆ ∈ Rd is the unknown parameter vector,
which is particularly problematic when S is
large, e.g., S ≥ d. In this work, we im-
prove the dependency on S via a novel ap-
proach called regret-to-confidence set conver-
sion (R2CS), which allows us to construct a
convex confidence set based on only the exis-
tence of an online learning algorithm with a
regret guarantee. Using R2CS, we obtain a
strict improvement in the regret bound w.r.t.
S in logistic bandits while retaining compu-
tational feasibility and the dependence on
other factors such as d and T . We apply our
new confidence set to the regret analyses of
logistic bandits with a new martingale concen-
tration step that circumvents an additional
factor of S. We then extend this analysis
to multinomial logistic bandits and obtain
similar improvements in the regret, showing
the efficacy of R2CS. While we applied R2CS
to the (multinomial) logistic model, R2CS
is a generic approach for developing confi-
dence sets that can be used for various models,
which can be of independent interest.

1 INTRODUCTION

The bandit problem (Robbins, 1952; Thompson,
1933) provides a ubiquitous framework to model the
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exploration-exploitation dilemma, with various variants
depending on the application domain. Out of them,
(multinomial) logistic bandits (Amani and Thram-
poulidis, 2021; Faury et al., 2020; Filippi et al., 2010)
has recently received much attention due to its power in
modeling binary-valued (discrete-valued) rewards with
observed covariates and contexts (respectively). Their
applications are abundant in interactive machine learn-
ing tasks including news recommendation (Li et al.,
2010) where the rewards are (‘click’, ‘no click’) or on-
line ad placements where the rewards are one of the
multiple outcomes (‘click’, ‘show me later’, ‘never show
again’, ‘no click’).

In logistic bandits, at every time step t, the learner
observes a potentially infinite arm-set Xt ⊂ Rd that
can vary over time, then plays an action xt ∈ Xt. She
then receives a reward rt ∼ Bernoulli(µ(⟨xt,θ⋆⟩)) for
some unknown θ⋆ ∈ Rd, where µ(z) = (1 + e−z)−1

is the logistic function. The goal of the learner is to
maximize the cumulative reward, and the performance
is typically measured by the (pseudo-) regret:

RegB(T ) :=
T∑

t=1

{
µ(⟨xt,⋆,θ⋆⟩)− µ(⟨xt,θ⋆⟩)

}
, (1)

where xt,⋆ := argmaxx∈Xt
µ(⟨x, θ⋆⟩) is the optimal

action at time t. The multinomial problem is defined
in Section 5.

One popular bandit strategy is the optimistic approach
(also known as “optimism in the face of uncertainty”),
which selects the next arm with the largest upper confi-
dence bound (UCB). In generalized linear models, the
UCB of an arm x ∈ Rd is typically constructed by con-
structing a confidence set Ct for the unknown parameter
θ⋆ and then computing maxθ∈Ct

⟨x, θ⟩ (Abbasi-Yadkori
et al., 2011; Dani et al., 2008; Faury et al., 2022). For
this, it is important to ensure that Ct is a convex set
since otherwise the maximization above is computation-
ally intractable in general, and one often needs to resort
to using a significantly loosened UCB (e.g., Faury et al.
(2020)), which hurts the performance.
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Algorithm Regret Upper Bound Tractable?

Logistic Bandits

SupLogistic
(Jun et al., 2021)

√
dT + d3κ(T )2 ✓

OFULog
(Abeille et al., 2021) dS

3
2

√
T

κ⋆(T ) +min
{
d2S3κX (T ), RX (T )

}
✗

OFULog-r
(Abeille et al., 2021) dS

5
2

√
T

κ⋆(T ) +min
{
d2S4κX (T ), RX (T )

}
✓

ada-OFU-ECOLog
(Faury et al., 2022) dS

√
T

κ⋆(T ) + d2S6κ(T ) ✓

OFULog+
(ours) dS

√
T

κ⋆(T ) +min
{
d2S2κX (T ), RX (T )

}
✓

MNL Bandits

MNL-UCB
(Amani and Thrampoulidis, 2021) dK

3
4S
√
κ(T )T ✓

Improved MNL-UCB
(Amani and Thrampoulidis, 2021) dK

5
4S

3
2

(√
T + dK

5
4Sκ(T )

)
✗

MNL-UCB+
(ours) d

√
KSκ(T )T ✓

Improved MNL-UCB+
(ours) dKS

(√
T + dK

3
4S

1
2κ(T )

)
✗

Table 1: Comparison of regret upper bounds for contextual logistic and multinomial logistic (MNL) bandits, w.r.t.
κ⋆(T ), κX (T ), κ(T ), d, T , K, and S (see Section 2 and 5 for definitions). For simplicity, we omit logarithmic
factors. For logistic bandits, RX (T ) is an arm-set-dependent term that may be much smaller than κX (T ).

One way to construct a convex confidence set is to lever-
age the loss function, which first appeared in Abeille
et al. (2021):

Ct =
{
θ : ∥θ∥2 ≤ S, L̄t(θ)− L̄t(θ̂t) ≤ β2

t

}
where L̄t is the regularized negative log-likelihood, θ̂t is
the regularized MLE at time t, and βt is slowly growing
in t. This set Ct is convex due to the convexity of L̄t.
Such a confidence set is natural as it is based on the log-
likelihood ratio and leads to the state-of-the-art regret
bound and numerical performance (Abeille et al., 2021;
Faury et al., 2022). However, the tightness of the set
above, specifically the radius β2

t = O(dS3 log(t)), is
not clear, which is important given that the tightness
directly affects the performance of the algorithm, both
in the analysis and the numerical performance.

Contributions. In this paper, we make a number of
contributions in (multinomial) logistic bandits that are
enabled by a tightened loss-based confidence set.

Firstly, we propose a novel and generic confidence set
construction method that we call regret-to-confidence-
set conversion (R2CS). Specifically, R2CS constructs
a loss-based confidence set via an achievable regret
bound in the online learning problem with the match-
ing loss without ever having to run the online algorithm.
Using R2CS, we provide new confidence sets for logis-
tic loss (Theorem 1) and MNL loss (Theorem 4) that
are tighter than prior art Abeille et al. (2021); Amani
and Thrampoulidis (2021). Specifically, for the logistic

model, our radius is β2
t = O(d log(t)+S) which is a sig-

nificant improvement upon O(dS log(t)) from Abeille
et al. (2021) when S is large.

R2CS depends on regret bounds of online learn-
ing algorithms just like similar approaches of online-
to-confidence-set conversion (O2CS) (Abbasi-Yadkori
et al., 2012) or online Newton step-based confidence
set (Dekel et al., 2010). However, R2CS is funda-
mentally different from them as R2CS does not run
the online learning algorithm itself, which allows us
to leverage the tight regret guarantees that are cur-
rently only available via computationally intractable
algorithms (Foster et al., 2018; Mayo et al., 2022); see
Appendix A.1 for a detailed comparison.

Secondly, we obtained improved regret bounds of con-
textual (multinomial) logistic bandits with our new
confidence sets as outlined in Table 1. For logistic
bandits, we improve by a factor of

√
S in the leading

term and S for lower-order term compared to Abeille
et al. (2021), and we improve by a factor of S4 and
possibly κ in the lower-order term compared to Faury
et al. (2022). For MNL bandits, we improve by K

1
4

√
S

for the leading terms and
√
KS for the lower-order

term. This is discussed in detail in the last paragraphs
of Section 4.1 and 5.1.

Outline. Section 2 provides the preliminaries of lo-
gistic bandits. Section 3 describes in detail the core
ideas of R2CS for logistic bandits, and based on the
new confidence set, Section 4 discusses the resulting
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improved regret bound of logistic bandits. Lastly, in
Section 5, we address how R2CS’s applicability extends
to multinomial logistic bandits.

Notations. A ≲ B is when we have A ≤ cB for some
universal constant c independent of any quantities we
explicitly mention, up to any logarithmic factors. For
an integer n, let [n] := {1, 2, · · · , n}. ∆K

>0 is the interior
of (K − 1)-dimensional probability simplex. Bd(S) is
the Euclidean d-ball of radius S, and BK×d(S) is the
ball of radius S in RK×d endowed with the Frobenius
metric. For a square matrices A and B, λmin(A) and
λmax(A) is the minimum and maximum eigenvalue of
A, respectively. Also, we define the Loewner ordering
⪰ as A ⪰ B if A − B is positive semi-definite. Let
Categorical(µ) be the (K + 1)-categorical distribution
over {0, 1, . . . ,K} with µ := [µi]i∈[K] ∈ [0, 1]K where
µi ∈ R is the mean parameter for category i ∈ [K]
and µ0 = 1 −

∑
i µi. Denote by KL(µ1,µ2) the KL-

divergence from Categorical(µ1) to Categorical(µ2).

2 PROBLEM SETTING

We first consider stochastic contextual logistic bandit
setting that proceeds as described in Section 1. For
s ≥ 1, let Fs := σ

(
{x1, r1, · · · ,xs, rs,xs+1}

)
, which

constitutes the so-called canonical bandit model; also
see Chapter 4.6 of Lattimore and Szepesvári (2020).

We consider the following standard assumptions (Faury
et al., 2020):

Assumption 1. Xt ⊆ Bd(1) for all t ≥ 1.

Assumption 2. θ⋆ ∈ Bd(S) with known S > 0.

We define the following problem-dependent quantities:

κ⋆(T ) :=
1

1
T

∑T
t=1 µ̇(x

⊺
t,⋆θ⋆)

, κX (T ) :=max
t∈[T ]

max
x∈Xt

1

µ̇(x⊺θ⋆)
,

and κ(T ) := max
t∈[T ]

max
x∈Xt

max
θ∈Bd(S)

1

µ̇(x⊺θ)
.

These quantities can scale exponentially in S in the
worst-case (Faury et al., 2020).

3 IMPROVED CONFIDENCE SET

Overview and Main Theorem. Our R2CS ap-
proach starts by directly constructing a loss-based con-
fidence set that contains the true parameter θ⋆ with
probability at least 1−δ. This confidence set is centered
around the maximum likelihood estimator (MLE), θ̂t,
defined as

θ̂t := argmin
∥θ∥2≤S

Lt(θ) ≜
t−1∑
s=1

ℓs(θ)

 , (2)

where ℓs is the logistic loss at time s, defined as
ℓs(θ) := −rs log µ(⟨xs,θ⟩)−(1−rs) log(1−µ(⟨xs,θ⟩)).

Our loss-based confidence set is then of the form Lt(θ)−
Lt(θ̂t) ≤ βt(δ)

2; note that as Lt is convex, so is the
resulting confidence set. Ultimately, we want its radius
βt(δ) to be as small as possible while retaining the
high-probability guarantee.

Remark 1. The existence of θ̂t is guaranteed as Bd(S)
is compact. Also, as the domain and the objectives
are both convex, one can use standard convex opti-
mization algorithms, e.g., Frank-Wolfe method (Frank
and Wolfe, 1956) or interior point method (Boyd and
Vandenberghe, 2004), to tractably compute θ̂t.

We now present the first main theorem characterizing
our new, improved confidence set:

Theorem 1 (Improved Confidence Set for Logistic
Loss). We have

P
[
∀t ≥ 1, θ⋆ ∈ Ct(δ)

]
≥ 1− δ,

where we define

Ct(δ) :=
{
θ ∈ Bd(S) : Lt(θ)− Lt(θ̂t) ≤ βt(δ)

2
}
,

βt(δ) :=

√
10d log

(
St

4d
+ e

)
+ 2((e− 2) + S) log

1

δ
.

Roughly speaking, the confidence set of Abeille et al.
(2021) resulted in the radius of βt(δ) = O(

√
dS3 log t),

while ours result in O(
√
(d+ S) log t). This separation

of d and S leads to an overall improvement in factors
of S. Another important observation is that for any
θ′, Lt(θ) − Lt(θ

′) ≤ Lt(θ) − Lt(θ̂t) ≤ βt(δ)
2, and

thus, even when one could find only an approximate
estimate of Lt(θ), the high-probability guarantee of
θ⋆ ∈ Ct(δ) still holds! This is in contrast to the prior
confidence set (Abeille et al., 2021, Section 3.1), which
is geometrically centered around θ̂t and thus a biased
estimate shifts the confidence set, breaking the high-
probability guarantee.

We now present the proof of Theorem 1, which is the
essence of our R2CS approach.

