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Abstract. Convex regression is the problem of fitting a convex function to a data set consisting
of input-output pairs. We present a new approach to this problem called spectrahedral regression,
in which we fit a spectrahedral function to the data, i.e., a function that is the maximum eigenvalue
of an afine matrix expression of the input. This method represents a significant generalization
of polyhedral (also called max-afine) regression, in which a polyhedral function (a maximum of a
fixed number of afine functions) is fit to the data. We prove bounds on how well spectrahedral
functions can approximate arbitrary convex functions via statistical risk analysis. We also analyze
an alternating minimization algorithm for the nonconvex optimization problem of fitting the best
spectrahedral function to a given data set. We show that this algorithm converges geometrically with
high probability to a small ball around the optimal parameter given a good initialization. Finally,
we demonstrate the utility of our approach with experiments on synthetic data sets as well as real
data arising in applications such as economics and engineering design.

Key words. convex regression, support function estimation, semidefinite programming, approx-
imation of convex bodies
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1. Introduction. The problem of identifying a function that approximates a
given dataset of input-output pairs is a central one in data science. In this paper we
consider the problem of fitting a convex function to such input-output pairs, a task
known as convex regression. Concretely, given data {x(!), y("}"__ t R9s R, our objec-
tive is to identify a convex function f'such that f{x() x y() for eachi= 1,...,n. In
some applications, one seeks an estimate f ¥hat is convex and positively homogeneous; in
such cases, the problem may equivalently be viewed as one of identifying a con-vex
set given (possibly noisy) support function evaluations. Convex reconstructions in
such problems are of interest for several reasons. First, prior domain information in
the context of a particular application might naturally lead a practitioner to seek
convex approximations. One prominent example arises in economics, in which the
theory of marginal utility implies an underlying convexity relationship. Another im-
portant example arises in computed tomography applications in which one has access
to support function evaluations of some underlying set, and the goal is to reconstruct
the set; here, due to the nature of the data acquisition mechanism, the set may be
assumed to be convex without loss of generality. A second reason for preferring a
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Fig. 1. Models for average weekly wage based on years of experience and education using spec-
trahedral and polyhedral regression. From left to right: The underlying data set, the spectrahedral (m
= 3) estimator, and the polyhedral (m = 6) estimator. A transformation in the years of education
covariate gives a data set that is approximately convex.

convex reconstruction f is computational--in some applications the goal is to sub-
sequently use  as an objective or constraint within an optimization formulation.
For example, in aircraft design problems, the precise relationship between various at-
tributes of an aircraft is often not known in closed form, but input-output data are
available from simulations; in such cases, identifying a good convex approximation
for the input-output relationship is useful for subsequent aircraft design using convex
optimization.
A natural first estimator one might write down is

nf
(1.1) 2)5 N argming.g o R is a convex function % (y(i) - f(x(i)))z-

i=1
There always exists a polyhedral function that attains the minimum in (1.1), and
this function may be computed eficiently via convex quadratic programming [21,
22, 25]. However, this choice suffers from a number of drawbacks. For a large sample
size, the quality of the resulting estimate suffers from overfitting as the complexity
of the reconstruction grows with the number of data points. For small sample sizes,
the quality of the resulting estimate is often poor due to noise. From a statistical
perspective, the estimator may also be suboptimal [16, 17]. For these reasons, it is
of interest to regularize the estimator by considering a suitably constrained class of
convex functions.

The most popular approach in the literature to penalize the complexity of the
reconstruction in (1.1) is to fit a polyhedral function that is representable as the max-
imum of at most m afine functions (for a user-specified choice of m) to the given
data [4, 10, 11, 13, 19, 28], which is based on the observation that convex func-
tions are suprema of afine functions. However, this approach is inherently restric-
tive in situations in which the underlying phenomenon is better modeled by a non-
polyhedral convex function, which may not be well-approximated by m-polyhedral
functions. Further, in settings in which the estimated function is subsequently used
within an optimization formulation, the above approach constrains one to using linear-
programming (LP) representable functions. See Figure 1 for a demonstration with
economic data.

To overcome these limitations, we consider fitting spectrahedral functions to data.
To define this model class, let S| denote the set of ms m real symmetric matrices
that are block-diagonal with blocks of size at most ks k, with k dividing m.
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Definition 1.1. Fix positive integers m, k such that k divides m. A function
f :R9w R is called (m, k)-spectrahedral if it can be expressed as follows:

( i )
f(X)= dmax AiXi+ B ’
i=1

where A1, ...,Aq,B n SP. Here amax(t) is the largest eigenvalue of a matrix.

An (m, k)-spectrahedral function is convex as it is a composition of a convex
function with an afine map. For the case k = 1, the matrices A1,...,Aq,B are
all diagonal and we recover the case of m-polyhedral functions. The case k = 2
corresponds to second-order-cone-programming (SOCP) representable functions, and
the case k = m utilizes the expressive power of semidefinite programming (SDP). In
analogy to the enhanced modeling power of SOCP and SDP in comparison to LP, the
class of (m, k)-spectrahedral functions is much richer than the set of m-polyhedral
functions for general k > 1. For instance, when k = m = d+ 1 this class contains the
function f(x) = |x| 2 for x n RY as illustrated in (3.3). For estimates that are (m, k)-
spectrahedral, subsequently employing them within optimization formulations yields
optimization problems that can be solved via SOCP and SDP.

An (m, k)-spectrahedral function that is positively homogeneous (i.e., B = 0 in
the definition above) is the support function of a convex set that is expressible as the
linear image of an (m, k)-spectraplex defined, for positive integers k and m such that
k divides m, by

(1.2) Smk={MnS" [tr(M)=1, Mq 0}.

We refer to the collection of linear images of Sm,k as (m, k)-spectratopes. Again, the
case k = 1 corresponds to the m-simplex, and the corresponding linear images are
m-polytopes. Thus, in the positively homogeneous case, our proposal is to identify a
linear image of an (m, k)-spectraplex to fit a given set of support function evaluations.
We note that the case k = m was recently considered in [27], and we comment in more
detail on the comparison between the present paper and [27] in section 1.2.

1.1. Our contributions. We consider the following constrained analogue of
(1.1):

n) . 1m0 (i)y)2
(1-3) f\f—\(q,k N argmMins.g dy R is an (m,k)-spectrahedral function ; (y - f(X )) .
i=1
Here the parameters m, k are specified by the user.

First, we investigate in section 2 the expressive power of (m, k)-spectrahedral func-
tions. Our approach to addressing this question is statistical in nature and it proceeds
in two steps. We begin by deriving upper bounds on the error of the constrained esti-
mator (1.3) (under suitable assumptions on the data {(x'), y())} " supplied to the
estimator (1.3)), which entails computing the pseudo-dimension of a set that captures
the complexity of the class of spectrahedral functions. As is standard in statistical
learning theory, this error decomposes into an estimation error (due to finite sam-ple
size) and an approximation error (due to constraining the estimator (1.3) to a proper
subclass of convex functions). We then compare these to known minimax lower
bounds on the error of any procedure for identifying a convex function [10, 28].
Combined together, for the case of fixed k (as a function of m) we obtain tight lower
bounds on how well an (m, k)-spectrahedral function can approximate a Lipschitz
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convex function over a compact convex domain, and on how well a linear image of an
(m, k)-spectraplex can approximate an arbitrary convex body (see Theorem 2.8). To
the best of our knowledge, such bounds have only been obtained previously in the
literature for the case k = 1, e.g., how well m-polytopes can approximate arbitrary
convex bodies [3, 6].

Second, we investigate in section 3 the performance of an alternating minimization
procedure to solve (1.3) for a user-specified m, k. This method is a natural general-
ization of a widely used approach for fitting m-polyhedral functions, and it was first
described in [27] for the case of positively homogeneous convex regression with k= m.
We investigate the convergence properties of this algorithm under the following prob-
lem setup. Consider an (m, k)-spectrahedral function f; : R¢ w R. Assuming that
the covariates x'!', i = 1,...,n, are independent and identically distributed (i.i.d.)
sub-Gaussian and each y') = f, (x!!)+n;, i = 1,...,n, for i.i.d. Gaussian noise n;, we
show in Theorem 3.1 that the alternating minimization algorithm is locally linearly
convergent with high probability given suficiently large n. A key feature of this analy-sis
is that the requirements on the sample size n and the assumptions on the quality of the
initial guess are functions of a “condition number"" type quantity associated to f; ,
which (roughly speaking) measures how f; changes if the parameters that describe it are
perturbed. The assumption on f; in Theorem 3.1 may, however, be dificult to satisfy
when k < m. We show in Theorem 3.2 that a similar convergence guarantee holds
under a weaker condition on f; at the expense of stronger assumptions on the
distribution of the covariates.

Finally, in section 4 we give empirical evidence of the utility of our estimator
(1.3) on both synthetic datasets as well as data arising from real-world applica-
tions.

1.2. Related work. There are three broad topics with which our work has a
number of connections, and we describe these in detail next.

First, we consider our results in the context of the recent literature in optimization
on lift-and-project methods (see the recent survey [7] and the references therein). This
body of work has studied the question of the most compact description of a convex
body as a linear image of an afine section of a cone, and has provided lower bounds
on the sizes of such descriptions for prominent families of cone programs such as
LP, SOCP, and SDP. This literature has primarily considered exact descriptions, and
there is relatively little work on lower bounds for approximate descriptions (with the
exception of the case of polyhedral descriptions). The present paper may be viewed
as an approximation-theoretic complement to this body of work, and we obtain tight
lower bounds on the expressive power of (m, k)-spectrahedral functions (and on linear
images of the (m, k)-spectraplex) for bounded k > 1.

Second, recent results provide algorithmic guarantees for the widely used alter-
nating minimization procedure for fitting m-polyhedral functions [8, 9]; this work
gives both a local convergence analysis as well as a dimension reduction strategy to
restrict the space over which one needs to consider random initializations. In com-
parison, our results provide only a local convergence analysis, although we do so for a
more general alternating minimization procedure that is suitable for fitting general
(m, k)-spectrahedral functions. We defer the study of a suitable initialization strategy
to future work (see section 5).

