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Abstract. Data heterogeneity presents significant challenges for feder-
ated learning (FL). Recently, dataset distillation techniques have been
introduced, and performed at the client level, to attempt to mitigate
some of these challenges. In this paper, we propose a highly efficient FL
dataset distillation framework on the server side, significantly reducing
both the computational and communication demands on local devices
while enhancing the clients’ privacy. Unlike previous strategies that per-
form dataset distillation on local devices and upload synthetic data to
the server, our technique enables the server to leverage prior knowledge
from pre-trained deep generative models to synthesize essential data rep-
resentations from a heterogeneous model architecture. This process al-
lows local devices to train smaller surrogate models while enabling the
training of a larger global model on the server, effectively minimizing
resource utilization. We substantiate our claim with a theoretical anal-
ysis, demonstrating the asymptotic resemblance of the process to the
hypothetical ideal of completely centralized training on a heterogeneous
dataset. Empirical evidence from our comprehensive experiments indi-
cates our method’s superiority, delivering an accuracy enhancement of
up to 40% over non-dataset-distillation techniques in highly heteroge-
neous FL contexts, and surpassing existing dataset-distillation methods
by 18%. In addition to the high accuracy, our framework converges faster
than the baselines because rather than the server trains on several sets of
heterogeneous data distributions, it trains on a multi-modal distribution.
Our code is available at https://github.com/jyqhahah/FedDGM.git
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1 Introduction

Federated Learning (FL), a recently very popular approach in the realm of IoT
and Al, enables a multitude of devices to collaboratively learn a shared model,
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while keeping the training data localized, thereby addressing privacy concerns
inherent in traditional centralized training methods [19]. In practice, however,
FL faces a significant challenge in the form of data heterogeneity due to the
diverse and non-i.i.d. nature of client data, shaped by varying user preferences
and usage patterns [5,9,20]. To address this complex challenge, which impacts the
effectiveness and efficiency of the learning process, several previous methods have
been proposed, such as [10,18]. Recent research, such as FedDM [23], integrates
dataset distillation (DD) [7,11,21] techniques into FL, performing DD on local
devices and uploading synthetic data to the server, which has shown exciting
progress in addressing the challenge of data heterogeneity.

However, existing methods incorporating DD in FL are not without their
limitations. One significant issue is their inability to enhance knowledge general-
ization across different model architectures, a challenge especially relevant in FL
due to the variability of device resources and capabilities. Furthermore, these
methods often compromise data privacy principles, as they require clients to
upload synthetic data directly to the server. Addressing these concerns, we pro-
pose an advanced, server-centric FL. DD framework, which significantly bolsters
data privacy and substantially enhances knowledge generalization across differ-
ent model architectures in various settings to reduce the computational load
and communication overhead on client devices. Our methodology is structured
into three pivotal components in each communication round. Firstly, it facili-
tates the training of compact surrogate models on local devices, which are then
updated to the server, accommodating diverse resource constraints. Secondly,
leveraging pre-trained deep generative models, the server synthesizes distilled
data representations via matching training trajectories of the local surrogate
models. Subsequently, the server employs this distilled synthetic data to refine a
more comprehensive global model. Our extensive experimental analysis under-
scores the effectiveness of our approach. We demonstrate a notable 40% increase
in accuracy compared to traditional non-dataset-distillation techniques within
varied FL environments, as exemplified by our results on the CIFAR-~10 bench-
mark. Furthermore, our method outperforms existing DD techniques by 18% and
shows a remarkable performance improvement of around 10% on high-resolution
image datasets like ImageNet.

To motivate the principle, consider Figure 1. While standard aggregation-
based FL frameworks such as FedAvg average the gradients/parameters from
each local training rounds together, this effectively can be thought of as train-
ing on the datasets individually and computing the arithmetic mean of the re-
sult. Recall fundamentally that the ideal problem of centrally learning the entire
dataset, that in the FL context is impossible due to privacy or technical con-
straints. By contrast, in our schema, we attempt to solve the ideal problem by
attempting to recreate the distribution by combining the datasets from those
distilled on training each client’s data. Thus, if the distribution, as far as SGD
iterates are concerned, is entirely identical, we would recreate the ideal training
scenario. Of course, this is not possible in practice, however, fundamentally the
quality of the training is only limited to the quality of the dataset distillation.



Federated Learning: Dataset Distillation with Generative Latents 3

Fig. 1: The ideal problem would be to train on the central multimodal dataset, in-
cluding all of the data. FedAvg can be considered as solving each problem individually
and averaging the final solution, which is not guaranteed to be closer than a certain
distance to the true minimum regardless of the quality of the local training. FedDGM
attempts to recreate the dataset in the most relevant way for training, by combining
distilled data from each client.

The contributions of our work are as follows:

1. We present a novel FL dataset distillation framework, allowing clients to
train smaller models to mitigate computational costs, while the server ag-
gregates this information to train a larger model.

