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Abstract. The decomposition or approximation of a linear operator on a matrix space as a
sum of Kronecker products plays an important role in matrix equations and low-rank modeling.
The approximation problem in Frobenius norm admits a well-known solution via the singular value
decomposition. However, the approximation problem in spectral norm, which is more natural for
linear operators, is much more challenging. In particular, the Frobenius norm solution can be far from
optimal in spectral norm. We describe an alternating optimization method based on semidefinite
programming to obtain high-quality approximations in spectral norm, and we present computational
experiments to illustrate the advantages of our approach.
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1. Introduction and problem statement. Let 7: R™*™ — R™*" be a linear
operator acting on the space of real m X n matrices. Every such operator can be
decomposed into a sum of tensor product operators A; ® B; such that

(1.1) T(X) :iAjXBjT

for some matrices A; € R™*™ and B; € R™*". By choosing a suitable mn x mn matrix
representation of the linear operator 7', the above decomposition can be written as

(1.2) T=) A;®B;

j=1

where now A; ® Bj is the standard Kronecker product of matrices A; and B;. In the
following we will not distinguish between these two interpretations of T'.

The smallest r needed for a decomposition (1.2) to exist is often called the Kron-
ecker rank of T. The Kronecker rank has the (sharp) upper bound

r < min (m2,n2) ,

*Received by the editors July 29, 2022; accepted for publication (in revised form) by K. D. Usevich
August 16, 2023; published electronically November 9, 2023.
https://doi.org/10.1137/22M1509953
Funding: The first and third authors were supported in part by a Max Planck Sabbatical
Award. The third author was also supported in part by Air Force Office of Scientific Research grants
FA9550-20-1-0320 and FA9550-22-1-0225 and by National Science Foundation grant DMS 2113724.
TSchool of Mathematics and Statistics, University of New South Wales, Sydney, NSW 2052,
Australia (m.dressler@unsw.edu.au).
fInstitute of Mathematics, University of Augsburg, 86159 Augsburg, Germany (andre.
uschmajew@uni-a.de).
§Department of Computing and Mathematical Sciences and Department of Electrical Engineering,
California Institute of Technology, Pasadena, CA 91125 USA (venkatc@caltech.edu).

1693

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 10/15/24 to 131.215.220.165 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

1694 M. DRESSLER, A. USCHMAJEW, AND V. CHANDRASEKARAN

and a minimal decomposition can be found by applying a rank revealing decomposition
to a suitable reshape T of T into an m? x n? matrix [23, 12]; see section 2. In [12],
the Kronecker rank has also been called the Sylvester index of 7.

While the usual rank of T € R™"*™" measures the number of linear independent
columns/rows, the Kronecker rank measures the number of linear independent blocks
when partitioning 7 into m? blocks of size n x n. The rank and the Kronecker rank
are unrelated in general. For instance, if 1" consists of the blocks 7},, = aMbI, where
a1y.--,am and by, ..., by, are linear independent systems in R”, then T" has ordinary
rank one but Kronecker rank m? (here m < n). Vice versa, when T = A ® B with
invertible A and B, its rank is mn while the Kronecker rank is only one.

Linear operators with small Kronecker rank play an important role in numerical
linear algebra and scientific computing.

In particular, they appear in many linear matrix equations arising in control
theory or numerical analysis. While solving a general linear matrix equations such as

(1.3) T(X)=Y

is numerically challenging if sought matrices X are large, a Kronecker structured
equation of the form (1.1) allows for a more efficient numerical treatment if the number
of terms r is not too large. The reason is that the evaluation of the operator T on a
matrix X can be computed by just a few left and right matrix multiplications. This
allows the implementation of iterative methods for solving equations such as (1.3) at
(relatively) small computational cost, and even more so if additional structure of the
matrices A; and B; can be exploited.

There is also a second, in a sense more fundamental, reason why operators with
small Kronecker rank are of interest in matrix equations: in practice, it can often be
observed that the solution X to an equation (1.3), where T has small Kronecker rank
and the right-hand side Y is a low-rank matrix, can itself be well approximated by
low-rank matrices. Thus a low-rank model X ~ UV for the solution is then justified
which in turn makes the application of T" via left and right multiplications even more
efficient. This is the basis for many efficient low-rank solvers for matrix equations; see
[17] for an overview. The numerical observation can be rigorously proven for certain
matrix equations, most notably for Sylvester-type equations

T(X)=AX+XB'=Y

when A and B are symmetric positive definite matrices. It can be shown that the
inverse T~1 of this operator can be approximated in operator norm by a sum of k
Kronecker products with exponential (or subexponential) error decay in k, for in-
stance, by means of exponential sums [7]. Applying such an approximate inverse of
T to the right-hand side Y of the matrix equation provides an approximate solution
whose rank is at most k times the rank of Y, with an error decaying exponentially
in k. This even works for tensor versions of Sylvester-type operators. We refer to
[2, 21, 10, 11, 16, 9] for applications of Kronecker product approximations of opera-
tors and low-rank tensor calculus in scientific computing.