Finally, we note that there is prior work on fitting nonpolyhedral functions in
the convex regression problem. Specifically, [14] suggests various heuristics to fit a
log-sum-exp type function, which may be viewed as a “soft-max"" function. However,
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these methods do not come with any approximation-theoretic or algorithmic guar-
antees. The recent work [27] considered the problem of fitting a convex body given
support function evaluations, i.e., the case of positively homogeneous convex regres-
sion, and proposed reconstructions that are linear images of an (m, m)-spectraplex;in
this context, [27] provided an asymptotic statistical analysis of the associated esti-
mator and first described an alternating minimization procedure that generalized the
m-polyhedral case, but with no algorithmic guarantees. In comparison to [27], the
present paper considers the more general setting of convex regression and also allows
for the spectrahedral function to have additional block-diagonal structure, i.e., gen-
eral (m, k)-spectrahedral reconstructions. Further, we provide algorithmic guarantees
in the form of local convergence analysis of the alternating minimization procedure,
and we provide approximation-theoretic guarantees associated to (m, k)-spectrahedral
functions (which rely on finite sample rather than asymptotic statistical analysis).

1.3. Notation. For A = (A1,...,Aq) n (S")9, we define for x n R¢ the linear
pencil A[x] := " d xiAj n S™. The usual vector |, norm is denoted | t |2 and the
sup norm by | tl\','. The matrix Frobenius norm is denoted by | t|r, and the matrix
operator norm by | t|op. We denote by Bq4(x, R) the ball in RY centered at x n R%with
radius R > 0.

2. Expressiveness of spectrahedral functions via statistical risk bounds.
In this section, we first obtain upper bounds on the risk of the (m, k)-spectrahedral
estimator in (1.3) decomposed into the approximation error and estimation error. We
then compare this upper bound with known minimax lower bounds on the risk for
certain classes of convex functions. This provides lower bounds on the approximation
error of (m, k)-spectrahedral functions to these functions classes.

2.1. General upper bound on the risk. To obtain an upper bound on the
risk of the estimator (1.3), we use the general bound obtained in [11, section 4.1]. To
give the statement, consider first the following general framework. Let (x*),y(1), ...,
(x{"), y(n)) be observations satisfying

(2.1) vy = (xW) +

for a function f; :R9w R contained in some function class F . We assume the errors n;
are i.i.d. mean zero Gaussians with variance aZ. Now, let {F m} mn n be a collection of
function classes of growing complexity with m. For each m, define the constrained least
squares estimator

nf ) )
f\cm“) := argming, ¢ (yW - f(x1))2.
i=1

We consider the risk of this estimator in the random design setting,® where we assume
x(1), ..., x(" are i.i.d. random vectors in RY with distribution u. The risk is then
defined by

1A - F 2= (MY (x) - o (0)2du (x).

m
Rd

can also consider the risk in the fixe esign setting, where one assumes the covariates
—Lone I ider the risk in the fixed desi tti h th iat
{x(i)} in=1 are fixed, and risk bounds proved in [11] include this case. The results in this work can be
directly extended to this case as well by applying the corresponding results.
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Additionally, assume both f; and F ,, are uniformly bounded by a positive and finite
constant a.

As is standard in the theory of empirical processes, the rate is determined by the
complexity of the class F m, which in this case is determined by the pseudo-dimension
of the set

(2.2) Hm:={znR":z= (f(x'V), ..., f(x™)) for some f n Fm}.

Recall that the pseudo-dimension of subset B t R", denoted by Pdim(B), is defined
as the maximum cardinality of a subset a q {1,...,n} for which there exists hn R"
such that for every a€q a, one can find an B with aj < h; forina®and a; > h; for
inasa®

Theorem 4.2 in [11], stated below, provides an upper bound on the risk of f\ﬁ')
split into approximation error and estimation error.

Theorem 2.1. Let n q 7. Suppose there is a constant D, g 1 such that
Pdim(Hm) g Dm. Then, there exists an absolute constant ¢ such that

)

max{a2,a?}Dn logn

[ 1
(2.3) E MM - £ |2 gc inf |f- f |2+
fnFm n

The (m, k)-spectrahedral estimator (1.3) is a special case of the estimator K(n")
when F is the class of convex functions f : R w R and F  is the class of (m,k)-
spectrahedral functions as in Definition 1.1, denoted by F m,k. Since the class is
parameterized by d+ 1 matrices in S’k“, we define, for each mn N and k= 1,...,m,

" [ ( ) 12
(2.4) (Ah,...,Xq,B)nargming,  a,8nsm vy - amax x(i”Ai+ B ,
st i=1
and we define the (m, k)-spectrahedral estimator of f; by
( )
nf
o, k(%) 1= amax xi Al + B
i=1
We also define the estimator when F is the class of support functions of con-
vex bodies (compact and convex subsets) in R9Y, denoted by K, and F , is the sub-
class consisting of positively homogeneous (m, k)-spectrahedral functions, or equiva-
lently, support functions of (m, k)-spectratopes. This corresponds to the case when
the offset matrix B = 0. In this setting, we assume we are given observations
(U y@y, o (u, y(M)nsd- 15 R satisfying

vy = hi, (u)+n,

where hg(u) :=sup , euxe, un 59- 1 s the support function of a set Ky n K. We
denote the class of (m, k)-spectratopes or linear images of Sy k in R¢ by L (S m,k). To
define the (m, k)-spectratope estimator, let

[ ( ) 12

(AR, ..., Ke)nargmina,  an sm Yi- amax ui(J)Ai )

and define

R« :={znR%:z= (A}, Xe,...,e A}, Xe) for some X n Smy}.
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In this support function estimation setting, we notate the risk in terms of the
convex bodies. Letting u denote the probability distribution on S9° 1 of u*), we
define the risk

t
12(K, K) := d 1(hK\A(u)— hk(u))®du (u).
Sd-

In the following lemma, we prove an upper bound on the pseudo-dimension of the

relevant set (2.2) needed to apply Theorem 2.1 for the estimators f\;,k and K‘(n,k.

Lemma 2.2. For m,kn N such that k divides m, define, for x{*), ..., x(M n R9,

U ( ) ( ))
Hnk:= z= amax AXY]+B ,...,amax AX"]+B nR"
}

for some An(S")¢,BnsS™ ,

and for u®, ..., ul®nsd- 1
{ ( ( ) ( )) )

Ilfm,k = z= amax AU ..., amax A[u™] nR" for some A n (S’k“)“I ,
Then, there exist absolute constants ci,c2 > 0 such that
Pdim(Hm k) g cikm(d+ 1)log(can/k) and Pdim(Nm,k) g cikmdlog(can/k).
To prove the lemma, we need the following known result (see for instance,

Lemma 2.1 in [1]).

Proposition 2.3. Let p1,...,pn be fixed polynomials of degree at most m in D
variables for D g m. The number of distinct sign vec?ors (sgn(pl(A)), ...,sgn(pn(A)))
that can be obtained by varying A n RP is at most 2 ' 2enm /D

Proof of Lemma 2.2. Assume that the pseudo-dimension of Hn,k t R" is 0. By
the definition of pseudo-dimension, the size of the collection of sign vectors

G,k := {(sgn(a max(A [xM] + B)),...,sgn(a max(A [x!] + B))) :A n (S7)?, B n ST}
must be at most 2°. For each i,

sgn(A [x("]+ B) = sgn(min{ p(A ,B;x™),...,pm(A , B;x{")}),

where pi (A, B; x{?) = det(- (A [x!?]+ B)i.) is the determinant of the | s | principal
submatrix of - A[x/]- B. Indeed, amax(A [x("] + B) g 0 if and only if all of these
determinants are nonnegative. Thus, the size of Gm « is the same as the size of

I'm,k:={(sgn(p(A ,B;x™)),...,sgn(p(A,B;x!"))):An (ST, BnSP}),

where for each i, p(A, B; x{7) := min{ps(A ,B;x"), ..., pm(A , B;x')} is a piecewise
polynomial in A and B. To bound the size of | m,k, we use the idea from [1]. We can
partition (S™)9*? into at most mn regions over which the vector is coordinatewise a
fixed polynomial. Then we apply Proposition 2.3.

We have n polynomials of degree at most m in up to D = (d+1)km variables, i.e.,
the number of degrees of freedom of d + 1 ms m k-block matrices. Thus, the number
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of distinct sign vectors in | m satisfies I m| g 2mn( ey, ) @**™. This implies that
2 q 2mn(132+£1'1)k)‘d"1)km, and hence

(d+ 1)km ( 2en ) N log(2mn) q

og c,n
log 2 (d+ 1)k log 2

(
cikm(d+ 1)log o«

The second claim follows similarly, where instead D = dkm. 0

We can now obtain an upper bound on the risk of the estimators ¥, « and K, «.
Recall that we assume fi and functions in F n,k are uniformly bounded by some
an (0,y ), and for support function estimation we assume K; and elements of L (S m k)
are contained in B4(0,a ).

Theorem 2.4.
(i) For any convex function f; : R9 w R, there exist absolute constants c,b > 0
such that
[ 1 log(bn/k)!
E k- ft|2 gc inf |f- f |2+ max{a?a?}km(d+ 1)Ln/) .
fnFm,k n

(ii) For any convex body K: in RY, there exist absolute constants c,b > 0 such

that
[ 1 log(bn/k)!
E1°(k ,K)ac inf  12(S,K )+ max{a%a? kmd
Coomke it SnL(Smi) ! n
Proof. This result follows from Theorem 2.1 and Lemma 2.2. O

Remark 2.5. Theorem 4.2 in [11] also provides high probability tail bounds for
the risk that could also be applied here to obtain high probability statements for the
risk of spectrahedral estimators.

2.2. Minimax rates. The minimax risk for estimating a function in the class
F from {x{,y@} " in the random design setting is defined by

Ru (n,F ) := minmaxE [| - f] 4]
" fnF

In Table 1 we summarize known rates as n w y of this minimax risk for cer-
tain subclasses of convex functions. First consider the class F mk(a ) of functions
in F ., with compact and convex domain a t RY. In this case, the rate of con-
vergence is O('OE”) when the domain a satisfies a certain smoothness assumption
(see [11, Theorem 2.6]), where we app(sal) to the fact that Fm,1 9 Fm,k. Otherwise,
the best lower bound on the risk is O "' 1" using standard arguments for parametric
estimation. i

Additionally we consider two nonparametric subclasses of convex functions. First
is Lipschitz convex regression, where we assume the true function f; belongs to the
class C.(a ) of L-Lipschitz convex functions with convex and compact full-dimensional

Table 1
Minimax rates for subclasses of convex functions.

