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Abstract. The decomposition or approximation of a linear operator on a matrix space as a
sum of Kronecker products plays an important role in matrix equations and low-rank modeling.
The approximation problem in Frobenius norm admits a well-known solution via the singular value
decomposition. However, the approximation problem in spectral norm, which is more natural for
linear operators, is much more challenging. In particular, the Frobenius norm solution can be far from
optimal in spectral norm. We describe an alternating optimization method based on semidefinite
programming to obtain high-quality approximations in spectral norm, and we present computational
experiments to illustrate the advantages of our approach.

Key words. operator approximation, Kronecker product, semidefinite programming, alternating
optimization, matrix equations
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1. Introduction and problem statement. Let T : \BbbR m\times n\rightarrow \BbbR 
m\times n be a linear

operator acting on the space of real m \times n matrices. Every such operator can be
decomposed into a sum of tensor product operators Aj \otimes Bj such that

T (X) =

r\sum 

j=1

AjXB\sansT 

j(1.1)

for some matricesAj \in \BbbR m\times m andBj \in \BbbR n\times n. By choosing a suitablemn\times mnmatrix
representation of the linear operator T , the above decomposition can be written as

T =

r\sum 

j=1

Aj \otimes Bj ,(1.2)

where now Aj \otimes Bj is the standard Kronecker product of matrices Aj and Bj . In the
following we will not distinguish between these two interpretations of T .

The smallest r needed for a decomposition (1.2) to exist is often called the Kron-

ecker rank of T . The Kronecker rank has the (sharp) upper bound

r\leq min
\bigl( 
m2, n2

\bigr) 
,
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1694 M. DRESSLER, A. USCHMAJEW, AND V. CHANDRASEKARAN

and a minimal decomposition can be found by applying a rank revealing decomposition
to a suitable reshape \widehat T of T into an m2 \times n2 matrix [23, 12]; see section 2. In [12],
the Kronecker rank has also been called the Sylvester index of T .

While the usual rank of T \in \BbbR mn\times mn measures the number of linear independent
columns/rows, the Kronecker rank measures the number of linear independent blocks
when partitioning T into m2 blocks of size n\times n. The rank and the Kronecker rank
are unrelated in general. For instance, if T consists of the blocks T\mu \nu = a\mu b

\sansT 

\nu , where
a1, . . . , am and b1, . . . , bm are linear independent systems in \BbbR 

n, then T has ordinary
rank one but Kronecker rank m2 (here m \leq n). Vice versa, when T = A \otimes B with
invertible A and B, its rank is mn while the Kronecker rank is only one.

Linear operators with small Kronecker rank play an important role in numerical
linear algebra and scientific computing.

In particular, they appear in many linear matrix equations arising in control
theory or numerical analysis. While solving a general linear matrix equations such as

T (X) = Y(1.3)

is numerically challenging if sought matrices X are large, a Kronecker structured
equation of the form (1.1) allows for a more efficient numerical treatment if the number
of terms r is not too large. The reason is that the evaluation of the operator T on a
matrix X can be computed by just a few left and right matrix multiplications. This
allows the implementation of iterative methods for solving equations such as (1.3) at
(relatively) small computational cost, and even more so if additional structure of the
matrices Aj and Bj can be exploited.

There is also a second, in a sense more fundamental, reason why operators with
small Kronecker rank are of interest in matrix equations: in practice, it can often be
observed that the solution X to an equation (1.3), where T has small Kronecker rank
and the right-hand side Y is a low-rank matrix, can itself be well approximated by
low-rank matrices. Thus a low-rank model X \approx UV \sansT for the solution is then justified
which in turn makes the application of T via left and right multiplications even more
efficient. This is the basis for many efficient low-rank solvers for matrix equations; see
[17] for an overview. The numerical observation can be rigorously proven for certain
matrix equations, most notably for Sylvester-type equations

T (X) =AX +XB\sansT = Y

when A and B are symmetric positive definite matrices. It can be shown that the
inverse T - 1 of this operator can be approximated in operator norm by a sum of k
Kronecker products with exponential (or subexponential) error decay in k, for in-
stance, by means of exponential sums [7]. Applying such an approximate inverse of
T to the right-hand side Y of the matrix equation provides an approximate solution
whose rank is at most k times the rank of Y , with an error decaying exponentially
in k. This even works for tensor versions of Sylvester-type operators. We refer to
[2, 21, 10, 11, 16, 9] for applications of Kronecker product approximations of opera-
tors and low-rank tensor calculus in scientific computing.

Motivated by the above considerations, we are interested in the general ques-
tion of approximating a matrix T \in \BbbR 

mn\times mn or its inverse by an operator of low
Kronecker rank in operator norm. Given T and a rank bound k, we hence consider
the optimization problem

min
Aj ,Bj

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| T  - 
k\sum 

j=1

Aj \otimes Bj

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2

.(1.4)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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KRONECKER PRODUCT APPROXIMATION OF OPERATORS 1695

Here \| \cdot \| 2 denotes the spectral norm of mn\times mn matrices, which corresponds to the
operator norm on \BbbR 

m\times n with respect to the Frobenius norm. In particular,

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| T  - 
k\sum 

j=1

Aj \otimes Bj

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2

= max
\| X\| F=1

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| T (X) - 
k\sum 

j=1

AjXB\sansT 

j

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
F

.

We will also consider the approximation of inverse operators T - 1 using a different
cost function (section 3.3).

It is known that if in (1.4) we replace the spectral norm by the Frobenius norm,
the approximation problem admits (in principle) a closed-form solution via a singular
value decomposition (SVD) of a reshaped m2 \times n2 matrix \widehat T , which was already
mentioned before. This method has been worked out in [23] and will be explained in
section 2. The main underlying reason that such an approach works for the Frobenius
norm is that this norm is invariant under reshaping a matrix. For the spectral norm,
this is, however, not the case. So while indeed the SVD also provides a best low-rank
approximation in spectral norm of \widehat T as an operator from \BbbR 

n2

to \BbbR 
m2

, it will not
provide the optimal low Kronecker rank approximation for T in spectral norm. To
our knowledge, the problem (1.4) has not been addressed in the literature in this
general form.

