Continuous Length-Bounded Paths Interdiction

Raed Alharbi*!, Lan N. Nguyen*?, and My T. Thai?

! Saudi Electronic University, Riyadh, 11673, Saudi Arabia,
ri.alharbi@seu.edu.sa
2 University of Florida, Gainesville, FL, 32611,
{lan.nguyen, mythai}@ufl.edu

Abstract. Network vulnerability assessment, in which a communica-
tion between nodes is functional if their distance under a given metric
is lower than a pre-defined threshold, has received significant attention
recently. However, those works only focused on discrete domain while
many practical applications require us to investigate in the continuous
domain. Motivated by this observation, we study a Length-bounded
Paths Interdiction in Continuous Domain (cLPI) problem: given
a network G = (V, E), in which each edge e € E is associated with a
function fe(z) in continuous domain, and a set of target pairs of nodes,
find a distribution x : £ — RZ with minimum > ecr X(e) that ensures
any path p, connecting a target pair, satisfies Zeep fe(x(e)) > T. We
first propose a general framework to solve cLPI by designing two oracles,
namely Threshold Blocking (TB) oracle and Critical Path Listing (CPL)
oracle, which communicate back and forth to construct a feasible solu-
tion with theoretical performance guarantees. Based on this framework,
we propose a bicriteria approximation algorithm to cLPI. This bicrite-
ria guarantee allows us to control the solutions’s trade-off between the
running time and the performance accuracy.

1 Introduction

Components of a network never have the same important level. There always
exists a group of nodes or edges which plays more critical role than the others
on determining networks’ performance. Literature has spent significant effort
on studying and identifying such group both theoretically and practically. The
very first efforts mostly were invested for the connectivity metric, in which a
connection between two nodes is functional if there exists a path connecting
them. This metric could be found in the Multicut problem [3,5,12,13], Multiway
problem [22], or Graph Partitioning [2,15].

However, as modern networks are evolving, connectivity is no longer suffi-
cient on guaranteeing networks’ functionality or quality of services. Instead of
removing, a slight change on components’ behavior can downgrade the whole
system’s performance. For example, a congestion or traffic jams [6,7] on some
roads can damage a delivery business; or a change on priority level [1] of packet

* Equal contribution

types on some routers can significantly delay communication between end sys-
tems, downgrading their quality of services.

Motivated by these observations, many recent researches turn the attention
on network malfunction without damaging connectivity. For example, Kuhnle et
al. [17] studied the problem of LB-MULTICUT: given a weighted network, a set of
pairs of nodes and a threshold T, their work aims to identify a minimum set of
edges whose removal cause the distance between a pair exceed T'. By discarding
the “remove” flavour, Nguyen et al. [20] extended this concept to introduce QoSD
problem, in which an edge weight can be varied with an amount of efforts and
the problem asks for a minimum amount of efforts for the same objective as
in LB-MULTICUT. Other works can be found in [8-10, 18]. However, those works
share the same trait that they are all discrete problems, thereby leaving the
continuous domain largely opened.

Indeed, many applications require us to investigate the above problem in the
continuous domain. For example, in information and telecommunication engi-
neering, a channel capacity in communication network is theoretically measured
by the signal-to-interference-plus-noise ratio (SINR) [14] with wireless commu-
nication and signal-to-noise ratio (SNR) [16] with wired channel. Such measure-
ments are related to the power of the interfering signal and noises, which consists
of continuous variables. The information transfer between two systems, thus, is
determined by the delays on propagation channels, which can be modified by
those variables. Another example can be seen in diffusion protocol [11] in Bit-
coin P2P network, in which a node u relays a message to its neighbors with an
independent, exponential delay rate A, . Increasing some values of \;s can delay
the packet propagation between major miners, damaging the network consensus.