Proof Sketch of Theorem 1. The proof has three
main technical novelties, which constitute the crux of
our R2CS approach and may be of independent in-
terest to other applications. The first novelty is the
two novel decomposition lemmas for the logistic loss
(Lemma 1, 2) that express βt(δ)

2 as the sum of the
regret of any online learning algorithm of our choice,
a sum of martingales, and a sum of KL-divergences.
The second novelty is when bounding the sum of mar-
tingales, we derive and utilize an anytime variant of
the Freedman’s inequality for martingales (Lemma 3).
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The third novelty is when bounding the sum of KL-
divergences, we combine the self-concordant result of
Abeille et al. (2021) and the information geometric
interpretation of the KL-divergence (Lemma 4).

We then use the state-of-the-art online logistic regres-
sion regret guarantee of Foster et al. (2018) to obtain
the final confidence set (Theorem 1). To use the result
of Foster et al. (2018), we use the norm-constrained,
unregularized MLE (Eqn. (2)) instead of a regularized
MLE used in Abeille et al. (2021). We emphasize here
that we do not need to explicitly run the online learning
algorithm of Foster et al. (2018), which is quite costly;
otherwise, we would have to consider its efficient vari-
ant (Jézéquel et al., 2020), which gives an online regret
bound scaling with S that gives us no improvement.

3.1 Complete Proof of Theorem 1

To utilize martingale concentrations later, we start by
writing

rs = µ(⟨xs,θ⋆⟩) + ξs, (3)

where ξs is a real-valued martingale difference noise.

The following is the first decomposition lemma:

Lemma 1. For the logistic loss ℓs, the following holds
for any θ:
ℓs(θ⋆) = ℓs(θ) + ξs⟨xs,θ⋆ − θ⟩ −KL(µs(θ⋆), µs(θ)).

Proof. The proof follows from the first-order Taylor
expansion with integral remainder and some careful
rearranging of the terms (which is nontrivial); see Ap-
pendix C.4.1 for the full proof.

We can then replace θ in the above lemma with a se-
quence of parameters, {θ̃s}, “outputted” from an online
learning algorithm of our choice. This is formalized in
the second decomposition lemma:

Lemma 2. For the logistic loss ℓs, the following holds:
t∑

s=1

ℓs(θ⋆)− ℓs(θ̂t) ≤ RegO(t) + ζ1(t)− ζ2(t), (4)

where RegO(t) :=
∑t

s=1 ℓs(θ̃s) −
∑t

s=1 ℓs(θ̂t) is the
regret incurred by the online learning algorithm of our
choice up to time t, and

ζ1(t) :=
t∑

s=1

ξs⟨xs,θ⋆ − θ̃s⟩,

ζ2(t) :=
t∑

s=1

KL(µs(θ⋆), µs(θ̃s)).

Proof. The proof follows from Lemma 1 and some re-
arranging; see Appendix C.4.2 for the full proof.

For RegO(t), we use the following regret bound for
online logistic regression scaling logarithmically in S:
Theorem 2 (Theorem 3 of Foster et al. (2018)). There
exists an (improper learning) algorithm for online lo-
gistic regression with the following regret:

RegO(t) ≤ 10d log

(
St

4d
+ e

)
. (5)

Remark 2. The output of Algorithm 1 of Foster
et al. (2018) is a sequence of ẑs = (ẑ0, ẑ1), corre-
sponding to xs at each time s. For our purpose,
we need to designate a vector θ̃t ∈ Bd(S) such that
σ(ẑs) = σ

(
(⟨xs, θ̃t⟩)

)
, where σ : R1 → ∆2

>0 is the

softmax function defined as σ(z1) =
(

1
1+ez1 ,

ez1

1+ez1

)
;

see Proposition 1 in Appendix B.2 for a generalization
of this for (K + 1)-classification. Furthermore, the
analysis shows that for our purpose, it suffices to use
B = S

2 in the notation of Foster et al. (2018); see
footnote 7 of Appendix B.2 for an explanation.

Upper Bounding ζ1(t): Martingale
Concentrations. Recall that Fs =
σ
(
{x1, r1, · · · ,xs, rs,xs+1}

)
is the filtration for

the canonical bandit model. We start by observing
that xs and θ̃s are Fs−1-measurable, and ξs is a
martingale difference sequence w.r.t. Fs−1. We also
have that

|ξs⟨xs,θ⋆ − θ̃s⟩| ≤ 2S,

E[ξs⟨xs,θ⋆ − θ̃s⟩|Fs−1] = 0,

and
E[ξ2s ⟨xs,θ⋆ − θ̃s⟩2|Fs−1] = µ̇(x⊺

sθ⋆)⟨xs,θ⋆ − θ̃s⟩2.

We now use a variant1 of Freedman’s inequality for
martingales, combined with Ville’s inequality to make
the concentration hold for any t ≥ 1.
Lemma 3 (Modification of Theorem 1 of Beygelzimer
et al. (2011)). Let X1, · · · , Xt be martingale difference
sequence satisfying maxs |Xs| ≤ R a.s, and let Fs be
the σ-field generated by (X1, · · · , Xs). Then for any
δ ∈ (0, 1) and any η ∈ [0, 1/R], the following holds with
probability at least 1− δ:
t∑

s=1

Xs ≤ (e− 2)η
t∑

s=1

E[X2
s |Fs−1] +

1

η
log

1

δ
, ∀t ≥ 1.

Proof. Define Z0 = 1 and Zt = Zt−1 · exp(λXt − (e−
2)λ2 E[X2

t | Ft−1]), ∀t ≥ 1. The proof of Theorem
1 of Beygelzimer et al. (2011) shows that (Zt)

∞
t=0 is

supermartingale and then applies Markov’s inequality.
In our proof, we apply Ville’s inequality (Lemma 7 in
Appendix B.1), to conclude the proof.

1This is a slight variant from the original inequal-
ity (Freedman, 1975, Theorem 1.6) in that this uses any
fixed estimate of the variance rather than an upper bound.
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Thus, for η ∈
[
0, 1

2S

]
to be chosen later, the following

holds with probability at least 1− δ: for all t ≥ 1,

ζ1(t)≤(e− 2)η
t∑

s=1

µ̇(x⊺
sθ⋆)⟨xs,θ⋆−θ̃s⟩2+

1

η
log

1

δ
. (6)

Lower Bounding ζ2(t): Second-order Expansion
of KL Divergence. We first recall the definition of
Bregman divergence:

Definition 1. For a given m : Z → R, the Bregman
divergence Dm(·, ·) is defined as follows:
Dm(z1, z2) = m(z1)−m(z2)−∇m(z2)

⊺(z1 − z2)

In our case, Z = R, and thus, from the first-order
Taylor’s expansion with integral remainder, we have
that

Dm(z1, z2) =

∫ z1

z2

m′′(z)(z1 − z)dz. (7)

The following lemma, which is a standard result in
information geometry (Amari, 2016; Brekelmans et al.,
2020; Nielsen, 2020), relates Bernoulli KL divergence
to a specific Bregman divergence; we provide the proof
in Appendix C.4.3 for completeness.

Lemma 4. Let m(z) := log(1+ ez) be the log-partition
function for Bernoulli distribution and µ(z) = 1

1+e−z .
Then, we have that KL(µ(z2), µ(z1)) = Dm(z1, z2).

Combining all of the above and the fact that m′′(z) =
µ̇(z), we have that
KL(µt(x

⊺
sθ⋆)), µ(x

⊺
s θ̃s))

= Dm(x⊺
s θ̃s,x

⊺
sθ⋆) (Lemma 4)

=

∫ x⊺
s θ̃s

x⊺
sθ⋆

µ̇(z)(x⊺
s θ̃s − z)dz (Eqn. (7))

= ⟨xs,θ⋆ − θ̃s⟩2
∫ 1

0

(1− v)µ̇(x⊺
s (θ̃s + (1− v)θ⋆))dv

(change-of-variable)
(∗)
≥ ⟨xs,θ⋆ − θ̃s⟩2

µ̇(x⊺
sθ⋆)

2 + |x⊺
s (θ⋆ − θ̃s)|

≥ ⟨xs,θ⋆ − θ̃s⟩2
µ̇(x⊺

sθ⋆)

2 + 2S
,

(Assumption 1, 2 and triangle inequality)

where (∗) is due to the following self-concordant result:

Lemma 5 (Lemma 8 of Abeille et al. (2021)). Let f
be any strictly increasing self-concordant function, i.e.,
|µ̈| ≤ µ̇, and let Z ⊂ R be bounded. Then, the following
holds for any z1, z2 ∈ Z:∫ 1

0

(1− v)ḟ(z1 + v(z2 − z1))dv ≥
ḟ(z1)

2 + |z1 − z2|
.

Algorithm 1: OFU-Log+
1 for t = 1, . . . , T do
2 θ̂t ← argmin∥θ∥2≤S Lt(θ);
3 (xt,θt)← argmaxx∈Xt,θ∈Ct(δ) µ(⟨x, θ⟩), with

Ct(δ) as defined in Theorem 1;
4 Play xt and observe reward rt;
5 end

All in all, we have that

ζ2(t) ≥
1

2 + 2S

t∑
s=1

µ̇(x⊺
sθ⋆)⟨xs,θ⋆ − θ̃s⟩2. (8)

Wrapping up the proof. Combining Eqn. (4), (5),
(6), (8) with η = 1

2(e−2)+2S < 1
2S and the fact that

− 1
2+2S + e−2

2(e−2)+2S < 0, we are done.

4 IMPROVED REGRET

4.1 OFULog+ and Improved Regret

Our new loss-based confidence set (Theorem 1) leads to
an OFUL-type algorithm (Abbasi-Yadkori et al., 2011),
which we refer to as OFULog+; its pseudocode is shown
in Algorithm 1.

Note that the optimization in line 2 is tractable be-
cause Ct(δ) is always convex (as Lt is convex, and the
level set of any convex function is convex), and µ(·)
is an increasing function, meaning that line 2 can be
equivalently rewritten as

(xt,θt) ∈ argmax
x∈Xt,θ∈Ct(δ)

⟨x, θ⟩.

The existing confidence-set-based approach to logistic
bandit was due to Abeille et al. (2021), in which they
first proposed a nonconvex confidence set, from which a
loss-based confidence set was derived via convex relax-
ation. As our R2CS directly constructs the loss-based
confidence set, this can be elegantly “plugged-in” to
the algorithm and proof of Abeille et al. (2021) with
minimal change. This is in contrast to Faury et al.
(2022), which requires major algorithmic innovations.

We now present the regret bound of OFULog+ (See
Theorem 6 in Appendix C.2 for the full statement,
including the omitted logarithmic factors.):

Theorem 3 (Simplified). OFULog+ attains the follow-
ing regret bound with probability at least 1− δ:

RegB(T ) ≲ dS

√
T

κ⋆(T )
+ min

{
d2S2κX (T ), RX (T )

}
,

where RX (T ) := S
∑T

t=1 µ(x
⊺
t,⋆θ⋆)1[xt ∈ X−(t)] and

the RHS hides the dependency on log 1
δ . Here, X−(t)

is the set of detrimental arms at time t as defined in



Regret-to-Confidence-Set Conversion

Abeille et al. (2021) with X replaced by Xt.

Extending upon Table 1, below, we discuss in detail
how our bound compares to existing works2:

Comparison to Prior Arts. Contextual logis-
tic bandits, with time-varying arm-set, were first
studied by Faury et al. (2020), in which the au-
thors derived the regret bounds of Õ(

√
κ(T )T ) and

Õ(
√
T + κ(T )) (corresponding to their two algorithms)

based on self-concordant analyses of logistic regres-
sion (Bach, 2010). Although not tight, their analy-
ses laid a stepping stone for the subsequent works
on logistic bandits. Abeille et al. (2021) provided
the first algorithm that attains3 a regret bound of

Õ
(
dS

3
2

√
T

κ⋆(T ) +min
{
d2S3κX (T ), RX (T )

})
along

with near-matching minimax lower bound via an in-
tricate local analysis. Abeille et al. (2021) also pro-
posed a tractable variant of the algorithm, OFULog-r,
via a convex relaxation, but it incurs an extra de-
pendency on S as shown in Table 1. Faury et al.
(2022) provided a jointly efficient and optimal algorithm

with Õ
(
d
√

T
κ⋆(T ) + d2S6κ(T )

)
regret that takes Ω(1)

time complexity. Our regret bound’s leading term,
dS
√

T
κ⋆(T ) , improves upon Abeille et al. (2021) by a

factor of
√
S and matches that of Faury et al. (2022),

and our lower-order term, min{d2S2κX (T ), RX (T )},
improves upon Abeille et al. (2021) by a factor of S
and improves upon Faury et al. (2022) by a factor of
S4 and possibly κ(T ).

In Appendix E, we provide numerical results for logistic
bandits, showing that our OFULog+ obtains the state-
of-the-art performance in regret over prior arts and
results in a tighter confidence set.