2. We conduct a theoretical analysis demonstrating that, from an asymptotic
perspective, our method is equivalent to the theoretical ideal of centralized
training on a multi-modal distribution, representing the sum of heteroge-
neous data.

3. We conduct extensive experiments to underscore the effectiveness of our
approach. Our empirical evidence demonstrates a significant improvement
in model performance in highly heterogeneous FL contexts, setting a new
benchmark for dataset distillation methods in FL.

We test our ideas on two widely adopted network architectures on popular
datasets in the FL community (CIFAR10, ImageNet) under a wide range of
choices of architecture backbones and compare them with several global state-
of-the-art baselines. We have the following findings:

— F1: The advantages of our dataset distillation-driven FL approach are accen-
tuated in comparison to aggregation-based FL training methods, particularly
when distinct groups of clients manifest substantial differences in the distri-
butions of their local data (Section 4.2 of the main paper and Section 5 of
the supplementary material).

— F2: Theoretically, we find interesting implications of the distributional limit
from the bilevel structure of the dataset distillation problem. Considering
marginals at this limit motivates the approximation to the ideal problem
with an approximate dataset (Section 3).

— F3: Our method is architecture-agnostic and significantly enhances state-of-
the-art performance on high-resolution images by leveraging prior informa-
tion from a pre-trained generative model (Section 4.2).

— F4: Our framework converges significantly faster than the state-of-the-arts.
The reason is that our framework aggregates the knowledge from the clients
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by gathering synthetic data rather than averaging the local model parame-
ters, which preserves the local data information much better (Section 4.2).

2 Method

2.1 Overview

In this work, we introduce a novel FL training approach grounded in Dataset
distillation with deep Generative Models (FedDGM). Diverging from conven-
tional aggregation based FL training techniques like FedAvg [12], FedDGM
distinguishes itself by enabling collaborative training of a large global model
with enhanced performance while maintaining a lower computational burden.
In contrast to data distillation based FL methods, exemplified by FedDM [23],
FedDGM sets itself apart by addressing privacy concerns more effectively than
FedDM. This is achieved by exclusively transferring model parameters rather
than synthetic data, ensuring a heightened level of privacy preservation.
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Fig. 2: An overview of FedDGM. At each global communication round ¢, (1) the server
sends global surrogate model to clients, (2) clients train local surrogate models on local
data, (3) clients send local surrogate models to the server, (4) the server initializes
latent vectors and generates synthetic data for each client m, (5) the server uses MTT
to update latent vectors, (6) after distilling data, the server aggregates all synthetic
data and gets the synthetic dataset D§t+1), and (7) the server uses the synthetic dataset
to train the global model and global surrogate model.

In particular, to reduce the computational costs for clients, we enable clients
to utilize a small surrogate model, which typically has fewer model parameters
than the global model. Clients use this surrogate model for local training and
send their trained models to the server. To avoid additional communication
costs and privacy concerns, when the server receives the surrogate models from
clients, it employs the Matching Training Trajectories (MTT) method [1] to
distill synthetic data for each client. To enhance the training effectiveness of the
synthetic data on the global model and the performance of FedDGM on high-
resolution datasets, we leverage prior knowledge from pre-trained deep generative
models to distill data. Subsequently, the server trains the global model on the
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distilled data. Moreover, the server uses the distilled data to train an extra global
surrogate model, and then sends it back to the clients, enabling them to perform
their local training in the next communication round. Fig. 2 is an overview of
FedDGM, and Algorithm 1 summarizes our FedDGM.

2.2 Problem Formulation
We begin by introducing some notations in FedDGM. Assuming that each client
m has its own local training dataset D,, and a surrogate model parameterized

by 97(79). In each global communication round ¢, client m addresses the following
optimization problem:

ol — in  L(Dm;0
i 0egtrel§f)) (D 0), (1)

Algorithm 1 The FedDGM Framework

Input: M clients indexed by m, participating-client number K, communication
rounds 7Ty, server global model f with wﬁ,o), server surrogate model f; with 950),
pre-trained deep generative model Gy.

Server executes:
initialize global model f with wéo) and global surrogate model fs with 6
for each round ¢t =0,1,2,... do
St < (random set of K clients)
for each client m € S; in parallel do
broadcast 9},“ to clients
05 « ClientUpdate(6S, D)
transmit 657" to the server
for each client m € S; do
randomly initialize vectors I/T/}(,f)
calculate latent vectors Z. using W
for ty = 1,....7; do
generate distilled data DS = Gg(Z(rtL))
obtain ég(,tJrTS) from ég(,t) = O!E-,t) by SGD on DY) for T, iterations
compute the Trajectory Matching loss Lyt
update Zﬁ,f) with respect to Lyrr
DTV = (DD |DP = Gy(Z2), m € S}
update parameters to 9_5,”1) and wg(,tﬂ) on Dg(,tﬂ) by SGD, respectively

(0)
g

ClientUpdate (6, D,,):
initialize local surrogate model parameters: ot = 95)

update HSfLH) on D, by SGD for T; iterations
return 07(,2“)

where 0@” is the global surrogate model parameters sent from the server, and
BT(Hgt)) is a r-radius ball around Hé(,t). After client m sends its local surrogate
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)

model parameters Hf,iﬂ to the server, the server distills synthetic data Dﬁfl)

based on 9,(72“). The server gets the synthetic dataset D_E,H'l) by aggregating

(®)

all D,(ﬁ+1)7 and trains the global model parameterized by wgt , together with

the global surrogate model parameterized by Gét), on D_,(,Hl). Subsequently, the
server sends the global surrogate model parameters back to clients.