In this work, we consider an alternating optimization method for solving (1.4)
based on semidefinite programming. The underlying idea is based on the well-known
fact that the best approximation of a given matrix in spectral norm by an element
from an affine linear matrix subspace can be found by solving a semidefinite program
(SDP) and is therefore computable in polynomial time to a desired accuracy. Due
to the bilinearity of the Kronecker product, an alternating optimization approach for
the unknown matrices Aj and Bj in problem (1.4) leads to a sequence of approxima-
tion problems on linear matrix subspaces, which therefore can be solved via SDPs.
Furthermore, by adding regularization one can even guarantee that the solutions to
the subproblems are unique and bounded, which plays a role in our convergence
analysis.

Such an approach has computational limitations when m or n become large, as it
requires solving rather large scale SDPs. However, as a proof of concept, our numerical
experiments demonstrate that applying our algorithm can provide significantly better
low Kronecker rank approximations to operators T than the SVD method in certain
settings.

The paper is organized as follows. In section 2, we review the SVD method for
computing low Kronecker rank approximations and provide an example showing that
this method can be far from optimal with regard to the spectral norm. Section 3
presents the alternating SDP approach for solving the spectral norm approximation
problem (1.4). We also discuss a regularized version of the problem in section 3.2,
which leads to the general form of Algorithm 3.1. Moreover, we briefly touch upon how
the problem of approximating inverses could be handled (section 3.3). In section 4, we
provide some convergence statements based on results for biconvex optimization from
the literature. Finally, in section 5, we present computational experiments illustrating
the benefit of our proposed approach. We conclude with a brief discussion and an
outlook on potential future work; see section 6.

2. The SVD method. The SVD solution to the Kronecker product approxi-
mation problem has been proposed in [23]; see also [22, 12]. It works by rearranging

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1696 M. DRESSLER, A. USCHMAJEW, AND V. CHANDRASEKARAN

the matrix T \in \BbbR 
mn\times mn into another matrix \widehat T \in \BbbR 

m2\times n2

. Specifically, from a block
partition

T =

\left[ 
   

T11 T12 \cdot \cdot \cdot 
T21

. . .
...

\right] 
   

with m2 blocks T\mu \nu \in \BbbR 
n\times n one constructs the matrix \widehat T with rows vec(T\mu \nu )

\sansT in the
ordering

\widehat T =

\left[ 
       

 - vec(T11)
\sansT  - 

 - vec(T21)
\sansT  - 

...
 - vec(T12)

\sansT  - 
...

\right] 
       
.

It is then easy to see that the Kronecker product decomposition (1.2) of T is equivalent
to a decomposition

\widehat T =

r\sum 

j=1

vec(Aj)(vec(Bj))
\sansT 

into rank-one matrices. This shows that a (usual) low-rank decomposition or approx-
imation of \widehat T yields decompositions or approximations of T by sums of Kronecker
products. Clearly the transformation T \updownarrow \widehat T is an isometry between \BbbR 

mn\times mn and
\BbbR 

m2\times n2

in Frobenius norm, since it only rearranges entries of T .
The required low-rank approximation of \widehat T can be achieved, for instance, using

SVD. This provides the method displayed as Algorithm 2.1, where matm(\cdot ) denotes
the inverse of the vec(\cdot ) operation for m \times m matrices A, that is, matm(vec(A)) =
A. In the algorithm, we included an optional step for optimizing the scaling of the
truncated SVD with respect to spectral norm approximation. It could be solved using
semidefinite programming similar to the methods derived in section 3.

It is now interesting to observe that the approximation
\sum k

j=1Aj \otimes Bj of T ob-
tained by the above procedure is optimal in Frobenius norm; that is, it solves a version
of problem (1.4) in Frobenius norm instead of the spectral norm. The reason is that

Algorithm 2.1 SVD method [23].

Input: Matrix T \in \BbbR mn\times mn, dimensions m,n, approximation rank k
Output: Kronecker rank-k approximation Tsvd of T

Construct the matrix \widehat T from T .

Compute SVD: \widehat T =U\Sigma V \sansT =
\sum r

j=1 \sigma jujv
\sansT 

j .

Set Aj =matm(\sigma 
1/2
j uj), Bj =matn(\sigma 

1/2
j vj).

Set \alpha 1 = \cdot \cdot \cdot = \alpha k = 1.

Optional: Find (\alpha 1, . . . , \alpha k) = argmin\alpha j\in \BbbR 
\| T  - \sum k

j=1\alpha jAj \otimes Bj\| 2.  \triangleleft Optimal
scaling

return Tsvd :=
\sum k

j=1\alpha jAj \otimes Bj

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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KRONECKER PRODUCT APPROXIMATION OF OPERATORS 1697

by the Eckart--Young--Mirsky theorem
\sum k

j=1 \sigma jujv
\sansT 

j is an optimal rank-k approxima-

tion of \widehat T in Frobenius norm and the transformation T \updownarrow \widehat T is an isometry. More
generally, the Eckart--Young--Mirsky theorem actually states that the truncated SVD
of \widehat T is optimal in any unitarily invariant norm on \BbbR 

m2\times n2

; in particular, it is the
best approximation in spectral norm on \BbbR 

m2\times n2

. Therefore,
\sum k

j=1Aj \otimes Bj is also an
optimal approximation of T in the norm defined via

| | | T | | | := \| \widehat T\| 2

on \BbbR 
mn\times mn. Unfortunately, in general, this norm (and other possible ones obtained

in this way) does not equal the spectral norm in \BbbR 
mn\times mn. For example, for T =

I \otimes I \updownarrow \widehat T = vec(Im)vec(In)
\sansT (identity matrices) we have \| T\| 2 = 1, but | | | T | | | =

\| \widehat T\| 2 = \| vec(Im)\| 2\| vec(In)\| 2 =
\surd 
mn.