On a slightly different approach, Mason et al. (2022)
proposed an experimental design-based algorithm.
However, the algorithm and its guarantee require the
arm-set to be not time-varying, making them incompa-
rable to ours. Moreover, the current arm-elimination
approach like Mason et al. (2022) is impractical as it
needs a long warmup length of order at least O(κd2).
This is in contrast to the optimism-based approach,
which incurs a lower-order algorithm adaptive to the
arm-set geometry in that the lower-order term may
scale independently of κX (T ), given that the arm-set is
sufficiently benign, e.g., unit ball (Abeille et al., 2021,

2see Appendix C.2 for the omitted full statements of
prior regret bounds.

3In the original paper, the authors considered λt =
d log t, which incurred additional factors in S. Here, for a
fair comparison, we re-tracked the S-dependencies with the
“optimal” choice of λt =

d
S
log St

dδ
.

Theorem 3). SupLogistic of Jun et al. (2021) assumes
that the context vectors follow a distribution and fur-
ther assumes the minimum eigenvalue condition on the
context covariance matrix, which is rather limiting.
Remark 3. Note that Mason et al. (2022) completely
removes the factor of S from the leading term in the
regret bound in the fixed arm set setting. We speculate
that it is possible to construct an optimism-based algo-
rithm that does not scale with S in the leading term of
the regret (up to logarithmic factors), at least for the
fixed arm set setting. A related question is whether it is
possible to improve further the radius of the confidence
set from O(

√
(d+ S) log t) to O(

√
d log t). We leave

this as a future work.

4.2 Proof Sketch of Theorem 3

The proof of Abeille et al. (2021) heavily relies on an
upper bound on the Hessian-induced distance between
θ ∈ Ct(δ) and θ⋆, ∥θ − θ⋆∥Ht(θ⋆). Here, we define a
regularized Hessian Ht(θ⋆) centered at θ⋆ as

Ht(θ⋆) :=
t−1∑
s=1

µ̇(x⊺
sθ⋆)xsx

⊺
s + λtId,

where the regularization coefficient λt > 0 is to be
chosen later. Note that although our MLE is not reg-
ularized (Eqn. 2), The regularization ensures that Ht

is positive definite, allowing us to use the elliptical
potential lemma argument w.r.t. H−1

t -induced norm
in the later proof. We remark here that unlike Abeille
et al. (2021) where λt directly impacts the algorithm
design, in our case, λt is solely for the proof and does
not impact our algorithm in any way.

The key difference between our proof and Abeille et al.
(2021) is that we derive a new (high-probability) upper
bound on ∥θ − θ⋆∥Ht(θ⋆) (Lemma 6). Naïvely using
Cauchy-Schwartz inequality and self-concordant con-
trols (as done in the proof of Lemma 1 of Abeille et al.
(2021)) gives us an extra factor of S. To circumvent
this, we instead use the martingale decomposition of
the logistic bandit reward (Eqn. (3)) and Freedman’s
inequality (Lemma 3) with an ε-net argument, leading
to extra factors of S shaved off at the end. With this
and our new confidence set guarantee (Theorem 1), we
follow through the line of computations of Abeille et al.
(2021) to arrive at our new regret bound.

4.3 Complete Proof of Theorem 3

We start with the following crucial lemma bounding
the Hessian-induced distance between θ and θ⋆:
Lemma 6. For any θ ∈ Ct(δ), the following holds with
probability at least 1− δ:

∥θ − θ⋆∥2Ht(θ⋆)
≲ γt(δ)

2 ≜ S2

(
d log

St

d
+ log

t

δ

)
.
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Proof. By Theorem 1, we have that with probability
at least 1 − δ, Lt(θ⋆) − Lt(θ̂t) ≤ βt(δ)

2; throughout
the proof let us assume that this event is true. Also,
let θ ∈ Ct(δ). Then, by second-order Taylor expansion
of Lt(θ) around θ⋆,
Lt(θ) = Lt(θ⋆) +∇Lt(θ⋆)

⊺(θ − θ⋆) + ∥θ − θ⋆∥2G̃t(θ⋆,θ)−λtI

where we define the following quantities:

α̃(x, θ1,θ2) :=

∫ 1

0

(1− v)µ̇
(
x⊺(θ1 + v(θ2 − θ1))

)
dv

G̃t(θ1,θ2) :=
t−1∑
s=1

α̃(xs,θ1,θ2)xsx
⊺
s + λtId,

where again, λt > 0 is to be determined.

Lemma 5 implies that G̃t(θ1,θ2) ⪰ 1
2+2SHt(θ1). Thus,

we have that
∥θ − θ⋆∥2Ht(θ⋆)

≲ S
(
Lt(θ)− Lt(θ⋆) +∇Lt(θ⋆)

⊺(θ⋆ − θ) + λt∥θ − θ⋆∥22
)

≲ S
(
Lt(θ)− Lt(θ̂t) +∇Lt(θ⋆)

⊺(θ⋆ − θ)
)

(Lt(θ̂t) ≤ Lt(θ⋆), λt =
1

4S2(2+2S) )

≲ Sβt(δ)
2 + S∇Lt(θ⋆)

⊺(θ⋆ − θ), (θ ∈ Ct(δ))
where the last inequality holds with probability at least
1− δ. Note that we do not need λt to vary over t.

We then observe that ∇Lt(θ⋆)
⊺(θ⋆−θ) can be written

as a sum of martingale difference sequences and that
θ⋆ − θ ∈ Bd(2S). The proof then concludes via a time-
dependent ε-net argument on Bd(2S) with Freedman’s
inequality; see Appendix C.4.4 for the missing details.

The proof of Theorem 3 finally concludes by tracking
the regret analysis of Appendix C of Abeille et al.
(2021); see Appendix C.3 for the remaining argument.

5 EXTENSION TO MNL BANDITS

Problem Setting. We now consider a natural exten-
sion of logistic bandits, namely, multinomial logistic
(MNL) bandits (Amani and Thrampoulidis, 2021). At
every round t, the learner observes a potentially infi-
nite arm-set Xt, which can also be time-varying, and
plays an action xt ∈ X . She then receives a reward of
rt = ρ⊺yt, where ρ ∈ RK is a known reward vector,
and yt = (yt,1, · · · , yt,K) ∈ {0, 1}K satisfies ∥yt∥1 ≤ 1.
ys,k = 1 when k-th item is chosen at time s, and for
simplicity we denote yt,0 := 1− ∥yt∥1. Then, (y0,yt)
follows the multinomial logit choice model:

P[yt = δk|xt] =

{
µk(xt,Θ⋆) k > 0,

1−
∑K

j=1 µj(xt,Θ⋆) k = 0,

(9)

where δk is the K-dimensional one-hot encoding for the
index k and δ0 := 0. Intuitively, yt = δ0 corresponds
to the scenario where the user has not chosen any of
the K possible choices. Here, we denote

µk(xt,Θ⋆) :=
exp

(
⟨xt, (θ

(k)
⋆ )⟩

)
1 +

∑K
j=1 exp

(
⟨xt, (θ

(j)
⋆ )⟩

) . (10)

for some unknown
{
θ
(j)
⋆

}K

j=1
⊂ Rd. Here, we use

K×d matrix to denote the unknown parameter, namely,
Θ⋆ := [θ

(1)
⋆ , · · · ,θ(K)

⋆ ]⊺ ∈ RK×d and µ(xt,Θ⋆) :=

[µt(θ
(1)
⋆ ), · · · , µt(θ

(K)
⋆ )]⊺. This simplifies some parts of

the analysis (e.g., avoid using Kronecker products).

The regret of MNL bandits is defined as follows:

RegB(T ) :=
T∑

t=1

ρ⊺
(
µ(xt,⋆,Θ⋆)− µ(xt,Θ)

)
, (11)

where xt,⋆ := argmaxx∈X ρ⊺µ(x,Θ⋆).

We define the following quantity, which will be crucial
in our overall analysis:
A(x,Θ) := diag(µ(x,Θ))− µ(x,Θ)µ(x,Θ)⊺. (12)

We also have the following assumptions with problem-
dependent quantities: denoting XT :=

⋃T
t=1 Xt,

Assumption 3. Xt ⊆ Bd(1) for all t ≥ 1.

Assumption 4. There exist known constants S,R > 0
such that Θ⋆ ∈ BK×d(S) and ρ ∈ Bd(R).

We consider the following problem-dependent quan-
tity (Amani and Thrampoulidis, 2021):

κ(T ) := max
x∈XT

max
Θ∈BK×d(S)

1

λmin

(
A(x,Θ)

) .
Improved Confidence Set. We proceed similarly
to how we applied R2CS to logistic bandits; to make
the correspondence explicit, we overload the notations
used in previous sections. We first define the norm-
constrained, unregularized MLE for multiclass logistic
regression as

Θ̂t := argmin
Θ∈BK×d(S)

Lt(Θ) ≜
t−1∑
s=1

ℓs(Θ), (13)

where ℓs is the multiclass logistic (or softmax-cross-
entropy) loss at time s, defined as

ℓs(Θ) := −
K∑

k=0

ys,k log µk(xs,Θ),

where we denote µ0(xs,Θ) := 1−
∑K

j=1 µj(x0,Θ).

Via similar (but with different details) analysis, we
obtain the following new confidence set:

Theorem 4 (Improved Confidence Set for Logistic
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Algorithm 2: MNL-UCB+
1 for t = 1, . . . , T do
2 Θ̂t ← argmin∥Θ∥2≤S Lt(Θ);
3 xt ← argmaxx∈Xt

ρ⊺µ(x, Θ̂t) + ϵt(x), with
ϵt(x) =

√
2κRLγt(δ)∥x∥V −1

t
;

4 Play xt and observe reward rt;
5 end

Loss). We have
P
[
∀t ≥ 1, Θ⋆ ∈ Ct(δ)

]
≥ 1− δ,

where we define

Ct(δ) :=
{
Θ ∈ BK×d(S) : Lt(Θ)− Lt(Θ̂t) ≤ βt(δ)

2
}
,

βt(δ) :=

√
5dK log

St

2dK
+ 2((e− 2) +

√
6KS) log

t

δ
.

Proof. We extend our previous proof of Theorem 1 to
the multinomial scenario. We again use the algorithm
of Foster et al. (2018) for our choice of the online learn-
ing algorithm. The rest of the proof is quite similar,
except we have to use generalized self-concordant con-
trol (Sun and Tran-Dinh, 2019; Tran-Dinh et al., 2015);
see Appendix D.2 for the full proof.

5.1 MNL-UCB+ and Improved Regret

Following Amani and Thrampoulidis (2021), our new
confidence set leads to our algorithm with an improved
bonus term, MNL-UCB+; its pseudocode is shown in
Algorithm 2. We can improve further with a tighter
bonus term and constrained Ct(δ); see Algorithm 3.

For the below theorem statements, we ignore any loga-
rithmic factors, and we also assume that κ(T ) is very
large, as it scales exponentially in S; see Section 3 of
Amani and Thrampoulidis (2021).
Theorem 5 (Simplified). MNL-UCB+ and its improved
version attain the following regret bounds, respectively,
w.p. 1− δ:

RegB(T ) ≲ LTRT d
√
KS

√
κ(T )T ,

RegBimp(T ) ≲ RT dKS
(√

T + dK
√
Sκ(T )

)
.

Proof. See Theorem 12 in Appendix D.3 for the full
statement, including the omitted logarithmic factors
and other problem-dependent quantities. The full proof
is presented in Appendix D.4.

Again, extending upon Table 1, below, we discuss in
detail how our bound compares to existing works:

Comparison to Prior Arts. To the best of our
knowledge, the only work with the same setting as ours
is Amani and Thrampoulidis (2021); see Appendix A.2

Algorithm 3: Improved MNL-UCB+

1 M1(Θ)← BK×d(S);
2 for t = 1, . . . , T do
3 Θ̂t ← argminΘ∈Mt

Lt(Θ);
4 xt ← argmaxx∈Xt

ρ⊺µ(x, Θ̂t) + ϵt(x), with
ϵt(x) defined in Eqn. (47) (Appendix D.4.2);

5 Play xt and observe reward rt;
6 Mt+1 ←Mt ∩{

Θ : ∃Θ′
t ∈ min(Ct(δ)) s.t. A(xt,Θ) ⪰ A(xt,Θ

′
t

}
5;

7 end

for a review of works on the combinatorial variant of
MNL bandits. There, the authors provide two bonus-
based algorithms inspired by Faury et al. (2020), each
leading4 to the regret bound of Õ

(
dK

3
4S
√
κ(T )T

)
and Õ

(
dK

5
4S

3
2

(√
T + dK

5
4Sκ(T )

))
, respectively.

