Convolutional State Space Models for
Long-Range Spatiotemporal Modeling

Jimmy T.H. Smith*?*, Shalini De Mello', Jan Kautz!, Scott W. Linderman® 4, Wonmin Byeon!
INVIDIA, “Work performed during internship at NVIDIA
’Institute for Computational and Mathematical Engineering, Stanford University.
SDepartment of Statistics, Stanford University.
“Wu Tsai Neurosciences Institute, Stanford University.
{jsmithl4, scott.linderman}@stanford.edu
{shalinig, jkautz,wbyeon}@nvidia.com.

Abstract

Effectively modeling long spatiotemporal sequences is challenging due to the need
to model complex spatial correlations and long-range temporal dependencies simul-
taneously. ConvLSTMs attempt to address this by updating tensor-valued states
with recurrent neural networks, but their sequential computation makes them slow
to train. In contrast, Transformers can process an entire spatiotemporal sequence,
compressed into tokens, in parallel. However, the cost of attention scales quadrat-
ically in length, limiting their scalability to longer sequences. Here, we address
the challenges of prior methods and introduce convolutional state space models
(ConvSSM)'! that combine the tensor modeling ideas of ConvLSTM with the long
sequence modeling approaches of state space methods such as S4 and S5. First,
we demonstrate how parallel scans can be applied to convolutional recurrences to
achieve subquadratic parallelization and fast autoregressive generation. We then
establish an equivalence between the dynamics of ConvSSMs and SSMs, which
motivates parameterization and initialization strategies for modeling long-range
dependencies. The result is ConvS5, an efficient ConvSSM variant for long-range
spatiotemporal modeling. ConvS5 significantly outperforms Transformers and
ConvLSTM on a long horizon Moving-MNIST experiment while training 3 x
faster than ConvLSTM and generating samples 400 x faster than Transformers. In
addition, ConvS5 matches or exceeds the performance of state-of-the-art methods
on challenging DMLab, Minecraft and Habitat prediction benchmarks and enables
new directions for modeling long spatiotemporal sequences.

1 Introduction

Developing methods that efficiently and effectively model long-range spatiotemporal dependencies
is a challenging problem in machine learning. Whether predicting future video frames [1, 2],
modeling traffic patterns [3, 4], or forecasting weather [5, 6], deep spatiotemporal modeling requires
simultaneously capturing local spatial structure and long-range temporal dependencies. Although
there has been progress in deep generative modeling of complex spatiotemporal data [7—12], most
prior work has only considered short sequences of 20-50 timesteps due to the costs of processing long
spatiotemporal sequences. Recent work has begun considering sequences of hundreds to thousands
of timesteps [13—16]. As hardware and data collection of long spatiotemporal sequences continue
to improve, new modeling approaches are required that scale efficiently with sequence length and
effectively capture long-range dependencies.

lImplementation available at: https://github.com/NVlabs/ConvSSM.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

U, € RLXH' xW'xU UL € RLXU U, € RLxH’xW/xU

Ty Ty

u
Uy, k

Xt Xy Xk—1 $ Xk X1 X
o A e o | o e | of T o
A 4 3 3

(e Trr—)

H
:\D Linear function ! ‘ ‘ ¥

ConvRNN Mé@ SSM u;g[l ConvSSM (this paper) UL@

Figure 1: ConvRNNs [17, 18] (left) model spatiotemporal sequences using tensor-valued states, X,
and a nonlinear RNN update, G (), that uses convolutions instead of matrix-vector multiplications.
A position-wise nonlinear function, h(), transforms the states into the output sequence. Deep
SSMs [19, 20] (center) model vector-valued input sequences using a discretized linear SSM. The linear
dynamics can be exploited to parallelize computations across the sequence and capture long-range
dependencies. We introduce ConvSSMs (right) that model spatiotemporal data using tensor states,
like ConvRNNSs, and linear dynamics, like SSMs. We also introduce an efficient ConvSSM variant,
ConvS35, that can be parallelized across the sequence with parallel scans, has fast autoregressive
generation, and captures long-range dependencies.

Convolutional recurrent networks (ConvRNNs) such as ConvLSTM [17] and ConvGRU [18] are
common approaches for spatiotemporal modeling. These methods encode the spatial information
using tensor-structured states. The states are updated with recurrent neural network (RNN) equations
that use convolutions instead of the matrix-vector multiplications in standard RNNs (e.g., LSTM/-
GRUs [21, 22]). This approach allows the RNN states to reflect the spatial structure of the data
while simultaneously capturing temporal dynamics. ConvRNNSs inherit both the benefits and the
weaknesses of RNNs: they allow fast, stateful autoregressive generation and an unbounded context
window, but they are slow to train due to their inherently sequential structure and can suffer from the
vanishing/exploding gradient problem [23].

Transformer-based methods [9, 13, 14, 24-27] operate on an entire sequence in parallel, avoiding these
training challenges. Transformers typically require sophisticated compression schemes [28-30] to
reduce the spatiotemporal sequence into tokens. Moreover, Transformers use an attention mechanism
that has a bounded context window and whose computational complexity scales quadratically in
sequence length for training and inference [31, 32]. More efficient Transformer methods improve
on the complexity of attention [33-39], but these methods can fail on sequences with long-range
dependencies [40, 13]. Some approaches combine Transformers with specialized training frameworks
to address the attention costs [13]. However, recent work in deep state space models (SSMs) [19,
41,42, 20, 43], like S4 [19] and S5 [20], has sought to overcome attention’s quadratic complexity
while maintaining the parallelizability and performance of attention and the statefulness of RNNs.
These SSM layers have proven to be effective in various domains such as speech [44], images [45]
and video classification [45, 46]; reinforcement learning [47, 48]; forecasting [49] and language
modeling [50-53].

