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Abstract. A significant obstacle to spatial epidemiology in healthcare
facilities is the absence of computationally amenable maps of the under-
lying space. Spatial data for built spaces are typically stored in com-
puter aided design (CAD) architectural files which are difficult to parse,
query, and combine with other data sources. To alleviate this difficulty,
we design a tool, cad2graph, which automatically extracts spatial maps
from CAD files. To ensure that the spatial map is easily amenable to com-
putation, we represent it as a graph whose vertices represent spatial units
of a uniform size and whose edges represent obstacle-free, walkable paths
of uniform length connecting adjacent pairs of spatial units. cad2graph
extracts key information such as walls, doors, and room labels from the
CAD file and through a series of geometric transformations, extracts a
spatial graph.

Keywords: spatial graphs · graph extraction · architectural
drawings · epidemiology · healthcare associated infections

1 Introduction

Spatial epidemiology at the scale of healthcare facilities is critical for mod-
elling and combating healthcare associated infections (HAIs). Some example
include spatio-temporal clustering of Clostridioides Difficile infections (CDI)
in hospitals [8], characterizing spatial distribution of healthcare professionals
(HCPs) [4,5], optimizing microbial swabbing for disease surveillance [1], and non
pharmaceutical interventions to combat CDI and Methicillin-resistant Staphy-
lococcus Aureus (MRSA) [3,7]. A major obstacle in spatial epidemiology at the
healthcare facility level is the lack of spatial maps of the architectural layout
of the facilities. While many healthcare facilities have spatial data, it is often
stored as computer aided design (CAD) files. It is non-trivial to analyze these
together with other datasets often required for spatial analysis such as health-
care professionals mobility, patient transfers between rooms, and patient-room-
doctors interactions [2,6]. On the other hand, if the data present in CAD files
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could be extracted as a spatial graph, it could easily be stored in the same
database as other data and be analyzed together. In prior work [5,6], we have
used hand-crafted spatial graphs. Generating hand-crafted spatial graphs for the
entire University of Iowa Hospitals and Clinics took many months of work by
4-5 undergraduate students, 2-3 masters students, and 3 faculty members. This
is a significant effort that not all healthcare facilities can afford.

To address the issues mentioned above, here we develop and demonstrate
cad2graph, a novel tool to automatically generate a spatial graph representing
the physical space within a hospital given an input CAD file. cad2graph care-
fully reads the outline of the architectural drawing and extracts spatial graph
via a series of geometric transformations. Our target audience include data min-
ing researchers who are applying their work towards the understanding and
mitigation of HAIs and epidemiologists who are seeking to apply data mining
techniques for clinical applications.

2 System Overview

The input to cad2graph is a CAD file representing a specific floor in a specific
building. We first extract the external layout of the floor and structure of the
walls and doors. We then construct a two dimensional grid with a pre-defined
spacing and overlay the grid on the structure with walls and doors. We then
assign a label to each grid node based on whether the given grid node is within a
polygon of walls. We then repeat the same process and label the door nodes. We
then add edges between the grid nodes in eight directions. Finally, we sparsify the
grid and extract spatial graph. To this tool, we added a graphical user interface
(in Python). The overview of the system and GUI are presented in Fig. 1.

(a) (b)

Fig. 1. (a) Overview of cad2graph. (b) The interface of the tool implemented in
Python. The left panel consists of interactive elements and the right panel visualizes
generated graph on top of the architectural layout.