In the next section, we will delve into the core component of FedDGM, which
is the data distillation on the server.

2.3 Global Data Distillation

Our data distillation incorporates two key techniques to address different is-
sues: distillation via Matching Training Trajectories and optimization via deep
generative latents.

Distillation via Matching Training Trajectories Previous FL training
methods that incorporate data distillation directly transmit synthetic data be-
tween the server and clients [23], leading to privacy concerns. In contrast, Fed-
DGM adopts a different approach where the server only receives surrogate mod-
els from clients. This prevents the server from using dataset distillation methods
that require access to the actual local data of clients, such as data conden-
sation [25] and distribution matching [24]. Hence, FedDGM employs an adap-
tive version of Matching Training Trajectories, a technique that solely utilizes
checkpoints of model parameters saved throughout the training of clients’ local
surrogate models on their real datasets to distill data.

Specifically, after client m uploads its local surrogate model parameters

9,&?”, the server trains a student network initialized with 9§t) on a randomly

initialized synthetic dataset Dﬁ,? for T epochs, where 9§t) is the global surro-
gate model parameters received by client m in the last communication round.

We denote the post-training student model parameters as ééHTS), and define the

training trajectory matching loss as the normalized Lo distances between ééHTS)
and client m’s local surrogate model parameters 97(7";“), ie.,
GUATS) _ gli+1) 12
p— [ o)

165”7 — 6570 |2
Then the server updates the synthetic dataset DY according to the training
trajectory matching loss L£y;rr. The server repeats the above steps Ty times to
obtain the updated synthetic dataset Ds,tl)

In the above process, we directly use 95(,” to initialize the student network in-
stead of randomly selecting a starting epoch from client m’s training trajectories.
This is done to reduce communication costs, allowing the server to distill data
even if it only receives updated surrogate model parameters 9,(7?1) from client
m. Due to the server’s direct use of synthetic data for global model training,
as opposed to aggregating model parameters or gradients sent by clients, data



Federated Learning: Dataset Distillation with Generative Latents 7

distillation significantly enhances the convergence speed of training the global
model, noticeably reducing the global communication rounds. More importantly,
it allows the global model on the server to have a different architecture from the
local surrogate models on clients’ devices, thereby reducing the computational
costs for clients. To further improve the generalization of synthetic data on the
global model, which often has a distinct architecture from clients’ local surro-
gate models, we employ another key technique, optimization via deep generative
latents, as introduced in the next section.

Optimization via Deep Generative Latents In the previous section, unlike
the methods for distilling data under centralized learning and other FL train-
ing methods that distill data on the clients’ side using real data for initializing
synthetic data, we randomly initialize synthetic data for each global communi-
cation round. This is due to the server’s inability to access the local training
data of clients. However, distilling data directly using randomly initialized syn-
thetic data tends to result in low-quality synthetic data, subsequently leading
to poor performance of the global model. Furthermore, the global model and
surrogate model often have different architectures, and data distillation employs
the surrogate model, resulting in synthetic data that does not generalize well
on the global model. Therefore, during data distillation on the server, we em-
ploy a novel technique called optimization via deep generative latents, where the
server leverages prior knowledge obtained from a pre-trained generative model
to optimize the distillation process.

In our FedDGM, the server possesses a pre-trained generative model denoted
as G4. Optimizing distilled data in the latent space of a generative model can
result in better generalization on models with different architectures compared
to directly optimizing in pixel space [2|. Hence, in each global communication
round ¢, instead of using randomly initialized synthetic data, the server begins
by generating latent vectors Z(fl) for each client m through some initialization
methods. These latent vectors are then employed with the help of G to generate

the distilled data Dﬁ,?. Because G4 can propagate gradients, it doesn’t interfere

with the use of Ly, for optimizing the latent vectors Z(,?

We utilized the pre-trained StyleGAN-XL as our generative model. Since
StyleGAN-XL has multiple latent spaces in its synthesis network, the choice of
which latent space to use for distilling synthetic data is an intriguing question.
We denote the distillation space corresponding to the n-th intermediate layer of
G4 as Fn space. A smaller n implies that distillation relies more on the prior
knowledge of the generative model, resulting in more realistic synthetic data.
Conversely, a larger n makes the synthetic data more expressive. In our exper-
iments, we investigate the impact of different latent spaces on both the quality
of the distilled data and the training performance.