Motivated by these applications, in this paper, we extend the QoSD problem
into continuous domain by introducing the cLPI problem as follows: Given a
directed network G = (V, E), a set S of target pairs of nodes and a threshold
T, an edge e € E is associated with a continuous and monotone increasing
function f. : RZ — RZ, the cLPI problem asks for a distribution x : £ — R=
with minimum) ., x(e) such that any path p, connecting a pair in S, satisfies
> cep fe(x(e)) = T. For simplicity, we write x under a vector form {z.}cer
where x, = x(e), thus) .5 x(e) = [x|| (Again for simplicity, we use notation
I|| to indicate norm 1 of a vector). Another presentation of cLPI’s objective is
to find x with minimum ||x|| that guarantees there exists no T-length-bounded
multi-commodity flow on G. A T-length-bounded multi-commodity flow is a flow
between the target pairs that can be decomposed into flow paths of length at
most T'. The solution x of cLPI can be used as a metric to measure the network’s
functionality: large ||x|| indicates the network is resilient to external interference
or noises and able to maintain quality of service under extreme environment.
Furthermore, a value of x. indicates the important level of e to the network
desired functionality.

Related Work and Challenges. Since cLPI is a new problem, it does not
have much related work. Indeed, solving cLPI with bounded performance guar-
antee is challenging. First, a simple solution, which discretizes functions f. and

directly adopts the solutions of QoSD, actually has a problem. The discretization
of f. is simply a work of taking an integer x and returning the value f.(z - 9),
where ¢ is called discretizing step. If § is too large, the returned solution will
be far from optimal due to discretization error; otherwise small § creates signifi-
cantly large inputs for QoSD, causing a burden on memory usage and undesirable
running time. Therefore, a solution, which can directly applied into continuous
domain, is more desired. Second, f.s could be any function, thus a typical Con-
vex Optimization [4,19] solution cannot be applied. Also, any solution for Con-
strained Optimization can easily fall into local optima with complicated f.s, so
no performance ratio is guaranteed. Furthermore, enumerating all constraints,
each is corresponding to a path in the network, is intractable as the number of
paths can be upto Y, _, (7)k! where n is number of nodes in the network.

Our contributions. This paper introduces and investigates the cLPI prob-
lem. Accordingly, we propose a general framework for solving cLPI, separating
tasks into two different oracles, called Critical Paths Listing (CPL) and Threshold
Blocking (TB). CPL’s job is to restrict the amount of paths considered for find-
ing feasible solution of cLPI. TB deals with the task of finding x in continuous
domain, guaranteeing all paths, returned by CPL, have length exceed a certain
threshold. We next propose Threshold Expansion for the TB oracle and Feasible
Set Construction to for CPL. Finally, we show that our solution obtain an ap-
proximation ratio which allows a user to control the trade-off between running
time versus accuracy.

2 Preliminaries

2.1 Problem Formulation

We abstract a network using a directed graph G = (V, E) with |V| = n nodes and
|E| = m directed edges. Each edge e is associated with a function f, : RZ — R
which indicates the weight of e w.r.t a budget distributed for e. In another
word, if we spend z on edge e, the weight of edge e will become f.(z). fe is
monotonically increasing for all e € F.

A budget distribution contains budget for each edge. Thus, given an arbitrary
order of edges F = {ey, ...e;, }, we denotes a budget distribution under the form
of a vector x = {z1,...2,,} where z; is a budget spent on the edge e;. For
simplicity, we use the notation e to present an edge in F and its index in F also.
So x, means the budget spent on edge e, and the entry in x corresponding to e
also. The overall budget on all edges, therefore, is [|x|| = > .5 .

A path p = {ug,u1,...u;} € G is a sequence of vertices such that (u;—1,u;) €
FE for ¢ = 1,..,1. A path can also be understood as the sequence of edges
{(ug,u1), (u1,us2),...(ui—1,u;) }. In this work, a path is used interchangeably as
a sequence of edges or a sequence of nodes. A single path is a path that there
exists no node who appears more than one in the path. Under a budget vector
x, the length of a path p is defined as }_ . fe(we). cLPI is formally defined as
follows:

Definition 1. Length-bounded Paths Interdiction in Continuous Domain (cLPI).
Given a directed graph G = (V, E), a set f = {f. : RZ — RZ} of edge weight
functions and a target set of pairs of nodes S = {(s1,t1),...(Sk,tr)}, determine
a budget distribution x with minimum budget ||x|| such that under x, any path
connecting a pair of S has length at least T'.