Inspired by modeling ideas from ConvRNNs and SSMs, we introduce convolutional state space
models (ConvSSMs), which have a tensor-structured state like ConvRNNs but a continuous-time
parameterization and linear state updates like SSM layers. See Figure 1. However, there are
challenges to make this approach scalable and effective for modeling long-range spatiotemporal
data. In this paper, we address these challenges and provide a rigorous framework that ensures
both computational efficiency and modeling performance for spatiotemporal sequence modeling.
First, we discuss computational efficiency and parallelization of ConvSSMs across the sequence for
scalable training and fast inference. We show how to parallelize linear convolutional recurrences
using a binary associative operator and demonstrate how this can be exploited to use parallel scans
for subquadratic parallelization across the spatiotemporal sequence. We discuss both theoretical
and practical considerations (Section 3.2) required to make this feasible and efficient. Next, we
address how to capture long-range spatiotemporal dependencies. We develop a connection between

the dynamics of SSMs and ConvSSMs (Section 3.3) and leverage this, in Section 3.4, to introduce a
parameterization and initialization design that can capture long-range spatiotemporal dependencies.

As aresult, we introduce ConvS5, a new spatiotemporal layer that is an efficient ConvSSM variant. Itis
parallelizable and overcomes difficulties during training (e.g., vanishing/exploding gradient problems)
that traditional ConvRNN approaches experience. ConvS5 does not require compressing frames into
tokens and provides an unbounded context. It also provides fast (constant time and memory per step)
autoregressive generation compared to Transformers. ConvSS5 significantly outperforms Transformers
and ConvLSTM on a challenging long horizon Moving-MNIST [54] experiment requiring methods
to train on 600 frames and generate up to 1,200 frames. In addition, ConvSS5 trains 3 x faster than
ConvLSTM on this task and generates samples 400 x faster than the Transformer. Finally, we show
that ConvS5 matches or exceeds the performance of various state-of-the-art methods on challenging
DMLab, Minecraft, and Habitat long-range video prediction benchmarks [13].

2 Background
This section provides the background necessary for ConvSSMs and ConvS35, introduced in Section 3.

2.1 Convolutional Recurrent Networks

Given a sequence of inputs u;.;, € RE*U_ an RNN updates its state, x;, € R”, using the state update
equation x;, = F(xy_1, uk), where F() is a nonlinear function. For example, a vanilla RNN can be
represented (ignoring the bias term) as

X = tanh(Axk_l + Buk) (1)

with state matrix A € RP*? input matrix B € R”*Y and tanh() applied elementwise. Other
RNN s such as LSTM [21] and GRU [22] utilize more intricate formulations of F().

Convolutional recurrent neural networks [17, 18] (ConvRNNS) are designed to model spatiotemporal
sequences by replacing the vector-valued states and inputs of traditional RNNs with tensors and
substituting matrix-vector multiplications with convolutions. Given a length L sequence of frames,
Uy, € REXH'XW'XU with height H', width W’ and U features, a ConvRNN updates its state,
X, € RIEXWXP yith a state update equation Xj, = G(Xjy_1,Us), where G() is a nonlinear
function. Analogous to (1), we can express the state update equation for a vanilla ConvRNN as

X = tanh(A x Xj_1 + B Uy), @)

where * is a spatial convolution operator with state kernel A € RF*FP>kaxka (ysing an [output
features, input features, kernel height, kernel width] convention), input kernel B € RF*Uxksxks and
tanh() is applied elementwise. More complex updates such as ConvLSTM [17] and ConvGRU [18]
are commonly used by making similar changes to the LSTM and GRU equations, respectively.

2.2 Deep State Space Models

This section briefly introduces deep SSMs such as S4 [19] and S5 [20] designed for modeling long
sequences. The ConvS5 approach we introduce in Section 3 extends these ideas to the spatiotemporal
domain.

Linear State Space Models Given a continuous input signal u(t) € RY, a latent state x(t) € R”
and an output signal y(t) € RM, a continuous-time, linear SSM is defined using a differential
equation:

x'(t) = Ax(t) + Bu(t), y(t) = Cx(t) + Du(t), 3)

and is parameterized by a state matrix A € R”*”an input matrix B € R”*Y, an output matrix
C € RM*P and a feedthrough matrix D € RM >V Given a sequence, u;.;, € RL*V | the SSM can
be discretized to define a discrete-time SSM

x, = Axj_1 + Buy, vi = Cxy + Duy, 4

where the discrete-time parameters are a function of the continuous-time parameters and a timescale
parameter, A. We define A = DISCRETIZEA (A, A) and B = DISCRETIZEg (A, B, A) where
DISCRETIZE() is a discretization method such as Euler, bilinear or zero-order hold [55].

S4 and S5 Gu et al. [19] introduced the structured state space sequence (S4) layer to efficiently
model long sequences. An S4 layer uses many continuous-time linear SSMs, an explicit discretization
step with learnable timescale parameters, and position-wise nonlinear activation functions applied to
the SSM outputs. Smith et al. [20] showed that with several architecture changes, the approach could
be simplified and made more flexible by just using one SSM as in (3) and utilizing parallel scans.
SSM layers, such as S4 and S5, take advantage of the fact that linear dynamics can be parallelized
with subquadratic complexity in the sequence length. They can also be run sequentially as stateful
RNNS for fast autoregressive generation. While a single SSM layer such as S4 or S5 has only linear
dynamics, the nonlinear activations applied to the SSM outputs allow representing nonlinear systems
by stacking multiple SSM layers [56—58].