We can also leverage prior knowledge from StyleGAN to initialize latent
vectors, thus improving the quality of the synthetic data. StyleGAN incorporates
a mapping network, which is typically a multi-layer perceptron, responsible for
mapping input vector W to an intermediate latent space. The mapping network
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transforms the latent space into a more expressive style space, offering fine-
grained control over styles. Therefore, we can randomly generate vectors W,Sf)
for client m and use G4’s mapping network, along with the earlier layers of the

synthesis network, to initialize latent vectors 27(7? that possess prior knowledge.

3 Theoretical Analysis

In this section, we articulate the argument that, from an asymptotic standpoint,
the described procedure becomes equivalent to the theoretical ideal of central-
ized training on the cumulative heterogeneous dataset. The central server is
performing GD with gradually changing data, with iteration,

0,7 =0, — sy ) VI(05: D)
meSt
where s, is the step-size and f is the loss function. Recall that the dataset
distillation optimization problem for each agent is defined by,

min f(6"(D},), Di)
b, . )
s.t. 0*(D},) € argmin £(0, D},)

One can consider the federated DD component as an iterative optimization pro-
cess for this particular problem, for simplicity writing each major iteration as a

full gradient update,

- - - do*(Dt,)
t+1 At x 0 7t t m
Dm - Dm_SDVQf(e (Dm)7Dm) dDEn

* Tyt
where the term % d(Dj?m) represents the sensitivity of the training solution with re-
spect to the distilled dataset. Consider a Stochastic Differential Equation (SDE)

model of the training:

o, = . > V§(0y; Dy)dt+ dW,
|St| meSt
* (Tt
dD, = —ng(@*(Dfn),Dfn)% + dW;

Note that the second does not depend on 6y, it thus drifts independently. This is
of course a simplification as Local SGD iterations for each client are constrained
to be near ;. As we do not know how far local iterations are from optimality,
and the ultimate intention is to perform dataset distillation as in the solution of
the bilevel problem, we study the results with idealistic formalism.

We would need to prove some conditions for this to be the case, but the
stationary distribution of this second diffusion can be written by taking the
antiderivative of the drift term with respect to D! and taking the negative ex-
ponential

7(D4,16%) o< exp { =80 f(6" (D), D) }
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where = 1/s, the step-size of the SGD, which also corresponds to the entropy.
As 8 — oo, the distribution converges to a delta distribution on interpolating
the sample, and as 8 — 0, far from mean samples are more likely to be taken.
Now, 6*(D?,) also exhibits a distribution, considering the stationary Gibbs for
the neural network,

7(0*|Dt,) o exp {—ﬁ*f(e,Dfn)} .

As this network is overparametrized relative to the data, this distribution has
multiple modes and a connected zero loss region in 6 space. If we consider it-
eratively sampling in an alternating fashion from w(D? |0*) to m(6*|D? ), then
we know from [15, Theorem 1] that the stationary distributions of D!, and 6*
converge to their marginals. Let us now study the properties of the limiting
marginal distributions. Detailed balance (as required for ergodicity, or conver-
gence in distribution, see e.g. [17]) requires that,

n(0") exp {~Bpf(0°, Diy)} = w(Dhy) exp {~B. (0" D}, }
Taking 8, — oo we see that we have convergence in distribution of,

m(Dy,) = exp {=Bp f(07, D)} m(67)

with, }
supp (7(6")) C argmin (6, DL,)

Consider taking Sp — oo now, and thus,

supp (ﬂ(bﬁn)) c
{Dfn :argmin f(0, D%,) Nargmin f(0, D%,) # (/)} .

Finally, the solution of , is based on a deterministic gradient descent, i.e., there
is no stochasticity, because the entire dataset D!, is small and hence can be
loaded in memory. However, D! itself is a stochastic process. Furthermore, as

the network is overparametrized relative to the size of D, it has a submanifold
of zero loss solutions.

* . .t
0, € arg meanf(Q, D,,) (3)

Now, if there exists §* such that 6* = argmin f(0, D!,) for all m, then it also
solves (3). Otherwise, SGD iterations for (3) involve descent by 3° Vg f(0; D),
which is the same as a linear combination of the m computations to find
argmin f (6, D!,) for all m. Thus we have established the equivalency.

4 Experiment

4.1 Experimental Setup

Datasets. We evaluate our method on the CIFAR-10 dataset and five 10-class
subsets of ImageNet. Specifically, we use CIFAR-10 (32x32) to evaluate the
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performance of FedDGM on low-resolution data and employ subsets of ImageNet
(128 x 128) to evaluate performance on high-resolution data. Previous works
introduced some subsets of ImageNet, such as ImageWoof (dogs) [4], ImageMeow
(cats) and ImageFruit (fruits) [1], as well as ImageFood (food) and ImageMisc
(miscellaneous items) [2]. We provide a detailed list of the categories contained
within each subset of ImageNet in the supplementary material.

