C43E-09 A Graph Neural Network Emulator of a Finite Element Ice Flow Model

- Thursday, 14 December 2023
- ① 15:10 16:40
- eLightning Theater 2, Hall D South (Exhibition Level, South, MC)

Abstract

Emulators of ice ow models have shown promise for speeding up simulations of glaciers and ice sheets. Existing ice ow emulators have relied primarily on convolutional neural networks (CNN's), which assume that model inputs and outputs are discretized on a uniform computational grid. However, many existing nite element-based ice sheet models such as the Ice-Sheet and Sea-level System model (ISSM) bene t from their ability to use unstructured computational meshes. Unstructured meshes allow for greater exibility and computational ef ciency in many modeling scenarios.

In this work, we present an emulator of a higher order, nite element ice ow model based on a graph neural network (GNN) architecture. In this architecture, an unstructured nite element mesh is represented as a graph, with inputs and outputs of the ice ow model represented as variables on graph nodes and edges. An advantage of this approach is that the ice ow emulator can interface directly with a standard nite element – based ice sheet model by mapping between the nite element mesh and a graph suitable for the GNN emulator. We test the ability of the GNN to predict velocity elds on complex mountain glacier geometries and show how the emulated velocity can be used to solve for mass continuity using a standard nite element approach.

First Author

Jacob Downs

University of Montana

Authors

Douglas Brinkerhoff University of Montana

Johnson Jesse University of Montana

View Related