SSM Parameterization and Initialization Parameterization and initialization are crucial aspects
that allow deep SSMs to capture long-range dependencies more effectively than prior attempts
at linear RNNs [59-61]. The general setup includes continuous-time SSM parameters, explicit
discretization with learnable timescale parameters, and state matrix initialization using structured
matrices inspired by the HiPPO framework [62]. Prior research emphasizes the significance of these
choices in achieving high performance on challenging long-range tasks [19, 20, 56, 57]. Recent
work [57] has studied these parameterizations/initializations in more detail and provides insight into
this setup’s favorable initial eigenvalue distributions and normalization effects.

2.3 Parallel Scans

We briefly introduce parallel scans, as used by S5, since they are important for parallelizing the
ConvS5 method we introduce in Section 3. See Blelloch [63] for a more detailed review. A scan
operation, given a binary associative operator e (i.e. (¢ # b) e c = a o (b e ¢)) and a sequence of L
elements [a1, asg, ..., ar], yields the sequence: [a1, (a1 ® az), ..., (a1 ®aze...ear)].

Parallel scans use the fact that associative operators can be computed in any order. A parallel scan
can be defined for the linear recurrence of the state update in (4) by forming the initial scan tuples
ck = (cka,crp) = (A, Buyg) and utilizing a binary associative operator that takes two tuples
gi, q; (either the initial tuples c;, ¢; or intermediate tuples) and produces a new tuple of the same
type, gi® q; = (¢;a® ¢ , ¢ja®¢ +¢;p), where ® is matrix-matrix multiplication and ®
is matrix-vector multiplication. Given sufficient processors, the parallel scan computes the linear
recurrence of (4) in O(log L) sequential steps (i.e., depth or span) [63].

3 Method

This section introduces convolutional state space models (ConvSSMs). We show how ConvSSMs can
be parallelized with parallel scans. We then connect the dynamics of ConvSSMs to SSMs to motivate
parameterization. Finally, we use these insights to introduce an efficient ConvSSM variant, ConvSS5.

3.1 Convolutional State Space Models

Consider a continuous tensor-valued input U(t) € RHEXW'*U with height H’, width W', and
number of input features U. We will define a continuous-time, linear convolutional state space
model (ConvSSM) with state X (t) € RT>*WXP derivative X' (t) € RT*W>F and output Y(t) €

RIXWXU ysing a differential equation:
X'(t)=AxX(t)+ B*xU(t) %)
Y(it)=CxX(t)+Dx*xU(t) 6)

where denotes the convolution operator, A € RP*Pxkaxka ig the state kernel, B € RFXUxksxks
is the input kernel, C € RYxPxkcxke ig the output kernel, and D € RUXUxkpxkp ig the
feedthrough kernel. For simplicity, we pad the convolution to ensure the same spatial resolu-
tion, H x W, is maintained in the states and outputs. Similarly, given a sequence of L in-

puts, U.;, € REXH "XW'XU e define a discrete-time convolutional state space model as
X =Ax X1+ BxlUy 7N
Vi =Cx* Xy + D x U, (8)

where A € RP*Pxkaxka gnd B € RP*UXksxEB denote that these kernels are in discrete-time.

/" State evolution of ConvSSM with pointwise state kernel N

X't = A k X(t B X* u@
__HxWxP l><1x1><1 H><H><P Pxﬁgxkg H' x W' x U J
/ State pixels evolve accordlng to SSM state update N\

X't); = Assm X(t)i; + Bssm Umzeo(t)iy

P PxP P P x Uk}
\ Uk /

Figure 2: The dynamics of a ConvSSM with pointwise state kernel (top) can be equivalently viewed
as the dynamics of an SSM (bottom). See Proposition 3. Each ConvSSM state pixel evolves according
to an SSM state update with shared state matrix, Aggn, and input matrix, Bggy, that can be formed
by reshaping the ConvSSM’s state kernel and input kernel. This allows leveraging parameterization
insights from deep SSMs [19, 41, 42, 20, 57] to equip ConvS5 to model long-range dependencies.

3.2 Parallelizing Convolutional Recurrences

ConvS5 leverages parallel scans to efficiently parallelize the recurrence in (7). As discussed in Section
2.3, this requires a binary associative operator. Given that convolutions are associative, we show:

Proposition 1. Consider a convolutional recurrence as in (7) and define initial parallel scan elements
¢k = (¢ka ckb) = (A BxUy). The binary operator ®, defined below, is associative.

G®q¢G:=(aoti Gaxti + o) ©)

where o denotes convolution of two kernels, x denotes convolution and + is elementwise addition.
Proof. See Appendix A.1. O

Therefore, in theory, we can use this binary operator with a parallel scan to compute the recurrence
in (7). However, the binary operator, ®, requires convolving two k4 X k4 resolution state kernels
together. To maintain equivalence with the sequential scan, the resulting kernel will have resolution
2k, — 1 x 2k, — 1. This implies that the state kernel will grow during the parallel scan computations
for general kernels with a resolution greater than 1 x 1. This allows the receptive field to grow in the
time direction, a useful feature for capturing spatiotemporal context. However, this kernel growth is
computationally infeasible for long sequences.

We address this challenge by taking further inspiration from deep SSMs. These methods opt for
simple but computationally advantageous operations in the time direction (linear dynamics) and
utilize more complex operations (nonlinear activations) in the depth direction of the model. These
nonlinear activations allow a stack of SSM layers with linear dynamics to represent nonlinear systems.
Analogously, we choose to use 1 x 1 state kernels and perform pointwise state convolutions for the
convolutional recurrence of (7). When we stack multiple layers of these ConvSSMs, the receptive
field grows in the depth direction of the network and allows the stack of layers to capture the
spatiotemporal context [64]. Computationally, we now have a construction that can be parallelized
with subquadratic complexity with respect to the sequence length.