A distinguishing feature of FL is the non-identical distribution (non-i.i.d.)

nature of local training data across clients. To simulate non-i.i.d. settings for M
clients, we partition the training data by Dirichlet distribution Dir () [13,14],
where o > 0 controls the degree of non-i.i.d. A smaller «, implies a higher degree
of non-i.i.d. By default, we have a total of M = 10 clients, with « set to 0.5.
Furthermore, in Section 4.2, we will investigate the performance of FedDGM
under various non-i.i.d. scenarios.
Compared Methods. To provide a more comprehensive understanding of the
efficiency of FedDGM, we select three FL training methods based on aggregation:
FedAvg [12], FedProx [10], and FedNova [22], as well as a method based on data
distillation, FedDM [23].

FL Training Settings. We have a total of M = 10 clients. For each global
training round, the server selects all clients for aggregation. For the CIFAR-10
dataset, the training batch size is 256, and for subsets of ImageNet, it is 32. By
default, each client conducts local training for 7; = 20 epochs on its own local
training data, and we tune 7; within the range [5, 10, 20, 30]. On the server side,
for each global training round, the server updates the latent vector for T,; = 100
iterations, and for each distillation step, the server updates the student network
for Ts = 20 epochs. The number of images per class (IPC') is 10. The images are
distilled into F5 space (the 5th layer of StyleGAN-XL) for CIFAR-10 and F12
for subsets of ImageNet. After distilling the data, the server trains the global
model for T,; = 1000 epochs with a training batch size of 256 for CIFAR-10 and
32 for subsets of ImageNet. In particular, we tune the layer of StyleGAN-XL in
[0,3,4,5,6,9] and IPC in [1,5, 10, 20] for CIFAR-10.

To ensure a fair comparison, we maintain the same local training batch size
as FedDGM for baseline methods. For FedAvg, FedProx, and FedNova, we also
use the same local training epochs of T; = 20 as in FedDGM. For FedDM, we
adopt the same IPC=10 and train the global model for T;, = 1000 epochs with
the same training batch size, using the synthetic dataset. All the experiments are
run for three times, and we report the mean validation accuracy + 1 standard
deviation for each evaluation case.

Network Architectures. To demonstrate the cross-architecture generalization
of FedDGM, for data distillation-based FL methods (i.e., FedDM and FedDGM),
we set, the local models of clients as a 5-layer ConvNet [6] and set the global model
to be some larger models. Specifically, for CIFAR-10, we evaluate global models
such as ConvNet, ResNet18 [8], VGG11 [16], and ViT [3], while for subsets of
ImageNet, we consider global models like ConvNet, ResNet18, and ResNet34 [§].
For the remaining baseline methods, the structure of clients’” models remains
consistent with the server’s global model.



Federated Learning: Dataset Distillation with Generative Latents 11

Table 1: Using data distillation for
FL training significantly enhances
the performance of global models
in extremely non-i.i.d. scenarios. As
data heterogeneity increases, FedDGM
exhibits a significant advantage over all
baseline methods. Impact of different val-

Table 2: The benefit of FedDGM is
particularly pronounced when the
data distributions are extremely
non-i.i.d. Impact of different a on the
average accuracy across global models
with different architectures on ImageNet.
Dataset Algorithm‘ConvNet ResNet18 ResNet34 Average

ues of o on the CIFAR-10 dataset. Each FedAvg  |48.3415 348401 40.Tu15 413416

. . FedProx [49.740.4 38.5420 443113 4424119
column represents a specific architecture ImMeow FedNova |50.640.5 34.020.6 38.3415 41.0208

of the g]obal model. FedDM  |51.741.3 533407 61.2414 554411
FedDGM |57.8412 56.241.0 651406 59.7+1.2

a Algorithm‘Convth ResNet18 VGG11 ViT Average
FedAvg (385417 25.7415 295401 312418
FedAvg  |70.1:05 62.1:07 66.2+0.6 54.8+0.2 63.3x0.5 FedProx |40.5412 25.34104 29.7420 31.8410

FedProx |70.7+0.5 63.0z0.6 06.2:0.5 550105 63.740.5 ImWoof FedNova [40.74+12 265416 27.0416 314414
0.9 FedNova |70.610.7 62.111.0 66.6+10.6 54.510.4 63.510.7 FedDM 47~0i1.8 52'7io'9 60.310.2 534311‘0

FedDM  |70.2:02 73402 68.7£04 51.6201 66.040.5 s o] L0
FedDGM |70.8505 73.8402 70.1i0.4 55.305 67.550.4 FedDGM |57 4426 623412 727406 Gdlirs
FedAvg  [42.7:10 36.2414 395126 395100