E Fmila), fora smooth [11] C,(a ) [28] K (a) [10]
Ru (n,F) lolgin. no T N s

n
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support a t RY. Second is support function estimation, where we assume the true
function is the support function of a set K belonging to the collection K (a ) of convex
and compact subsets of R¢ contained in the ball B4(0,a ) for some finite a > 0. In
both settings, the usual least-squares estimator (LSE) over the whole class is minimax
suboptimal [16, 17] for all d large enough, necessitating a regularized LSE to obtain
the minimax rate.

2.3. Approximation rates. For Lipschitz convex regression, Lemma 4.1 in [28]
implies the following: for ft n C.(a ),

(2.5) inf |f- filug inf |f- fily qcaga,m 9.
fnF m,1 fn Fm,l
For support function estimation, let du(S,K) := |hs - hg|y denote the

Hausdorff distance between any S and K in K. A classical result of Bronstein (see
section 4.1 in [3]) implies

(2.6) inf 1 ,(S,K)q inf dH(S,K)cham'z/(d’l).
snl(Sm,1) L(Sm, 1)

This result is also the core of the proof of (2.5).

We first show that inserting (2.5) and (2.6) into Theorem 2.4 and optimizing over
m gives general upper bounds on the risk for our (m, k)-spectrahedral estimators.
These rates match the minimax rate up to logarithmic factors for fixed k > 0, and
even when k is allowed to depend logarithmically on m.

Corollary 2.6. Suppose km = h(m) for a nondecreasing and differentiable func-
tion h:R w (0, m].
(a) (Lipschitz convex regression) Suppose ft n C.(a ) and define the function

g(m):= K(m)m " + h(m)m%".

- g-1 2
Then’ for an = 8 d(d+1) max{ ar},a 2} Tog(bn)

(2.7)

( )
inflE ¥ k. - ft12 dCaaa an g max{aZa?}(d+ 1)anh(a n)log(bn) ,
mq n

L

(b) (Support function estimation) Suppose K: n K (a) and define the function

g(m):= he(m)mudd>+1“ + h(m)m&T.

)

- g-1 2
Then’ for an = 8 {d- 1)d max{ anz,af} log(bn)

(2.8) [ (

. )
inflE 12(Xm ko, Ke) g cda an® '+ max{a?a?}(d+ 1)ansh(a n)log(bn) )
mq =

We now provide two specific examples for particular functions h:
(i) If h(m)= km" for fixed k> 0 and r n [0, 1], then

[ I G C)
inf € [f%,k, - f |2 q O n r=1iow log(bn)reiem

mq 1

and

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 06/20/24 to 131.215.220.165 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

562 ELIZA O'REILLY AND VENKAT CHANDRASEKARAN

[ ] ( )
inf £ 12(Km k,,Ke) g O n° oé 17 |og (bn fTemmd e
mq 1
( )

(ii) If h(m)= logm, then a, = O nase log(n)” & , and
[ ] ( )
_4

inf E [k, - ft12 g O n @ log(n)ds
mg 1

and

[ | )
inf € 12(Km k., Ki) q O n @3 log(n)es

mg
Indeed, the inverse of p(x) := x? log(x) is p~ *(x) = (ﬁ)l/a, where W is the

Lambert W function. The bound then follows from tﬁe fact that W satisfies
logW (x) = logx- W(x) andasxw vy , W(x) mlog(x).
Remark 2.7. For the case k = 1, Corollary 2.6 recovers the results in [10] and [11],

showing that these estimators obtain the minimax rate (up to logarithmic factors) for
the relevant class of functions.

Proof. We prove (2.7), and the second statement follows by a similar argument.
By Theorem 2.6 and (2.5),

)
log(bn)

(
E[|fY;1 o - fi |2]q Cas L m ¥y max{aZ,a2 (d+ 1)h(m)m
’ m L ) ,
In

The m; that minimizes the expression in the parentheses above satisfies

. 2a? (d+ 1log(b
0= - H(m,) &1, maxata” (dr 11ogbn) pe v s him, ),
d In )
or, equivalently,
4n 2d+4 d+a

d(d+ 1)max{aZ2,a 2} log(bn) =h

Then, m, = g- 1(d(d+1)max{gn,a_27_log(bn) ), and plugging this back into the upper bound
gives the result. O

As stated previously, an important observation from Corollary 2.6 is that when
km = k is a fixed constant that does not depend on m, the risk bounds for an optimal
choice m; match (up to logarithmic factors) the minimax lower bounds of the classes
C.(a) and K(a). This indicates that the approximation rate for the classes F m «
and L (Sm, k) for fixed k cannot be improved from the rate inherited from the sub-
classes Fm,1 and L (Sm,1), respectively. Indeed, this statistical risk analysis provides
the following main result of this section: approximation rate lower bounds for the
parametric classes Fm,k and L (S m,k).

Theorem 2.8. Suppose there exists an absolute constant ¢ > 0 and tn [0, 1] such
that km g cm® for all m large enough. Let f; n C.(a ). For all n> 0, for all m large
enough,

inf  |f- fi|y g caiam 2(20/d-n

fnFm,km
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Also, let Kt nK(a). For all n> 0, for all m large enough,

m- 2(1+t)/(d- 1)- n

inf d, (S, K,)q Caa

SnL(Sm,km)

Remark 2.9. For constant k (i.e., t= 0), Theorem 2.8 implies

inf [f- f |, =®&m ¥ and inf d,(S,K,)= Gm /),

fnFmk SnL(Sm,«)

where the & notation ignores polylogarithmic factors.

Proof. We argue by contradiction. Suppose there is some r > ‘—;(1 + t) such that
for all m> 0,
inf |f- fi|2gcm ',

fnFm,k
for some constant c; (that may depend on L and a). Then by Theorem 2.4 and the
minimax lower bound for C.(a ), there exist constants cz, b such that for all n large
enough,

(

)
|
n 44 g o inf m "+ max{aZa?lmti(d+ 1) og(bn)
m>0 n

The infimum on the right-hand side is achieved at m; = Jeee,

and thus

(max{ a z;?}r(réu) Tog(bn)

[ ]

t+1

n- 4/(d+4) g can’ el |og(bn)ﬁ(max{az’a 2}(d+ ]_))frru rﬁl 4+ rter+t

For this inequality to hold for all n, it must hold that r q g(l + t), a contradiction.
The second statement is proved similarly. 0

3. Computational guarantees.

3.1. Alternating minimization algorithm. We now describe an alternating
minimization algorithm to solve the nonconvex optimization problem (1.3). Let i () =
(xV,1) n R9*1 for each i = 1,...,n, and let Ar n ()" be the true underlying
parameters. That is, we assume our observations for each i = 1,..., n satisfy

Yi= amax(A t[i (i)]) + n.

We assume the n's are i.i.d. mean zero Gaussian noise with variance aZ.

One iteration of the algorithm starts with a fixed parameter A n (SI?“)“"1 and
proceeds as follows. We first compute the maximizing eigenvector u{? n S™- 1 for
eachi=1,...,n, such that for U = u(ulMT, eu® A [i Me = amax(A [i ']). With
the U's fixed, the second step is to update A by solving the linear least squares
problem

1 m ( . ) ) 2
(3.1) A* n argmin, nisp)et vy eu® afife
i=1

A A A . m B
whereeU A [i e = ea,ills Ulle = szleAj, i j(')U (e . Note that in the algorithm
description below, Step 2 implicitly depends on k because if A n (Sm)"l'("l, then A* will
also be in (Sm)d"kl.
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Algorithm 3.1 Alternating Minimization for Spectrahedral Regression
Input: Collection of inputs and outputs {(x{), y(1)} 7__; initialization A n (ST
Algorithm: Repeat until convergence

Step 1: Update optimal eigenvector u) w amax(A [i {"])

Step 2: Update A by solving (3.1). A* w (i jia) i}y, wherei ] = (i(})s
U@ ttefi(m s Un))n Ridem?s n
Output: Final iterate A

)d+1

3.2. Convergence guarantee. The following result shows that under certain
conditions, this alternating minimization procedure converges geometrically to a small
ball around the true parameters given a good initialization. To state the initialization
condition in the result, we define for A n (S™)¢ the similarity transformation O (A ) =
(OA107,...,0A407) for an orthogonal ms m matrix O with blocks of size k. Note
that the eigenvalues of A [x] for x n R9 are invariant under any such O.

The proof of the following result appears after the statement, and it depends on
multiple lemmas that we state and prove in the appendix.

Theorem 3.1. Assume X mu is an a-sub-Gaussian random vector in R¢ such
that E[Xiz] = 1 for each i = 1,...,d. Also suppose that the true parameter A; n
(S k’“)d"1 satisfies the following spectral condition:

(3.2) inf ai(A¢[ul)- a2(A:[u]):=a> 0,
un S ¢

where a1 := amax and az is the second largest eigenvalue. Let ¥:= max{a, 1} and fixun
(0,1). Then, there exist constants cj, i = 1,...,4, such that if the initial parameter choice
Ao satisfies

3a? (1-1)

Ag- O(A,)|2
|Ao- OWIIE 9 Togs T)m 1+u

for some similarity transformation O and

t 1+ u) (d+ 2 Z2log(n)?

1-u 3P(ma u)

}

U7 2Ad+ Ym,a2max{L,a?} ,

ng cim?®max

then the error at all iterations t simultaneously satisfies

()«

3 co;m3(d + Wlog(n)?
|Ac- O IEg 5 Ao~ O(AIF+ 2m’{ gn)

n(1l)a) ’
with probability greater than 1- 6exp{- cu?n/(d~°(d+ 1)m%)} - n- ™,

Before proceeding, we provide some examples of parameters A = (A1,...,Ad+1) N
(S™)9*1 where assumption (3.2) is satisfied.