Proposition 2. Given the effective inputs B x Uy.;, € REXHEXWXE gnd g pointwise state kernel

A € RPXPXIXL e computational cost of computing the convolutional recurrence in Equation 7
with a parallel scan is O(L(P* + P2HW)).

Proof. See Appendix A.2. O

Further, the ConvS5 implementation introduced below admits a diagonalized parameterization that
reduces this cost to O(LPHW'). See Section 3.4 and Appendix B for more details.

3.3 Connection to State Space Models

Since the convolutions in (5-6) and (7-8) are linear operations, they can be described equivalently as
matrix-vector multiplications by flattening the input and state tensors into vectors and using large,
circulant matrices consisting of the kernel elements [65]. Thus, any ConvSSM can be described as a
large SSM with a circulant dynamics matrix. However, we show here that the use of pointwise state
kernels, as described in the previous section, provides an alternative SSM equivalence, which lends a
special structure that can leverage the deep SSM parameterization/initialization ideas discussed in
Section 2.2 for modeling long-range dependencies. We show that each pixel of the state, X' (t); €
R”, can be equivalently described as evolving according to a differential equation with a shared state
matrix, Aggy, and input matrix, Bggy. See Figure 2.

Proposition 3. Consider a ConvSSM state update as in (5) with pointwise state kernel A €
RPXP““; input kernel B € REXUxkexks - and input U(t) € RHXW'XU [0t Uimacol(t) €
RIXWXUKL be the reshaped result of applying the Image to Column (im2col) [66, 67] operation on

the input U(t). Then the dynamics of each state pixel of (5), X(t); € R, evolve according to the
Jfollowing differential equation

X'(t); = AssmX(t)i + Bssmulimacor(t)i (10)
where the state matrix, Agsm € RP*F, and input matrix, Bggy € IRPX(U’“%), can be formed by
reshaping the state kernel, A, and input kernel, B, respectively.

Proof. See Appendix A.3. O

Thus, to endow these SSMs with the same favorable long-range dynamical properties as S4/S5
methods, we initialize Aggy with a HiPPO [62] inspired matrix and discretize with a learnable
timescale parameter to obtain Aggy and Bggy. Due to the equivalence of Proposition 3, we
then reshape these matrices into the discrete ConvSSM state and input kernels of (7) to give the
convolutional recurrence the same advantageous dynamical properties. We note that if the input,
output and dynamics kernel widths are set to 1 x 1, then the ConvSSM formulation is equivalent to
"convolving" an SSM across each individual sequence of pixels in the spatiotemporal sequence (this
also has connections to the temporal component of S4ND [45] when applied to videos). However,
inspired by ConvRNNSs, we observed improved performance when leveraging the more general
convolutional structure the ConvSSM allows and increasing the input/output kernel sizes to allow
local spatial features to be mixed in the dynamical system. See ablations discussed in Section 5.3.

3.4 Efficient ConvSSM for Long-Range Dependencies: ConvS5

Here, we introduce ConvS5, which combines ideas of parallelization of convolutional recurrences
(Section 3.2) and the SSM connection (Section 3.3). ConvSS5 is a ConvSSM that leverages parallel
scans and deep SSM parameterization/initialization schemes. Given Proposition 3, we implicitly
parameterize a pointwise state kernel, A € RPXP*1X1 and input kernel B € RFXUxkexks jp (5)
using SSM parameters as used by S5 [20], Ags € RP*” and Bgs € RPX(UKB) | We discretize these
S5 SSM parameters as discussed in Section 2.2 to give

Ags = DISCRETIZEA (Ags A) Bgs = DISCRETIZER(Ags Bgss A) (11)

and then reshape to give the ConvS5 state update kernels:

- reshape —

A—S5 ERPXP c ACor1vS5 6RP><PX1X1 (12)
= 2 h = .
Bgs € RPX(UkB) —eres are BConvSS S RPXUXkBXkB (13)

We then run the discretized ConvSSM system of (7- 8), using parallel scans to compute the recurrence.
In practice, this setup allows us to parameterize ConvS5 using a diagonalized parameterization [41,
42, 20] which reduces the cost of applying the parallel scan in Proposition 2 to O(LPHW). See
Appendix B for a more detailed discussion of parameterization, initialization and discretization.

We define a ConvS5 layer as the combination of ConvS5 with a nonlinear function applied to the
ConvS5 outputs. For example, for the experiments in this paper, we use ResNet[68] blocks for
the nonlinear activations between layers. However, this is modular, and other choices such as
ConvNext [69] or S4ND [45] blocks could easily be used as well. Finally, many ConvS5 layers can
be stacked to form a deep spatiotemporal sequence model.

Table 1: Computational complexity of Transformers, ConvRNNS and ConvS5 with respect to
sequence length. Metrics are inference cost (cost per step of autoregressive generation), cost per
training step, and parallelization ability. ConvS5 combines the best of Transformers and ConvRNNs.