Motivated by the above considerations, we are interested in the general ques-
tion of approximating a matrix T € R™"*™" or its inverse by an operator of low
Kronecker rank in operator norm. Given T and a rank bound k, we hence consider
the optimization problem

14 i
(L4 o

k
T-Y A;j®B;
j=1

2
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Here || - ||2 denotes the spectral norm of mn x mn matrices, which corresponds to the
operator norm on R™*™ with respect to the Frobenius norm. In particular,

= max
I XllP=1

k
— ZAJ ®Bj
Jj=1 2

k
.
- A, xB]
Jj=1 F

—! using a different

We will also consider the approximation of inverse operators T’
cost function (section 3.3).

It is known that if in (1.4) we replace the spectral norm by the Frobenius norm,
the approximation problem admits (in principle) a closed-form solution via a singular
value decomposition (SVD) of a reshaped m? x n? matrix T, which was already
mentioned before. This method has been worked out in [23] and will be explained in
section 2. The main underlying reason that such an approach works for the Frobenius
norm is that this norm is invariant under reshaping a matrix. For the spectral norm,
this is, however, not the case. So while indeed the SVD also prov1des a best low-rank
approximation in spectral norm of T as an operator from R™ to R™ , it will not
provide the optimal low Kronecker rank approximation for 7' in spectral norm. To
our knowledge, the problem (1.4) has not been addressed in the literature in this
general form.

In this work, we consider an alternating optimization method for solving (1.4)
based on semidefinite programming. The underlying idea is based on the well-known
fact that the best approximation of a given matrix in spectral norm by an element
from an affine linear matrix subspace can be found by solving a semidefinite program
(SDP) and is therefore computable in polynomial time to a desired accuracy. Due
to the bilinearity of the Kronecker product, an alternating optimization approach for
the unknown matrices A; and B; in problem (1.4) leads to a sequence of approxima-
tion problems on linear matrix subspaces, which therefore can be solved via SDPs.
Furthermore, by adding regularization one can even guarantee that the solutions to
the subproblems are unique and bounded, which plays a role in our convergence
analysis.

Such an approach has computational limitations when m or n become large, as it
requires solving rather large scale SDPs. However, as a proof of concept, our numerical
experiments demonstrate that applying our algorithm can provide significantly better
low Kronecker rank approximations to operators 1" than the SVD method in certain
settings.

The paper is organized as follows. In section 2, we review the SVD method for
computing low Kronecker rank approximations and provide an example showing that
this method can be far from optimal with regard to the spectral norm. Section 3
presents the alternating SDP approach for solving the spectral norm approximation
problem (1.4). We also discuss a regularized version of the problem in section 3.2,
which leads to the general form of Algorithm 3.1. Moreover, we briefly touch upon how
the problem of approximating inverses could be handled (section 3.3). In section 4, we
provide some convergence statements based on results for biconvex optimization from
the literature. Finally, in section 5, we present computational experiments illustrating
the benefit of our proposed approach. We conclude with a brief discussion and an
outlook on potential future work; see section 6.

2. The SVD method. The SVD solution to the Kronecker product approxi-
mation problem has been proposed in [23]; see also [22, 12]. It works by rearranging
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the matrix 7' € R™"X™" into another matrix 7' € R™ *n°, Specifically, from a block
partition

Ty Tio
T=|Tn

with m? blocks T},, € R™*™ one constructs the matrix T with rows vec(T),,)" in the
ordering

—VGC(Tll)T—

7V6C(T21)T7
T= :

—vec(T12)T—

It is then easy to see that the Kronecker product decomposition (1.2) of T is equivalent
to a decomposition

T= Z vec(A;)(vec(B;))"

into rank-one matrices. This shows that a (usual) low-rank decomposition or approx-
imation of 7' yields decompositions or approximations of 7" by sums of Kronecker
products. Clearly the transformation T <+ T is an isometry between R™"*™" and
R™** in Frobenius norm, since it only rearranges entries of 7.

The required low-rank approximation of 1" can be achieved, for instance, using
SVD. This provides the method displayed as Algorithm 2.1, where mat,,(-) denotes
the inverse of the vec(-) operation for m x m matrices A, that is, mat,,(vec(A)) =
A. In the algorithm, we included an optional step for optimizing the scaling of the
truncated SVD with respect to spectral norm approximation. It could be solved using
semidefinite programming similar to the methods derived in section 3.

It is now interesting to observe that the approximation Z?:l Aj; ® Bj of T ob-
tained by the above procedure is optimal in Frobenius norm; that is, it solves a version
of problem (1.4) in Frobenius norm instead of the spectral norm. The reason is that

Algorithm 2.1 SVD method [23].

Input: Matrix T'e R™™*™"  dimensions m,n, approximation rank k
Output: Kronecker rank-k approximation Ty,q of T

Construct the matrix 7 from 7T.