For each pair (s,t) € S, we call s a start node and t a end node. Let P; denote
a set of simple paths connecting the pair (s;,¢;) € S, whose initial length do not
exceed T, i.e Zeep fe(0) < T for all p € P;. Let F = UE_,P;, we call a path
p € F a feasible path and F is a set of all feasible paths in G. A non-feasible
path either connects no pair in .S or has initial length exceed T

Before going further, we now look at several notations, mathematical oper-
ators on vector space R™, which are used along the theoretical proofs of our
algorithms. Given x = {21, ...}, y = {y1,...Um } € R™, we have:

x+y={z1+y1, -Zm +Ym}
x\y = {max(zy — y1,0), ... max(z, — yn,0)}

Moreover, we say x <y if z; < y; for all i € [1,m], the similar rule is applied
to <, >, >.

Node version of the problem. The node version of cLPI asks for the minimum
budget to increase node weights (rather than edge weights) in the problem def-
inition above. Our solution can be easily adapted to the node version and keep
the same theoretical performance guarantee.

2.2 General model of our solutions

In this part, we present an overview model of our solutions, including a general
framework and its performance guarantee.

About performance guarantees, given the problem instance with a threshold
T, denote OPT as an optimal solution. We call a budget distribution x is e-
feasible to cLPI iff under x, the distance between each target pair is at least
T — e. Our algorithms are bicriteria approximation algorithms, returning a &-
feasible solution x whose overall budget is bounded within a factor A(G,e~1) of
OPT, where A(G, e~ ') depends on structure of the input graph and is monotone
increasing with e 1. ¢ is treated as a trade-off between the algorithms’ accuracy
and running time. To be specific, the smaller ¢ is, the closer pairs’ distances are
to T but the longer it takes for the algorithms to finish. ¢ is adjustable, allowing
users to control running time versus accuracy as desired.

About general framework, our solutions contain two separate oracles, called
Threshold Blocking (TB) and Critical Paths Listing (CPL). These two oracles
communicate back and forth with the other to construct a solution to cLPI, given
an input instance of cLPI and a parameter €. These two oracles are proposed to
tackle two challenges of cLPI as stated before, to be specific:

— Threshold Blocking - a primary role of TB is to solve a sub-problem of cLPI:
Given a target set P of single paths and a threshold T,, < T', TB aims to find
a minimum additional budget on edges in order to make each path in P has
length exceeding T;,. For simplicity, we call this task TB problem.

— Critical Paths Listing - this oracle restricts the number of paths which need
to be considered in the algorithm, thus significantly reducing the searching
space and burdens on algorithms’ running time and memory for storage.

Separating into two oracles allows us to design different solutions to each of
the oracles. Assume if there exists one solution for each oracle, the flow of our
solution is as follows:

1. The algorithm starts with z, = 0 for all e € E (i.e. x = {0},).

2. Given the current state of x, by using a technique to restrict searching space,
CPL oracle searches for a set of critical paths, who are feasible paths and
shorter than a pre-determined threshold T,, < T

3. Then those paths along with a current state of x are given as an input for
the TB oracle, which then finds an additional budget v for x to make all
input paths’ length exceed T,.

4. The additional budget v is then used for CPL to check the feasibility. If adding
v makes x e-feasible, the algorithm returns x4 v and terminates. Otherwise,
v is used to drive the searching space of CPL and find a new value for x and
T,; then step (2) is repeated.

Due to the space limit, we only present one solution to each oracle.

3 Threshold Blocking Oracle

In this section, we present our solution to the Threshold Blocking (TB) Oracle,
called Threshold Ezpansion (TE).

3.1 Requirements of TB

To recap, TB receives a set P of critical paths from CPL, the current budget x
and an upper threshold T. The objective of TB is to find an additional budget
vector v = {vy, ...y, } with minimum) v, such that under the budget x+v =
{Ze+ve}e, each path in P has length exceeding Ty, i.e. ZeEp fe(xe+ve) > T, for
all p € P. Another information that TB gets is 7T} > 0, which is a lower bound of
each path’s length, i.e Zeep fe(ze) > Ty for all p € P. Without lost of generality,
we assume that each path in P, under x, has length in range [T}, T,,).