First, consider the case where d= 2, m= 2, and Az = 0. Note that for un S9- 1,
there are vectors ajj n R2 fori,j= 1,2 such that

€aii,ue eajp,ue } >
a1(A [u])= a = eai1+ axp,ue + eai1- axn,ue?+ deai,ue?
1(A [u]) 1 capp Ue  eany Ue 11+ az, 11- a2, 12,

and [ |
€aj,ue €ajy,ue }
az2(A [u])= a = ea1 + axp,ue - ea11 - axn,ue?+ 4dea,ue’.
2(A [u]) 2 eap,ue  eag,ue 11 22, 11 22, 12,
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Then, the eigengap satisfies

eaj;,ue earp,ue €a1;,ue eap,ue
91 eap,ue  eaxn,ue 92 eap,ue  eaxp,ue

= 2" eai1- axp,ue?+ deap,ue?= IA\TJI 2q amin(A),

where A= [z(azla'naz”]. Thus, if A" has a positive minimum singular value, (3.2) will
hold.

Another example of a parameter A that satisfies condition (3.2) is when amax(A [x]) =
|x| 2. This is the parameter A = (A1, ..., Ad+1) n (S9*1)9*1 such that

{
1, j=1,k=i+1ork=1,j=i+ 1,
(Ai)jk =

0 otherwise

fori=1,...,d and Ag+1 = 0. Indeed, we see that

[
(Lo X1ttt xq

x1 0 ttt o0
(3.3) f(x) = amax(A [x]) = amax . = |x| 2.

xd 0 ttt 0

In fact, for any spectrahedral function f (x) = amax(A [x]) that is differentiable for all
xn SS9 1 A must necessarily satisfy (3.2).

However, there are examples that do not satisfy assumption (3.2). In particular,
it will never be satisfied in the setting of support function estimation when k = 1,
because the eigengap will achieve the minimum value of zero for u in the directions
of the vertices of the associated polytope. In the next result, we provide a second
convergence guarantee with a weaker condition on A: at the expense of stronger
conditions on the initialization and the covariate distribution u as well as a weaker
bound in probability. Following the statement we will describe examples when the
condition is satisfied in the k = 1 setting.

To state the conditions in the following result, we denote by A(t” forj=1,...m/k
the (d +1)-tuples of ks k symmetric matrices that make up the blocks of the (d +1)-
tuple A:.

Theorem 3.2. Let X mu be a random vector in R such that |[X|, q a and
u is a continuous distribution. Define i := (X, 1) n R9*1. Assume that there is a
constant c> 0 such that for all A = B n (5¥)9+1,
(3.4) P(laa(A[i])- aa(B[i])] a oE [lax(A [i])- a1(B[i])|]) g @ forallo> 0.
Also assume there exist a> 0 and an (0, 1) such that

(3.5) inf E fa,(a"i)- a (A" q ma
1t 1t
j,In{1,...,m/k}:j=I ka

’

and additionally, if kq 2,
(3.6) inf inf a (AY[u])- a,(aVu]):=a> 0.

Let &~:=max{a,1} and fix un (0,1). Then, there exist constants ¢, i = 1,...,4, such
that if the initial parameter choice A , satisfies
/
3k32¢ ( 1- 1 )

3.7 Ag- O(A ,
(3.7) Ao (Au)lea 256max{1,cla3d+ 1)32m52 1+ u
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for some similarity transformation O and

{ max{ 1,c2} &5(d+ 1)*m8(1- u)a2log(n)? mka3(d+ 1)3/2}
ng cimax azk3(1+ u)2 ’ u2 ’

then the error at all iterations t g 1 simultaneously satisfies

(A (L) (A

3 com3(d + 1)a 2log(n)?
IAc- 0 lfa 5 lAo- 0 W)IE+

n(l1- u)

cgm f d+1 cy4n
%mln{%,l} )
a

’

with probability greater than 1- 3ca - n 6de” T Zterim |

Remark 3.3. Condition (3.4) is an example of a small-ball property for random
vectors that appears in the probability literature; see, for instance, [20, 24]. A small-
ball condition also appears in [9], which considers the polyhedral setting.

To see an example when these conditions are satisfied for the case k= 1, consider
the setting of support function estimation. The covariates are unit vectors u'!) on
Sd- 1 and the parameter space is (SE‘)". Let k = 1, and assume the covariates are
i.i.d. samples of a random unit vector U. Then, condition (3.4) is equivalent to the
following: for all a= bn RY,

P(lea- b,Ue|q oE [Jea- bUe|])g @ forall o> 0.

When U is uniform on the unit sphere $9- 1, this is satisfied. Indeed, letting a denote
the normalized spherical Lesbesgue measure on S ! and a4 denote the surface area

of S9- 1, first observe that
t

Elea- bUe|= [a- b[2E U] = [a- b|2 |uz| da (u)

Sd- 1
t 1

- b i .

= Lza‘“ f(1- t2)% dt= cia- bla,
‘4 -1
for a finite constant c1 > 0 depending on d. Then, for all 0> 0,
P(lea- bUe|q oE [[ea- bUe|])= f(lea- b,Ue|q oci| a- b|2)

= 1{ lu g ocl}da gu) Sd- 1

2a d- 1t min{ ocl,1}

= (1- t) 2 dtqg oo,
d o

2d—3

where c; > 0 depends only on d. Second, condition (3.5) is satisfied when
linf al aE” - aE”l 2> mal/a,
=]

where atm = ((A1)jj,.--(Aq)jj) for each j = 1,...m. The final condition (3.6) is not
relevant in the case where k = 1, but blocks of the form given by examples following
Theorem 3.1 will satisfy this condition.

3.3. Proofs of Theorems 3.1 and 3.2.

Proof of Theorem 3.1. First, given assumption (3.2), we show that for n large
enough, for all parameters A satisfying for some similarity transform O,

3’ (1-1)

3.8 A- O(A 2
(3.8) | (A Fq128(d+1)m 1+u ’

)|
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the parameter A* obtained after applying one iteration of the algorithm satisfies

( |08(n)2)

n

3
(3.9) |A+-O(At)|§qZ|A-0(At)|§+o

with high probability.
Let UM = ul(ul)T be such that amax(A [i (!]) = eU, A [i ]e. The update A*
then equals

At = (ipia) tiny,
where
(3.10) in=(iMs UM tetfims yln)pRldrLims msn,

Note that (i aA)i = eU, A [i Me. Throughout the rest of the proof, we sometimes
abuse notation and consider the Kronecker productis U fori n R9*1 andUn R™s ™

to be the vector Vec(i s U)n R(d*1Im*
By the invariance amax(A [x]) = amax(O (A )[x]) for all O, without loss of generality
we can assume in the following that A, = O(A ) for the transformation O satisfying

assumption (3.8). Let yt n R™ and utm n $9 1 be such that for Ut(i) 1= ui”(ut“))T,

vi= U, A i e = ama(A «[i 1)),

1; T

Also denote by Pi, = iafi /I ia) “i, the orthogonal projection onto the span of

the columns of i o. Then, we have the following deterministic upper bound:

[ia(A* - A)| 2= |Pi,y- i aA¢]?= |Pi,y' +Pi.n-iaA:|?
q2lPi, (y' - iaAt)|?+2[Pi, n|?

nf ( " . . )2
q?2 eUt A ([ie - eu® A [ile + 2|Pi, n|%
i=1

Now, since eU @ - U’ A [i e q 0,
0 . 4 )2
el A ¢[i e - eu® A [i Ve
( (i) i i i (i w2
g eU!"- U A [iMe+eU®- Ul AliMe

e ) ) €5
= A- Aills (U -yl

We also have the lower bound |i a(A* - At)[2q aminli jia)lA* - A¢]2 Thus,
[ ]
AT - Acl?a g i ad(A - AP [Pl
Jniui_A_A_L
2 2 ]

(3.11) q amax(i A a,ia-a)|A- Ac|2+ [P, n|? .

amin(i Ei A)

where i a-a, = (i®Ms (UW - UM et ™s (um - yMy),
Next, note that i = (X, 1) is a\~-sub-Gaussian, where &~=max{ a,1}. Lemmas A.2
and A.3 then imply the following. For u n (0,1), there exist absolute constants
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€1,C, such that if n g qu- 2a~°(d+ 1)m*, then with probability greater than 1 -
2e- U ’n/(A~(d+1)m*)

(3.12)  amax(iA-a,da-a)d Mamax(E[(is (U- U))(is (U- U))T](1+ )

for all A satisfying assumption (3.8). Since amax is a convex function, Jensen's in-
equality implies

amax(E[(is (U- U))is (U- U))D)qE[lis (U- U2

Then, by the definition of the Kronecker product, Lemma A.2, and the assumption
on X,

[ ] [ ]
(3.13)  E lis (U- U)I® =E [i|5lU- Uclf q32 (d+ 1)|A- Aclf,
Putting the bounds together and using assumption (3.8), we have

(3.14) ( )

amax(E [(i's (U- U)(is (U- U)T])q32a  2(d+ 1A - Acl? g 8% LE

Plugging the bound (3.14) into (3.12) then gives the upper bound

. . 3n
(3.15) amax('X.AﬂA—At)q %(1' u).

Also by Lemmas A.2 and A.3, if nq c,u” 2a\™®(d+1)m?, then with probability greater
than 1- 2e- @u’n/(@A\~*(d+1)m®)

(3.16) amin(i ki a)d namax(E[(is U)is U)T])(L- u)
for all A satisfying (3.8). By Lemma A.1,

(3.17) amax(E[(i's U)is U)T])gm 1,

and plugging the bound (3.17) into (3.16) gives

(3.18) amin(i Ai a)g nm (1- u).

Finally, combining (3.15) and (3.18) with (3.11) implies

2m|P;, #?,

3
A+_ At 2 ZIA - At 2+
| Zadia- Atz It

It remains to bound the error term. By Lemma A.4, there exist constants
c3,...C6> 0 such that for nq cam®a-?max{ &, (d+ 1)m, max{1,a?}},

|Pi . nl2q calog(n)®a ?m?(d + 1)

for all A satisfying (3.8) with probability greater than 1- n- ¢sm - 2e- csn/(A~*(d+1)m®)
This implies that for

ng ooma?max{u 2a*d+ 1)m, max{ La?}},
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with probability at least 1- 6e- cu “n/d~*(d+1)m® _ - csm

cam3(d+ 1)a 2log(n)?
n(l- u)

3
|A* - AtIZa ZlA- AT IE s

We now show that given the above upper bound, A* also satisfies (3.8). Indeed, for

4 128m(d+ 1)( 1+ u) cam3(d+ 1)a 2log(n)?