Compute SVD: T=UxVT = Dy oju)

Set A; = matm(ajl-/zuj), B;= matn(ajl-/ij)

Set a1:~--=ak:1.

Optional: Find (ay,...,a5) = argmin, cp T — Zle a;A; @ Bjl|a. > Optimal

scaling
return Ty,q = Z?:l ajA; ® B;
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by the Eckart—Young—Mirsky theorem E 10U U;r is an optimal rank-k approxima-

tion of T in Frobenius norm and the transformation T < T is an isometry. More
generally, the Eckart—Young-Mirsky theorem actually states that the truncated SVD
of T is optimal in any unitarily invariant norm on R xn? ; in particular, it is the
best approximation in spectral norm on R xn” Therefore, 25:1 A; ® By is also an
optimal approximation of 7" in the norm defined via

M == 1Tl

on R™™*™% - nfortunately, in general, this norm (and other possible ones obtained
in this Waz) does not equal the spectral norm in R™"*™"  For example, for T =
I®1I < T = vec(Iy)vec(l,)" (identity matrices) we have | Tz = 1, but [|T| =
17|z = [[vee(Lm)|2]vec(In)||2 = v/mn.

Correspondingly, the SVD approach will usually not lead to optimal solutions
of the initial approximation problem for 7" in spectral norm, even if the scaling is
optimized. It is in fact not so difficult to construct such counterexamples.

Ezample 2.1. Let
(21) T:UlA1®Bl +A2®Bg

such that <A17A2> = 07 <Bl7BQ> = O, ||A1||F = ||A2||F = HBIHF = ||BQ||F = 1, and
o1 > 1. Here (-,-) denotes the Frobenius inner product. Assume the goal is to find a
Kronecker rank-one approximation, i.e., k = 1. Note that by construction (2.1) already
corresponds to an SVD of T'. Hence Algorithm 2.1 proposes Tgvq = a10141 ® By as
an approximation to 7. The error is

T—Tswa=01(1—0a1)A; ® By + A2 ® Bs.

We now choose Ay =aa' and By =bb' to be rank-one matrices (the symmetry is not
essential) with ||alj2 =|b]l2 =1, and A;, By to be matrices with A;a =0 and B1b=0.
Applying T to the rank-one matrix ab’ we then have that

(T — Tivq)(ab") =01 (1 — a1)(A1a)(B1b)" + aa"ab"bb" = ab’
for any choice of ay, using that Aja=0 and a"a=b"b= 1. This shows that
||T - Tsvd||2 Z 1.

(Actually, when ay is picked optimally as assumed in Algorithm 2.1, one also has
IT — Tsvall2 < || A2 @ Aql|2 =1, hence equality.) On the other hand, using As ® By as
an approximation would lead to

[T — A2 @ Ba|l2 =||o1A1 @ Bill2 = 01| A1||2]| B1l|2

using properties of the Kronecker product. If we take A; and By to be of rank m—1

and n — 1, respectively, with identical (nonzero) singular values \/% and ﬁ’ we

obtain

1
(m — 1)(n—1)'

(2.2) |T — Ay ® B2 =01
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For o1 close to one and m,n large this is much smaller than one, demonstrating
that the SVD solution can be rather bad. Note that in this construction (assuming

01——L— < 1), one can show that || T2 = 1, so the above estimates measure the

v (m—=1)(n—1)
relative error. The SVD solution is hence not better than taking the zero approxima-
tion.

The above example is designed artificially to make the SVD method fail to pro-
vide a reasonably low Kronecker rank approximation in spectral norm, which clearly
motivates the need for alternative methods. Of course, in practical instances the SVD
solution might not be as bad. This is also observed in the numerical experiments in
section 5, where the SVD method provides useful results that can still be significantly
improved.

3. Alternating SDP approach. In this main section we describe an approach
for solving the problem (1.4) based on alternating optimization and semidefinite pro-
gramming.

3.1. Basic idea. We use the fact that a minimization of the operator norm on
an affine linear space of matrices can be turned into an SDP; see [3, section 4.6.3].
This is based on the observation that for a matrix an inequality ||S||2 < 7 for the
spectral norm is equivalent with STS < 721 and I being the identity matrix. Hence
the problem (1.4) can be first reformulated as
min T
>0, A5, B;

T
k k

s.t. T—ZA]‘®Bj T_ZAj®Bj jTQI.

Jj=1 J=1

By applying the Schur complement this turns into

min T
(3.1) A5 B;
st. M(r,A,B)=0
with
I T-F A.®B;
M(7,4,B) = . CTrrmAeB)
(T - Ej:l A; © Bj) 71

Note that the condition 7 > 0 has been dropped in this second version since it is
automatically implied by the positive semidefiniteness of M (7, A, B).