The bicriteria guarantee of our algorithms originates from the TB algorithms.
The desired accuracy ¢ is given to the TB oracle so the TB algorithm guarantees
each path in P has length at least T,, — . To do so, an objective function of TB
is defined as follows:

bp x(V) = Z min (Zfe(a:e + ve),Tu)

peP ecp
Trivially, a budget vector v satisfies TB’s objective iff bp x(v) = |P| X Ty,.
bp x(+) can be seen as a function with m = |E| variables. Let’s take more insight
into bp x(-) as it is important for devising algorithms in the TB oracle. Define:

Ipx,e(®) = Z fer(@er) + Leep fe(ze +)

e’ ep&e’Fe

P x,e(T) = Z (min (Tu, lp,x7e(x)> — min (Tu, lnx,e(O)))
peEP
Basically, rp x(-) measures the increasing value of bp x({0}) by adding a
budget of x into entry e. It is easy to see that rp x () is & monotone increasing
function w.r.t z.
Assuming {p1,...p;} C P are paths containing e and are sorted in descending
order w.r.t to their length under x. Define a; as a minimum additional budget on

edge e to make path p;’s length exceed T, i.e. a; = argmin, {lm,x’e(x) > Tu}.

Let ag = 0. {a;} are in ascending order. rp x () can be rewritten as:

rpxe(x) =1-T,+ Z lp; x,e(x) — QP x,e With a; <z < a1y (1)
J>i
where Qp x.e = D ccp 2oerep fe(Ter), Which does not depend on either or .
Equ. (1) allows us to discard the min term in the original 7p x () to exploit the
function’s property within each range [a;, a;+1]-

3.2 Threshold Expansion

In a nutshell, our Threshold Expansion algorithm, TE, is a threshold greedy
algorithm which aims to tackle the continuous domain challenges, especially
when the objective function is not concave. TE starts with setting a sufficient
large value of M, which is the upper bound of 7’7’“’?@) foralle € F, z > 0 and
w > x. To find M, the algorithm utilizes the fact that f.(-) is continuous and
differentiable everywhere for all ¢ € E as the following lemma.

Lemma 1. By setting M = |P| x MAX;>0, e, fo () <Tu %, the TE algorithm
guarantees

M 2 T'vave(x)
T

forallw>xec E;z >0

We omit this proof due to space limit.

The algorithm works on top of the x” vector, which is just a copy of x initially.
This step is to separate the work on x between the TB and CPL oracle, e.g. CPL
may not accept the result of TB (which is shown in the CPL section). Edges in
FE are sorted in an arbitrary order. TE considers edges sequentially in that order

and for each edge e, TE finds a maximum addition budget & for e such that
”’%@) > M and add % into e.
Different to previous work in the discrete domain and submodular maximiza-

tion, the function TP () is not monotone increasing. Thus the technique of

using binary search as in [21] is no longer applicable. To find &, we utilize Equ. (1)

(z)

by identifying local extreme points of ”’% within each range [a;, a;4+1] using

Algorithm 1 Threshold Expansion

Input

G = (V, E) - the input graph

— fe:IRZ—HRZ forallee F

— P - the set of paths

— T, - target threshold

— € - the performance parameter of TE
— ¢ - the accuracy parameter

— X - current budget vector

Output: v - an additional budget vector to x to make each path in P has length
exceeding T, — €

1: Sort E in an arbitrary order

2 v={0}, x' =x

3: M =|P| X MaXy>0.ceB,fo ()< T B

4: e < the first edge in F

5: while dp € P that p’s length < T}, — ¢ do
6: :%:argmaxz{%%j“‘(z)zM

T 1 = a vector with & at entry e and 0 elsewhere
8: X =x"+1, v=v+1

9: if e is the last edge in E then

10: M=(01-¢M

11: e < start over with the first edge
12: else

13: e < the next edge.

Return v

the function’s first derivative and exploiting the increasing/decreasing traits of
the function. Note that there could be a case that & cannot be found, if so we
set £ = 0 and no budget is added into the considered edge. After adding & into
e, the algorithm considers the next edge.