FedAvg [69.410.1 61.110.8 64.4+0.7 53.540.2 62.140.4 ; P

FedProx |69.540.5 62.3405 65.310.4 53.420.3 62.610.4  FedProx 143940 347418 424435 40.411s
0.5 FedNova [69.510.4 60.9:07 64.8506 543512 624507 ImPFruit FedNova |45.741 350206 39.1x10 40.010

FedDM 689203 72.9401 68.040.3 51.040.6 65.240.3 FedDM  |45.741.7 49.7T40.2 53.7115 49.7411

FedDGM |[70.840.0 73.7+0.5 69.810.3 55.9+0.7 67.510.6 FedDGM |54.541.5 55.1407 589404 56.210

FedAvg [45.3432 38.040.0 41.1422 43.640.3 42.011.7 FedAvg [45.110.7 32.8413 393412 391411
FedProx [45.2122 40.2104 40.3+1.9 45.610.6 42.841.3 FedProx |46.342.8 334419 36.7+07 38.8+1s
0.1 FedNova |42.941.7 35.8+06 35.841.742.110.7 39.241.2 ImFood FedNova [46.7425 32.7416 384411 393117
FedDM  |62.020.3 63.610.3 61.440.2 45.0£0.2 58.010.3 FedDM  |50.641.4 50.740.9 59.840.4 53.7+0.9
FedDGM [68.9+0.6 71.640.2 68.110.2 54.240.7 65.710.4 FedDGM |54.542.2 52.941.3 60.0405 55.8+15
FedAvg [14.3127 16.9426 19.3129 311117 2044255 FedAvg  [56.840.9 424407 455432 482116
FedProx |18.3+25 16.7425 14.843.4 28.8433 19.742.9 FedProx |59.141.9 44.7411 46.1118 50.0+16
0.01 FedNova |10.110.1 164418 13.3126 13.312.4 13.311.7 ImMisc FedNova |58.8+1.0 42.7404 483102 50.040.5
FedDM  |47.840.4 48.140.7 48.910.5 36.3+0.4 45.3 405 FedDM  |64.341.1 63.9406 72.2403 66.820.7

FedDGM [66.120.7 69.5:0.1 66.4203 51.550.2 63.440.3 FedDGM [65.640.1 66.645.1 72.5104 682411

4.2 Performance and Convergence Rate

Performance Across Different Datasets. We investigate the performance of
FedDGM on both low-resolution data using CIFAR-10 and high-resolution data
using ImageNet subsets across various non-i.i.d. degrees (different a values) and
architectures. As shown in Table 1, using data distillation for FL training signifi-
cantly enhances the performance of global models in extremely non-i.i.d. scenar-
ios (e.g., &« = 0.01). More importantly, our FedDGM consistently outperforms
the baseline methods on CIFAR-10 across different global model architectures.
Particularly, as data heterogeneity increases (i.e., « = 0.9 — 0.01), FedDGM
exhibits a significant advantage over the baseline methods. This could be at-
tributed to the way we distill data, which compensates for the challenges in
training posed by high data heterogeneity. When client ¢ lacks data in class j,
the global model parameters received by client ¢ already contain information
about data in class j from other clients, which allows the server to use client
1’s local model parameters to distill data in class j with relatively good quality,
as depicted in Fig. 3. To facilitate a quick understanding of the key findings in
these extensive tables, we have presented the average accuracy, represented by
the last column in Table 1, in Fig. 4a. It is evident that, with increased het-
erogeneity (i.e., smaller « values), the superiority of FedDGM becomes more
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pronounced. Unlike other baseline methods, which experience a substantial de-
cline in performance as « decreases, FedDGM maintains a relatively stable level
of performance. We also conducted experiments on a high resolution dataset i.e.,
one of the subsets of ImageNet, ImageFruit under different data heterogeneity,
and the results are shown in the supplementary material.

In the case of high-resolution data, according to results in Table 2, utilizing
data distillation for FL training significantly enhances the performance of models
on high-resolution data, and FedDGM always outperforms baseline methods on
all five ImageNet subsets when the server possesses global models with different
architectures, such as ConvNet, ResNet18, and ResNet34. Specifically, our al-
gorithm significantly outperforms FedDM and other aggregation-based methods
on ImageMeow, ImageWoof, and ImageFruit. For example, FedDGM achieves
57.440.6% on ImageWoof when the global model is ConvNet, while the best-
performing baseline method, FedDM, only achieves 47.041.8%. This demon-
strates a substantial improvement in our algorithm for high-resolution data.
Also on ImageWoof, our algorithm achieves 72.7+0.6% on ResNet34, exceeding
the next best method by over 10% improvement. This significant improvement
highlights its strong generalization capacity across diverse model architectures.
To facilitate ease of comparison, Fig. 4b depicts the average results across archi-
tectures, as presented in the last column of Table 2.

S M i

Fig. 3: Illustrations of distilled data examples labeled as “truck”. These examples are
distilled using a client’s local surrogate model whose local data does not contain “truck”.