Since M (7, A, B) is affine linear in each of the (block) variables 7, A= (Ay, ..., Ax),
and B=(Bjy,...,By), we have achieved that the optimization problem (3.1) for each
of these block variables, when the others are kept fixed, is an SDP. In fact, the
problem for the auxiliary variable 7 can be subsumed into the other ones: we have
an SDP in (7,A) when B is fixed, or in (7,B) when A is fixed. As SDPs can be
solved in polynomial time to a desired accuracy, this suggests an alternating opti-
mization strategy to tackle the initial problem (1.4) through a sequence of SDPs:
we first fix B = (By,...,By) and optimize A = (41,...,A) (and 7), and then we
fix A to find the optimal B (and 7). We describe a generalization of this proce-
dure in what follows with additional regularization parameters in Algorithm 3.1. By
construction the subproblems for A and B always admit at least one solution, since
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from (1.4) it follows that they are equivalent with finding a best approximation of 7'
in operator norm on the linear subspaces {Z§=1 A;j®@Bj: Ar,..., A e R™*™} and

¥ A ®B;: By,...,Br € R} of RM™X™MnN regpectively.
j=14%j J

3.2. Adding regularization. While the subproblems for A and B in the alter-
nating optimization approach outlined above are guaranteed to admit optimal solu-
tions, neither uniqueness nor a uniform boundedness of these solutions seems to be
easy to guarantee in general. As we will see in section 4, this poses a problem in the
convergence analysis of alternating block minimization problems. Both issues can be
addressed by adding regularization to the approach outlined in section 3.1, albeit at
the expense of larger SDPs.

For convenience, we define

k
T-Y A;j®B;

j=1

F(A,B):=

b

2
where again A= (A4,,...,A;) and B=(DBy,...,By). Instead of (1.4) we then consider

k E

(3-2) min Py, (4, B) = F(A,B) + XY [14;[5 + 1) |I1B;lI%

j=1 j=1
with regularization parameters A\, > 0. If A > 0, then for fixed B the function
A — F) (A, B) is strictly convex and coercive. A similar statement holds for the
function B+ F) (A, B) in the case p > 0. Therefore, if A and p are positive, the
subproblems now admit unique solutions. Moreover, the sequences of solutions can
easily be bounded (since the function values of F} , are decreasing and F' is bounded
from below).

We claim that in the regularized problem the subproblems for A and B
(and likewise for single A; and Bj) can again be turned into SDPs as follows. Assume
B is fixed and A should be optimized. Introducing slack variables vg,7v1,-..,7% We
first rewrite (3.2) as

min T
T, Y05 V150 Yk A
s.t. F(A,B) S’}/(),
NIAS I <, =100k,
Yo+t A+ ST
As in (3.1), the first constraint F/(A, B) <~y can be turned into M (g, A, B) = 0.

The constraints A||4;[|% <+, are equivalent to

I

due to the Schur complement. Finally note that the last constraint is 7 — vy — -+ —
v, > 0. We hence arrive at the following SDP:

min T
TyY0 Vseees Vi s A

s.t. M(’YOaAaB)EO,
Na(vj,45) =0, j=1,...,k,
T—% — " —7=>0.

(3.4)

Note that the constraints automatically imply vg,71,-..,7% > 0, and thus also 7 > 0.
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Algorithm 3.1 Alternating SDP method (ASDP).

Input: Operator T, dimensions m,n, initial By = (Bys,..., Bok), approximation
rank k, regularization parameters A, u > 0, number of iterations Noyger
Output: Kronecker rank-%k approximation Tyq, of T' in spectral norm
B+ By
for Nyyuter iterations do
Update A by solving the SDP (3.4) with current B fixed.
Update B by solving the SDP (3.5) with current A fixed.
end for

return Ty, := Z?Zl A; ® B;

When A is fixed and we aim to optimize for B, we have to solve the analogous
problem

SENE e S
s.t. M(dp, A, B) =0,
N.(6;,B;) =0, j=1,... .k
T*(s()*’-'*(skzo.

(3.5)

Here we have slightly abused notation since N, (d;, B;) might be of different size than
defined in (3.3). Of course, when A or p are zero, the corresponding constraints in
(3.4) and (3.5) can be simply omitted and the problem reduces to the basic idea
explained in section 3.1.

The resulting alternating SDP algorithm is summarized as Algorithm 3.1.

3.3. Approximation of inverse operators. As outlined in the introduction,
in several applications one is actually interested in the approximation of the inverse
T~ of a given operator T' by sums of Kronecker products. We note that there is no
obvious relation between low Kronecker rank approximations of T and T—!. Of course,
when T'= A ® B has Kronecker rank one and is invertible (with A and B square),
then necessarily A and B are invertible and T-! = A~ ® B~!. Apart from that, it is
often numerically observed that when T has small Kronecker rank, then 77! is well
approximable by low Kronecker rank. For Sylvester-type operators T=A® I+ 1® B
(Kronecker rank two) this can be rigorously proven [7]; this is discussed for the special
case of Lyapunov operator in section 5.3.