After the algorithm has considered the last edge in F in the order as stated,
it means the algorithm has finished a round of edges, TE reduces M by a factor
of 1 — € and starts over with the first edge in the order. Whenever TE adds a
budget into an edge, the algorithm constantly checks whether v is sufficient to
make each path’s length exceed T, — ¢ and terminates whenever this condition
is satisfied. The pseudo-code of TE is presented in Alg. 1.

The adaptation into the continuous domain of TE can be seen as in the way
the algorithm works. We now turn our attention to TE’s performance guarantee.
From now on, for simplicity, when we analyze the performance of the algorithm
at a certain moment when it is running, we refer M, v and x’ as their values at
that moment.

Let’s consider at a certain moment, denote v° = {v2} = v* \ v. We have the
following lemma.

Lemma 2. v =0 orw<£foralle€E.

o
Ve

We omit this proof due to space limit.
Therefore, even the edge weight functions are not concave or TP e (2) is not
monotone increasing, the selection of £ and Lemma 2 allow us to bound the

performance guarantee of TE, which is shown in the following theorem.

Theorem 1. Given the information G, fo, P, Ty, T}, €,%, if v is the budget re-
turned by TE and v* is the minimum additional budget to make each path in P
has length exceeding T, then:

n (|P|(T, — T))e) + 1
1—

v < - v
Proof. Let’s assume edge e is being considered and Z is the selected amount to
add into e. Again, denote v° = {v2} = v*\ v. Without lost of generality, let
Z > 0. From lemma. 2, we have:
P eld) (1—
z Vg,
for all ¢’ € E that v2 >0
Denote X' = {x¢}eer, he = {Te + 150 }erer. As he > X/ but they have
the same value at entry e, we have:
TP,h, e()<rPx’e(0)
Therefore,

bpo (V7)) = bpr({0}) = D rpme(v)) € D rpoce(v?)

eclE ecE

< Z Uig,Tp ’ (.’%)<MT7D ’ (i‘)
- 5 #(1—e) 7 T a(l—e) TTC

Note that bp x(v°) = |P| x T,,.

Now, let’s assume the algorithm terminates after adding budget into edges L
times, denote &1, ...2 1, as an added budget at each times (||v|| = Zle Z;). Also,
denote x}, v as x’, v before adding #; at time t. We have:

[P X To = bpc(vi) = P X T = b (01) 0 rp 1)

- <bp,x(vt+1> - bp,xm))
Thus:
|P| X T b’px Vt+1 < (1 || *H ><|P| X T b’P,x(vt))

Therefore, we have:

L—1
PIx T boa(vin) < [(1 D) (1P % T)

L-1 % —
S <1 _ ||t *H 6) |P| T ﬂ) S o IvZ— |V*H L)) (1—e¢) ‘P|(T T‘l)
A%

After L — 1 updates, there should exist at least a path in P whose length
is shorter than Tj, — e (otherwise the algorithm should terminate after L — 1
updates). Thus |P|T, — bp x(vL—1) > €, which means:

In (|P|(Tu le)sfl)
1—¢

Vil < vl

Now, let consider the final update, we have:
o, < VI brave) = bpa(vis) _ V']
1—c¢ "P| X Tu—bp,x(VLfl) 1—c¢

Finally, we have:
I (|P|(T, — Ti)e") +1
1—e€

Vil = [Vl + 2L <[v7|

which completes the proof.

4 Critical Path Listing Oracle

Algorithm 2 Feasible Set Construction

Input

— G = (V,E) - the input graph
— fe:RZ 5 R foralle€ E
— T - target threshold

— € - accuracy parameter

— S - set of target pairs

— TB - threshold blocking oracle

Output x

1: P=0,x=v={0}

2: while 3(s,t) € S that d(s,t) <T — ¢ in G do

3: Construct shortest path trees for all start nodes
4: L=10

5: for each pair (s,t) € S do

6: H < a copy of shortest path tree with root s
7 X=0

8: while d(s,t) < T — ¢ in H do

9: p < the shortest path from s to ¢t in H
10: L=LU{p}

11: Randomly pick e = (u,v) € p and put into X
12: Reconstruct H without edges of X