Correspondingly, the SVD approach will usually not lead to optimal solutions
of the initial approximation problem for T in spectral norm, even if the scaling is
optimized. It is in fact not so difficult to construct such counterexamples.

Example 2.1. Let

T = \sigma 1A1 \otimes B1 +A2 \otimes B2(2.1)

such that \langle A1,A2\rangle = 0, \langle B1,B2\rangle = 0, \| A1\| F = \| A2\| F = \| B1\| F = \| B2\| F = 1, and
\sigma 1 > 1. Here \langle \cdot , \cdot \rangle denotes the Frobenius inner product. Assume the goal is to find a
Kronecker rank-one approximation, i.e., k= 1. Note that by construction (2.1) already
corresponds to an SVD of \widehat T . Hence Algorithm 2.1 proposes Tsvd = \alpha 1\sigma 1A1 \otimes B1 as
an approximation to T . The error is

T  - Tsvd = \sigma 1(1 - \alpha 1)A1 \otimes B1 +A2 \otimes B2.

We now choose A2 = aa\sansT and B2 = bb\sansT to be rank-one matrices (the symmetry is not
essential) with \| a\| 2 = \| b\| 2 = 1, and A1,B1 to be matrices with A1a= 0 and B1b= 0.
Applying T to the rank-one matrix ab\sansT we then have that

(T  - Tsvd)(ab
\sansT ) = \sigma 1(1 - \alpha 1)(A1a)(B1b)

\sansT + aa\sansT ab\sansT bb\sansT = ab\sansT 

for any choice of \alpha 1, using that A1a= 0 and a\sansT a= b\sansT b= 1. This shows that

\| T  - Tsvd\| 2 \geq 1.

(Actually, when \alpha 1 is picked optimally as assumed in Algorithm 2.1, one also has
\| T  - Tsvd\| 2 \leq \| A2 \otimes A1\| 2 = 1, hence equality.) On the other hand, using A2 \otimes B2 as
an approximation would lead to

\| T  - A2 \otimes B2\| 2 = \| \sigma 1A1 \otimes B1\| 2 = \sigma 1\| A1\| 2\| B1\| 2

using properties of the Kronecker product. If we take A1 and B1 to be of rank m - 1
and n - 1, respectively, with identical (nonzero) singular values 1\surd 

m - 1
and 1\surd 

n - 1
, we

obtain

\| T  - A2 \otimes B2\| 2 = \sigma 1
1\sqrt{} 

(m - 1)(n - 1)
.(2.2)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1698 M. DRESSLER, A. USCHMAJEW, AND V. CHANDRASEKARAN

For \sigma 1 close to one and m,n large this is much smaller than one, demonstrating
that the SVD solution can be rather bad. Note that in this construction (assuming
\sigma 1

1\surd 
(m - 1)(n - 1)

< 1), one can show that \| T\| 2 = 1, so the above estimates measure the

relative error. The SVD solution is hence not better than taking the zero approxima-
tion.

The above example is designed artificially to make the SVD method fail to pro-
vide a reasonably low Kronecker rank approximation in spectral norm, which clearly
motivates the need for alternative methods. Of course, in practical instances the SVD
solution might not be as bad. This is also observed in the numerical experiments in
section 5, where the SVD method provides useful results that can still be significantly
improved.

3. Alternating SDP approach. In this main section we describe an approach
for solving the problem (1.4) based on alternating optimization and semidefinite pro-
gramming.

3.1. Basic idea. We use the fact that a minimization of the operator norm on
an affine linear space of matrices can be turned into an SDP; see [3, section 4.6.3].
This is based on the observation that for a matrix an inequality \| S\| 2 \leq \tau for the
spectral norm is equivalent with S\sansT S \preceq \tau 2I and I being the identity matrix. Hence
the problem (1.4) can be first reformulated as

min
\tau \geq 0,Aj ,Bj

\tau 

s.t.

\left( 
 T  - 

k\sum 

j=1

Aj \otimes Bj

\right) 
 
\sansT \left( 
 T  - 

k\sum 

j=1

Aj \otimes Bj

\right) 
 \preceq \tau 2I.

By applying the Schur complement this turns into

min
\tau ,Aj ,Bj

\tau 

s.t. M(\tau ,A,B)\succeq 0
(3.1)

with

M(\tau ,A,B) :=

\Biggl[ 
\tau I T  - 

\sum k
j=1Aj \otimes Bj

(T  - 
\sum k

j=1Aj \otimes Bj)
\sansT \tau I

\Biggr] 
.

Note that the condition \tau \geq 0 has been dropped in this second version since it is
automatically implied by the positive semidefiniteness of M(\tau ,A,B).

SinceM(\tau ,A,B) is affine linear in each of the (block) variables \tau , A= (A1, . . . ,Ak),
and B = (B1, . . . ,Bk), we have achieved that the optimization problem (3.1) for each
of these block variables, when the others are kept fixed, is an SDP. In fact, the
problem for the auxiliary variable \tau can be subsumed into the other ones: we have
an SDP in (\tau ,A) when B is fixed, or in (\tau ,B) when A is fixed. As SDPs can be
solved in polynomial time to a desired accuracy, this suggests an alternating opti-
mization strategy to tackle the initial problem (1.4) through a sequence of SDPs:
we first fix B = (B1, . . . ,Bk) and optimize A = (A1, . . . ,Ak) (and \tau ), and then we
fix A to find the optimal B (and \tau ). We describe a generalization of this proce-
dure in what follows with additional regularization parameters in Algorithm 3.1. By
construction the subproblems for A and B always admit at least one solution, since

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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KRONECKER PRODUCT APPROXIMATION OF OPERATORS 1699

from (1.4) it follows that they are equivalent with finding a best approximation of T
in operator norm on the linear subspaces \{ \sum k

j=1Aj \otimes Bj : A1, . . . ,Ak \in \BbbR 
m\times m\} and

\{ \sum k
j=1Aj \otimes Bj : B1, . . . ,Bk \in \BbbR n\times n\} of \BbbR mn\times mn, respectively.