Since the goal would be to find an approximation of T~ without forming it
explicitly, we cannot apply the above methods directly. A natural way is to consider
the modified optimization problem

k

(3.6) f{?}gj I-T- ZA]’ ® B;
Jj=1 9
instead and tackle it via alternating optimization. Here - is the matrix product. Note
that doing this for the Frobenius norm would lead to an alternating least squares
algorithm. For the spectral norm, we rely once again on semidefinite programming.
The derivation of an ASDP method for (3.6) is almost analogous to the one

developed above. Instead of (3.1), we now have to solve
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min T
(37) 7,A5,B;
s.t. Minw(1,A4,B) =0
with
I I-T-% A ®B;
(38) Min\,(T’A’B) = kT . (23:1 7 ® ]) )
(I_T'(ijlAj(g)Bj)) 71

Since M,y is affine linear in 7, A, and B, this problem can again be tackled via
ASDPs.

It also possible to include regularization in the same way as in (3.2). The resulting
SDP problems in the alternating optimization approach read the same as (3.4) and
(3.5), except with M (7, A, B) being replaced with M, (7, A, B).

Note that in such an implicit formulation to approximate the inverse one does in
principle not need T in the full format but only the ability to apply T" to operators
of the form ijl A; ® Bj several times. While without any structure this poses a
potential computational bottleneck, it can be handled in the situation when T itself
is a sum of Kronecker products,

T= Z C;Dy.
J=1
Then M, (7, A, B) becomes
r k
I 1= ) (CsA;)®(D;B;)
(3.9) Minv _ - T J=1j=1
J=1j=1

If & and r are small, the double sums can be efficiently computed.

We point out that the implicit formulation (3.6) for approximating inverses comes
at a price in the case of badly conditioned operators. On the one hand, (3.6) gives
us full control on the relative approximation error of T—! as follows: assume we have
achieved

k
I-T- (> A;@B; ||| <&
j=1 9
then

_ k _ k
|7 -Zaae ], 1k|r-T- (Sl 408)|,
-1 < -1 se
172 T2
On the other hand, when the goal is to compute approximate solutions of linear matrix

equations such as (1.3) by replacing T—! with its approximation, then the absolute
error or the relative error with respect to ||T'||2 would be of more relevance. We have

-1 k , A
|77 -Sha 0B,y
[T]2 ATl 7
so this error estimate deteriorates with a bad condition number. Since the case of
ill conditioned operators appears frequently in numerical analysis, this may put some

additional limitations on this approach. In section 5.3 we conduct some numerical
experiments for approximating inverses based on formulation (3.6).
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4. Convergence. Algorithm 3.1 realizes a block coordinate optimization method
for the nonconvex cost function

F\ (A B)=

k k k
T—> A;@B;|| +A>_A;l5+p) IIB;l%
j=1 2 j=1 J=1

in problem (3.2) by sequentially setting block variables to restricted global minima:

AT argmin Fy (4, B(g)),
A

4.1
(4.1) BU+n argminFA7u(A(e+1)7B)-
B

The convergence of such block coordinate methods is in general not easy to deduce
and requires specific assumptions. For differentiable cost functions it can be shown
that if the subproblems are guaranteed to admit unique minima, then all accumulation
points of the iterates must be critical points; see, e.g., [1, Proposition 3.7.1]. However,
F), above is not a differentiable function, since the spectral norm is not. However,
it is still a continuous biconvex function which means that the restriction to one of
the block variables A or B is always a convex function. The convergence of of (4.1)
for such functions has been studied in [20] and [6] on which we rely in what follows.
Fixed points (A*, B*) of the procedure (4.1) are characterized by the properties

F,\,M(A*,B*)SF)\7N(A,B*) and F,\)M(A*,B*)SF)\7M(A*,B)

for all A and B, respectively. Such points are called partial optima (of the func-
tion Fy ,). By [20, Theorem 5.1], any accumulation point (A*, B*) of the sequence
(A® B generated by (4.1) for the biconvex function F) ,, will be indeed a partial
optimum (i.e., a fixed point of (4.1)) if the restricted functions A — F) ,(A,B) and
B F) (A, B) are hemivariate (which means they are not constant on any line seg-
ment) and if, in addition, F) , has bounded sublevel sets. Both properties are ensured
when A > 0 and g > 0. The restricted functions are then even strictly convex and
coercive, implying that the subproblems have unique minima.

In [6, Theorem 4.9] a similar but slightly weaker condition is required to have the
same conclusion: for continuous biconvex functions any accumulation point (A*, B*)
of a sequence (A®), B(®)) generated by (4.1) is indeed a partial optimum under the
assumptions that (i) the iterates are bounded and (ii) at every accumulation point
(A*,B*) it holds that either A — F) ,(A,B*) or B — F) ,(A*,B) has a unique
minimizer. However, in order to ensure both conditions we would again require A >0
and p > 0. In this case, both restricted functions have unique minimizers for which
[6, Theorem 4.9] additionally states that (A¢+1) BU+DY — (A0 BE)) - (.