N 2t— 3 - u 1- v '
we have
cam3(d + 1)a 2log(n)?2 a2 3 ( 1- u)
n(l- u) q 71 128m(d+ 1) 1+ u
and thus ( )
3 2 2 2
|A* - AdlEa Z'A A 2T (dn+(11_)au)|0g(n) 9 128n§?d+ 1) 1+ E

The final conclusion follows from the fact that after t iterations, when

(. ) , )

1 d i i
+ U (d+ og n) U ZA(d+ YmaZmax{L,a?

1-u B2a u) (

applying the bound (3.9) t times gives
(L)t

ng cesm>max

" 3 " cam3(d+ 1)a 2log(n)2 M ' 3
|At- At|f g 7z [|Ao- At|f+ AT u) . 2
(3): , csm®(d+ 1)a 2log(n)?
o gz [Ao- Arlf+ n(l- u) ’

and all t bounds hold simultaneously with probability at least 1- 6exp{ - csu 2n/(a\~®(d+
1)m4)} - e, 0

Proof of Theorem 3.2. The proof follows the same arguments as the proof of the
previous theorem, and replacing Lemma A.2 with Lemma A.5 and Lemma A.4 with
Lemma A.7.

Also the bound (3.13) is replaced by the following:

EHm(U-mHJ=EHHQU-mﬁ]qMﬁm1ﬁuu-mh]

4 32max{ 1,c}a(d+ 1)3/2m3/2

k3/2__ IA- AtlFl

where we use Lemma A.5 and the assumption on X. 0

4. Numerical experiments. In this section, we empirically compare spectra-
hedral and polyhedral regression for estimating a convex function from data. More
specifically, we compare (m, m)-spectrahedral estimators to m(m + 1)/2-polyhedral
estimators, both of which have m(m+1)/2 degrees of freedom per dimension. For each
experiment, we apply the alternating minimization algorithm with multiple random
initializations, and the solution that minimizes the least squared error is selected. We
adapted the code [26] for support function estimation used in [27] for spectrahedral
regression.
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4.1. Synthetic regression problems. The first experiments use synthetically
generated data from a known convex function, one from a spectrahedral function and
another from a convex function that is neither polyhedral nor spectrahedral. In both
problems below, the root-mean-squared error (RMSE) is obtained by first obtaining
estimators from 200 noisy training data points and then evaluating the RMSE of
the estimators on 200 test points generated from the true function. We ran the
alternating minimization algorithm with 50 random initializations for 200 steps or
until convergence, and we chose the best estimator.

First, we consider n i.i.d. data points distributed as (X,Y ), where X n R?2 is
uniformly distributed in [- 1,1]?, and

Y
(4.1) Y= X2+ X2+n,

where n m N (0,0.12). In Figure 2, we have plotted polyhedral and spectrahedral
estimators obtained from n = 20, 50, and 200 data points. We have also plotted the
least-squares estimator (LSE) in each case. The RMSE for both models is given in
Table 2. The function y = |x|2 for x n R? is an m = 3 spectrahedral function,
and the spectrahedral estimator performs better than the polyhedral estimator, as

Fig. 2. From top to bottom: Polyhedral ((k, m) = (1,6)), block spectrahedral ((k, m) = (2, 4)),
spectrahedral (m = 3), and LSE reconstructions of the convex function y = |x| 2 from n = 20, 50, and
200 data points from model (4.1).
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Table 2
RMSE for polyhedral and spectrahedral estimators for data generated from models (4.1) and
(4.2) as m increases.

Model DoF Spectrahedral k = m Spectrahedral k = 2 Polyhedral k=1

(4.1) 3 0.0143 0.0143 0.1206
6 0.0261 0.0246 0.0456
15 0.0290 0.0360 0.0344
(4.2) 3 0.0143 0.0143 0.1206
6 0.1045 0.3622 0.1358
15 0.1048 0.3537 0.1266

expected. In addition, the RMSE is lowest for the m = 3 spectrahedral estimator
and increases for larger m with either k = m or k = 2. In the polyhedral case, the
RMSE decreases with larger m since the function y = |x| 2 is not contained in any
polyhedral function class. The RMSE for the LSE is 0.8128, which is significantly
higher than the polyhedral and spectrahedral estimators. This can be contributed to
overfitting, especially near the boundary of the input domain, as illustrated by the
plots in Figure 2.

Second, we consider n i.i.d. data points generated as (X,Y) n Rs R, where
X mN (0,1) and

(4.2) Y = exp(bX) + n,

where b = 1.1394 and n m N (0,0.1%2). The underlying convex function is neither
polyhedral nor spectrahedral, but the spectrahedral estimator better captures the
smoothness of the function, as illustrated in Figure 3. The spectrahedral estimator
also outperforms the polyhedral estimator with respect to the RMSE; see Table 2. We
also plot the LSE obtained from this data set in the last row of Figure 3. The RMSE
for the LSE when n= 200 is 0.0349, which is smaller that that for the polyhedral and
spectrahedral estimators. This shows that overfitting is not as much of a problem
here, most likely due to the dimension d= 1 of the input.

4.2. Predicting average weekly wages. The first experiment we perform on
real data is predicting average weekly wages based on years of education and expe-
rience. This data set is also studied in [13]. The data set is from the 1988 Current
Population Survey (CPS) and can be obtained as the data set ex1029 in the Sleuth2
package in R. It consists of 25,361 records of weekly wages for full-time, adult, male
workers for 1987, along with years of experience and years of education. It is rea-
sonable to expect that wages are concave with respect to the years of experience.
Indeed, at first wages increase with more experience, but with a decreasing return
each year until a peak of earnings is reached, and then they begin to decline. Wages
are also expected to increase as the number of years of education increases, but not
in a concave way. However, as in [13], we use the transformation 1.2vears education {q
obtain a concave relationship. We used polyhedral and spectrahedral regression to
fit convex functions to this data set, as illustrated in Figure 1. We also estimated
the RMSE for different values of m(m + 1)/2 (the degrees of freedom per dimension)
through hold-out validation with 20\% of the data points; see Table 3. This generaliza-
tion error is smaller for the spectrahedral estimator than the polyhedral estimator in
each case.

4.3. Convex approximation in engineering applications. In the following
two examples, we consider applications of convex regression in engineering
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n=20 n =50 n =200
4 3 3
2 2
2
1 1
0 0 0
-1 0 1 -1 0 1 -1 0 1
n=20 n =50 n =200
% 3 3
2 2
2
1 1
0 0 0
-1 0 1 -1 0 1 -1 0 1
n=20 n =50 n =200
3 3 3
2 2 2
1 1 1
0 0 0
-1 0 1 -1 0 1 -1 0 1
n=20 n =50 n =200
3 3 3
2 2 2
1 1 1
0 0 0
-1 0 1 -1 0 1 -1 0 1

Fig. 3. From top to bottom: Polyhedral ((k, m) = (1,6)), block spectrahedral ((k, m) = (2, 4)),
spectrahedral (m = 3), and LS E reconstructions of the convex function y = exp(ex,be) from n = 20, 50,
and 200 noisy data points from model (4.2).

Table 3
RMSE for polyhedral and spectrahedral estimators for real data and engineering experiments.

Application m(m+ 1)/2 Spectrahedral Polyhedral
Average weekly wages 3 142.1166 145.5803
6 140.1173 141.4989
10 140.0352 141.9851
Aircraft profile drag 3 0.086 0.0895
6 0.0576 0.0709
10 0.0452 0.0515
Circuit design 3 0.0085 0.02
6 0.0072 0.012
10 0.0072 0.0088

applications where the goal is to subsequently use the convex estimator as an ob-
jective or constraint in an optimization problem. Polyhedral regression returns a
convex function compatible with a linear program, and using spectrahedral regression
provides an estimator compatible with semidefinite programming.

4.3.1. Aircraft data. In this experiment, we consider the XFOIL aircraft de-
sign problem studied in [14]. The profile drag on an airplane wing is described by a
coeficient CD that is a function of the Reynolds number (Re), wing thickness ratio
(u), and lift coeficient (CL). There is not an analytical expression for this relation-
ship, but it can be simulated using XFOIL [5]. For a fixed u, after a logarithmic
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Fig. 4. Spectrahedral (m = 3) and polyhedral (m = 6) estimators of the log of drag coeficient
versus log of Reynolds number and lift coeficient for a fixed thickness ratio u = 8\%.

transformation, the data set can be approximated well by a convex function. We fit
both spectrahedral and polyhedral functions to this data set, and the best fits for
the whole data set appear in Figure 4 for models with 6 degrees for freedom per di-
mension. Then, we performed hold-out validation, training on 80\% of the data, and
testing on the remaining 20\%. The RMSE is given in Table 3, where we observe that
the spectrahedral estimator achieves a smaller error than polyhedral regression.

4.3.2. Power modeling for circuit design. A circuit is an interconnected
collection of electrical components including batteries, resistors, inductors, capacitors,
logical gates, and transistors. In circuit design, the goal is to optimize over variables
such as devices, gates, threshold, and power supply voltages in order to minimize
circuit delay or physical area. The power dissipated, P, is a function of gate supply
Vdd and threshold voltages Vih. The following model (see [14] and [12]) can be used
to study this relationship:

P = ded + 30V4qe” (Vin- 0'06Vdd)/0.039'

We generate n i.i.d. data points as in [12] as follows. For each input-output pair,
first sample u= (Vgd, Vin) uniformly over the domain 1.0q Vga g 2.0 and 0.2q Vih g
0.4 and compute P(u). Then, apply the transformation (x,y) = (logu,logP (u)).
We fit this collection of transformed data points using polyhedral and spectrahedral
regression, and the estimators for n= 20, 50, and 200 are illustrated in Figure 5. We
also perform hold-out validation with 20\% of the data for the case n = 200 and the
RMSE appears in in Table 3. By this measure, the spectrahedral estimator performs
much better than the polyhedral estimator in this application.