3.2. Adding regularization. While the subproblems for A and B in the alter-
nating optimization approach outlined above are guaranteed to admit optimal solu-
tions, neither uniqueness nor a uniform boundedness of these solutions seems to be
easy to guarantee in general. As we will see in section 4, this poses a problem in the
convergence analysis of alternating block minimization problems. Both issues can be
addressed by adding regularization to the approach outlined in section 3.1, albeit at
the expense of larger SDPs.

For convenience, we define

F (A,B) :=

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| T  - 
k\sum 

j=1

Aj \otimes Bj

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2

,

where again A= (A1, . . . ,Ak) and B = (B1, . . . ,Bk). Instead of (1.4) we then consider

minF\lambda ,\mu (A,B) = F (A,B) + \lambda 

k\sum 

j=1

\| Aj\| 2F + \mu 

k\sum 

j=1

\| Bj\| 2F(3.2)

with regularization parameters \lambda ,\mu \geq 0. If \lambda > 0, then for fixed B the function
A \mapsto \rightarrow F\lambda ,\mu (A,B) is strictly convex and coercive. A similar statement holds for the
function B \mapsto \rightarrow F\lambda ,\mu (A,B) in the case \mu > 0. Therefore, if \lambda and \mu are positive, the
subproblems now admit unique solutions. Moreover, the sequences of solutions can
easily be bounded (since the function values of F\lambda ,\mu are decreasing and F is bounded
from below).

We claim that in the regularized problem the subproblems for A and B
(and likewise for single Aj and Bj) can again be turned into SDPs as follows. Assume
B is fixed and A should be optimized. Introducing slack variables \gamma 0, \gamma 1, . . . , \gamma k we
first rewrite (3.2) as

min
\tau , \gamma 0, \gamma 1,...,\gamma k,A

\tau 

s.t. F (A,B)\leq \gamma 0,

\lambda \| Aj\| 2F \leq \gamma j , j = 1, . . . , k,

\gamma 0 + \gamma 1 + \cdot \cdot \cdot + \gamma k \leq \tau .

As in (3.1), the first constraint F (A,B)\leq \gamma 0 can be turned into M(\gamma 0,A,B)\succeq 0.
The constraints \lambda \| Aj\| 2F \leq \gamma j are equivalent to

N\lambda (\gamma j ,Aj) :=

\biggl[ 
\gamma j

\surd 
\lambda vec(Aj)\surd 

\lambda vec(Aj)
\sansT I

\biggr] 
\succeq 0(3.3)

due to the Schur complement. Finally note that the last constraint is \tau  - \gamma 0  - \cdot \cdot \cdot  - 
\gamma k \geq 0. We hence arrive at the following SDP:

min
\tau , \gamma 0, \gamma 1,...,\gamma k,A

\tau 

s.t. M(\gamma 0,A,B)\succeq 0,

N\lambda (\gamma j ,Aj)\succeq 0, j = 1, . . . , k,

\tau  - \gamma 0  - \cdot \cdot \cdot  - \gamma k \geq 0.

(3.4)

Note that the constraints automatically imply \gamma 0, \gamma 1, . . . , \gamma k \geq 0, and thus also \tau \geq 0.
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Algorithm 3.1 Alternating SDP method (ASDP).

Input: Operator T , dimensions m,n, initial B0 = (B01, . . . ,B0k), approximation
rank k, regularization parameters \lambda ,\mu \geq 0, number of iterations Nouter

Output: Kronecker rank-k approximation Tsdp of T in spectral norm
B\leftarrow B0

for Nouter iterations do
Update A by solving the SDP (3.4) with current B fixed.
Update B by solving the SDP (3.5) with current A fixed.

end for

return Tsdp :=
\sum k

j=1Aj \otimes Bj

When A is fixed and we aim to optimize for B, we have to solve the analogous
problem

min
\tau , \delta 0, \delta 1,...,\delta k,B

\tau 

s.t. M(\delta 0,A,B)\succeq 0,

N\mu (\delta j ,Bj)\succeq 0, j = 1, . . . , k,

\tau  - \delta 0  - \cdot \cdot \cdot  - \delta k \geq 0.

(3.5)

Here we have slightly abused notation since N\mu (\delta j ,Bj) might be of different size than
defined in (3.3). Of course, when \lambda or \mu are zero, the corresponding constraints in
(3.4) and (3.5) can be simply omitted and the problem reduces to the basic idea
explained in section 3.1.

The resulting alternating SDP algorithm is summarized as Algorithm 3.1.

3.3. Approximation of inverse operators. As outlined in the introduction,
in several applications one is actually interested in the approximation of the inverse
T - 1 of a given operator T by sums of Kronecker products. We note that there is no
obvious relation between low Kronecker rank approximations of T and T - 1. Of course,
when T = A \otimes B has Kronecker rank one and is invertible (with A and B square),
then necessarily A and B are invertible and T - 1 =A - 1\otimes B - 1. Apart from that, it is
often numerically observed that when T has small Kronecker rank, then T - 1 is well

approximable by low Kronecker rank. For Sylvester-type operators T =A\otimes I + I \otimes B
(Kronecker rank two) this can be rigorously proven [7]; this is discussed for the special
case of Lyapunov operator in section 5.3.