Our bound’s leading terms, d
√
KS and dKS, im-

prove by a factor of K
1
4

√
S, and our lower-order term,

d2K2S
3
2 , improve by a factor of

√
KS. The improve-

ment in K comes from a new martingale concentration
argument to bound ∥θ − θ⋆∥G̃t(θ⋆,θ)

(Lemma 14).

Remark 4. With a closer look at the assumption, a
realistic scenario is when R =

√
KR′ and S =

√
KS′,

where ∥θ(k)∥2 ≤ S′. In this scenario, note that con-
trary to the claim in Amani and Thrampoulidis (2021),
their bound results in O(dK 7

4 ) (ignoring all the other
factors), while ours result in O(dK 5

4 ), which is closer
to the conjectured optimal dependency of O(dK).

6 CONCLUSION

In this paper, we propose regret-to-confidence-set con-
version (R2CS) that converts an online learning regret
guarantee to a new confidence set, without the need
to run the online algorithm explicitly. Using a novel
combination of self-concordant control and information-
geometric interpretation of KL-divergence as well as
new martingale concentration arguments, we proved
new confidence sets for logistic and MNL bandits, lead-
ing to the state-of-the-art regret bounds with improved
dependencies on S and K.

One crucial and exciting future direction is to extend
our R2CS to various other settings such as generalized
linear bandits (Filippi et al., 2010), norm-agnostic sce-
nario (Gales et al., 2022), and even multinomial logistic
MDP (Hwang and Oh, 2023).

4See Appendix C.2 for the full statement. Also, similarly
to logistic bandits, we re-tracked the S-dependency with

the “optimal” choice of λ = K
3
2 d
S

log ST
dKδ

.
5min(Ct(δ)) is the set of all minimal elements of the poset

Ct(δ), endowed with the Loewner ordering w.r.t. A(xt,Θ).
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A FURTHER RELATED WORK

A.1 Online-to-Confidence Set Conversion

Recently, many results have connected online learning to the concentration of measure, starting from Rakhlin and
Sridharan (2017), followed by Jun and Orabona (2019); Orabona and Jun (2021), which is also closely related to
the “reduction” framework championed by John Landford6.

For linear models, there are two main categories of techniques for building confidence sets based on online learning
algorithms. The first is to leverage the negative term −∥θ̂T+1 − θ⋆∥2VT

from the regret bound of online Newton
step (ONS) (Hazan et al., 2007) where VT := λI +

∑T
t=1 xtx

⊺
t and θ̂T+1 is the parameter predicted at the time

step T + 1. This way, one can construct a confidence set centered at θ̂T+1 with a confidence radius that depends
on the rest of the terms in the regret bound (Crammer and Gentile, 2013; Dekel et al., 2010, 2012; Gentile and
Orabona, 2014; Zhang et al., 2016). The second one, which is dubbed as online-to-confidence-set conversion
(O2CS), is to start from the regret bound

∑T
t=1 ℓt(θt)− ℓt(θ

⋆) ≤ BT where ℓt is a properly defined loss function
(e.g., squared loss), θt is the parameter predicted at time t, and BT is the regret bound of the algorithm. We then
lower bound its left-hand side with a standard concentration inequality, which results in a quadratic constraint
on θ⋆ (Abbasi-Yadkori et al., 2012; Jun et al., 2017). While this itself defines a confidence set for θ⋆, one can
further manipulate the quadratic constraint into a confidence set centered at a new estimator that regresses on
the prediction ŷt’s from the online learning algorithm rather than the actual label yt’s. The benefit of O2CS over
the ONS-based one is that we are not married to the particular algorithm of ONS but are open to using any
online learning algorithm, and thus “progress in constructing better algorithms for online prediction problems
directly translates into tighter confidence sets” (Abbasi-Yadkori et al., 2012); see also Chapter 23.3 of Lattimore
and Szepesvári (2020).

However, these two techniques have one fundamental difference from our proposed R2CS: they require running
the online learning algorithm directly, whereas R2CS relies only on knowing an achievable regret bound without
actually running it. This means that our R2CS establishes a third category of techniques for building confidence
sets based on online learning algorithms.

A.2 Multinomial Logistic (MNL) Bandits

There are two lines of work in multinomial logistic (MNL) bandits. One line of work, closely related to ours
and which we have discussed extensively in the main, considers K + 1 outcomes modeled by the multinomial
logit model. To the best of our knowledge, the only work in this line is Amani and Thrampoulidis (2021),
which considers a multinomial extension of Faury et al. (2020). Another line of work considers a combinatorial
bandit-type extension for assortment selection problem from choice model theory (Agrawal et al., 2023; Oh and
Iyengar, 2021). Here, the considered setting is fundamentally different from ours as in their setting: the learner
chooses an assortment (a subset of indices) Qt, from which the reward follows the multinomial logit distribution
over Qt.

6https://hunch.net/~jl/projects/reductions/reductions.html
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B MISSING RESULTS

In this section, we provide two missing results from the main text.

B.1 Ville’s Inequality

We used a martingale version of Markov’s inequality in the proof of Lemma 3, known as Ville’s inequality. Here’s
the full statement:

Lemma 7 (Théorème 1 of pg. 84 of Ville (1939)). Let Xn be a nonnegative supermartingale. Then, for any
λ > 0, P

[
supn≥0 Xn ≥ λ

]
≤ E[X0]

λ .

A fun historical note: this is also commonly known as the Doob’s maximal inequality, but historically, Jean Ville
was the first to report this in literature in his 1939 thesis (Ville, 1939). Interestingly, Joseph L. Doob has an
article reviewing (and criticizing) Ville’s book (Doob, 1939).

B.2 “Outputs” from Algorithm 1 of Foster et al. (2018)

The following proposition justifies using the improper learning algorithm of Foster et al. (2018) for our purpose
(specifically, the existence of θ̃s for logistic bandits and Θ̃s for multinomial logistic bandits; see Remark 2):

Proposition 1. Consider a softmax function σ : RK → ∆K+1
>0 defined as σ(z)k = ezk

1+
∑

k′∈[K] e
z
k′ for k ∈ [K] and

σ(z)0 = 1
1+

∑
k′∈[K] e

z
k′ . Then, for any x ∈ Bd(1) and ẑ ∈ RK+1 outputted from Algorithm 1 of Foster et al. (2018)

(see their line 4), there exists Θ = [θ(1)| · · · |θ(K)]⊺ ∈ BK×d(
√
KS) s.t. σ(ẑ) = σ

(
(⟨x, θ(1)⟩, · · · , ⟨x,θ(K)⟩)

)
.

Proof. From line 4 of Algorithm 1 of Foster et al. (2018) with µ = 0, we have that for some distribution Pt whose
support is S :=

(
Bd(S)

)⊗K (set of K × d matrices where the norm of each row is bounded by S),7

σ(ẑ) = EΘ∼Pt

[
σ(Θx)

]
.

Define F : S → ∆K+1
>0 to be F (Θ) = σ(Θx), which is continuous. We have the following two lemmas:

Lemma 8. Let (X , P ) be a probability space with the usual Borel σ-algebra, Y ⊂ H be a compact, convex subset
of a separable, Hilbert space H, and F : X → Y be (Bochner) measurable. Then, for any random variable X on
X , we have that E[F (X)] ∈ Y .

Lemma 9. conv
(
F (S)

)
⊆ F (BK×d(

√
KS)), where conv(·) is the convex hull operator.

The proof then concludes as the following: by the above two lemmas, we have that σ(ẑ) = E[F (Θ)] ∈
F (BK×d(

√
KS)), i.e., there exists Θ ∈ BK×d(

√
KS) such that σ(ẑ) = F (Θ).

B.2.1 Proof of Lemma 8

(The proof here is inspired by an old StackExchange post. Also, see e.g., Lax (2002) for the necessary background
on functional analysis.)

It is clear that E[F (X)] exists. The proof now proceeds via reductio ad absurdum, i.e., suppose that e ≜ E[F (X)] ̸∈
Y . Then, as {e} and Y are disjoint, compact, and convex sets in a separable Hilbert space, by the Hahn-Banach
Separation Theorem and Riesz Representation Theorem, there exists a v ∈ H such that

⟨v, F (x)⟩ < ⟨v, e⟩, ∀x ∈ X .

7The softmax considered in Foster et al. (2018) is actually of the form σ(z)k′ = e
z
k′∑

l∈{0}∪[K] e
zl for k′ ∈ {0} ∪ [K + 1].

By dividing the denominator and numerator by ez0 and recalling that zk = ⟨x,θ(k)⟩, by triangle inequality, it can be

seen that our parameter space, S, and the parameter space of Foster et al. (2018) with B = S/2,
(
Bd(S/2)

)⊗(K+1)

, are
equivalent. In the notation of Foster et al. (2018), we set B = S/2.
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Then, we have that ∫
X
⟨v, F (x)⟩dP (x) =

〈
v,

∫
X
F (x)dP (x)

〉
= ⟨v, e⟩ < ⟨v, e⟩,

a contradiction.

B.2.2 Proof of Lemma 9

Let Θ1,Θ2 ∈ S and λ ∈ [0, 1]. We will show that λF (Θ1) + (1− λ)F (Θ2) ∈ F (BK×d(
√
KS)).

First, for some given p = (p1, · · · , pK)⊺, we show that there exists Θ = [θ(1)| · · · |θ(K)]⊺ that satisfies the following
system of equations: for each k ∈ [K],

exp
(
⟨x, θ(k)⟩

)
1 +

∑
k′∈[K] exp

(
⟨x, θ(k′)⟩

) = pk.

Denoting αk := exp
(
⟨x, θ(k)⟩

)
, above can be rearranged to the following system of equations:
1− p1 −p1 · · · −p1
−p2 1− p2 · · · −p2

...
...

...
...

−pK −pK · · · 1− pK


︸ ︷︷ ︸

≜CK


α1

α2

...
αK

 =


p1
p2
...
pK

 .

From simple computation, one can easily see that

C−1
K =

1

p0
p1⊺ + IK ,

where we recall that p0 = 1−
∑K

k=1 pk. This gives a unique solution

α∗
k =

pk
p0

> 0.

Then, we arrive at another system of linear equations: x⊺θ(k) = logα∗
k for each k ∈ [K]. One can easily see that

θ(k) =
logα∗

k

∥x∥2
x satisfies the system.

All in all, we showed that there exists a Θ such that λF (Θ1) + (1− λ)F (Θ2) = F (Θ) and

∥Θ∥2F =
∑

k∈[K]

(logα∗
k)

2
,

where in our case,

pk = λ
exp

(
⟨x, θ(k)

1 ⟩
)

1 +
∑

k′∈[K] exp
(
⟨x, θ(k′)

1 ⟩
) + (1− λ)

exp
(
⟨x, θ(k)

2 ⟩
)

1 +
∑

k′∈[K] exp
(
⟨x, θ(k′)

2 ⟩
) .

Then,

pk
p0

=

λ
exp

(
⟨x,θ(k)

1 ⟩
)

1+
∑

k′∈[K] exp
(
⟨x,θ(k′)

1 ⟩
) + (1− λ)

exp
(
⟨x,θ(k)

2 ⟩
)

1+
∑

k′∈[K] exp
(
⟨x,θ(k′)

2 ⟩
)

λ 1

1+
∑

k′∈[K] exp
(
⟨x,θ(k′)

1 ⟩
) + (1− λ) 1

1+
∑

k′∈[K] exp
(
⟨x,θ(k′)

2 ⟩
)

≤
λ eS

1+
∑

k′∈[K] exp
(
⟨x,θ(k′)

1 ⟩
) + (1− λ) eS

1+
∑

k′∈[K] exp
(
⟨x,θ(k′)

2 ⟩
)

λ 1

1+
∑

k′∈[K] exp
(
⟨x,θ(k′)

1 ⟩
) + (1− λ) 1

1+
∑

k′∈[K] exp
(
⟨x,θ(k′)

2 ⟩
) (Θi ∈ S, i.e.,

∥∥∥θ(k)
i

∥∥∥
2
≤ S for each k ∈ [K])

= eS ,

and thus,
∥Θ∥2F ≤ KS2.
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C PROOFS - LOGISTIC BANDITS

C.1 Notations

Recall from the main text that Lt(θ) :=
∑t

s=1 ℓs(θ) is the cumulative unregularized logistic loss up to time t.
Recall that we also consider the following quantities (Abeille et al., 2021):

α̃(x, θ1,θ2) :=

∫ 1

0

(1− v)µ̇
(
x⊺(θ1 + v(θ2 − θ1))

)
dv (14)

G̃t(θ1,θ2) :=
t−1∑
s=1

α̃(xs,θ1,θ2)xsx
⊺
s + λtId (15)

Ht(θ) :=
t−1∑
s=1

µ̇(x⊺
sθ)xsx

⊺
s + λtId, (16)

where λt > 0 is to be determined, and the following problem-dependent constants:

κ⋆(T ) :=
1

1
T

∑T
t=1 µ̇(x

⊺
t,⋆θ⋆)

, κX (T ) := max
t∈[T ]

max
x∈Xt

1

µ̇(x⊺θ⋆)
, κ(T ) := max

t∈[T ]
max
x∈Xt

max
θ∈Bd(S)

1

µ̇(x⊺θ)
. (17)

C.2 Full Theorem Statements for Regret Bounds

We here provide full theorem statements for our regret analyses and prior arts for logistic bandits.