Transformer ConvRNNs ConvS5

Inference O(L) O(1) O(1)
Training O(L?) O(L) o(rL)
Parallelizable Yes No Yes

3.5 ConvSS5 Properties

Refer to Table 1 for a comparison of computational complexity for Transformers, ConvRNNs and
ConvS5. The parallel scans allow ConvSS5 to be parallelized across the sequence like a Transformer
but with cost only scaling linearly with the sequence length. In addition, ConvSS5 is a stateful model
like ConvRNNSs, allowing fast autoregressive generation, extrapolation to different sequence lengths,
and an unbounded context window. The connection with SSMs such as S5 derived in Section 3.3
allows for precisely specifying the initial dynamics to enable the modeling of long-range dependencies
and to realize benefits from the unbounded context. Finally, the parallel scan of ConvS5 can allow
leveraging the continuous-time parameterization to process irregularly sampled sequences in parallel.
S5 achieves this by providing suitable spacing to the discretization operation [20], a procedure that
ConvS5 can also use.

We have proposed a general ConvSSM structure that can be easily adapted to future innovations in
the deep SSM literature. ConvS5’s parallel scan could be used to endow ConvS5 with time-varying
dynamics such as the input-dependent dynamics shown to be beneficial in the Liquid-S4 [43] work.
Multiple works [51, 52, 50, 53] proposed adding multiplicative gating to allow SSM-based methods
to overcome some weaknesses on language modeling. Similar ideas could be useful to ConvSSMs
for reasoning over long spatiotemporal sequences.

4 Related Work

This work is most closely related to the ConvRNNs and deep SSMs already discussed. We note here
that ConvRNN’s have been used in numerous domains, including biomedical, robotics, traffic modeling
and weather forecasting [70, 1, 71, 2, 3, 72-75, 4, 76, 77]. In addition, many variants have been
proposed [78—84, 64]. SSMs have been considered previously for video classification [46, 45, 85],
however none addressed the challenging problem of generating long spatiotemporal sequences.
S4ND [45] proposed applying separate S4 layers to each axis of an image or video, similar to a
PixelRNN [86] approach, and then combining the results with an outer product. While that work
mostly focused on images, they also show results for a short 30-frame video classification task. We
note this approach could be complementary to ours and the S42D blocks could potentially be used
to replace some of the ResNet blocks used as activations in our model. Other model architectures
explored in the literature for spatiotemporal modeling include 3D convolution approaches [87-89],
transformers, [9, 13, 14, 24-27] and standard RNNs [16, 90]. Attempts to address the problem
of modeling long spatiotemporal sequences have involved compressed representations [9, 91, 10,
92, 27, 29], training on sparse subsets of frames [15, 93, 8, 94, 95], temporal hierarchies [16],
continuous-time neural representations [93, 95], training on different length sequences at different
resolutions [96] and strided sampling [14, 97]. Of particular interest, Yan et al. [13] introduced the
Temporally Consistent (TECO) Video Transformer, which achieved state-of-the-art performance on
challenging 3D environment benchmarks designed to contain long-range dependencies [13]. This
approach combines vector-quantized (VQ) latent dynamics with a MaskGit [98] dynamics prior, and
several training tricks to model long videos.

S Experiments

In Section 5.1, we present a long-horizon Moving-MNIST experiment to compare ConvRNNSs,
Transformers and ConvS5 directly. In Section 5.2, we evaluate ConvS5 on the challenging 3D

Table 2: Quantitative evaluation on the Moving-MNIST dataset [54]. Top: To evaluate, we condition
on 100 frames, and then show results after generating 800 and 1200 frames. An expanded Table 6 is
included in Appendix C with more results, error bars and ablations. Bold scores indicate the best
performance and underlined scores indicate the second best performance. Bottom: Computational
cost comparison for the 600 frame task. Compare to Table 1.

Trained on 300 frames

100 € 800 100 € 1200

Method FVD @ PSNR x SSIM x LPIPS @& FVD @& PSNR % SSIM % LPIPS &
Transformer [24] 159 126 0 609 0 287 265 124 0591 0321
Performer [33] 234 134 0 652 0379 275 132 0592 0393
CW-VAE [16] 104 124 0 592 0277 117 123 0 585 0 286
ConvLSTM [17] 128 150 0737 0169 187 141 0706 0203
ConvS5 72 16 0 0761 0156 187 145 0678 0230
Trained on 600 frames
Transformer 42 137 0672 0207 91 131 0631 0 252
Performer 93 124 0616 0274 243 122 0 608 0312
CW-VAE 94 125 0 598 0269 107 123 0590 0 280
ConvLSTM 91 155 0757 0149 137 146 0727 0180
ConvS5 47 16 4 0788 0134 71 156 0763 0162

GFLOPS | Train Step Time (s) / Train Cost (V100 days) | Sample Throughput (frames/s) 1
Transformer 70 0.77(1.0x) 50 0.21 (1.0x)
ConvLSTM 65 3.0(3.9x%) 150 117 (557x%)
ConvS5 97 0.93(1.2x) 50 90 (429x)

environment benchmarks proposed in Yan et al. [13]. Finally, in Section 5.3, we discuss ablations
that highlight the importance of ConvS5’s parameterization.

5.1 Long Horizon Moving-MNIST Generation

There are few existing benchmarks for training on and generating long spatiotemporal sequences.
We develop a long-horizon Moving-MNIST [54] prediction task that requires training on 300-600
frames and accurately generating up to 1200 frames. This allows for a direct comparison of ConvS5,
ConvRNNs and Transformers as well as an efficient attention alternative (Performer [33]) and CW-
VAE [16], a temporally hierarchical RNN based method. We first train all models on 300 frames
and then evaluate by conditioning on 100 frames before generating 1200. We repeat the evaluation
after training on 600 frames. See Appendix D for more experiment details. We present the results
after generating 800 and 1200 frames in Table 2. See Appendix C for randomly selected sample
trajectories. ConvS5 achieves the best overall performance. When only trained on 300 frames,
ConvLSTM and ConvS5 perform similarly when generating 1200 frames, and both outperform the
Transformer. All methods benefit from training on the longer 600-frame sequence. However, the
longer training length allows ConvSS5 to significantly outperform the other methods across the metrics
when generating 1200 frames.