5. Discussion and future work. In this work, we have introduced spectrahe-
dral regression as a new method for estimating a convex function from noisy measure-
ments. Spectrahedral estimators are appealing from a qualitative and quantitative
perspective, and we have shown they hold advantages over the usual LSE methods
as well as polyhedral estimators when the underlying convex function is nonpolyhe-
dral. Our theoretical results and numerical experiments call for further study of the
expressivity of this model class and its computational advantages. We now describe
a few directions of future research.

5.1. Parameter selection and tuning. In our proposed method, the model
parameters m and k must be chosen in advance to obtain a spectrahedral estimator.
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Fig. 5. Polyhedral (m = 6) and spectrahedral (m = 3) estimators of n = 20, 50, and 200 trans-
formed data points generated from the power dissipation model.

RMSE

2 3 4 5 6 7 8 1 15 2 25 3 a5 4 45 5 55 6
Lifting Dimension Block Size

Fig. 6. Data-driven tuning of parameters m and k. The left plot shows hold-out validation
error for spectrahedral estimators with varying parameter m obtained from noisy measurements of an
m = 3 spectrahedral function. The right plot shows hold-out validation error for m = 6 spectra-hedral
estimators of varying block size k obtained from noisy measurements of a k = 2 spectrahedral function.

For small m and k, the estimator is eficient to compute, and the resulting estimator
has a more compact description but may underfit the data. It would be very useful to
develop adaptive methods for choosing these parameters using the data set. Here we
describe an experiment to choose m and k using hold-out validation. Figure 6 shows
two plots illustrating two experiments. The first experiment uses hold-out validation
to find an appropriate m, and the second experiment finds an appropriate k given a
fixed m. Spectrahedral estimators were obtained using a test data set of size 200 for
varying m and k, and the RMSE from a test data set of size 200 was computed for
each. In the first experiment, the test and training data sets are generated from a
random spectrahedral function with k= m = 3. We see from the plot that m = 3 would
indeed be the appropriate choice to model this data set. In the second experiment,
the data was generated from a random spectrahedral function with k= 2 and m= 6. If
we initially chose m = 6, the plot shows that k = 2 would indeed be the best choice for
the block sizes for the model.
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5.2. Expressiveness of spectrahedral functions. An interesting open ques-
tion is to obtain the approximation rate for (m, k)-spectrahedral functions to the class
of Lipschitz convex functions and (m, k)-spectratopes to the class of convex bodies for
general k. There is extensive literature on this approximation question for polytopes
(see, for instance, [3, 6]), and we have obtained matching bounds (up to logarithmic
factors) for fixed k> 1. For k depending on m, and in particular in the case k= m,
the literature is more limited; one example is [2]. Progress in this direction would
complete our understanding of the expressive power of the model presented here and
have important consequences for how well semidefinite programming can approximate
a general convex program.

5.3. Computational guarantees. We have also proved computational guar-
antees for a natural alternating minimization algorithm for spectrahedral regression.
However, this convergence guarantee depends on a good initialization. In practice,
running the algorithm with multiple random initializations and taking the estimator
with the smallest error works well, but it would be very interesting to extend the
results on initialization in [8] to the spectrahedral case. Another line of future work is
to extend other methods to solve the nonconvex optimization (1.3) in the polyhedral
case such as the adaptive partitioning method in [13] and the method proposed in
[28]. These algorithms also lack theoretical guarantees, and it would be interesting to
obtain conditions under which these methods obtain good estimates of the true
parameter.

Appendix A. Lemmas for the proofs of Theorems 3.1 and 3.2. We first
give a few definitions that are needed in following lemmas. A random vectori n R¢ is
sub-Gaussian with parameter a if E[i]= 0 and for each unS9 1, E[e*®"i €] q &2 /2 for
allanR. The sub-Gaussian norm of a random variable X, denoted by [X| i , is defined
as

[X]i,=inf{t> 0:E[exp(X3/t?)]q 2}.

For i n R9Y, the sub-Gaussian norm is defined as |i |; , 1= sup, c¢-1|e,ueli,. The
subexponential norm of a random variable X, denoted by |X| i ,, is defined as

[X]i,=inf{t> 0:E[exp(| X|/t)]q 2},

and the subexponential norm of a random vector i is defined similarly.
We also recall that the covering number of a Euclidean ball satisfies

(A.1) N (Bq(z,R), | t]2n)qg (1+ 2R/n)"

for ng 2R by a standard volume argument.

The proofs rely on uniform spectral concentration bounds of a sample covariance
matrix, which follow from Bernstein's inequality and Dudley's inequality. A general
reference for the ideas in the lemmas below is [32].

Lemma A.1. Let i be an a-sub-Gaussian random vector in R ¢ such that E[iiz] =1
and, let U be any ms m matrix with |U|f = 1. Leta :=E[(is U){is U)"]n gdm?
Then, the following inequalities hold:

(i) lis Uli,qd¥%a;

(i) mq |a|,,q d¥/2;

(iii) li's Uli,q (md)¥2a |a |3,
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Proof. Recall that i s U is sub-Gaussian if ei s U,ve is sub-Gaussian for every
vhn $9m’- 1 |ndeed, we first see that

lis UIE=1il31UIF = il3

Then, by Lemma 2.7.6 in [32] and the triangle inequality

nf
lei s Uvel? q ||i|2|il= i’ q liil 7, q da’.
i=1 i, et
For the second claim, we see that
[ ]
alga ez e T iz
a q a = E i2U = ,
7 dm dm F 2
i=1j,k=1
and
[ ]
m mm )
lalgq,q lalg=E iU =d.
i=1j,k=1
This implies the final claim |é s U,ve|i, q ad/2 q a(md)¥2| a | a. 0

For the next lemmas, recall that for a random vector i n R9, for each A n (S ’;‘)d
we define Ua to be the rank one matrix such that

el's Ua,Ae=eUa,Alile= amaxlA [i]).

Also, define for r > 0 the set

BIA¢,r):={An(S™):|A- A¢lr qr}.

Lemma A.2. Consider the setting of Theorem 3.1. Then, for all A;,A2 n
B(A +,a/4),

32|A1- Azl?

[Ua.- Un,l? g 2 ,

and
( [ )
2523~((d + 1)m)Y/2 . 1/2
; AnB(IAnf,a/4)|aA op |A1- A2]|F.

[is Ua,-is Ua,li,Q

Proof. First note that for all A n B(A ,a/4), Weyl's inequality implies that for
allunsd-1,

a1(A [ul)- a2(A[ul)q a1(A ¢[ul)- a2(A ¢[ul)- 2|A- Atlopq %> 0.

Then, observe that |[Ua - Ua,|? = 2sin(a (u,u2))?, where Ux = uiug, Ua, = uauy,
and uz,uz n S™ 1. By a variation of the Davis--Kahan theorem (Theorem 2 in [33]),
. 4 (A1- A)[i]l3 16| A1- A,|2
sin(a (u1,u2))?q , > -

(@1(A2[i])- a2(A2fi]))" © a
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This implies that
32
[Ua, - Un, 17 a S1AL- A2,

and by Lemma A.1,

|ei S (UAl' UAz)lvelizzq 323\'\2(d+ 1)| |

- Ai- Ar ¢
2a2(d+ 1 mf )
a\ .
a inf la, I 1A - Azli'
e2 ) AnB(A.a/4) P a

Lemma A.3. Define Bq(z,R) :={xnR%:|x- z|2q R} for R > 0and zn RA.
Let {ia}ans (z,r) be a stochastic process in R9 such that

(i) |ia|qi ,d alaal/zlop for some aq 1;

(ii) for all a1, a2 n Bq(z,R), |ia, - ia, |i, a K(infy, B, (2,R) |aal/2| op)l @a1- a2] 2,
where a; = E[iai;] for all an Bqg(z,R). DefineianR" d to be the matrix with n
i.i.d. rows in RY distributed asia, and leta, := E[iaiaT]. Fix u> 0. Then, there exist
absolute constants co,c1 > 0 such that if nq cou~ 2K2a *R2 max{q,d},

( | )
T I

1 2 2_4Rp2

-1 LT - K R

P sup Iaalop —Iala-aal qu q2e @nu’/Ka _
n

an BQ(z,R) op

This implies that with probability greater than 1- 2e- cnu’/K*a “R*

) ()
. Amh I 5 1la dmax | 5l a
1- ugq inf ——q su ———q 1+ u
an Bq(z,R) Namax(a a) ang,(z ,R) M3 max(a a)
Proof. First suppose that i, is isotropic for all a, i.e., a, = |. For the general

case, the conclusion follows from the inequality

1. 7. 1M i - 12
EI :I a- aa|| q |aa|op — (aal/zlgl))(a 31/2|£|))T' I

op Niog op

We first show that for any x n S9 1, the stochastic process X, := ¢2|i x| - 1
has sub-Gaussian increments |Xa, - Xa, |i, = ¢, [|ia;x|2- [ia,x|2]; .
Case 1: sn [0,4KY9 n]. We first see that 2

PATiarx]2- (lia;x] 2l g sla1- a2l 2)

k . )
liax]3- i, xP . .
=P 3, ||a21 aIT 2 gs(liaxl2+ |iax|2)
- 2
)
i aox[2- 0. x| 2
ap 2T oM g i,
- ax
( d )
e X3 1. 2 O dn)
P o 2 +P
q lay- a’l’ q 2 liaxl2a
ol X3 1 Zq Y - I
+F3—|—)HT . S
(A.2) q . 5. N o.p lli., > nlg3K
la;- a7 2
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Then, note that

nf
. 2 . 2 _ (0 s (i i (i i
[ia,x]5- [i alez‘ e'gl)' 'gl'xee':(n)"' |gl,xe,
i=1

and by Lemma 2.7.7 in [32],
DD
1

leil)- il xee !V +il),xe|i, q |& Doxeli,leil)+ il xeli,

g 22K | a1- az] 2.
Each term in the sum also has zero mean. Indeed,
(i . (i . (i . (i _ . (i 2 . (i 21
E[(Elf,'l) - |g'g,xee|g'1) + |g'l,xe]— E[talg'i,xe - @ g'l,xe 1= 0.