We start by providing the regret bound of our OFULog+:

Theorem 6. OFULog+ attains the following regret bound:
RegB(T ) ≤ Rleading(T ) +Rlog(T ) +Rdetr(T ),

where w.p. at least 1− δ,

Rleading(T ) ≲

(
dS log

ST

d
+
√
dS log

T

δ

)√
T

κ⋆(T )
,

Rlog(T ) ≲ d2S2

(
log

ST

d

)2

+ dS2

(
log

T

δ

)2

,

Rdetr(T ) ≲ min

κX (T )Rlog(T ), S
T∑

t=1

µ(x⊺
t,⋆θ⋆)1[xt ∈ X−(t)]

 ,

where X−(t) is the set of detrimental arms at time t as defined in Abeille et al. (2021).

We now provide the prior state-of-the-art regret bounds that we compare ourselves to:

Theorem 7 (Theorem 1 of Abeille et al. (2021)). OFULog with λt =
d
S log St

dδ attains the following regret bound:

RegB(T ) ≤ Rleading(T ) +Rlog(T ) +Rdetr(T ),

where w.p. at least 1− δ,

Rleading(T ) ≲ dS
3
2 (log T )

(
log

ST

d
+ log

T

δ

)√
T

κ⋆(T )
,

Rlog(T ) ≲ d2S3 (log T )
2

(
log

ST

d
+ log

T

δ

)2

,

Rdetr(T ) ≲ min

κX (T )Rlog(T ), S
T∑

t=1

µ(x⊺
t,⋆θ⋆)1[xt ∈ X−(t)]

 .

Theorem 8 (Theorem 2 of Abeille et al. (2021)). OFULog-r with λt =
d
S log St

dδ attains the following regret bound:

RegB(T ) ≤ Rleading(T ) +Rlog(T ) +Rdetr(T ),
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where w.p. at least 1− δ,

Rleading(T ) ≲ dS
5
2 (log T )

(
log

ST

d
+ log

T

δ

)√
T

κ⋆(T )
,

Rlog(T ) ≲ d2S4 (log T )
2

(
log

ST

d
+ log

T

δ

)2

,

Rdetr(T ) ≲ min

κX (T )Rlog(T ), S
T∑

t=1

µ(x⊺
t,⋆θ⋆)1[xt ∈ X−(t)]

 .

Theorem 9 (Theorem 2 of Faury et al. (2022)). ada-OFU-ECOLog attains the following w.p. 1− δ:

RegB(T ) ≲ dS log
T

δ

√
T

κ⋆(T )
+ d2S6κ

(
log

T

δ

)2

.

Lastly, although incomparable to our setting, for completeness, we provide the regret bound as provided in Mason
et al. (2022) for fixed arm-set setting:

Theorem 10 (Theorem 2 and Corollary 3 of Mason et al. (2022)). HOMER with the naive warmup attains the
following w.p. 1− δ:

RegB(T ) ≲ min


√
d
T

κ⋆
log
|X |
δ

,
d

κ⋆∆
log
|X |
δ

+ d2κ log
|X |
δ

,

where ∆ := minx∈X\{x⋆} µ(x
⊺
⋆θ⋆)−µ(x⊺θ⋆) is the instance-dependent reward gap. Here, doubly logarithmic terms

are omitted.

C.3 Proof of Theorem 6 – Regret Bound of OFULog+

Let us first recall the crucial lemma:

Lemma 6. For any θ ∈ Ct(δ), the following holds with probability at least 1− δ:

∥θ − θ⋆∥2Ht(θ⋆)
≲ γt(δ)

2 ≜ S2

(
d log

St

d
+ log

t

δ

)
.

Denote X = RegB as the final bandit regret that we want to bound. We consider the same decomposition
X ≤ R1 +R2 as in Appendix C.1 of Abeille et al. (2021). We first have that

R1 ≲

(
dS log

ST

d
+
√
dS log

T

δ

)(√
T

κ⋆
+
√
X

)
.

Next, via two different proof processes, we obtain

R2 ≲ d2S2κX

(
log

ST

d

)2

+ dS2κX

(
log

T

δ

)2

and

R2 ≲ S
T∑

t=1

µ(x⊺
t,⋆θ⋆)1[xt ∈ X−(t)] + d2S2

(
log

ST

d

)2

+ dS2

(
log

T

δ

)2

.

Finally, we obtain the desired result by solving for X via several elementary inequalities (e.g., Proposition 7 of
Abeille et al. (2021)).

Remark 5. For the computations, crude approximations were used for the logarithmic factors, namely,√
log

T

d
log

ST

d
≤ log

ST

d
,√

log
T

δ
log

T

d
≤ log

T

δ
.

The second bound is a bit loose in the dependency in δ, although whether this is important is arguable.
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C.4 Proof of Supporting Lemmas

C.4.1 Proof of Lemma 1

We overload the notation and let ℓt(µ) := −rt log µ− (1− rt) log(1− µ). In this case, we have the following:

ℓ′t(µ) = −
rt
µ

+
1− rt
1− µ

, ℓ′′t (µ) =
rt
µ2

+
1− rt

(1− µ)2
.

By Taylor’s theorem with the integral form of the remainder,

ℓt(µt)− ℓt(µ
⋆) = ℓ′t(µ

⋆)(µt − µ⋆) +

∫ µt

µ⋆

ℓ′′t (z)(µt − z)dz

=
µ⋆ − rt

µ⋆(1− µ⋆)
(µt − µ⋆) +

∫ µt

µ⋆

(
rt
z2

+
1− rt
(1− z)2

)
(µt − z)dz

= −ξt
µt − µ⋆

µ⋆(1− µ⋆)
+

∫ µt

µ⋆

(
rt
z2

+
1− rt
(1− z)2

)
(µt − z)dz,

where we recall that µ⋆ − rt = −ξt. Let us simplify the integral on the RHS:∫ µt

µ⋆

(
rt
z2

+
1− rt
(1− z)2

)
(µt − z)dz

= rt

{
µt

µ⋆
− 1− log

µt

µ⋆

}
+ (1− rt)

{
1− µt

1− µ⋆
− 1− log

1− µt

1− µ⋆

}
= −1 +

{
rt
µt

µ⋆
+ (1− rt)

1− µt

1− µ⋆

}
−
{
rt log

µt

µ⋆
+ (1− rt) log

1− µt

1− µ⋆

}
(∗)
= −1 +

{
µt + ξt

µt

µ⋆
+ (1− µt)− ξt

1− µt

1− µ⋆

}
−
{
µ⋆ log

µt

µ⋆
+ (1− µ⋆) log

1− µt

1− µ⋆
+ ξt log

µt

µ⋆
− ξt log

1− µt

1− µ⋆

}
= ξt

µt − µ⋆

µ⋆(1− µ⋆)
+ KL(µ⋆, µt) + ξt

(
log

µ⋆

1− µ⋆
− log

µt

1− µt

)
,

where (∗) follows from the fact that rt = µ⋆ + ξt. Plugging this back into the original expression and recalling the
definition of µt and µ⋆, we have that

ℓt(µt)− ℓt(µ
⋆) = KL(µ⋆, µt) + ξt

(
⟨xt, θ

⋆⟩ − ⟨xt, θt⟩
)

= KL(µ⋆, µt)− ξt⟨xt, θ
⋆ − θt⟩

C.4.2 Proof of Lemma 2

By Lemma 1, we have the following:

0 =
t∑

s=1

{
ℓs(θ̃s)− ℓs(θ⋆)−KL(µs(θ⋆), µs(θ̃s)) + ξs⟨xs,θ⋆ − θ̃s⟩

}
=

t∑
s=1

{
ℓs(θ̃s)− ℓs(θ̂t) + ℓs(θ̂t)− ℓs(θ

⋆)−KL(µs(θ
⋆), µs(θ̃s)) + ξs⟨xs,θ

⋆ − θ̃s⟩
}

=
t∑

s=1

{
ℓs(θ̂t)− ℓs(θ

⋆)−KL(µs(θ
⋆), µs(θ̃s)) + ξs⟨xs,θ

⋆ − θ̃s⟩
}
+RegO(T ).

Rearranging gives the desired result.

C.4.3 Proof of Lemma 4

This follows from direct computation:
Dm(z1, z2) = m(z1)−m(z2)−m′(z2)(z1 − z2)

= log(1 + ez1)− log(1 + ez2)− ez2

1 + ez2
(z1 − z2)

= log
ez2

1 + ez2
− log

ez1

1 + ez1
+

(
1− ez2

1 + ez2

)
(z1 − z2)
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= log µ2 − log µ1 + (1− µ2) log
µ1(1− µ2)

µ2(1− µ1)

= µ2 log
µ2

µ1
+ (1− µ2) log

1− µ2

1− µ1
= KL(µ2, µ1).

C.4.4 Proof of Lemma 6

By Theorem 1, we have that with probability at least 1− δ, Lt(θ⋆)−Lt(θ̂t) ≤ βt(δ)
2; throughout the proof let us

assume that this event is true. Also, let θ ∈ Ct(δ). Then, by second-order Taylor expansion of Lt(θ) around θ⋆,
Lt(θ) = Lt(θ⋆) +∇Lt(θ⋆)

⊺(θ − θ⋆) + ∥θ − θ⋆∥2G̃(θ⋆,θ)−λtI

= Lt(θ⋆) +∇Lt(θ⋆)
⊺(θ − θ⋆) + ∥θ − θ⋆∥2G̃(θ⋆,θ)

− λt∥θ − θ⋆∥22.

Lemma 5 implies that G̃t(θ1,θ2) ⪰ 1
2+2SHt(θ1). Thus, we have that

∥θ − θ⋆∥2Ht(θ⋆)
≤ (2 + 2S)∥θ − θ⋆∥2G̃t(θ⋆,θ)

= (2 + 2S)
(
Lt(θ)− Lt(θ⋆) +∇Lt(θ⋆)

⊺(θ⋆ − θ) + λt∥θ − θ⋆∥22
)

≤ (2 + 2S)
(
Lt(θ)− Lt(θ̂t) +∇Lt(θ⋆)

⊺(θ⋆ − θ) + λt∥θ − θ⋆∥22
)

(Lt(θ̂t) ≤ Lt(θ⋆))

≤ 1 + (2 + 2S)βt(δ)
2 + (2 + 2S)∇Lt(θ⋆)

⊺(θ⋆ − θ), w.p. at least 1− δ, (18)

where we choose λt =
1

4S2(2+2S) . Here, there is no need to consider time-varying regularization as unlike Abeille
et al. (2021), we do not explicitly use the regularization by λt in our algorithm.

Thus, it remains to bound ∇Lt(θ⋆)
⊺(θ⋆ − θ), which is done via a new concentration-type argument. Let Bd(2S)

be a d-ball of radius 2S and v ∈ Bd(2S).

First note that

∇Lt(θ⋆)
⊺v =

t∑
s=1

(µ(x⊺
sθ⋆)− rs)x

⊺
sv =

t∑
s=1

ξsx
⊺
sv,

where here we overload the notation and denote ξs := µ(x⊺
sθ⋆)− rs. Still, ξs is a martingale difference sequence

w.r.t. Fs−1 = σ
(
{x1, r1, · · · ,xs−1, rs−1,xs}

)
, and thus so is ξsx

⊺
sv.

As |ξsx⊺
sv| ≤ 2S and E[(ξsx⊺

sv)
2|Fs−1] = µ̇(x⊺

sθ⋆)(x
⊺
sv)

2, by Freedman’s inequality (Lemma 3), for any η ∈[
0, 1

2S

]
, the following holds:

P

 t∑
s=1

ξsx
⊺
sv ≤ (e− 2)η

t∑
s=1

µ̇(x⊺
sθ⋆)(x

⊺
sv)

2 +
1

η
log

t

δ

 ≥ 1− δ. (19)

Now for εt ∈ (0, 1) to be chosen later satisfying εt < εt+1, let B̂εt be an εt-cover of Bd(2S) (endowed with the
usual Euclidean topology), i.e.,

∀v ∈ Bd(2S), ∃w(v) ∈ B̂εt : ∥v −w(v)∥2 ≤ εt.