From the discussion above we conclude that if regularization is present we have
the following convergence result for Algorithm 3.1.

THEOREM 4.1. Assume X\ >0 and > 0. Then the sequence (A, BY®)) generated
by Algorithm 3.1 possesses at least one accumulation point (A*, B*). Further, every

accumulation point is a partial optimum of F , and achieves the same function value
F\ . (A*, B*). It holds that (A“*+Y, BE+DY — (A0 BE)) -0,

Proof. Since the sublevel sets of F) , are bounded when A > 0 and p > 0, and
F ML(A(E),B(Z)) is monotonically decreasing, there exists at least one accumulation
point, and all accumulation points take the same function value. For the statements
on the accumulation points we refer to [20, Theorem 5.1] and [6, Theorem 4.9] as
discussed above. ]

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 10/15/24 to 131.215.220.165 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

KRONECKER PRODUCT APPROXIMATION OF OPERATORS 1703

For clarity, we point out that in the case A = 0 or u = 0 the solvability of the
substeps is still ensured, since, e.g., the update of A realizes a best approximation of
T in operator norm on the linear subspace of all 2?21 A; ® B; with the B being fixed.
However, we cannot guarantee uniqueness in the subproblems in this case. Moreover,
we are unable to even ensure boundedness of the iterates, although we do not have a
counterexample at hand.

Let us also briefly discuss whether partial optima of F) , are critical points.
Clearly, if Fy, is differentiable at a partial optimum (A*, B*), then VF) ,(A*,
B*) = 0. This condition boils down to ||T" — 2?21 A;j ® Bj||2 being differentiable
in (A*, B*). It is well known that the matrix spectral norm function

S+ ||S]l2= max | Sz|2
lzlla=1

is differentiable at such S for which the maximum on the right-hand side is achieved for
a unique z. This follows from a general result on max-functions [5]. Alternatively, let
§1 > 83 > -+ >0 denote the singular values of S; then the spectral norm ||S||2 = s is
(continuously) differentiable at .S if s; > so [18]. This leads to the following statement:
if at a partial optimum (A*, B*) of F) , the matrix S =T — Z?Zl A; ® Bj has a
unique largest singular value, then (A*, B*) is a critical points of F) , in the sense
that VF) ,(A*, B*) = 0. Unfortunately, at the moment we do not have any alternative
characterization of this property in terms of structural properties of T'.

5. Numerical experiments. In this section, we present results of computa-
tional experiments showcasing the potential advantages of the proposed ASDP ap-
proach. The algorithms have been coded in MATLAB. The SDPs are implemented
using the YALMIP toolbox [14] with the SDP solver SeDuMi [19]. An advantage of
this toolbox is that the SDPs can be parsed almost directly in the given forms such
as (3.4) and (3.5). However, solving those SDPs becomes computationally expensive
in larger dimensions, and no attempts at a more efficient implementation have been
made. This explains the small values for m and n in the following experiments. One
should also keep in mind that the nonconvex and nonsmooth optimization task (1.4)
is far from trivial even in small dimensions. Our goal here is a proof of concept that
the ASDP approach allows for better approximations in spectral norm than methods
based on Frobenius norm.

5.1. Illustration of Example 2.1. As a first experiment we simulate the con-
struction given in Example 2.1 in which the SVD solution is particularly poor. We
take m =n and construct

(5.1) T=0141®B1+A2® By

with 01 = 1.9 and

— _; Inz—l 0 _ o Om—l 0

Here I,,—1 and 0,,—1 are the (m —1) x (m — 1) identity and zero matrix, respectively.
The goal is to solve (1.4) with k=1, that is, to minimize ||T — A ® B|2.

As explained in Example 2.1, the SVD method in Algorithm 2.1 will select a
solution Tyyq = a101 A1 ® As, but the error will be constant, ||T'—Tvql|2 = 1. Note that
for m =n > 3 this is also the relative error, since || T]|2 =1 then. On the other hand,
an optimal approximation should yield an error less than ||T— A3 ® Bsll2 = 01/(m—1).

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 10/15/24 to 131.215.220.165 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

1704 M. DRESSLER, A. USCHMAJEW, AND V. CHANDRASEKARAN

1¢----- 0--———- o--——-- o ----O0----0--——-- O----- O----- O ----O
4
0.8
o
o
= -0 SVD method
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m=n

F1G. 1. Results of Algorithm 2.1 (SVD method) and Algorithm 3.1 (ASDP) with k=1 for the
operator T in (5.1) withm =n=3,...,10. The y-azis shows the error |T —AQ B||2 for the computed
approzimation A® B. Note that ||T||2 =1. The red and yellow curves agree.