Since the goal would be to find an approximation of T - 1 without forming it
explicitly, we cannot apply the above methods directly. A natural way is to consider
the modified optimization problem

min
Aj ,Bj

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
I  - T \cdot 

\left( 
 

k\sum 

j=1

Aj \otimes Bj

\right) 
 
\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2

(3.6)

instead and tackle it via alternating optimization. Here \cdot is the matrix product. Note
that doing this for the Frobenius norm would lead to an alternating least squares
algorithm. For the spectral norm, we rely once again on semidefinite programming.

The derivation of an ASDP method for (3.6) is almost analogous to the one
developed above. Instead of (3.1), we now have to solve
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min
\tau ,Aj ,Bj

\tau 

s.t. Minv(\tau ,A,B)\succeq 0
(3.7)

with

Minv(\tau ,A,B) :=

\Biggl[ 
\tau I I  - T \cdot (

\sum k
j=1Aj \otimes Bj)

(I  - T \cdot (
\sum k

j=1Aj \otimes Bj))
\sansT \tau I

\Biggr] 
.(3.8)

Since Minv is affine linear in \tau , A, and B, this problem can again be tackled via
ASDPs.

It also possible to include regularization in the same way as in (3.2). The resulting
SDP problems in the alternating optimization approach read the same as (3.4) and
(3.5), except with M(\tau ,A,B) being replaced with Minv(\tau ,A,B).

Note that in such an implicit formulation to approximate the inverse one does in
principle not need T in the full format but only the ability to apply T to operators
of the form

\sum k
j=1Aj \otimes Bj several times. While without any structure this poses a

potential computational bottleneck, it can be handled in the situation when T itself
is a sum of Kronecker products,

T =

r\sum 

J=1

CJ \otimes DJ .

Then Minv(\tau ,A,B) becomes

Minv =

\left[ 
      

\tau I I  - 
r\sum 

J=1

k\sum 

j=1

(CJAj)\otimes (DJBj)

\Biggl( 
I  - 

r\sum 

J=1

k\sum 

j=1

(CJAj)\otimes (DJBj)

\Biggr) \sansT 

\tau I

\right] 
      
.(3.9)

If k and r are small, the double sums can be efficiently computed.
We point out that the implicit formulation (3.6) for approximating inverses comes

at a price in the case of badly conditioned operators. On the one hand, (3.6) gives
us full control on the relative approximation error of T - 1 as follows: assume we have
achieved \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 

I  - T \cdot 

\left( 
 

k\sum 

j=1

Aj \otimes Bj

\right) 
 
\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2

\leq \varepsilon ;

then \bigm\| \bigm\| \bigm\| T - 1  - 
\sum k

j=1Aj \otimes Bj

\bigm\| \bigm\| \bigm\| 
2

\| T - 1\| 2
\leq 
\| T - 1\| 2

\bigm\| \bigm\| \bigm\| I  - T \cdot 
\Bigl( \sum k

j=1Aj \otimes Bj

\Bigr) \bigm\| \bigm\| \bigm\| 
2

\| T - 1\| 2
\leq \varepsilon .

On the other hand, when the goal is to compute approximate solutions of linear matrix
equations such as (1.3) by replacing T - 1 with its approximation, then the absolute
error or the relative error with respect to \| T\| 2 would be of more relevance. We have

\bigm\| \bigm\| \bigm\| T - 1  - \sum k
j=1Aj \otimes Bj

\bigm\| \bigm\| \bigm\| 
2

\| T\| 2
\leq \| T

 - 1\| 2
\| T\| 2

\varepsilon ,

so this error estimate deteriorates with a bad condition number. Since the case of
ill conditioned operators appears frequently in numerical analysis, this may put some
additional limitations on this approach. In section 5.3 we conduct some numerical
experiments for approximating inverses based on formulation (3.6).
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1702 M. DRESSLER, A. USCHMAJEW, AND V. CHANDRASEKARAN

4. Convergence. Algorithm 3.1 realizes a block coordinate optimization method
for the nonconvex cost function

F\lambda ,\mu (A,B) =

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| T  - 
k\sum 

j=1

Aj \otimes Bj

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2

+ \lambda 
k\sum 

j=1

\| Aj\| 2F + \mu 
k\sum 

j=1

\| Bj\| 2F

in problem (3.2) by sequentially setting block variables to restricted global minima:

A(\ell +1) \leftarrow argmin
A

F\lambda ,\mu (A,B(\ell )),

B(\ell +1) \leftarrow argmin
B

F\lambda ,\mu (A
(\ell +1),B).

(4.1)

The convergence of such block coordinate methods is in general not easy to deduce
and requires specific assumptions. For differentiable cost functions it can be shown
that if the subproblems are guaranteed to admit unique minima, then all accumulation
points of the iterates must be critical points; see, e.g., [1, Proposition 3.7.1]. However,
F\lambda ,\mu above is not a differentiable function, since the spectral norm is not. However,
it is still a continuous biconvex function which means that the restriction to one of
the block variables A or B is always a convex function. The convergence of of (4.1)
for such functions has been studied in [20] and [6] on which we rely in what follows.

Fixed points (A\ast ,B\ast ) of the procedure (4.1) are characterized by the properties

F\lambda ,\mu (A
\ast ,B\ast )\leq F\lambda ,\mu (A,B\ast ) and F\lambda ,\mu (A

\ast ,B\ast )\leq F\lambda ,\mu (A
\ast ,B)

for all A and B, respectively. Such points are called partial optima (of the func-
tion F\lambda ,\mu ). By [20, Theorem 5.1], any accumulation point (A\ast ,B\ast ) of the sequence
(A(\ell ),B(\ell )) generated by (4.1) for the biconvex function F\lambda ,\mu will be indeed a partial
optimum (i.e., a fixed point of (4.1)) if the restricted functions A \mapsto \rightarrow F\lambda ,\mu (A,B) and
B \mapsto \rightarrow F\lambda ,\mu (A,B) are hemivariate (which means they are not constant on any line seg-
ment) and if, in addition, F\lambda ,\mu has bounded sublevel sets. Both properties are ensured
when \lambda > 0 and \mu > 0. The restricted functions are then even strictly convex and
coercive, implying that the subproblems have unique minima.