By Corollary 4.2.13 of Vershynin (2018), we have that |B̂εt | ≤
(

5S
εt

)d
. With this, we apply union bound for

Eqn. (19) to both t ≥ 1 and v ∈ B̂εt : with the choice of δt =
(
εt
5S

)d δ
t and applying the union bound, for any

η ∈ [0, 2S], the following holds with probability at least 1− δ:
t∑

s=1

ξsx
⊺
sv ≤ (e− 2)η

t∑
s=1

µ̇(x⊺
sθ⋆)(x

⊺
sv)

2 +
d

η
log

5S

εt
+

1

η
log

t

δ
, ∀v ∈ B̂(εt), ∀t ≥ 1.

Let vt ∈ B̂εt be s.t. ∥(θ⋆ − θ)− vt∥2 ≤ εt. Then,
∇Lt(θ⋆)

⊺(θ⋆ − θ)

=
t∑

s=1

ξsx
⊺
svt +

t∑
s=1

ξsx
⊺
s

(
(θ⋆ − θ)− vt

)
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≤ (e− 2)η
t∑

s=1

µ̇(x⊺
sθ⋆)(x

⊺
svt)

2 +
d

η
log

5S

εt
+

1

η
log

t

δ
+ εtt (w.p. at least 1− δ)

= (e− 2)η
t∑

s=1

µ̇(x⊺
sθ⋆)(x

⊺
s (θ⋆ − θ))2 + (e− 2)η

t∑
s=1

µ̇(x⊺
sθ⋆)

(
(x⊺

svt)
2 − (x⊺

s (θ⋆ − θ))2
)
+

d

η
log

5S

εt
+

1

η
log

t

δ
+ εtt

(∗)
≤ (e− 2)η

t∑
s=1

µ̇(x⊺
sθ⋆)(x

⊺
s (θ⋆ − θ))2 +

(e− 2)η

4
(4Sεt + ε2t )t+

d

η
log

5S

εt
+

1

η
log

t

δ
+ εtt

= (e− 2)η∥θ⋆ − θ∥2Ht(θ⋆)
+

d

η
log

5S

εt
+

1

η
log

t

δ
+

(
(e− 2)

4
(4Sη + εtη) + 1

)
εtt.

where (∗) follows from µ̇ ≤ 1
4 and

(x⊺
sa)

2 − (x⊺
sb)

2 = 2x⊺
sbx

⊺
s (b− a) + (x⊺

s (a− b))2 ≤ 4Sεt + ε2t

for any a, b ∈ B̂εt .

Choosing η = 1
2(e−2)(2+2S) <

1
2S , εt = d

t , and rearranging Eqn. (18) with Theorem 1, we finally have that

∥θ − θ⋆∥2Ht(θ⋆)
≲ dS2 log

St

d
+ S2 log

t

δ
.

21



Regret-to-Confidence-Set Conversion

D PROOFS - MULTINOMIAL LOGISTIC BANDITS

D.1 Notations

To follow the regret analyses of Amani and Thrampoulidis (2021) for the remainder of the proof, we vectorize
everything and denote θ = vec(Θ) ∈ RKd. We first define the following quantities:

Ht(θ) :=
t−1∑
s=1

A(xs,θ)⊗ xsx
⊺
s (20)

B(x, θ1,θ2) :=

∫ 1

0

A(x, θ1 + v(θ2 − θ1))dv, (21)

Gt(θ1,θ2) := λIKd +
t−1∑
s=1

B(xs,θ1,θ2)⊗ xsx
⊺
s , (22)

B̃(x, θ1,θ2) :=

∫ 1

0

(1− v)A(x, θ1 + v(θ2 − θ1))dv, (23)

G̃t(θ1,θ2) := λIKd +
t−1∑
s=1

B̃(xs,θ1,θ2)⊗ xsx
⊺
s , (24)

Vt := 2κλId +
t−1∑
s=1

xsx
⊺
s , (25)

where λ > 0 is to be chosen later.

We also recall all problem-dependent quantities as introduced in Amani and Thrampoulidis (2021), which we
extend to time-varying arm-set:

κ(T ) = max
x∈XT

max
Θ∈BK×d(S)

1

λmin

(
A(x,Θ)

) , (26)

LT = max
x∈XT

max
Θ∈BK×d(S)

λmax

(
A(x,Θ)

)
, (27)

MT ≥ max
x∈XT

max
Θ∈BK×d(S)

max
k∈[K]

∣∣∣∣λmax

(
∇2µk(x,Θ)

)∣∣∣∣ , (28)

M ′
T ≥ max

x∈XT

max
Θ∈BK×d(S)

max
k,k′∈[K]

∣∣∣λmax

(
∇[A(x,Θ)k,k′ ]

)∣∣∣ . (29)

D.2 Proof of Theorem 4 – MNL Loss-based Confidence Set

We can write
ys = µ(xs,θ⋆) + ξs, (30)

where ξs is some vector-valued martingale noise and ys = (ys,1, · · · , ys,K) ∈ {0, 1}K .

We first establish an extension of Lemma 1 to the multiclass case:

Lemma 10. The following holds for any θ:
ℓs(θ⋆) = ℓs(θ)−KL(µ(xs,θ⋆),µ(xs,θ)) + ξ⊺(Θ−Θ⋆)xs, (31)

where Θ,Θ⋆ ∈ RK×d are the parameter matrices whose k-th row corresponds to (θ(k))⊺, (θ
(k)
⋆ )⊺, respectively.

From hereon, let us universally denote θ ∈ RKd×1 to be the vectorized parameter vector, i.e., θ = vec(Θ⊺).

Let {Θ̃s} ⊂ BK×d(
√
KS) be the output from an online learning algorithm of our choice (see Remark 2 and

Proposition 1). The following lemma, whose proof is immediate from the above lemma (and is the same as that
of Lemma 2), provides the necessary connection:

Lemma 11.
t∑

s=1

ℓs(Θ⋆)− ℓs(Θ̂t) ≤ RegO(t) + ζ1(t)− ζ2(t), (32)
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where

ζ1(t) :=
t∑

s=1

ξ⊺s (Θ̃s −Θ⋆)xs, ζ2(t) :=
t∑

s=1

KL(µ(xs,Θ⋆),µ(xs, Θ̃s)).

For bounding RegO(T ), we again consider the algorithm of Foster et al. (2018), which is also valid for online
multiclass logistic regression:

Theorem 11 (Theorem 3 of Foster et al. (2018)). There exists an (improper learning) algorithm for online
multiclass logistic regression with the following regret:

RegO(t) ≲ dK log
St

dK
. (33)

Remark 6. Again, if one were to use the classical O2CS approach, then to take computational efficiency into
account, one would have to use efficient variants of online multiclass logistic regression algorithm (Agarwal et al.,
2022; Jézéquel et al., 2021). These, however, incur an online regret that scales in S, again, which leads to no
improvement in the final regret.

D.2.1 Upper Bounding ζ1(t): Martingale Concentrations

Again, let Fs−1 be the σ-field generated by (x1,y1, · · · ,xs−1,ys−1,xs). Then, xs and Θ̃s are Fs−1-measurable,
and ξ⊺s (Θ̃s −Θ⋆)xs is martingale difference w.r.t. Fs−1. We also have that |ξ⊺s (Θ̃s −Θ⋆)xs| ≤ 2

√
KS and

E
[(

ξ⊺s (Θ̃s −Θ⋆)xs

)2
|Fs−1

]
= x⊺

s (Θ̃s −Θ⋆)
⊺E[ξsξ⊺s |Fs−1](Θ̃s −Θ⋆)xs

= x⊺
s (Θ̃s −Θ⋆)

⊺
(
diag({µk((θ

(k)
⋆ )⊺xs)}Kk=1)− µsµ

⊺
s

)
︸ ︷︷ ︸

≜A(xs,Θ⋆)

(Θ̃s −Θ⋆)xs ≜ σ2
s .

By Freedman’s concentration inequality (Lemma 3), the following holds for any η ∈
[
0, 1

2
√
KS

]
:

P

ζ1(t) = t∑
s=1

ξ⊺s (Θ̃s −Θ⋆)xs ≤ (e− 2)η

t∑
s=1

σ2
s +

1

η
log

t

δ
, ∀t ≥ 1

 ≥ 1− δ. (34)

D.2.2 Lower bounding ζ2(t): Multivariate second-order expansion of the KL Divergence

The following lemmas are multivariate version of Lemma 4 and 5

Lemma 12. Let m(z) := log
(
1 +

∑K
k=1 e

zk
)

be the log-exp-sum function (which is known to be the log-partition

function for Categorical distribution), and µ(z) = (µ1, · · · , µK) with µk := ezk

1+
∑K

k=1 ezi
. Then we have that

KL(µ(z(2)),µ(z(1))) = Dm(z(1), z(2)).

Definition 2 (Definition 1 of Tran-Dinh et al. (2015); Definition 2 of Sun and Tran-Dinh (2019)). For a
given function f : Rd → R, define φx,u(t) := f(x + tu) for x ∈ dom(f) and u ∈ Rd. Then, we say that f is
Mf -generalized self-concordant if the following is true for any x,u:

|φ′′′
x,u(t)| ≤Mfφ

′′
x,u(t)∥u∥2, ∀t ∈ R,Mf > 0.

Lemma 13. Suppose f : Rd → R is Mf -generalized self-concordant, and let Z ⊂ Rd be bounded. Then, the
following holds for any z1, z2 ∈ Z:∫ 1

0

(1− v)∇2f(z1 + v(z2 − z1))dv ⪰
1

2 +Mf∥z1 − z2∥2
∇2f(z1). (35)

This further implies that Ht(θ⋆) ⪯ (2 + 2
√
6S)G̃(θ⋆,θ) and G̃t(θ⋆,θ) ⪰ 1

2κ(T ) (IK ⊗ Vt).

By Lemma 4 of Tran-Dinh et al. (2015), m is
√
6-generalized self-concordant so that we can apply the above

generalized self-concordant result. Via a similar second-order expansion argument, we have that
KL(µ⋆, µ̃) = Dm(Θ̃sxs,Θ⋆xs)
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= x⊺
s (Θ̃s −Θ⋆)

⊺

{∫ 1

0

(1− v)∇2m(Θ⋆xs + v(Θ̃sxs −Θ⋆xs))(z1 − z2)dv

}
(Θ̃s −Θ⋆)xs

≥ 1

2 +
√
6∥(Θ̃s −Θ⋆)xs∥2

x⊺
s (Θ̃s −Θ⋆)

⊺∇2m(Θ⋆xs)(Θ̃s −Θ⋆)xs

≥ 1

2 + 2
√
6KS

σ2
s ,

and thus,

ζ2(t) ≥
1

2 + 2
√
6KS

t∑
s=1

σ2
s . (36)

Proof of Theorem 4. Combining Eqn. (32)(33)(34)(36) with the choice of η = 1
2(e−2)+2

√
6KS

< 1
2
√
KS

and the

fact that − 1
2+2

√
6KS

+ e−2
2(e−2)+2

√
6KS

< 0, we have the desired result.

D.3 Full Theorem Statements for Regret Bounds

We state the full versions of Theorem 5, including all the logarithmic factors:
Theorem 12. MNL-UCB+ and its improved version attain the following regret bounds, respectively, w.p. at least
1− δ:

RegB(T ) ≲ LTRT

√
dKS

(√
d log

ST

dK
+ log

T

δ

)√
max

(
S2

K
,κ(T )

)
T , (37)

RegBimp(T ) ≲ RT

√
dKS

(√
d log

ST

dK
+ log

T

δ

)√
T

+RT dK
3
2S
(
M ′

T

√
KS +MT

)(
d

(
log

ST

dK

)2

+

(
log

T

δ

)2
)
max

(
S2

K
,κ(T )

)
. (38)

We now provide the (only) previous state-of-the-art regret bound that we compare ourselves to:
Theorem 13 (Theorem 2, 3 of Amani and Thrampoulidis (2021)). MNL-UCB and its improved version with

λ = dK
3
2

S log ST
dKδ attain the following regret bounds, respectively, w.p. 1− δ:

RegB(T ) ≲ LTRT dK
3
4S

(
log

ST

dK
+ log

T

δ

)√√√√max

(
S

dK
3
4 log ST

dKδ

, κ(T )

)
T , (39)

RegBimp(T ) ≲ RT dK
5
4S

3
2

(
log

ST

dK
+ log

T

δ

)√
T

+RT d
2K2S2(M ′

T

√
KS +MT )

((
log

ST

dK

)2

+

(
log

T

δ

)2
)
max

(
S

dK
3
2 log ST

dKδ

, κ(T )

)
. (40)

D.4 Proof of Theorem 12 – Regret Bound of (Improved) MNL-UCB+

Again, we start with the following crucial lemma, whose proof is provided in Appendix D.5.4:
Lemma 14. For any θ ∈ Ct(δ), the following holds with probability at least 1− δ:

∥θ − θ⋆∥2G̃t(θ⋆,θ)
≲ γt(δ)

2 ≜ dKS log
St

dK
+
√
KS log

t

δ
+ dKLT , (41)

For simplicity, we assume that the last term, dKLT , is negligible.