In Figure 1 we compare the achieved error ||T'— A® B||2 of the SVD method com-
puted by Algorithm 2.1 (dashed line) with ASDP solutions obtained with
Algorithm 3.1 for different values m = 3,...,10. Three setups for Algorithm 3.1
were tested: For the red curve (cross markers) and yellow curve (square markers) no
regularization has been applied, whereas in the purple curve (triangle markers) we
took A = = 0.1. The red curve uses the SVD solution as an initial guess (for B).
For the yellow and purple curve we used a random initial guess (the same for both).
In all cases only Nyuter = 5 iterations were performed.

As expected, the SVD solution produces a constant error ||T'— A® Bl|2 =1. The
other curves follow a predicted algebraic decay. As a curiosity, the purple curve, for
which regularization was used, coincides exactly with the error bound o1 /(m —1). In
fact, due to the diagonal structure of T, any AQ B=(3A3® By with 1 -3 <o7/(m—1)
achieves this approximation error, and the algorithm indeed returned such solutions
with 1 — 8 = 01/(m — 1) because with regularization it also aims at A and B with
small Frobenius norms. We did not investigate the effect in detail, but it occurs for
a certain range of A\ and p. The red and yellow curves in Figure 1, obtained without
regularization, produce even better approximations and are on top of each other. This
shows that in this example the choice of the initial guess does not seem to have a big
influence and may even suggest that the obtained solutions could be globally optimal.

5.2. Approximation of random operators. In this experiment we apply the
algorithms to a matrix 7' € R™"*™" with random Gaussian entries (normalized to
|T]|2 = 1) and for a sequence of target Kronecker ranks k = 1,2,... ,min(m? n?).
Recall that with & = min(m?,n?) an exact decomposition exists, so the error should
be zero.

Figure 2 shows computed approximation errors |7 — Zle A; ® Bj||2 for the case
m=4,n=25,and k=1,2,...,16. The ASDP curves are obtained using the same
setup as in section 5.1 (again Nyuter = 5), except that for the purple curve (triangle
markers) the regularization parameters were adapted to A = = 0.1/k. Decreasing the
regularization with & is necessary to account for the effect that the number of penalized
terms ||A,||F and || B;||r grows while the norms ||T—Z§:1 A; ®Bj||2 remain bounded
(and are even intended to decrease). Hence for larger k the regularization terms would
dominate in the optimization problem, and indeed in our experiments we observed
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Fi1G. 2. Comparison of Algorithm 2.1 (SVD method) and Algorithm 3.1 (ASDP) for a random
T eR™™*™M™ withm =4, n=2>5, scaled to | T||2 =1. The y-azis shows the error HT_Z?:1 A;®Bjl|2
of computed approximations for k=1,2,...,16.

that using the same A and p for all £ did not lead to a descending approximation
error.

We note that the ASDP method is able to significantly improve the relative ap-
proximation error compared to the SVD method, even when randomly initialized.
This last point is particularly relevant when the computation of an SVD of the m? xn?
matrix 7" needs to be avoided.

5.3. Inverses of operators with small Kronecker rank. Following the con-
siderations in section 3.3 we present some experimental results for approximating in-
verses T~1 of operators T which themselves have small Kronecker rank. This is based
on the modified cost function (3.6) to which we also add regularization terms. The
ASDP algorithm for this problem is almost identical to Algorithm 3.1, the (formally)
only change being that M (7, A, B) in the subproblems (3.4) and (3.5) is replaced with
Miny (7, A, B) in (3.8). We note that in the experiments we did not implement the
more efficient representation (3.9) of Mj,, but instead treated T as an unstructured
operator in (3.8).

Two scenarios are considered. The first is a Lyapunov operator

(5.2) T=Leol+I®]L,

where L is positive definite. This is a special case of more general Sylvester-type
operators T' = L1 @ I + I ® Ly with L; and Lo positive definite. Such types of
operators play an important role in matrix equations and numerical analysis, and it is
well known that their inverses admit highly accurate approximations in spectral norm
by operators of low Kronecker rank [2, 7]. Specifically, spectral approximation of T~
by sums of exponentials leads to operators of the form Sy = Z?Zl w; exp(—t;L1) ®
exp(—t;Ls), where the parameters w; and t; can be chosen such that the error to
T~ satisfies

T = Sklla < Ce°k.

Here the optimal choice of the parameters, as well as the resulting constants ¢ and C,
depends on the spectral bounds of L; and Lo, and the constants deteriorate with a
growing condition number. If only a positive lower bound on the smallest eigenvalues
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10° T

-©-ALS for (3.6), random init
-0 SVD method for 77!
~ASDP for (3.6), ALS init
- ASDP for T, svd init
ASDP for (3.6), random init
ASDP for 7!, random init

1 2 3 4 5 6 7 8
k

relative error

107104

F1c. 3. Numerical results for approzimating the inverse of the Lyapunov operator (5.2) with
m =mn=10 and approrimation ranks k=1,2,...,8. Solid lines correspond to implicit methods based
on formulation (3.6). For comparison, dashed lines apply Algorithms 2.1 and 3.1 directly to T~1.

of Ly and Ly is known (and the largest eigenvalues are potentially unbounded), one
still has a subexponential but superalgebraic convergence rate |71 — S ||2 < Ce~VF
with (different) constants independent from the upper bound on the spectrum. We
refer to [9, section 9.8.2].