Convergence Rate. Fig. 5 illustrates the relationship between test accuracy
and communication rounds for FedDGM and baseline methods on CIFAR-10
across different model architectures. The data partitioning distribution is Dir10(0.5).
First, we observe that FedDGM converges significantly faster than baseline meth-
ods on ConvNet, ResNet, and VGG11. It also converges faster than FedDM on
ViT and has a comparable convergence speed with other baseline methods. In
addition, we observe that data distillation-based methods consistently exhibit a
better convergence rate compared to aggregation-based methods, except when
the global model is ViT. This is because the global model is trained directly on
synthetic data, rather than being obtained through the aggregation of local model
parameters or model updates. The prior knowledge from deep generative models
contributes to FedDGM having a better convergence rate compared to FedDM.
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Fig.4: (a): The benefit of FedDGM is particularly pronounced when the
data distributions are extremely non-i.i.d. Impact of different o on the average
accuracy across global models with different architectures on CIFAR10. (b): FedDGM
is architecture-agnostic. Average accuracy across global models with different ar-

chitectures on various ImageNet subsets. FedDGM outperforms all baseline methods
across diverse architectures.
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Fig.5: FedDGM Demonstrates better performance and faster convergence
rates compared to other baselines. The relationship between test accuracy and
communication rounds on CIFAR-10.

4.3 Impact of Hyperparameters

Fig. 6: Illustrations of distilled data gener-
ated from different latent spaces. Each row
corresponds to a distinct latent space, ar-
ranged from top to bottom: F0, F3, F4, F5,
F6, and F9. Employing latent spaces asso-
ciated with earlier layers generally results
in more realistic distilled data (i.e., those
images at the top rows).

Impact of Different Latent Spaces. As mentioned earlier in Section 2.3, data
distilled from different latent spaces may exhibit noticeable differences. Keeping
the data partitioning fixed, we randomly select a client and show the synthetic
data belonging to the “dog” class generated through data distillation using six
different latent spaces, as in Fig. 6. We can observe that using the latent space
corresponding to an earlier layer tends to make the distilled data more realistic.
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To investigate which latent space results in better data generalization, we ex-
perimented with these six different latent spaces of StyleGAN-XL on CIFAR-10,
and the corresponding global model performance is shown in Fig. 7a. We observe
that using the F5 space results in the best generalization of distilled synthetic
data across different architectures. Additionally, except for the F9 space, the per-
formance difference is relatively small when parameterizing the synthetic data
in other latent spaces and consistently outperforms baseline methods.

- FO F3 mmm F4 e FS5 F6 mem F9 - PC1 IPC5 wem IPC10 W IPC20
75 8
870 = - g70
oy oy
©65 ©60
5 5
Seo 8
o <so
7 T 7
55 &
40
50 ConvNet ResNet VGG11 ViT Average ConvNet ResNet VGG11 viT Average
Models Models
(a) Different latent spaces (b) Impact of Different IPCs

Fig. 7: (a): Impact of distilling data in different latent spaces. Except for the F9 space,
the performance difference among the other latent spaces is minimal. By default, we
utilize the F5 space. (b): As the value of IPC increases, the test accuracy across
different global model architectures significantly improves. Impact of different IPCs.
By default, we set IPC to 10.

Impact of Different IPCs. To analyze the impact of different IPC values on
FedDGM, we conduct experiments to test the performance of different global
model architectures with IPC values of 1, 5, 10, and 20 on CIFAR-10. The re-
sults are presented in Fig. 7b. As the IPC value increases, the test accuracy of
global models with different architectures significantly improves. In particular,
when IPC is set to 5, the performance of FedDGM is comparable to aggregation-
based baseline methods. When IPC is greater than or equal to 10, FedDGM out-
performs all baseline methods. Considering the trade-off between global model
performance and computational cost on the server, we set the IPC value to 10.

5 Conclusion

This paper introduces a server-side federated learning (FL) framework that lever-
ages pre-trained deep generative models for efficient and privacy-enhanced train-
ing. This approach reduces computational demands on local devices, enabling
smaller local models and facilitating the training of a larger global model on
the server. Theoretical analysis shows an asymptotic resemblance to central-
ized training on a heterogeneous dataset. Empirical results demonstrate up to
a 40% accuracy improvement over non-dataset-distillation techniques in highly
heterogeneous FL contexts, outperforming existing methods by 18%. Notably,
our framework achieves around a 10% performance increase on high-resolution
image datasets and exhibits faster convergence.



Federated Learning: Dataset Distillation with Generative Latents 15

Acknowledgements

This work was supported in part by NSF-2112562 and ARO W911NF-23-2-0224.
Also, VK would like to acknowledge support to the Czech National Science
Foundation Project 24-11664S.

References

10.

11.

12.

13.

14.