Now, assume that we have some bonus term ϵt(x) s.t. the following holds w.h.p. for each x ∈ Xt and t ∈ [T ]:
∆(x,Θt) :=

∣∣ρ⊺µ(x, θ⋆)− ρ⊺µ(x, θt)
∣∣ ≤ ϵt(x), (42)

and assume that the learner follows the following UCB algorithm:
xt = argmax

x∈Xt

ρ⊺µ(x, θt) + ϵt(x). (43)
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Then, we have that

RegB(T ) =
T∑

t=1

{
ρ⊺µ(xt,⋆,θ⋆)− ρ⊺µ(xt,θ⋆)

}
≤

T∑
t=1

{
ρ⊺µ(xt,⋆,θt) + ϵt(xt,⋆)− ρ⊺µ(xt,θ⋆)

}
≤

T∑
t=1

{
ρ⊺µ(xt,θt) + ϵt(xt)− ρ⊺µ(xt,θ⋆)

}
≤ 2

T∑
t=1

ϵt(xt).

We also recall a simple technical lemma:

Lemma 15 (Lemma 10 of Amani and Thrampoulidis (2021)).
µ(x, θ1)− µ(x, θ1) =

[
B(x,θ1,θ2)⊗ x⊺

]
(θ1 − θ2). (44)

D.4.1
√
κT -type regret – Algorithm 2

Here, we follow the proof provided in Appendix B of Amani and Thrampoulidis (2021). We start with the
following lemma,

Lemma 16 (Improved Lemma 1 of Amani and Thrampoulidis (2021)). For θ ∈ Ct(δ) and x ∈ Xt, the following
holds with probability at least 1− δ:

∆(x, θ) ≤
√
2κRTLT γt(δ)∥x∥V −1

t
. (45)

Proof. We have that

∆(x, θ) ≤ RT

∥∥∥[B(x, θ⋆,θ)⊗ x⊺
]
(θ⋆ − θ)

∥∥∥
2

(Assumption 4, CS, Lemma 15)

≤ RT

∥∥∥[B(x, θ⋆,θ)⊗ x⊺
]
G̃t(θ⋆,θ)

−1/2
∥∥∥
2
∥θ⋆ − θ∥G̃t(θ⋆,θ)

(CS)

(∗)
≤ RTLT

√
λmax

(
[IK ⊗ x⊺] G̃t(θ⋆,θ)−1 [IK ⊗ x]

)
∥θ⋆ − θ∥G̃t(θ⋆,θ)

≤ RTLT

√
2κλmax

(
[IK ⊗ x⊺]

[
IK ⊗ V −1

t

]
[IK ⊗ x]

)
∥θ⋆ − θ∥G̃t(θ⋆,θ)

(Lemma 13)

=
√
2κ(T )RTLT γt(δ)∥x∥V −1

t
, (θ ∈ Ct(δ), Theorem 4)

where CS refers to Cauchy-Schwartz inequality and (∗) is when the hidden computations are precisely the same
as done in the chain of inequalities in Appendix B.2 of Amani and Thrampoulidis (2021).

Thus by elliptical potential lemma (Abbasi-Yadkori et al., 2011, Lemma 11) and recalling that we’ve chosen
λ = K

4S2 , we have the following regret bound:

RegB(T ) ≲ LTRT

√
dKS log

ST

dK
+ S
√
K log

T

δ

√
max

(
1,

S2

κ(T )K

)
κ(T )dT log

(
1 +

TS

κdK

)

≲ LTRT

√
dKS

(√
d log

ST

dK
+ log

T

δ

)√
max

(
S2

K
,κ(T )

)
T .

D.4.2
√
T + κ-type regret – Algorithm 3

Here, we follow the proof provided in Appendix D of Amani and Thrampoulidis (2021). With similar reasoning
as previous, we first have the following:
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Lemma 17 (Improved Lemma 17 of Amani and Thrampoulidis (2021)). For any θ1,θ2 ∈ Wt(δ)
8 and any t ∈ [T ],

with probability at least 1− δ we have that
µ(x, θ1)− µ(x, θ2) ≤

[
A(x,Θ2)⊗ x⊺

]
(θ1 − θ2) + 2κ(T )MT γt(δ)

2∥x∥2
V −1

t
1, (46)

where ≤ holds elementwise.

Proof. In their chain of inequalities for their proof of Lemma 17 in their Appendix D (Amani and Thrampoulidis,
2021), we alternatively proceed as follows:

MT

∥∥[IK ⊗ x⊺] (θ1 − θ2)
∥∥2
2
≤MT

∥∥∥[IK ⊗ x⊺] G̃t(θ1,θ2)
−1/2

∥∥∥2
2
∥θ1 − θ2∥2G̃(θ1,θ2)

(CS)

≤MT

∥∥∥[IK ⊗ x⊺] G̃t(θ1,θ2)
−1/2

∥∥∥2
2
γt(δ)

2 (Lemma 14)

(∗)
≤ 2κ(T )MT γt(δ)

2∥x∥2
V −1

t

where CS refers to Cauchy-Schwartz inequality w.r.t. G̃t instead of Gt, and (∗) is when the hidden computations
are precisely the same as done in the chain of inequalities in Appendix D of Amani and Thrampoulidis (2021).
The rest of the proof is then the same.

Lemma 18 (Improved Lemma 18 of Amani and Thrampoulidis (2021)).

∆(x, θt) ≤ ϵt(x, θt) := RT

√
2 + 2

√
6Sγt(δ)

∥∥∥[A(x,Θt)⊗ x⊺
]
Ht(θt)

−1/2
∥∥∥
2
+2κ(T )MT

 K∑
k=1

ρk

 γt(δ)
2∥x∥2

V −1
t

.

(47)

Proof. In their chain of inequalities for their proof of Lemma 18 in their Appendix D (Amani and Thrampoulidis,
2021), we alternatively proceed as follows:

∆(x, θt) ≤ RT

∥∥∥[A(x, θt)⊗ x⊺
]
(θ⋆ − θt)

∥∥∥
2
+ 2κ(T )MT

 K∑
k=1

ρk

 γt(δ)
2∥x∥2

V −1
t

≤ RT

∥∥∥[A(x, θt)⊗ x⊺
]
G̃t(θ⋆,θt)

−1/2
∥∥∥
2
∥θ⋆ − θt∥G̃(θ⋆,θt)

+ 2κ(T )MT

 K∑
k=1

ρk

 γt(δ)
2∥x∥2

V −1
t

(CS)

≤ RT γt(δ)
∥∥∥[A(x, θ)⊗ x⊺

]
G̃t(θ⋆,θt)

−1/2
∥∥∥
2
+ 2κ(T )MT

 K∑
k=1

ρk

 γt(δ)
2∥x∥2

V −1
t

(Lemma 14)

≤ RT

√
2 + 2

√
6Sγt(δ)

∥∥∥[A(x, θt)⊗ x⊺
]
Ht(θt)

−1/2
∥∥∥
2
+ 2κ(T )MT

 K∑
k=1

ρk

 γt(δ)
2∥x∥2

V −1
t

,

(Lemma 13)

where CS refers to Cauchy-Schwartz inequality w.r.t. G̃t instead of Gt.

After some tedious computations, again following through proof of their Theorem 3 in Appendix D of Amani and
Thrampoulidis (2021), while applying Cauchy-Schwartz inequality w.r.t. G̃t instead of Gt, we have the following
regret bound:

RegB(T ) ≲ RT

√
dKS

(√
d log

ST

dK
+ log

T

δ

)√
T

+RT dK
3
2S
(
M ′

T

√
KS +MT

)(
d

(
log

ST

dK

)2

+

(
log

T

δ

)2
)
max

(
S2

K
,κ(T )

)
. (48)

8Wt is the new feasible set of estimators, defined in Eqn. (72) of Amani and Thrampoulidis (2021).
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D.5 Proof of Supporting Lemmas

D.5.1 Proof of Lemma 10

We overload the notation and let ℓ(µ) = −y0 log
(
1−

∑K
k=1 µk

)
−
∑K

k=1 yk log µk, where µ = (µ1, · · · , µK). For

simplicity denote µ0(µ) = µ0 = 1−
∑K

k=1 µk and µ⋆
0 = µ0(µ

⋆). Then we first have that for k ̸= k′ ∈ [K],

∂kℓ(µ) =
y0
µ0
− yk

µk
, ∂kkℓ(µ) =

y0
µ2
0

+
yk
µ2
k

, ∂kk′ℓ(µ) =
y0
µ2
0

.

Let α be multi-index. By multivariate Taylor’s theorem with the integral form of remainder,

ℓ(µ)− ℓ(µ⋆) = ∇ℓ(µ⋆)⊺(µ− µ⋆) + 2
∑
|α|=2

(µ− µ⋆)α

α!

∫ 1

0

(1− t)∂αℓ(µ⋆ + t(µ− µ⋆))dt

= ∇ℓ(µ⋆)⊺(µ− µ⋆) +
K∑

k=1

(µk − µ⋆
k)

2

∫ 1

0

(1− t)

{
y0

(µ⋆
0 + t(µ0 − µ⋆

0))
2
+

yk
(µ⋆

k + t(µk − µ⋆
k))

2

}
dt

+ 2
∑

1≤k<k′≤K

(µk − µ⋆
k)(µk′ − µ⋆

k′)

∫ 1

0

(1− t)
y0

(µ⋆
0 + t(µ0 − µ⋆

0))
2
dt

= ∇ℓ(µ⋆)⊺(µ− µ⋆) +
K∑

k=1

(µk − µ⋆
k)

2

∫ 1

0

(1− t)
yk

(µ⋆
k + t(µk − µ⋆

k))
2
dt

+

 K∑
k=1

(µk − µ⋆
k)

2 ∫ 1

0

(1− t)
y0

(µ⋆
0 + t(µ0 − µ⋆

0))
2
dt

= ∇ℓ(µ⋆)⊺(µ− µ⋆)︸ ︷︷ ︸
(a)

+
K∑

k=0

(µk − µ⋆
k)

2

∫ 1

0

(1− t)
yk

(µ⋆
k + t(µk − µ⋆

k))
2
dt︸ ︷︷ ︸

(b)

.

(a)

∇ℓ(µ⋆)⊺(µ− µ⋆) =
K∑

k=1

(
y0
µ⋆
0

− yk
µ⋆
k

)
(µk − µ⋆

k)

=
K∑

k=1

(
y0
µ⋆
0

(µk − µ⋆
k)−

yk
µ⋆
k

µk + yk

)
.

(b)
K∑

k=0

(µk − µ⋆
k)

2

∫ 1

0

(1− t)
yk

(µ⋆
k + t(µk − µ⋆

k))
2
dt =

K∑
k=0

(µk − µ⋆
k)

2

∫ µk

µ⋆
k

(
1− v − µ⋆

k

µk − µ⋆
k

)
yk
v2

1

µk − µ⋆
k

dv

=
K∑

k=0

yk

∫ µk

µ⋆
k

µk − v

v2
dv

=
K∑

k=0

yk

{
µk

µ⋆
k

− 1− log
µk

µ⋆
k

}
.

Recall that
∑K

k=0 yk =
∑K

k=0 µk =
∑K

k=0 µ
⋆
k = 1 and yk = µ⋆

k + ξk for k ∈ [K]. Denoting ξ0 = −
∑K

k=1 ξk, we
then also have that y0 = µ⋆

0 + ξ0. Then, we have that

ℓ(µ)− ℓ(µ⋆) = y0

{
µ0

µ⋆
0

− 1− log
µ0

µ⋆
0

}
+

K∑
k=1

{
y0
µ⋆
0

(µk − µ⋆
k)− yk log

µk

µ⋆
k

}
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=
y0
µ⋆
0

K∑
k=0

µk − y0 + y0 log
µ⋆
0

µ0
+

K∑
k=1

{
− y0
µ⋆
0

µ⋆
k + yk log

µ⋆
k

µk

}

=
y0
µ⋆
0

− y0
µ⋆
0

K∑
k=1

µ⋆
k − y0 +

K∑
k=0

yk log
µ⋆
k

µk

=
K∑

k=0

µ⋆
k log

µ⋆
k

µk
+

K∑
k=0

ξk log
µ⋆
k

µk

=
K∑

k=0

µ⋆
k log

µ⋆
k

µk
+

K∑
k=0

ξk log
µ⋆
k

µk

= KL(µ⋆,µ) +
K∑

k=1

ξk

(
log

µ⋆
k

µ⋆
0

− log
µk

µ0

)
(∗)
= KL(µ⋆,µ) +

K∑
k=1

ξk⟨xt,θ
(k)
⋆ − θ

(k)
t ⟩,

where at (∗), we let µ⋆ = µ(xt,θ⋆) and µ = µ(xt,θt). Then, with proper matrix notations, the statement follows.