Applying Bernstein's inequality (Corollary 2.8.3 in [32]) gives, for all tq O,
(.
o lia 2l x
la;- ad
x|

|2) to,

2q t q Ze_ €1 min 4a7%2T'Zaﬁ<t‘

For the second tail probability in (A.2), Theorem 3.1.1 in [32] implies

(1 d | ) cat?

P lia,x]2- nqgt q2e =7,
d
where we have used that i, is isotropic. Thus, since s< 4K nandaq 1,
(A.3)
( | . _ I ) .2 d 52 cas?
p I a; 2 la, 2| qs qze-C1mm{ﬁz%z—nr4aK)+2e1W4Kz qll’ﬁ

| Jxl-a | xI
k29 22

Case 2: sg 4K n. By the triangle inequality,

[l a;x] 2- [ia,x] 2 ) ( [(ia, - ia,)x]? 2
la1- a2 aP [a1- a2 9°
[Gar- ia))X|2  ERiay- iayxe2] 5  Elia, - iay,xe2])

=P [a1- a2 2 -n [a1- a2]? as-n [a1- a2]?
q P - - n 1 - @3 qs’- 4K n

la; a ai
OF .- a2 T "ERTa - 1okl 9 357

|az- az]? |a1- a2] 2 4

where for the second to last inequality we have used that

Eleia, - ia,,%¢2]1q 4lia, - ia, 12, q 4K?| a1~ @23,

and the last inequality follows from the lower bound on s and the fact that aq 1. By
(A

Bernstein's inequality again (Corollary 2.8.3 in [32]) and the lower bound on s, 4

s4 s2

{ }
nk4 k2 q2e’

K 2
. cas?
- Cgmin 4

ok & T
|

Combining (A.3) and (A.4) with Proposition 2.5.2 in [32] then implies

gs q 2e

Ka 2
|X31' Xazlizq 'dﬁ_lal' aZlZ,

where we have used that aq.

)
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By Theorem 8.1.6 in [32] and (A.1), we have, fora> 0and nq qa- 2,
1. 2(d _ d )
(A.5) sup ‘d:h ax| - 1|‘q C—Seki— csR g+ 2Ra n q cs7Ka %Ra
anBQ(z,R) n

with probability greater than 1- 2e- a’n, Now, let u> 0. By the inequality |z2- 1] q
3max{ |z- 1],|]z- 1]}, forallzq O,

( ’ ) ( ‘

P sup f|IaX|2- 1|‘q7 qP sup ’ d —|i ax| 2- 1||

anBQ(z,R) n

anBQ(z,R)

Letting a= gxs=¢ in (A.5) gives the following. For nq cgqk?a *R?u~ ?,

( )
P sup L ax) 2- 1|‘q L g e it esk?a R
an8q(z,R) N 2

Finally, by Lemma 5.3 in [31],

||
f|l ax| 2 - 1|
in

sup 7I |a-I| q2max sup
anBQ(r) xn A anBQ(r)

where N is a i-net of the unit sphere $9 1. Lemma 5.4 in [31] implies [N | g 9¢.
Applying the union bound then gives, for nq csqk?a %R%u

) (

)
ia-l|| qu gP max sup

J.

P sup | i T lliaxlg- Ix| 2l a =
aan(z,R) n @ |0p )xnl\ aan(Z,R) n | 2
q NP sup Lll aX| 2- g = g 2t9de nu’/cek’a fR7
anBQ(z,R) n 2
Thus, there exist absolute constants by, by such that for nq biu~ 2K2a #R? max{ q,d},
( | )
P sup 1|T|a- Il qu q2e Pnu’/k*atR?
n @ | O
an BQ(z,R) op

Lemma A.4. Consider the setting of Theorem 3.1. Let B; := B(A ¢,a/4), and
define the class of orthogonal projections P := {P; X :A nB:}. Then, there exist abso-
lute constants ci, i = 0,...,3, such that for n g co max{ &*°m?*(d+1), A~*m3max{ 1,a 2}},

( )

P sup [Pn|2q ca’log(n)®(d+ 1)m? g n @M+ 2e can/(a\~*(d+1)m*)
Pn P

Proof. We first observe that forP = P;, nP,

PR 12= 1ialiTia) 5 Tn2a [(Tia) Yoli Tn2e adtianls? li Anl3
s AbA A A = Al A2
2 A A N3 A opl 1 po N2 T /TA' ) w10

q
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Then, fort> 0,

( T ) (
. A .T 2 . .T.
P asup a—J—-r—ﬁl—,—— qt qP sup|I |12 n q (ila A )
nBt(mlin F i) ) na = |opA ana o
lilnlz_ t . amin(ij,;i/.\) 1
=P S afaalopd2 7 Poaing, “nlaalop 92
( ) ( )
t ) T 1
(A.6) qP asup lisnl3q Y _,
nB¢ 2m Apgt N b/—\lop 2

where the last inequality follows from Lemma A.1. To upper bound the second prob-
ability above, Lemmas A.2 and A.3 imply that for nq cod™®(d+ 1)m*
(

e 1
(A.7) P inf min(iyia) qal- ~ q 2exp{- cln/(é\"f’(d+ 1)m%)} .
—
AnB(At,a/4) nlaa|op 2

We now turn to the first probability in (A.6). First note that for all A n B:,
(A.8)
" , , n , .
Edian®l=Ellial2le®= ENi"su”Za?=  ENi712 Ul % = n(d+ 1)a2
2
i=1 i=1

In particular, the expectation does not depend on A. Then,

sup (IiAnIZ- E[IiAnlzl)- E sup (|iAn|2' E[IiAnlzl)

AnB¢ AnB¢
= sup |i an]?- E sup |ian|2
AnBt AnBt
d, .
Now, recall that M := | maxi=1,...,n Ni| i , 9 tog'n for an absolute constant co

[18]. Applying Theorem 1.1 in [15] to the family of matrices {i a'i Z
the following. )
For sq max{ c;a’ fogtnjE [supa ns, |i A nl2),c%a 2log(n)n(d+ 1)},
( [ 1)
P sup i an|?- E sup |ianl® qs
nB AnB
(t { b
C2 min s? S
| I 1 ; -
_a?log(n) ElsupAn . liT n|'2 Elsuparg, |iaPopl

:A n Bt} gives

q exp
B

Also by (A.8), E[supa s, |i ® n|?]g n(d+ 1)a 2, and thus, for s as above,
( )

P sup |ijn|?- n(d+ 1)a’qs
AnB
{ H)
2
2 . s s
(A.9) ex min  —f n b
q exp _"aZlog(n) E sup, B, |iATn|‘2 n(d+ 1)

We now upper bound E[supAnBt |i I n|], so we first define the stochastic process
Xa :=|i jn|. For A and B in (S")9,

O 4 ) o) I
lia-islf=[i"s (UM-uf)2=" [i113Uu- Uel %
i=1 i=1
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By the assumptions of Theorem 3.1 and Lemma A.2, for all A,B n B¢,

- - 2 . L2 m Sy 2y gy (D (i) 2 cn 2
[lia-isleli,=1lia-islfli.q ] |2|UA'UE|F|i1qﬁ|A'BFF
Li=1

Then, by Lemma 2.7.5 in [32] and the Hanson--Wright inequality [23, Theorem 2.1],
since n is independent of {i a }ans,, there is a constant cs4 such that

li pnl- lilanld,?
Xa - Xg |? —12 11| ia- i 2
| Xa 8 |, d [T A iBF| i2||A Blril”,
. 2
[(ip - i§)nl2 . , c a‘\
Q‘TK# |||A'|B|F|2i2q a2 ~|A-BZ|F
F i

2

Thus, {Xa }A“Bt has subexponential increments, and by Theorem 2.2.4 in [30] (with
i (x)=e*- 1) and (A.1),

[ ] [ ]

E sup |iIn| qE[|iZtn|]+E sup |iIn|- |i/Tltn|
AnBt ( AnBc{ )
t (,)
a ) 2), 2“ j) a/a -
g Cs n(d+71 + c o log . dn

q cs max{a,a?}aqd+ 1)m? n.

Then, for s q max{ C7} nlog(n)max{ a?,a3}a{d+ 1)m?,c%a *nlog(n)(d + 1)},
( )
P sup |in|?- n(d+ 1a?qgs
A { , })

Cs s s
q exp

i aZlog(n) min max{a2,a4}a2d+ 1)2m4n’ n(d + 1)
Letting t= coa 2log(n)?(d + 1)m? for a constant co > O large enough,
( tn ) ( )
P sup |i xn|?q — =P sup |i,n|l*q cwoa’nlog(n)*(d+ 1)m
A(nBt 2m nB; )
A

qP sup |in|*-

?nBt {

g exp - €1z min

n(d+ 1)a2q cua 2nlog(n)?(d+ 1)m

})

| 3
nlog(n) m log(n) g n”c12m

max{ 1,a 2} a~2m?’

for n g m3max{1,a 2} &2 Finally, combining the above bound with (A.7) and (A.6)
gives
( )

P sup |Pn|3q ca?log(n)*(d+ 1)m* g n 2™+ 2e cun/(a~(d+1)m*) 0
Pn P

Lemma A.5. Consider the setting of Theorem 3.2 and let B; := B(A ¢,
For all A1,A 2 n By,

) |
(A.10 E[ Ua,- Ua,lelq

).

—
4mad>~ d+1

d
16m3/2 max{1,c}y o=+t
[A1- Ay ¢,

k3/2¢
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and
(A-11) )
( )
p . 2a\2d+ 1m .
P s a- Unize Z2EEEIM o a1 Aalh a
c n t
AlA 2nB:

Proof. For each j,| n{1,...,m/k}, define the event
Ejﬂl’A 2:={a1(A (1j)[i ]) = max and ai(A (Zl)[i 1) = max}.