The system presented here automatically extracts spatial graph GL(L,E,
W,X) from a given CAD file. The graph is defined between the locations L
within healthcare facilities including patient rooms, hallways, and so on. Each
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edge e(l1, l2) ∈ E between two locations l1 and l2 indicates that they are in close
proximity. The corresponding edge weight depends on whether l1 and l2 are
within the same closed space or are connected via doors, stairs, and elevators.
We provide a high-level summary of the steps involved in cad2graph next.
1. Canvas construction. We read the CAD file and extract the architectural
layout and room labels, positions of walls and doors, and the dimension of the
outer most walls. We then construct a 2-d canvass and assign (x, y) co-ordinates
to each label read from the CAD file.
2. Grid extraction. We then construct an evenly spaced 2-d grid on the gen-
erated canvas. The number of rows and columns on the grid is determined by
the size of the canvas and a user-specified parameter ρ. We then assign numeric
labels to each point on the grid. Points on walls and doors are labelled 1 and 2
respectively. Others are labelled 0.
3. Graph extraction from the grid. The next step involves creating a spatial
graph G′(L′, E′,W ′,X ′) from the grid defined above. First we go over the labels
extracted in step 1 and assign them as nodes L′ (note: each room has a single
label in the underlying CAD graph). We then add edges E′ between the newly
added nodes L′. Since the nodes were extracted from the grid, they too are
organized in a 2-d space. We connect nodes in horizontal, vertical, and diagonal
directions and assign weights depending on whether an edge crosses a door.
4. Graph sparsification.G′(L′, E′,W ′, F ′) could be very dense for small values
of ρ. This would imply that even a small room could have multiple nodes inside
it, which is not ideal. Therefore, we sparsify G′(L′, E′,W ′, F ′) to obtain a sparse
spatial graph G(L,E,W,F ) using K-nearest neighbor search [9] and finally we
remove small disconnected components. We then add edges between disjoint
connected components while ensuring that the newly added edges are between
the nodes which are geographically close. Note that only very few edges are
added in the post processing step.

3 Demonstration

We run cad2graph on CAD files obtained from the University of Iowa Hospi-
tals and Clinics (UIHC). Here we present a subsection of the visualization of a
CAD file for a floor in the Roy Carver building1 for demonstration. Figure 2 (a)
visualizes the input CAD files. The red rectangles represent a subset of labelled
rooms. Figure 2 (b) shows spatial graph extracted by cad2graph on top of the
architectural layout. Here, we are only showing some of the labels in a subsection
of the floor for legibility; notice that cad2graph is able to assign the labels to
the correct nodes. As observed, the stairs, storage rooms, mechanical rooms, and
staff’s rooms are all assigned in the right place. Next, we observe that the cross
door edges (in brown) and non-cross door edges (in blue) have been correctly
identified: none of the blue edges cross any doors and all brown edges cross a
door. Finally, we see a reasonable number of nodes within each open spaces,

1 https://www.facilities.uiowa.edu/building/0359.
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(a) (b)

Fig. 2. (a) Visualization of a subset of the CAD file showing one of the floors of the
Roy Carver building in the University of Iowa Healthcare and Clinics.(b) Spatial graph
extracted by cad2graph from the CAD file shown on the left.

only one node in small rooms, and the hallways are represented by single chain
of blue edges. These observations are consistent with our design goal.

The dashed white line in Fig. 2 (a) shows obstacle free walkable path from
the room EXAM 6 to the room WASH 0065. The dashed black line in Fig. 2
(b) is drawn over the edges along the shortest paths between the two rooms. As
observed in the figure, the spatial graph extracted by cad2graph is actually
able to infer edges which correspond to meaningful obstacle-free walkable paths
between physical spaces. For additional validation, we first computed euclidean
distances between all pairs of rooms in the same floor as above. We then com-
puted shortest hop distance on extracted spatial graph between the same pairs
of rooms. The Pearson’s correlation between the two distances was 0.83, fur-
ther validating that the spatial graphs extracted by cad2graph do capture the
underlying architectural space well. A short demonstration video is available
online2.

4 Conclusion

In this paper, we presented cad2graph, an automated approach to extracting
spatial graphs from CAD files. cad2graph carefully constructs a sparse graph
from the architectural information in the input CAD file. We demonstrated a
subsection of spatial graph generated from a CAD file obtained from University
of Iowa Hospitals and Clinics. Additional demos along with out source code are
publicly available. Our results show that the generated graphs are meaningful.
These graphs can be stored in relational databases along with other datasets
obtained from hospital operations and can be easily leveraged for spatial analysis
of epidemics within healthcare facilitates.

2 https://www.dropbox.com/s/9j6q1l5q11q2uuq/Pr_Final.mp4?dl=0.
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