D.5.2 Proof of Lemma 12

Denote µ
(i)
k = µk(z

(i)) and C
(i)
k := 1 +

∑
j ̸=k e

z
(i)
j . Then we have the following conversion between µ,C, and z:

µ
(i)
k =

ez
(i)
k

C
(i)
k + ez

(i)
k

, z
(i)
k =

µ
(i)
k C

(i)
k

1− µ
(i)
k

.

The statement then follows from direct computation:
Dm(z(1), z(2))

= m(z(1))−m(z(2))−∇m(z(2))⊺(z(1) − z(2))

= log

1 +
K∑

k=1

ez
(1)
k

− log

1 +
K∑

k=1

ez
(2)
k

− K∑
k=1

ez
(2)
k

1 +
∑K

k=1 e
z
(2)
k

(z
(1)
k − z

(2)
k )

= log
1−

∑K
k=1 µ

(2)
k

1−
∑K

k=1 µ
(1)
k

−
K∑

k=1

µ
(2)
k log

µ
(1)
k (1− µ

(2)
k )C

(1)
k

µ
(2)
k (1− µ

(1)
k )C

(2)
k

=

1−
K∑

k=1

µ
(2)
k

 log
1−

∑K
k=1 µ

(2)
k

1−
∑K

k=1 µ
(1)
k

+
K∑

k=1

µ
(2)
k log

µ
(2)
k

µ
(1)
k

+
K∑

k=1

µ
(2)
k

log
1−

∑K
j=1 µ

(2)
j

1−
∑K

j=1 µ
(1)
j

− log
(1− µ

(2)
k )C

(1)
k

(1− µ
(1)
k )C

(2)
k


= KL(µ(z(2)),µ(z(1))) +

K∑
k=1

µ
(2)
k

log

∑K
j=1 e

z
(1)
j∑K

j=1 e
z
(2)
j

− log
C

(1)
k + ez

(1)
k

C
(2)
k + ez

(2)
k


= KL(µ(z(2)),µ(z(1))).

D.5.3 Proof of Lemma 13

By Proposition 8 of Sun and Tran-Dinh (2019), we have that for any z1, z2,
∇2f(z1 + v(z2 − z1)) ⪰ e−Mf∥z1−z2∥2v∇2f(z1).

Multiplying both sides by (1− v) and integrating over [0, 1] w.r.t. v, the statement follows:∫ 1

0

(1− v)∇2f(z1 + v(z2 − z1))dv ⪰
∫ 1

0

(1− v)e−Mf∥z1−z2∥2v∇2f(z1)dv

=

(
1

Mf∥z1 − z2∥2
+

exp(−Mf∥z1 − z2∥2)− 1

(Mf∥z1 − z2∥2)2

)
∇2f(z1)
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⪰ 1

2 +Mf∥z1 − z2∥2
∇2f(z1),

where the last inequality follows from the elementary inequality 1
z + e−z−1

z2 ≥ 1
2+z for any z ≥ 0.

D.5.4 Proof of Lemma 14

By Theorem 4, we have that with probability at least 1− δ, Lt(θ⋆)− Lt(θ̂t) ≤ βt(δ)
2, which we assume to be

true throughout the proof. Let θ ∈ Ct(δ). Then, we first have that via second-order Taylor expansion of Lt(θ)
around θ⋆,

∥θ − θ⋆∥2G̃t(θ⋆,θ)
= Lt(θ)− Lt(θ⋆) +∇Lt(θ⋆)

⊺(θ⋆ − θ) + λt∥θ − θ⋆∥22

≤ Lt(θ)− Lt(θ̂t) +∇Lt(θ⋆)
⊺(θ⋆ − θ) + λt∥θ − θ⋆∥22

≤ K + βt(δ)
2 +∇Lt(θ⋆)

⊺(θ⋆ − θ), w.p. at least 1− δ, (49)

where we chose λ = K
4S2 .

Now observe that

∇Lt(θ⋆)
⊺v =

t∑
s=1

[(
µ(xs,θ⋆)− ys

)
⊗ xs

]⊺
v =

t∑
s=1

ξ⊺svec
−1(v)xs

where vec−1 is the matricization operator, and we overload the notation and define ξs := µ(xs,θ⋆)− ys.

Let BdK(2S) be a dK-ball of radius 2S, and v ∈ BdK(2S). It can be easily checked that ξ⊺svec
−1(v)xs is also a

martingale difference sequence that satisfies∣∣∣∣ξ⊺s (vec−1(v)xs

)∣∣∣∣ ≤ 2S,

E

[(
ξ⊺s

(
vec−1(v)xs

))2 ∣∣∣Fs−1

]
= ∥vec−1(v)xs∥2A⋆(xs)

.

where for simplicity we denote A⋆(xs) := A(xs,Θ⋆). Thus, by Freedman’s inequality (Lemma 3), for any
η ∈

[
0, 1

2S

]
, the following holds:

P

 t∑
s=1

ξ⊺s

(
vec−1(v)xs

)
≤ (e− 2)η

t∑
s=1

∥vec−1(v)xs∥2A⋆(xs)
+

1

η
log

t

δ

 ≥ 1− δ. (50)

Then, via similar reasoning (ε-net and union bound) as in the proof of Lemma 6, we have the following: for vt s.t.
∥vt∥2 ≤ 2S and ∥(θ⋆ − θ)− vt∥2 ≤ εt,

∇Lt(θ⋆)
⊺(θ⋆ − θ)

=
t∑

s=1

ξ⊺s

(
vec−1(vt)xs

)
+

t∑
s=1

ξ⊺s

(
vec−1((θ⋆ − θ)− vt)xs

)
(linearity of vec−1)

≤ (e− 2)η
t∑

s=1

∥vec−1(vt)xs∥2A⋆(xs)
+

dK

η
log

5S

εt
+

1

η
log

t

δ
+ εtt (w.p. at least 1− δ)

= (e− 2)η


t∑

s=1

∥vec−1(θ⋆ − θ)xs∥2A⋆(xs)
+

t∑
s=1

(
∥vec−1(vt)xs∥2A⋆(xs)

− ∥vec−1 (θ⋆ − θ)xs∥2A⋆(xs)

)
+

dK

η
log

5S

εt
+

1

η
log

t

δ
+ εtt

(∗)
≤ (e− 2)η

t∑
s=1

∥∥(Θ⋆ −Θ)xs

∥∥2
A⋆(xs)

+ (e− 2)ηL (4S + εt) εtt+
dK

η
log

5S

εt
+

1

η
log

t

δ
+ εtt

(∗∗)
= (e− 2)η∥θ⋆ − θ∥2Ht(θ⋆)

+
dK

η
log

5S

εt
+

1

η
log

t

δ
+
(
(e− 2)L (4Sη + εtη) + 1

)
εtt
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≤ (e− 2)(2 + 2
√
6S)η∥θ⋆ − θ∥2

G̃t(θ⋆,θ)
+

dK

η
log

5S

εt
+

1

η
log

t

δ
+
(
(e− 2)L (4Sη + εtη) + 1

)
εtt,

(Ht(θ⋆) ⪯ (2 + 2
√
6S)G̃t(θ⋆,θ))

where (∗) follows from the observation that
∥Cxs∥2A⋆(xs)

− ∥Dxs∥2A⋆(xs)
= ∥Dxs + (C −D)xs∥2A⋆(xs)

− ∥Dxs∥2A⋆(xs)

= 2x⊺
sD

⊺A⋆(xs)(C −D)xs + x⊺
s (C −D)⊺A⋆(xs)(C −D)xs

≤ 2∥D⊺A⋆(xs)(C −D)xs∥2 + Lε2t (Definition of L (Eqn. (27)))

≤ 2∥D⊺∥2∥A⋆(xs)∥2∥(C −D)∥2 + Lε2t

≤ 2L∥D⊺∥F ∥(C −D)∥F + Lε2t (Definition of L (Eqn. (27)))
≤ L (4S + εt) εt

for any C,D ∈ Rd×K with ∥C∥F , ∥D∥F ≤ 2S and ∥C −D∥F ≤ εt. (∗∗) follows from the observation that for
θ = vec(Θ⊺),

θ⊺(A⊗ xx⊺)θ = vec(Θ⊺)⊺(A⊗ xx⊺)vec(Θ⊺)

(a)
= vec(Θ⊺)⊺vec (xx⊺Θ⊺A⊺)

(a)
= vec(Θ⊺)⊺ (AΘ⊗ x)x

(b)
= x⊺ (Θ⊺A⊺ ⊗ x⊺) vec(Θ⊺)

(a)
= x⊺vec(x⊺Θ⊺AΘ)

= x⊺Θ⊺AΘx,

where (a) follows from the mixed Kronecker matrix-vector product property, (C ⊗D)vec(E) = vec(DEC⊺), and
(b) follows from the tranpose property of the Kronecker product, (C ⊗D)⊺ = C⊺ ⊗D⊺.

Choosing η = 1
2(e−2)(2+2

√
6S)

< 1
2S , εt = dK

t , and rearranging Eqn. (49) with Theorem 4, we finally have that

∥θ − θ⋆∥2G̃t(θ⋆,θ)
≲ dKS log

St

dK
+
√
KS log

t

δ
+ dKL.
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E EXPERIMENTS – LOGISTIC BANDITS

E.1 Setting

We follow the experimental setting of Faury et al. (2022) and compare our OFULog+ with three other tractable
versions of the state-of-the-art algorithms: ada-OFU-ECOLog (Faury et al., 2022), OFULog-r-prev (Abeille et al.,
2021), and OFULog-r (Abeille et al., 2021). Here, OFULog-r refers to the tractable algorithm of Abeille et al. (2021)
with the improved λt =

d
S log St

dδ , and OFULog-r-prev refers to the same algorithm with the original λt = d log t.
Also, the implementation of Abeille et al. (2021) as presented in Faury et al. (2022) was a bit inaccurate as the
authors used only a few steps of Newton’s method to approximate the MLE. For a fair comparison, we replace this
with Sequential Least SQuares Programming (SLSQP) implemented in SciPy (Virtanen et al., 2020). Throughout
the experiments, we fix T = 4000, d = 2, |A| = 20, and δ = 0.01. We use θ⋆ = S−1√

d
1 and time-varying arm-set by

sampling in the unit ball at random at each t.

E.2 Comparing Regrets

For the experiments, we consider S ∈ {2, 10}, which results in κ = 9 and κ = 22028, respectively. As κ often
scales exponentially in S, such drastically large κ is to be expected for S = 10. The results, averaged over 10
independent runs, are shown in Figure 1(a) and 1(b). It is clear that OFULog+ outperforms other algorithms
significantly.

Interestingly, it can be observed that for both cases, at the initial phase (e.g., T ≤ 1000 for S = 2), OFULog+
underperforms compared to ada-OFU-ECOLog, but then the regret of OFULog+ flattens much faster than the other
algorithms, leading to the best (cumulative) regret at the end. This is more pronounced when compared to the
existing confidence-set-based algorithms, OFULog-r and OFULog-r-prev.
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Figure 1: Plot of RegB(T ) for all considered algorithms.

E.3 Comparing Confidence Sets

In Figure 2, we plot the confidence sets at t = 500 resulting from OFULog-r-prev, OFULog-r, and OFULog+,
for S ∈ {2, 10}. Indeed, it can be seen that our confidence set is significantly tighter than that of the other
confidence-set-based algorithms! Especially for S = 10, several crucial observations can be made:

• Distance-wise, the MLE resulting from our OFULog+ is the closest to the unknown parameter θ⋆.

• Our confidence set is skewed towards θ⋆, i.e., OFULog+ oversamples near θ⋆. This is reminiscent of the
nonconvex (and non-tractable) confidence sets proposed in Abeille et al. (2021); Faury et al. (2020). Thus,
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our O2CS is the first approach to result in the tightest yet tractable loss-based confidence set that displays
similar adaptivity.

• Despite the fact that the theory predicts that OFULog-r should perform better than OFULog-r-prev due to
improved λt, OFULog-r has a much looser confidence set.
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Figure 2: Confidence sets at t = 500.
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