In Table 2-bottom we revisit the theoretical properties of Table 1 and compare the empirical compu-
tational costs of the Transformer, ConvLSTM and ConvS5 on the 600 frame Moving-MNIST task.
Although this specific ConvS5 configuration requires a few more FLOPs due to the convolution com-
putations, ConvS5 is parallelizable during training (unlike ConvLSTM) and has fast autoregressive
generation (unlike Transformer) — training 3x faster than ConvLSTM and generating samples 400x
faster than Transformers.

5.2 Long-range 3D Environment Benchmarks

Yan et al. [13] introduced a challenging video prediction benchmark specifically designed to con-
tain long-range dependencies. This is one of the first comprehensive benchmarks for long-range
spatiotemporal modeling and consists of 300 frame videos of agents randomly traversing 3D environ-

Table 3: Quantitative evaluation on the DMLab long-range benchmark [13]. Results from Yan et al.
[13] are indicated with *. Methods trained using the TECO [13] training framework are at the bottom
of the table. TECO methods are slower to sample due to the MaskGit [98] procedure. The expanded
Table 8 in Appendix C includes error bars and ablations.

DMLab

Method FVD] PSNR1t SSIM1 LPIPS| Sample Throughput (frames/s) 1
FitVid* [90] 176 12.0 0.356 0.491 -
CW-VAE* [16] 125 12.6 0.372 0.465 -
Perceiver AR* [39] 96 11.2 0.304 0.487 -
Latent FDM* [15] 181 17.8 0.588 0.222 -
Transformer [24] 97 19.9 0.619 0.123 9 (1.0x)
Performer [33] 80 17.3 0.513 0.205 7 (0.8%)
S5120] 221 19.3 0.641 0.162 28 (3.1x)
ConvS5 66 23.2 0.769 0.079 56 (6.2x)
TECO-Transformer* [13] 28 22.4 0.709 0.155 16 (1.8%)
TECO-Transformer (our run) 28 21.6 0.696 0.082 16 (1.8%)
TECO-S5 35 20.1 0.687 0.143 21 (2.3%)
TECO-ConvS5 31 23.8 0.803 0.085 18 (2.0x)

ments in DMLab [99], Minecraft [100], and Habitat [101] environments. See Appendix C for more
experimental details and Appendix E for more details on each dataset.

We train models using the same 16 x 16 vector-quantized (VQ) codes from the pretrained VQ-
GANSs [30] used for TECO and the other baselines in Yan et al. [13]. In addition to ConvS5 and the
existing baselines, we also train a Transformer (without the TECO framework), Performer and S5.
The S5 baseline serves as an ablation on ConvS5’s convolutional tensor-structured approach. Finally,
since TECO is essentially a training framework (specialized for Transformers), we also use ConvS5
and S5 layers as a drop-in replacement for the Transformer in TECO. Therefore, we refer to the
original version of TECO as TECO-Transformer, the ConvSS5 version as TECO-ConvS5 and the S5
version as TECO-S5. See Appendix D for detailed information on training procedures, architectures,
and hyperparameters.

DMLab The results for DMLab are presented in Table 3. Of the methods trained without the TECO
framework in the top section of Table 3, ConvS5 outperforms all baselines, including RNN [90, 16],
efficient attention [39, 33] and diffusion [15] approaches. ConvS5 also has much faster autoregressive
generation than the Transformer. ConvS5 significantly outperforms S5 on all metrics, pointing to the
value of the convolutional structure of ConvSS5.

For the models trained with the TECO framework, we see that TECO-ConvS5 achieves essentially
the same FVD and LPIPS as TECO-Transformer, while significantly improving PSNR and SSIM.
Note the sample speed comparisons are less dramatic in this setting since the MaskGit [98] sampling
procedure is relatively slow. Still, the sample throughput of TECO-ConvS5 and TECO-S5 remains
constant, while TECO-Transformer’s throughput decreases with sequence length.

Minecraft and Habitat Table 4 presents the results on the Minecraft and Habitat benchmarks. On
Minecraft, TECO-ConvS5 achieves the best FVD and performs comparably to TECO-Transformer
on the other metrics, outperfoTarming all other baselines. On Habitat, TECO-ConvS5 is the only
method to achieve a comparable FVD to TECO-Transformer, while outperforming it on PSNR and
SSIM.

5.3 ConvS5 ablations

In Table 5 we present ablations on the convolutional structure of ConvSS. We compare different input
and output kernel sizes for the ConvSSM and also compare the default ResNet activations to a channel
mixing GLU [102] activation. Where possible, when reducing the sizes of the ConvSSM kernels, we
redistribute parameters to the ResNet kernels or the GLU sizes to compare similar parameter counts.
The results suggest more convolutional structure improves performance.

Table 4: Quantitative evaluation on the Minecraft and Habitat long-range benchmarks [13]. Results
from Yan et al. [13] are indicated with *. See expanded Table 10 with error bars in Appendix C.

Minecraft Habitat

Method FVD| PSNR1T SSIM1 LPIPS| FVD] PSNR1 SSIM1 LPIPS |
FitVid* 956 13.0 0.343 0.519 - - - -
CW-VAE* 397 13.4 0.338 0.441 - - - -
Perceiver AR* 76 13.2 0.323 0.441 164 12.8 0.405 0.676
Latent FDM* 167 13.4 0.349 0.429 433 12.5 0.311 0.582
TECO-Transformer* 116 15.4 0.381 0.340 76 12.8 0.363 0.604
TECO-ConvS5 71 14.8 0.374 0.355 95 12.9 0.390 0.632

Table 5: Ablations of ConvS5 convolutional structure for DMLab long-range benchmark dataset [13].
More convolutional structure improves overall performance. See expanded Table 9 in Appendix.