13: P=PUL
14: v = run TB oracle with input G, fe,P,T,¢,x
15: Set edge e’s weight to be fe(ve) for all e € E

Return v

In this section, we present Feasible Set Construction (FC) for the CPL oracle.
The role of the CPL oracle is to reduce the searching space when constructing the

returned solution x. It works as a backbone for the overall process of finding x.
It is the one receiving the input information of the cLPI problem, then commu-
nicating back and forth with TB to construct x and return x when x guarantees
that a distance between each target pair exceeds T — e.

In general, FC (shown in Alg. 2) aims to construct a set P of candidate paths,
which is a subset of F but, if being used as an input for TB with a threshold
T, = T, can return v that is a e-feasible solution of cLPI. P is constructed in
order to avoid fully listing all paths in F when F is significantly large. FC starts
with P = () and then builds it incrementally and iteratively. For each iteration,
the algorithm uses the TB oracle to find a budget vector x to make each path in
P has length exceeding T' — €. Then, the length of an edge e is set to be f.(z.).
Next, FC checks whether x is e-feasible. If not, the algorithm adds a set £ of
feasible paths into P where £ contains paths, each of whom has length shorter
than T'— e (L NP = ()); then reset all edges’ length (i.e. the length of e turns
back to f.(0)). If yes, the algorithm returns x and terminates.

To optimize the number of iterations, after updating e’s length to be f.(x.)
for all e € E, FC builds shortest-path trees, a root of each tree is a start node
of a target pair. Each pair (s,t) € S is then associated with a copy H of the
shortest-path tree rooted at s and a set X of edges, which is initially set to be
empty. For each pair (s,t) € S, the algorithm works in an iterative fashion:

1. FC adds the shortest path p C H from s to t into L.

2. Then FC randomly picks an edge e = (u,v) € p and put e into X.

3. A sub-tree of H rooted at w is re-constructed with the condition that H
contains no edge in X.

4. If there still exists a path from s to ¢ in H with length shorter than T — e,
the algorithm is back to step (1).

We have the following theorem.

Theorem 2. The approximation guarantee of FC equals to the approrimation
guarantee of the algorithm used in the TB oracle.

Proof. This Theorem uses a similar concept as Lemma 4.1 [20], in which we
observe that: Since P is a subset of F, the optimal budget ||x*|| to cLPI is at
least the optimal budget ||x°|| to make all paths’ length of P exceed T. Denote
« as an approximation guarantee of the TB oracle, i.e. ||x|| < a|x°]]. As x is
guaranteed to be e-feasible to the cLPI instance, « is also the approximation
guarantee of FC to cLPI.

Combining Theorems 1 and 2, our solution to cLPI has a bicriteria approxi-
mation ratio of (In(|Prg| T -e7')41)(1 —€)~!, where Prg is the final sets P of
candidate paths using TE.

5 Conclusion

In this paper, we introduced the cLPI problem, which allows us to better as-
sess the modern network vulnerability. To tackle the challenges of cLPI, we

developed a solution framework that consists of two oracles, namely Threshold
Blocking (TB) oracle and Critical Path Listing (CPL) oracle, which communi-
cate back and forth to construct a feasible solution with theoretical performance
guarantees. We further devised a bicriteria approximation algorithm to cLPI, of
which we offer one solution to each oracle. For future work, we may consider dif-
ferent variants of cLPI. For example, an edge could be associated with multiple
functions, serving for multiple objectives of networked functionality. Also, each
function can have multiple variables and each variable could appear on more
than one functions, making the problem become much more complicated. A so-
lution, which can balance multiple objectives, is desirable. Furthermore, another
perspective considering network flows is of interest, which we aim to modify edge
weights to guarantee the max flow of the network is at most a certain threshold.

Acknowledgements

This work was supported in part by NSF CNS-1814614 and NSF I1S-1908594.