. Cazenavette, G., Wang, T., Torralba, A., Efros, A.A., Zhu, J.: Dataset distillation

by matching training trajectories. In: IEEE/CVF Conference on Computer Vision
and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022.
pp. 10708-10717. IEEE (2022)

Cazenavette, G., Wang, T., Torralba, A., Efros, A.A., Zhu, J.Y.: Generalizing
dataset distillation via deep generative prior (2023)

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner,
T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., et al.: An image is
worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929 (2020)

Fastai: Fastai/imagenette: A smaller subset of 10 easily classified classes from im-
agenet, and a little more french.

Ghosh, A., Chung, J., Yin, D., Ramchandran, K.: An efficient framework for clus-
tered federated learning. arXiv preprint arXiv:2006.04088 (2020)

Gidaris, S., Komodakis, N.: Dynamic few-shot visual learning without forgetting.
In: Proceedings of the IEEE conference on computer vision and pattern recognition.
pp. 4367-4375 (2018)

Gu, J., Vahidian, S., Kungurtsev, V., Wang, H., Jiang, W., You, Y., Chen, Y.: Effi-
cient dataset distillation via minimax diffusion. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. pp. 15793-15803 (2024)

. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:

Proceedings of the IEEE conference on computer vision and pattern recognition.
pp. 770-778 (2016)

Khalid, U., Igbal, H., Vahidian, S., Hua, J., Chen, C.: CEFHRI: A communica-
tion efficient federated learning framework for recognizing industrial human-robot
interaction. CoRR abs/2308.14965 (2023). https://doi.org/10.48550/ARXIV.
2308.14965, https://doi.org/10.48550/arXiv.2308.14965

Li, T., Sahu, A.K., Zaheer, M., Sanjabi, M., Talwalkar, A., Smith, V.: Federated
optimization in heterogeneous networks. arXiv preprint arXiv:1812.06127 (2018)
Lu, Y., Gu, J., Chen, X., Vahidian, S., Xuan, Q.: Exploring the impact of dataset
bias on dataset distillation. In: Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition. pp. 7656-7663 (2024)

McMahan, B., Moore, FE., Ramage, D., Hampson, S., y Arcas, B.A.
Communication-efficient learning of deep networks from decentralized data. In:
Artificial intelligence and statistics. pp. 1273-1282. PMLR (2017)

Morafah, M., Vahidian, S., Wang, W., Lin, B.: Flis: Clustered federated learning via
inference similarity for non-iid data distribution. IEEE Open Journal of the Com-
puter Society 4, 109-120 (2023). https://doi.org/10.1109/0JCS.2023.3262203
Morafah, M., Vahidian, S., Wang, W., Lin, B.: Flis: Clustered federated learning via
inference similarity for non-iid data distribution. IEEE Open Journal of the Com-
puter Society 4, 109-120 (2023). https://doi.org/10.1109/0JCS.2023.3262203



16

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Yuqi Jia et al.

Schervish, M.J., Carlin, B.P.: On the convergence of successive substitution sam-
pling. Journal of Computational and Graphical statistics 1(2), 111-127 (1992)
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556 (2014)

Stroock, D.W.: An introduction to Markov processes, vol. 230. Springer Science &
Business Media (2013)

Vahidian, S., Kadaveru, S., Baek, W., Wang, W., Kungurtsev, V., Chen, C., Shah,
M., Lin, B.: When do curricula work in federated learning? vol. abs/2212.12712
(2022). https://doi.org/10.48550/arXiv.2212.12712, https://doi.org/10.
48550/arXiv.2212.12712

Vahidian, S., Morafah, M., Lin, B.: Personalized federated learning by structured
and unstructured pruning under data heterogeneity. In: 2021 IEEE 41st Interna-
tional Conference on Distributed Computing Systems Workshops (ICDCSW). pp.
27-34 (2021). https://doi.org/10.1109/ICDCSW53096.2021.00012

Vahidian, S., Morafah, M., Wang, W., Kungurtsev, V., Chen, C., Shah, M., Lin,
B.: Efficient distribution similarity identification in clustered federated learning via
principal angles between client data subspaces. https://arxiv.org/abs/2209.10526
(2022)

Vahidian, S., Wang, M., Gu, J., Kungurtsev, V., Jiang, W., Chen, Y.: Group
distributionally robust dataset distillation with risk minimization. arXiv preprint
arXiv:2402.04676 (2024)

Wang, J., Liu, Q., Liang, H., Joshi, G., Poor, H.V.: Tackling the Objective In-
consistency Problem in Heterogeneous Federated Optimization (Jul 2020). https:
//doi.org/10.48550/arXiv.2007.07481, arXiv:2007.07481 [cs, stat]

Xiong, Y., Wang, R., Cheng, M., Yu, F., Hsieh, C.J.: Feddm: Iterative distribution
matching for communication-efficient federated learning (2022)

Zhao, B., Bilen, H.: Dataset condensation with distribution matching. In: Proceed-
ings of the IEEE/CVF Winter Conference on Applications of Computer Vision.
pp. 6514-6523 (2023)

Zhao, B., Mopuri, K.R., Bilen, H.: Dataset condensation with gradient matching
(2021)