In [6, Theorem 4.9] a similar but slightly weaker condition is required to have the
same conclusion: for continuous biconvex functions any accumulation point (A\ast ,B\ast )
of a sequence (A(\ell ),B(\ell )) generated by (4.1) is indeed a partial optimum under the
assumptions that (i) the iterates are bounded and (ii) at every accumulation point
(A\ast ,B\ast ) it holds that either A \mapsto \rightarrow F\lambda ,\mu (A,B\ast ) or B \mapsto \rightarrow F\lambda ,\mu (A

\ast ,B) has a unique
minimizer. However, in order to ensure both conditions we would again require \lambda > 0
and \mu > 0. In this case, both restricted functions have unique minimizers for which
[6, Theorem 4.9] additionally states that (A(\ell +1),B(\ell +1)) - (A(\ell ),B(\ell ))\rightarrow 0.

From the discussion above we conclude that if regularization is present we have
the following convergence result for Algorithm 3.1.

Theorem 4.1. Assume \lambda > 0 and \mu > 0. Then the sequence (A(\ell ),B(\ell )) generated
by Algorithm 3.1 possesses at least one accumulation point (A\ast ,B\ast ). Further, every

accumulation point is a partial optimum of F\lambda ,\mu and achieves the same function value

F\lambda ,\mu (A
\ast ,B\ast ). It holds that (A(\ell +1),B(\ell +1)) - (A(\ell ),B(\ell ))\rightarrow 0.

Proof. Since the sublevel sets of F\lambda ,\mu are bounded when \lambda > 0 and \mu > 0, and
F\lambda ,\mu (A

(\ell ),B(\ell )) is monotonically decreasing, there exists at least one accumulation
point, and all accumulation points take the same function value. For the statements
on the accumulation points we refer to [20, Theorem 5.1] and [6, Theorem 4.9] as
discussed above.
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For clarity, we point out that in the case \lambda = 0 or \mu = 0 the solvability of the
substeps is still ensured, since, e.g., the update of A realizes a best approximation of
T in operator norm on the linear subspace of all

\sum k
j=1Aj\otimes Bj with the B being fixed.

However, we cannot guarantee uniqueness in the subproblems in this case. Moreover,
we are unable to even ensure boundedness of the iterates, although we do not have a
counterexample at hand.

Let us also briefly discuss whether partial optima of F\lambda ,\mu are critical points.
Clearly, if F\lambda ,\mu is differentiable at a partial optimum (A\ast ,B\ast ), then \nabla F\lambda ,\mu (A

\ast ,
B\ast ) = 0. This condition boils down to \| T  - \sum k

j=1Aj \otimes Bj\| 2 being differentiable
in (A\ast ,B\ast ). It is well known that the matrix spectral norm function

S \mapsto \rightarrow \| S\| 2 = max
\| x\| 2=1

\| Sx\| 2

is differentiable at such S for which the maximum on the right-hand side is achieved for
a unique x. This follows from a general result on max-functions [5]. Alternatively, let
s1 \geq s2 \geq \cdot \cdot \cdot \geq 0 denote the singular values of S; then the spectral norm \| S\| 2 = s1 is
(continuously) differentiable at S if s1 > s2 [18]. This leads to the following statement:
if at a partial optimum (A\ast ,B\ast ) of F\lambda ,\mu the matrix S = T  - \sum k

j=1Aj \otimes Bj has a
unique largest singular value, then (A\ast ,B\ast ) is a critical points of F\lambda ,\mu in the sense
that\nabla F\lambda ,\mu (A

\ast ,B\ast ) = 0. Unfortunately, at the moment we do not have any alternative
characterization of this property in terms of structural properties of T .

5. Numerical experiments. In this section, we present results of computa-
tional experiments showcasing the potential advantages of the proposed ASDP ap-
proach. The algorithms have been coded in MATLAB. The SDPs are implemented
using the YALMIP toolbox [14] with the SDP solver SeDuMi [19]. An advantage of
this toolbox is that the SDPs can be parsed almost directly in the given forms such
as (3.4) and (3.5). However, solving those SDPs becomes computationally expensive
in larger dimensions, and no attempts at a more efficient implementation have been
made. This explains the small values for m and n in the following experiments. One
should also keep in mind that the nonconvex and nonsmooth optimization task (1.4)
is far from trivial even in small dimensions. Our goal here is a proof of concept that
the ASDP approach allows for better approximations in spectral norm than methods
based on Frobenius norm.

5.1. Illustration of Example 2.1. As a first experiment we simulate the con-
struction given in Example 2.1 in which the SVD solution is particularly poor. We
take m= n and construct

T = \sigma 1A1 \otimes B1 +A2 \otimes B2(5.1)

with \sigma 1 = 1.9 and

A1 =B1 =
1\surd 

m - 1

\biggl( 
Im - 1 0
0 0

\biggr) 
, A2 =B2 =

\biggl( 
0m - 1 0
0 1

\biggr) 
.

Here Im - 1 and 0m - 1 are the (m - 1)\times (m - 1) identity and zero matrix, respectively.
The goal is to solve (1.4) with k= 1, that is, to minimize \| T  - A\otimes B\| 2.