Now assume that E; ; holds for some j. Observe that |[U, - U,, |§ = 2sin(a (uq,u,))?,
where ug,uz n S 1 are the leading eigenvectors of A(l”[i ] and A(z”[i ], respectively.
Also, note that for all A n B(A t,a/4), Weyl's inequality implies

mmmwn-wmmwnqmman-mman-aN”—Mqug

for all un S9. By a variation of the Davis--Kahan theorem (Corollary 1 in [33]) and
(3.6),

AA 9 - AN 4lAY - AP
ar(A V'[i1)- az20a V0 )) a

sin(a (u1,uz2)) q

On the events Ej,; where | = j, we have the upper bound [Ua - Ua,|r g 2. Together
this implies the following general upper bound:

k W m
[Ua, - Ua,|F = [Ua, - Ua, ¢ Loavas+ [Ua, - Ua,lf 1Toains
j=1 ) j=1 1= "'
25/2 ka
(A-lz) q B |A1‘ A2|F1E1Aj1.Az+ 2 1EJA|1’A2'
€ ' j=11=j "

We now bound the probability of EJ.All'A 2. By Weyl's inequality,

A 1A, t s () () arr I
E g a (A [i)ga (A¥[i])anda (A ' [i])ga (A" '[i])
1 2 1 2 1 1 1 1

j/l )
{( | oo e o))
g aAS[iD- axaWi)  aaWlin- aiaPiin qo

Then, by the fact that (a- b)? q a? if ab< 0 and again by Weyl's inequality,

(A.13)
AA
N

t( ) (s () () A (s () )2}
a auASlD- aAiD- aA Y [iD+adA YD) g adASliD- a(A i)

{ e ] o
@, |a1<A D1 - aua Ve laya 97 - asa 90l |a1(A SOREACS )|

E

. . | .
q 1AV A op + (AR AR 110gq faa(A 210~ an(a #'Li )]
g ®arT AV AU A0 Al e g e Vi) - asa Vil
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Thus, by assumption (3.4),
P(EA A 2) ( ) )
d . . _
gP o aFT AV - AU e+ AV AP e g faa(a L) - al(A(ZJ)[i])||

( | | j j
IA()_ A§)|F+ |A(1])_ A(J)IF

(A.14) q & drt— 1 2 4
E las(A QD) - as(A YD)

By Weyl's inequality and the triangle inequality,
. i) . i) s ka
(A.15) A VD) - asA Vil a laaA D) - aa(A Pl T
2m

and by assumption (3.5),

ma ka H

[ |
(A.16) E ls(A 1)~ ax(A 1))

q
In order to prove (A.10), we see that the bounds (A.12), (A.14), and (A.16) imply

E[lUa, - Ua,lf]

5/2 mkm i
- [A1- Azlr + 2 P(Ej,ll' ?)
< j=11=j

d
sy g1 m

q

L o
1A - ale + Al - Al

o

252
—|A1- Ag|f +
a j=1 1=]

d /k

252 8ma\ da+ 1f - ~
- :FlAl_ A2|F + T |A1(J)_ AZ(J)l
( Fi=t )

my k 1/2
25/2 | 8m3/2cd" . a2
a : |A1- Ay ¢+ y3/2; |AY) - A9 ]
d j=1

3/2 A |
q kg/ze | 1- Ay ¢,

where we have used the inequality |x| q CIn| x| for x n R". Next we prove claim
1 2
(A.11). First, we see that by (A.13)

(

P pala s, Elell’Az
[ td — Coo m W a0 s i ]
AP patane, X TFI |A) - Al e+ [AY - A e g faa(ATID- an(A DY

and thus by the union bound, (A.15), and assumption (3.5),
( ) m

P Patats, Pj-I E”]«]J},Az q P pala s, EAijJ,Az
i=1 |]
m?_ ka ) i)
9 7P |a1(A D7) - axa Opi !
m2, k2 | (s () ] ) () ]
q FZP FE laa(A LD - adfA T a faalA 'l - an(A ) a a.
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Thus, (A.12) implies

( )

p 25/2
P [Uay - Ua,lr g —a—

ALA 2nB. |A1- Azlf g .

. - d |
The inequality |i s (Ua - Ua,)l29 & @F I|Ua, - Ua,|r and Lemma A.1 give the
second claim. ]

Lemma A.6. Define Bq(z,R) :={xnR9:|x- z|2q R} for R > 0and zn RA.
Let {ia}an Bq(Z,R) be a stochastic process in R¢ such that
(i) lial2q alai’?|op;
(ii) for all a1, a2 n Bq(z, R),
[ ( ) ]
|1/2
a ‘op

- iazlzq K inf  |a la,- a,l, aa

a
an B z,R
1,a2n Bg(z,R) al )

where a, = E[iai ; ] for all an B4(z, R). Definei s asin Lemma A.3 and fix un (0, 1).
Then, there exist constants co,c1 such that for n q coa 2RK/u 4, with probability greater
than 1- 2de @nu?/a?_ 5

(..) (.. )
amh'l'a amax'!{a

q sup

1- ug inf —— 7 _max " a @
an Bq(z,R) Namax(a a) anp (2 R) na max(a a)

ql+ u
Proof. As in Lemma A.3, first suppose that for all a, i, is isotropic. Fix u> 0.
For each a, the Matrix Bernstein's inequality [29, Theorem 1.6.2] implies, for all sq 0,

(] | ) ( ,)

i 2d L
I'\4 L]a as 9 exp 2a (4+S)

|03

Now observe, by the reverse triangle inequality, that for any a,bn Bq(z, R),

I |2
1. 1. 1. 1.
|—|Z|a-l|l - —lglb-l|l |

n op I'D op

T 2

a lisia-ibislg

A o 0 0
q ~ sup el - i, ,xee )+ i, xe

d-
xn S iag

(i)
b

N ot
q n |Ig')_ II()I)|2||7EII)+| l2q -~ ||(|L_ I(I)bl ,.

i=1 i=1
Now, let M, be a ﬁ-net in the ball Bq(z,R). For an Bg(z,R), let au n My be
the parameter such that |a- a, |29 %. Then,
1 |
sup | —ilia- I||
n
anBQ(z,R) op | | |
1. ;. I 1 .. I 1 ;. I
q sup |*Igla-|| -’nlltlat-|| l, sup ;I;Ia-||
anBQ(z,R) op op an My op
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Tia- |I|

( ) 172
2"" o 3
g sup — it - it 2 + sup ||+
anBQ(z,R) n i=1 ' an My n op

By (A.1), M ulq (1 + 323{75'()0'. A union bound then gives

( )
P sup 1iTia- Il qu
anBg(_R) I'n @ Iop
{ | ) ( " 2)
1 . u 2a ATER u
qP sup ;Illa-lll a5 + P sup ||§,”-|§,‘3|qu
an M y, k ) (op )anBQ(z,R) i=1
q 2
g2d 1+ 32aR K exp nu
( u? 8a2(1+ u/2))
2

1 nf ) ) u
+P sup  — |i;')-ig'3|2qg
an B(Z](Z,R)I”| i=1

To bound the second probability, we see that by the assumptions on i,
( )

1 m . . u2

P sup — il il 9 —

an B (Z,R) n._, ‘ &

(

in? ) s u? () o () -
q P sup li § ,aL|2qQ 15 - i%l2a Kla- al2
an I?q(z,R) i=1 an Bq(z,)R)
p . .
+ P |iz(il)_i§1|3|2q Kla' au|2 q a.
anBQ(z,R)
Thus, for nq ca3RK/u 4,
( ) :
1. T | _ c3nu
P sup —igia- 1l qu g2de "7+ 0
anBQ(z,R) n op

Lemma A.7. Consider the setting of Theorem 3.2 and let By := B(A {, —¢—).
Define P as in Lemma A.4. Then, there exist absolute constants c;, i = 0, .4."16\,~3,d§L11ch
that for nq cod™2(d+ 1)32mk,

( )
P sup [Pn|2q cia’log(n)®(d+ 1)m? g n

Pn P

cg m (d+1)m _ c3n
a7 mln{ =14 2de” *Zia+lim + @.

Proof. We proceed as in the proof of Lemma A.4 to show that for t> 0,

( ) ( T )
. 0 + P inf @minlixiato 1
A.17) P(sup |[Pn|%qt)g P sup |itn|? i
( ) (Pngl [“at)q AnB|ot| Anl5q 9m anse nlan lop 5

To upper bound the second probability above, Lemmas A.5 and A.6 applied to the
stochastic process ia :=i s Ua imply that for nq cidr3(d+ 1)3/2mk,

( T )
P inf aminllaina)qg 1 L
(A.18) ans.  nlaa lop > q 2de m + @.
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For the first probability, proceeding as in the Lemma A.4, we obtain the following:
For sq max{ coa " log(n)E [sup, ns, |i A nl2],cda 2log(n)n(d + 1)},

(A.19)
( )

P sup i jn|?- n(d+ 1a?qs qge

{ }

2
s

- co s
o T A e

E[S)U)p}A By i
n

AnBt

Now, to upper bound E [sup, B, li Z n|2], we first observe that by the independence
of the covariates and noise,

[ ] [ 11/2 [ 1172
E sup li,nl gE sup [i, n|? =E sup |ialZIn|?
AnBt¢ AnBt AnBt
11/2
=a nE sup |i AI§
AnB¢
For all A n B¢,
. M 0 2. a2
lialz=" 111 uf 2q &%+ 1n,
i=1
and thus
[ ] d
E sup |ipn] gra d+ 1.

AnBt

Then, for s q max{ coa zé\“n} Tog(n){d+ 1),c3a 2nlog(n)(d + 1)}
( )

P sup |i jn|?- n(d+ 1)a?qs
A { , })
1 s s
q exp

" 3Zlog(m ™" TEmInz(d+ 1)’ A2nd+ 1)

Letting t= coa 2log(n)?(d + 1)m? for a constant co > O large enough,
( ) ( )

P sup |i/T\n|2qt7n =P sup |i jnl*q ca’nlog(n)’(d+ 1)m

AnB 2m nB;

(t A )

aP sup |i;n|?- n(d+ 1)a®q csa’nlog(n)’(d+ 1)m
Ane { )

}
~ c m : (d+1)m
g exp - calog(n)min %ﬂzﬂa\ , q oy mindg M 1}

Finally, combining the above bound with (A.17) gives, for nq ci1a\*3(d+1)32mk,
(

P sup |[Pn|2q ca’log(n)’(d+ 1)m?
Pn P
cqm

T T\
qn a\

min{ ( da+21 )m

o_—_¢f3n
4 2de T e + . O
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