DMLab
conv. Bkernel Ckernel nonlinearity FVD @ PSNRx SSIM=x LPIPS @
X - - GLU 221 193 0641 0162
0 1x1 1x1 GLU 187 210 0689 0112
0 1x1 5x5 GLU 89 215 0713 0 106
0 3x3 3x3 GLU 96 227 0 762 0 088
0 1x1 1x1 ResNet 81 230 0 767 0 083
0 1x1 3x3 ResNet 68 228 0 756 0 085
0 3x3 3x3 ResNet 67 23 2 0769 0079

We also perform ablations to evaluate the importance of ConvS5’s deep SSM-inspired parameter-
ization/initialization. We evaluate the performance of a ConvSSM with randomly initialized state
kernel on both Moving-Mnist and DMLab. See Table 6 and Table 8 in Appendix C. We observe
a degradation in performance in all settings for this ablation. This reflects prior results for deep
SSMs [56, 19, 20, 57] and highlights the importance of the connection developed in Section 3.3.

6 Discussion

This work introduces ConvS5, a new spatiotemporal modeling layer that combines the fast, stateful
autoregressive generation of ConvRNNs with the ability to be parallelized across the sequence like
Transformers. Its computational cost scales linearly with the sequence length, providing better scaling
for longer spatiotemporal sequences. ConvS5 also leverages insights from deep SSMs to model
long-range dependencies effectively.

We note that despite the ConvS5’s sub-quadratic scaling, it did not show significant training speedups
over Transformers for sequence lengths of 300-600 frames. (See detailed run-time comparisons
in Appendix C.) We expect ConvS5 to excel in training efficiency when applied to much longer
spatiotemporal sequences where the quadratic scaling of Transformers dominates. We hope this work
inspires the creation of longer spatiotemporal datasets and benchmarks. At the current sequence
lengths, future optimizations of the parallel scan implementations in common deep learning frame-
works will be helpful. In addition, the ResNet blocks used as the activations between ConvS5 layers
could be replaced with efficient activations such as sparse convolutions [103] or S4ND [45].

An interesting future direction is to further utilize ConvS5’s continuous-time parameterization. Deep
SSMs show strong performance when trained at one resolution and evaluated on another [19, 41, 42,
20, 43, 45]. In addition, S5 can leverage its parallel scan to effectively model irregularly sampled
sequences [20]. ConvS5 can be used for such applications in the spatiotemporal domain [104, 93, 95].
Finally, ConvS5 is modular and flexible. We have demonstrated that ConvS5 works well as a drop-in
replacement in the TECO [13] training framework specifically developed for Transformers. Due to
its favorable properties, we expect ConvS5 to also serve as a building block of new approaches for
modeling much longer spatiotemporal sequences and multimodal applications.

10

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

[13]

(14]

(15]

[16]

Chelsea Finn, Ian Goodfellow, and Sergey Levine. Unsupervised learning for physical
interaction through video prediction. Advances in neural information processing systems, 29,
2016.

Yi Xu, Longwen Gao, Kai Tian, Shuigeng Zhou, and Huyang Sun. Non-local ConvLSTM
for video compression artifact reduction. In Proceedings of the IEEE/CVF international
conference on computer vision, pages 7043-7052, 2019.

He Huang, Zheni Zeng, Danya Yao, Xin Pei, and Yi Zhang. Spatial-temporal ConvLSTM for
vehicle driving intention prediction. Tsinghua Science and Technology, 27(3):599-609, 2021.

Xiaoyu Chen, Xingsheng Xie, and Da Teng. Short-term traffic flow prediction based on
ConvLSTM model. In 2020 IEEE 5th Information Technology and Mechatronics Engineering
Conference (ITOEC), pages 846—850. IEEE, 2020.

Jaideep Pathak, Shashank Subramanian, Peter Harrington, Sanjeev Raja, Ashesh Chattopad-
hyay, Morteza Mardani, Thorsten Kurth, David Hall, Zongyi Li, Kamyar Azizzadenesheli,
et al. Fourcastnet: A global data-driven high-resolution weather model using adaptive Fourier
neural operators. arXiv preprint arXiv:2202.11214, 2022.

Jonathan A Weyn, Dale R Durran, Rich Caruana, and Nathaniel Cresswell-Clay. Sub-seasonal
forecasting with a large ensemble of deep-learning weather prediction models. Journal of
Advances in Modeling Earth Systems, 13(7):e2021MS002502, 2021.

Jonathan Ho, Tim Salimans, Alexey A. Gritsenko, William Chan, Mohammad Norouzi, and
David J. Fleet. Video diffusion models. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave,
and Kyunghyun Cho, editors, Advances in Neural Information Processing Systems, 2022.

Aidan Clark, Jeff Donahue, and Karen Simonyan. Adversarial video generation on complex
datasets. arXiv preprint arXiv:1907.06571, 2019.

Wilson Yan, Yunzhi Zhang, Pieter Abbeel, and Aravind Srinivas. Videogpt: Video generation
using VQ-VAE and Transformers. arXiv preprint arXiv:2104.10157, 2021.

Guillaume Le Moing, Jean Ponce, and Cordelia Schmid. CCVS: context-aware controllable
video synthesis. Advances in Neural Information Processing Systems, 34:14042-14055, 2021.