As explained in Example 2.1, the SVD method in Algorithm 2.1 will select a
solution Tsvd = \alpha 1\sigma 1A1\otimes A2, but the error will be constant, \| T - Tsvd\| 2 = 1. Note that
for m= n\geq 3 this is also the relative error, since \| T\| 2 = 1 then. On the other hand,
an optimal approximation should yield an error less than \| T - A2\otimes B2\| 2 = \sigma 1/(m - 1).
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1704 M. DRESSLER, A. USCHMAJEW, AND V. CHANDRASEKARAN

Fig. 1. Results of Algorithm 2.1 (SVD method) and Algorithm 3.1 (ASDP) with k = 1 for the
operator T in (5.1) with m= n= 3, . . . ,10. The y-axis shows the error \| T - A\otimes B\| 2 for the computed
approximation A\otimes B. Note that \| T\| 2 = 1. The red and yellow curves agree.

In Figure 1 we compare the achieved error \| T  - A\otimes B\| 2 of the SVD method com-
puted by Algorithm 2.1 (dashed line) with ASDP solutions obtained with
Algorithm 3.1 for different values m = 3, . . . ,10. Three setups for Algorithm 3.1
were tested: For the red curve (cross markers) and yellow curve (square markers) no
regularization has been applied, whereas in the purple curve (triangle markers) we
took \lambda = \mu = 0.1. The red curve uses the SVD solution as an initial guess (for B).
For the yellow and purple curve we used a random initial guess (the same for both).
In all cases only Nouter = 5 iterations were performed.

As expected, the SVD solution produces a constant error \| T  - A\otimes B\| 2 = 1. The
other curves follow a predicted algebraic decay. As a curiosity, the purple curve, for
which regularization was used, coincides exactly with the error bound \sigma 1/(m - 1). In
fact, due to the diagonal structure of T, any A\otimes B = \beta A2\otimes B2 with 1 - \beta \leq \sigma 1/(m - 1)
achieves this approximation error, and the algorithm indeed returned such solutions
with 1  - \beta = \sigma 1/(m  - 1) because with regularization it also aims at A and B with
small Frobenius norms. We did not investigate the effect in detail, but it occurs for
a certain range of \lambda and \mu . The red and yellow curves in Figure 1, obtained without
regularization, produce even better approximations and are on top of each other. This
shows that in this example the choice of the initial guess does not seem to have a big
influence and may even suggest that the obtained solutions could be globally optimal.

5.2. Approximation of random operators. In this experiment we apply the
algorithms to a matrix T \in \BbbR 

mn\times mn with random Gaussian entries (normalized to
\| T\| 2 = 1) and for a sequence of target Kronecker ranks k = 1,2, . . . ,min(m2, n2).
Recall that with k =min(m2, n2) an exact decomposition exists, so the error should
be zero.

Figure 2 shows computed approximation errors \| T  - \sum k
j=1Aj\otimes Bj\| 2 for the case

m = 4, n = 5, and k = 1,2, . . . ,16. The ASDP curves are obtained using the same
setup as in section 5.1 (again Nouter = 5), except that for the purple curve (triangle
markers) the regularization parameters were adapted to \lambda = \mu = 0.1/k. Decreasing the
regularization with k is necessary to account for the effect that the number of penalized
terms \| Aj\| F and \| Bj\| F grows while the norms \| T - \sum k

j=1Aj\otimes Bj\| 2 remain bounded
(and are even intended to decrease). Hence for larger k the regularization terms would
dominate in the optimization problem, and indeed in our experiments we observed

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o

w
n
lo

ad
ed

 1
0
/1

5
/2

4
 t

o
 1

3
1
.2

1
5
.2

2
0
.1

6
5
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y



KRONECKER PRODUCT APPROXIMATION OF OPERATORS 1705

Fig. 2. Comparison of Algorithm 2.1 (SVD method) and Algorithm 3.1 (ASDP) for a random

T \in \BbbR 
mn\times mn with m= 4, n= 5, scaled to \| T\| 2 = 1. The y-axis shows the error \| T - 

\sum k
j=1Aj\otimes Bj\| 2

of computed approximations for k= 1,2, . . . ,16.

that using the same \lambda and \mu for all k did not lead to a descending approximation
error.

We note that the ASDP method is able to significantly improve the relative ap-
proximation error compared to the SVD method, even when randomly initialized.
This last point is particularly relevant when the computation of an SVD of the m2\times n2

matrix \widehat T needs to be avoided.

5.3. Inverses of operators with small Kronecker rank. Following the con-
siderations in section 3.3 we present some experimental results for approximating in-
verses T - 1 of operators T which themselves have small Kronecker rank. This is based
on the modified cost function (3.6) to which we also add regularization terms. The
ASDP algorithm for this problem is almost identical to Algorithm 3.1, the (formally)
only change being that M(\tau ,A,B) in the subproblems (3.4) and (3.5) is replaced with
Minv(\tau ,A,B) in (3.8). We note that in the experiments we did not implement the
more efficient representation (3.9) of Minv but instead treated T as an unstructured
operator in (3.8).

Two scenarios are considered. The first is a Lyapunov operator

T =L\otimes I + I \otimes L,(5.2)

where L is positive definite. This is a special case of more general Sylvester-type
operators T = L1 \otimes I + I \otimes L2 with L1 and L2 positive definite. Such types of
operators play an important role in matrix equations and numerical analysis, and it is
well known that their inverses admit highly accurate approximations in spectral norm
by operators of low Kronecker rank [2, 7]. Specifically, spectral approximation of T - 1

by sums of exponentials leads to operators of the form Sk =
\sum k

j=1wj exp( - tjL1)\otimes 
exp( - tjL2), where the parameters wj and tj can be chosen such that the error to
T - 1 satisfies

\| T - 1  - Sk\| 2 \leq Ce - ck.