References

1. Priority packet. https://www.sciencedirect.com/topics/computer-science/
priority-packet (2019), accessed: 2019-07-18

2. Andreev, K., Racke, H.: Balanced graph partitioning. Theory of Computing Sys-
tems 39(6), 929-939 (2006)

3. Birge, J.R., Louveaux, F.V.: A multicut algorithm for two-stage stochastic linear
programs. European Journal of Operational Research 34(3), 384-392 (1988)

4. Boyd, S., Vandenberghe, L.: Convex optimization. Cambridge university press
(2004)

5. Chawla, S., Krauthgamer, R., Kumar, R., Rabani, Y., Sivakumar, D.: On the
hardness of approximating multicut and sparsest-cut. computational complexity
15(2), 94-114 (2006)

6. Checkoway, S., McCoy, D., Kantor, B., Anderson, D., Shacham, H., Savage, S.,
Koscher, K., Czeskis, A., Roesner, F., Kohno, T., et al.: Comprehensive experi-
mental analyses of automotive attack surfaces. In: USENIX Security Symposium.
pp. 77-92. San Francisco (2011)

7. Chen, Q.A., Yin, Y., Feng, Y., Mao, Z.M., Liu, H.X.: Exposing congestion at-
tack on emerging connected vehicle based traffic signal control. In: Network and
Distributed Systems Security (NDSS) Symposium 2018 (2018)

8. Dinh, T.N., Thai, M.T.: Precise structural vulnerability assessment via mathemat-
ical programming. In: 2011-MILCOM 2011 military communications conference.
pp- 1351-1356. IEEE (2011)

9. Dinh, T.N., Thai, M.T.: Assessing attack vulnerability in networks with uncer-
tainty. In: Computer Communications (INFOCOM), 2015 IEEE Conference on.
pp. 2380-2388. IEEE (2015)

10. Dinh, T.N., Thai, M.T.: Network under joint node and link attacks: Vulnerability
assessment methods and analysis. IEEE/ACM Transactions on Networking 23(3),
1001-1011 (2015)

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Fanti, G., Viswanath, P.: Deanonymization in the bitcoin p2p network. In: Ad-
vances in Neural Information Processing Systems. pp. 1364-1373 (2017)

Garg, N., Vazirani, V.V., Yannakakis, M.: Approximate max-flow min-(multi) cut
theorems and their applications. STAM Journal on Computing 25(2), 235-251
(1996)

Garg, N., Vazirani, V.V., Yannakakis, M.: Primal-dual approximation algorithms
for integral flow and multicut in trees. Algorithmica 18(1), 3-20 (1997)

Jeske, D.R., Sampath, A.: Signal-to-interference-plus-noise ratio estimation for
wireless communication systems: Methods and analysis. Naval Research Logistics
(NRL) 51(5), 720-740 (2004)

Johnson, D.S., Aragon, C.R., McGeoch, L.A., Schevon, C.: Optimization by simu-
lated annealing: an experimental evaluation; part i, graph partitioning. Operations
research 37(6), 865-892 (1989)

Keiser, G.: Optical fiber communications. Wiley Encyclopedia of Telecommunica-
tions (2003)

Kuhnle, A., Crawford, V.G., Thai, M.T.: Network resilience and the length-
bounded multicut problem: Reaching the dynamic billion-scale with guarantees.
Proceedings of the ACM on Measurement and Analysis of Computing Systems
2(1), 4 (2018)

Lee, E.: Improved hardness for cut, interdiction, and firefighter problems. arXiv
preprint arXiv:1607.05133 (2016)

Nesterov, Y.: Lectures on convex optimization, vol. 137. Springer (2018)

Nguyen, L.N., Thai, M.T.: Network resilience assessment via qos degradation met-
rics: An algorithmic approach. Proceedings of the ACM on Measurement and Anal-
ysis of Computing Systems 3(1), 1 (2019)

Soma, T., Yoshida, Y.: Maximizing monotone submodular functions over the inte-
ger lattice. Mathematical Programming 172(1-2), 539-563 (2018)

Svitkina, Z., Tardos, E.: Min-max multiway cut. In: Approximation, Randomiza-
tion, and Combinatorial Optimization. Algorithms and Techniques, pp. 207-218.
Springer (2004)