In the numerical experiment we take T' of the form (5.2) with m = n = 10
and L = —L-tridiag(—1,2,—1) (tridiagonal matrix), which corresponds to a finite-
difference discretization of a (negative) second derivattive.1 Th,? results are shown in
Figure 3. Depicted are the computed relative errors I _‘E:ij}ﬁj ®Bil2 for several
algorithms and approximation ranks k& = 1,2,...,8. The red (cross markers) and
yellow (square markers) solid lines are the results of an ASDP method for solving
(3.6) without regularization (A = = 0). The only difference between them is that
for the yellow curve a random initialization of the B; has been taken, whereas for
the red curve the B; were initialized with the solution computed by an alternating
least squares (ALS) method for the corresponding problem mina; g, |7 — 2521 A;®
Bj||F in Frobenius norm. This ALS solution is shown as solid blue curve (circle
markers). For comparison, we include the results from the SVD and ASDP methods
(Algorithms 2.1 and 3.1) when applied directly to the inverse operator T~!, which we
explicitly computed for this purpose. In all methods Nyyger = 5.

Since the plot is in semilogarithmic scale, the results verify the fact that 7! is
extremely well approximable in spectral norm by sums of Kronecker products. No big
differences between the algorithms can be identified. While the implicit approach (3.6)
clearly works, somewhat surprisingly the ALS method based on the Frobenius norm
provides slightly better results. We did not investigate whether this could be caused by
internal termination criteria in the SDP solver, but it also does not violate the theory
since the approximation of 7! in (3.6) is only an implicit one. We note that in this
example |77z & 55.5. Therefore the absolute error || 771 — Z§=1 A;®Bj||2 is larger
(at most) by this factor than the depicted curves; see the discussion in section 3.3.

In the second scenario, we apply the same algorithms to an operator

(5.3) T=Ci®D14+Cy® By + (C3® D3

of Kronecker rank 3. In this case we are not aware of a rigorous result on the ap-
proximability of 7! by Kronecker products. We take m = n = 5 and generate the
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F1G. 4. Numerical results for approzimating the inverse of T in (5.3) with m = n =5 and
approximation ranks k =1,2,...,25. In the left plot Cj, By are positive definite, in the right one
general. The legend applies to both plots.

matrices Cy and D; randomly; then we scale T to ||T||2 = 1. We distinguish, however,
two cases: in the first the C; and D, are symmetric positive definite (achieved by
replacing them with C JC} and D JD}); in the second they are not. Figure 4 shows

—1 k

the computed relative errors I _%qif}ﬁj(gBj”z for k = 1,2,...,25 for both cases.
Here we have set Nouter = 10 for the alternating optimization methods. The left plot
indicates a better error decay in the positive definite case, perhaps even super alge-
braic. Here |71z ~ 83.4. In the right plot, the implicit methods (solid lines) do not
quite capture the achievable error decay (dashed lines). However, compared to the
left plot here the ASDP approach performs significantly better than the ALS method

based on Frobenius norm. In this example ||771||2 ~ 203.4.

6. Conclusion and outlook. The problem of approximating a linear operator
by sums of Kronecker products in spectral norm is of interest in matrix equations and
low-rank calculus. While for the Frobenius norm the approximation problem admits
a solution using the SVD, Example 2.1 shows that the obtained approximation can
be far from optimal in spectral norm and suggests that alternative methods should
be studied. In this work, we propose to tackle the approximation problem in spec-
tral norm directly utilizing alternating optimization, where the subproblems can be
formulated as SDPs and can therefore be solved in polynomial time to a desired ac-
curacy. The numerical experiments suggest that only a few iterations are necessary
to obtain improved approximations using this approach.

This initial work on the subject could be extended in several directions. The
presented approach requires the solution of rather high-dimensional SDPs which is
computationally expensive and potentially limits the practical applicability. A focus of
future work could be to improve the efficiency by fully exploiting structural properties
of the operator T such as sparsity or low (Kronecker) rank in an implementation. In
certain situations, it might also be possible to assume a low-rank model for the factor
matrices A; and B;. In such cases one could appeal to the recent literature for
(approximately) solving in an efficient manner large SDPs for which one expects low-
rank solutions; see, for example, [4]. Note that such models, i.e., sums of Kronecker
products of low-rank matrices, are of potential interest in quantum entanglement; see,
e.g., 8,15, 13].

An extension of the results to complex matrices should be straightforward. We
also mention that the ASDP approach could be generalized to problems on tensor
spaces, that is, for finding low Kronecker rank approximations Z?Zl Aj1 ®R-® Ag_d)
to operators on tensor spaces.
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