Here the optimal choice of the parameters, as well as the resulting constants c and C,
depends on the spectral bounds of L1 and L2, and the constants deteriorate with a
growing condition number. If only a positive lower bound on the smallest eigenvalues
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Fig. 3. Numerical results for approximating the inverse of the Lyapunov operator (5.2) with
m= n= 10 and approximation ranks k= 1,2, . . . ,8. Solid lines correspond to implicit methods based
on formulation (3.6). For comparison, dashed lines apply Algorithms 2.1 and 3.1 directly to T - 1.

of L1 and L2 is known (and the largest eigenvalues are potentially unbounded), one

still has a subexponential but superalgebraic convergence rate \| T - 1 - Sk\| 2 \leq Ce - c
\surd 
k

with (different) constants independent from the upper bound on the spectrum. We
refer to [9, section 9.8.2].

In the numerical experiment we take T of the form (5.2) with m = n = 10
and L = 1

m - 1 tridiag( - 1,2, - 1) (tridiagonal matrix), which corresponds to a finite-
difference discretization of a (negative) second derivative. The results are shown in

Figure 3. Depicted are the computed relative errors
\| T - 1 - 

\sum k
j=1

Aj\otimes Bj\| 2

\| T - 1\| 2
for several

algorithms and approximation ranks k = 1,2, . . . ,8. The red (cross markers) and
yellow (square markers) solid lines are the results of an ASDP method for solving
(3.6) without regularization (\lambda = \mu = 0). The only difference between them is that
for the yellow curve a random initialization of the Bj has been taken, whereas for
the red curve the Bj were initialized with the solution computed by an alternating

least squares (ALS) method for the corresponding problem minAj ,Bj
\| T  - \sum k

j=1Aj \otimes 
Bj\| F in Frobenius norm. This ALS solution is shown as solid blue curve (circle
markers). For comparison, we include the results from the SVD and ASDP methods
(Algorithms 2.1 and 3.1) when applied directly to the inverse operator T - 1, which we
explicitly computed for this purpose. In all methods Nouter = 5.

Since the plot is in semilogarithmic scale, the results verify the fact that T - 1 is
extremely well approximable in spectral norm by sums of Kronecker products. No big
differences between the algorithms can be identified. While the implicit approach (3.6)
clearly works, somewhat surprisingly the ALS method based on the Frobenius norm
provides slightly better results. We did not investigate whether this could be caused by
internal termination criteria in the SDP solver, but it also does not violate the theory
since the approximation of T - 1 in (3.6) is only an implicit one. We note that in this
example \| T - 1\| 2 \approx 55.5. Therefore the absolute error \| T - 1 - \sum k

j=1Aj\otimes Bj\| 2 is larger
(at most) by this factor than the depicted curves; see the discussion in section 3.3.

In the second scenario, we apply the same algorithms to an operator

T =C1 \otimes D1 +C2 \otimes B2 +C3 \otimes D3(5.3)

of Kronecker rank 3. In this case we are not aware of a rigorous result on the ap-
proximability of T - 1 by Kronecker products. We take m = n = 5 and generate the

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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Fig. 4. Numerical results for approximating the inverse of T in (5.3) with m = n = 5 and
approximation ranks k = 1,2, . . . ,25. In the left plot CJ , BJ are positive definite, in the right one
general. The legend applies to both plots.

matrices CJ and DJ randomly; then we scale T to \| T\| 2 = 1. We distinguish, however,
two cases: in the first the CJ and DJ are symmetric positive definite (achieved by
replacing them with CJC

\sansT 

J and DJD
\sansT 

J ); in the second they are not. Figure 4 shows

the computed relative errors
\| T - 1 - \sum k

j=1
Aj\otimes Bj\| 2

\| T - 1\| 2
for k = 1,2, . . . ,25 for both cases.

Here we have set Nouter = 10 for the alternating optimization methods. The left plot
indicates a better error decay in the positive definite case, perhaps even super alge-
braic. Here \| T - 1\| 2 \approx 83.4. In the right plot, the implicit methods (solid lines) do not
quite capture the achievable error decay (dashed lines). However, compared to the
left plot here the ASDP approach performs significantly better than the ALS method
based on Frobenius norm. In this example \| T - 1\| 2 \approx 203.4.

6. Conclusion and outlook. The problem of approximating a linear operator
by sums of Kronecker products in spectral norm is of interest in matrix equations and
low-rank calculus. While for the Frobenius norm the approximation problem admits
a solution using the SVD, Example 2.1 shows that the obtained approximation can
be far from optimal in spectral norm and suggests that alternative methods should
be studied. In this work, we propose to tackle the approximation problem in spec-
tral norm directly utilizing alternating optimization, where the subproblems can be
formulated as SDPs and can therefore be solved in polynomial time to a desired ac-
curacy. The numerical experiments suggest that only a few iterations are necessary
to obtain improved approximations using this approach.

This initial work on the subject could be extended in several directions. The
presented approach requires the solution of rather high-dimensional SDPs which is
computationally expensive and potentially limits the practical applicability. A focus of
future work could be to improve the efficiency by fully exploiting structural properties
of the operator T such as sparsity or low (Kronecker) rank in an implementation. In
certain situations, it might also be possible to assume a low-rank model for the factor
matrices Aj and Bj . In such cases one could appeal to the recent literature for
(approximately) solving in an efficient manner large SDPs for which one expects low-
rank solutions; see, for example, [4]. Note that such models, i.e., sums of Kronecker
products of low-rank matrices, are of potential interest in quantum entanglement; see,
e.g., [8, 15, 13].

An extension of the results to complex matrices should be straightforward. We
also mention that the ASDP approach could be generalized to problems on tensor
spaces, that is, for finding low Kronecker rank approximations

\sum k
j=1A

(1)
j \otimes \cdot \cdot \cdot \otimes A

(d)
j

to operators on tensor spaces.
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