Yu Tian, Jian Ren, Menglei Chai, Kyle Olszewski, Xi Peng, Dimitris N. Metaxas, and Sergey
Tulyakov. A good image generator is what you need for high-resolution video synthesis. In
International Conference on Learning Representations, 2021.

Pauline Luc, Aidan Clark, Sander Dieleman, Diego de Las Casas, Yotam Doron, Albin Cassirer,
and Karen Simonyan. Transformation-based adversarial video prediction on large-scale data.
arXiv preprint arXiv:2003.04035, 2020.

Wilson Yan, Danijar Hafner, Stephen James, and Pieter Abbeel. Temporally consistent video
Transformer for long-term video prediction. arXiv preprint arXiv:2210.02396, 2022.

Songwei Ge, Thomas Hayes, Harry Yang, Xi Yin, Guan Pang, David Jacobs, Jia-Bin Huang,
and Devi Parikh. Long video generation with time-agnostic VQGAN and time-sensitive
Transformer. In Computer Vision—-ECCV 2022: 17th European Conference, Tel Aviv, Israel,
October 23-27, 2022, Proceedings, Part XVII, pages 102—118. Springer, 2022.

William Harvey, Saeid Naderiparizi, Vaden Masrani, Christian Dietrich Weilbach, and Frank
Wood. Flexible diffusion modeling of long videos. In Alice H. Oh, Alekh Agarwal, Danielle
Belgrave, and Kyunghyun Cho, editors, Advances in Neural Information Processing Systems,
2022.

Vaibhav Saxena, Jimmy Ba, and Danijar Hafner. Clockwork variational autoencoders. Ad-
vances in Neural Information Processing Systems, 34:29246-29257, 2021.

11

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

[25]

(26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

Xingjian Shi, Zhourong Chen, Hao Wang, Dit-Yan Yeung, Wai-Kin Wong, and Wang-chun
Woo. Convolutional LSTM network: A machine learning approach for precipitation nowcast-
ing. Advances in neural information processing systems, 28, 2015.

Nicolas Ballas, Li Yao, Chris Pal, and Aaron Courville. Delving deeper into convolutional
networks for learning video representations. arXiv preprint arXiv:1511.06432,2015.

Albert Gu, Karan Goel, and Christopher Re. Efficiently modeling long sequences with
structured state spaces. In International Conference on Learning Representations, 2021.

Jimmy T.H. Smith, Andrew Warrington, and Scott Linderman. Simplified state space layers for

sequence modeling. In The Eleventh International Conference on Learning Representations,
2023.

Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term memory. Neural Computation, 9
(8):1735-1780, 1997.

Kyunghyun Cho, Bart Van Merriénboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares,
Holger Schwenk, and Yoshua Bengio. Learning phrase representations using rnn encoder-
decoder for statistical machine translation. arXiv preprint arXiv:1406.1078, 2014.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training recurrent
neural networks. In International Conference on Machine Learning, pages 1310-1318. PMLR,
2013.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in Neural Information
Processing Systems, 30, 2017.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly,
Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image
recognition at scale. In International Conference on Learning Representations, 2021.

Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario Luci¢, and Cordelia
Schmid. ViViT: A video vision Transformer. In Proceedings of the IEEE/CVF international
conference on computer vision, pages 6836—-6846, 2021.

Agrim Gupta, Stephen Tian, Yunzhi Zhang, Jiajun Wu, Roberto Martin-Martin, and Li Fei-Fei.
Maskvit: Masked visual pre-training for video prediction. arXiv preprint arXiv:2206.11894,
2022.

Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. Advances
in neural information processing systems, 30, 2017.

Jacob Walker, Ali Razavi, and Aédron van den Oord. Predicting video with VQVAE. arXiv
preprint arXiv:2103.01950, 2021.

Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming Transformers for high-resolution
image synthesis. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 12873—12883, 2021.

Reiner Pope, Sholto Douglas, Aakanksha Chowdhery, Jacob Devlin, James Bradbury, Anselm
Levskaya, Jonathan Heek, Kefan Xiao, Shivani Agrawal, and Jeff Dean. Efficiently scaling
Transformer inference. arXiv preprint arXiv:2211.05102, 2022.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. FlashAttention: Fast
and memory-efficient exact attention with IO-awareness. Advances in Neural Information
Processing Systems, 35:16344—16359, 2022.

Krzysztof Marcin Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea
Gane, Tamas Sarlos, Peter Hawkins, Jared Quincy Davis, Afroz Mohiuddin, Lukasz Kaiser,
David Benjamin Belanger, Lucy Colwell, and Adrian Weller. Rethinking attention with
Performers. In International Conference on Learning Representations, 2021.

12

[34]

(35]

[36]

(37]

(38]

(39]

(40]

(41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

(50]

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and Frangois Fleuret. Transformers
are RNNs: Fast autoregressive Transformers with linear attention. In International Conference
on Machine Learning, pages 5156-5165. PMLR, 2020.

Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. Reformer: The efficient Transformer. In
International Conference on Learning Representations, 2020.

1z Beltagy, Matthew Peters, and Arman Cohan. Longformer: The long-document Transformer.
arXiv preprint arXiv:2004.05150, 2020.

Ankit Gupta and Jonathan Berant. Gmat: Global memory augmentation for Transformers,
2020.

Sinong Wang, Belinda Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention
with linear complexity. arXiv preprint arXiv:2006.04768, 2020.

Andrew Jaegle, Felix Gimeno, Andy Brock, Oriol Vinyals, Andrew Zisserman, and Joao
Carreira. Perceiver: General perception with iterative attention. In International conference
on machine learning, pages 4651-4664. PMLR, 2021.

Yi Tay, Mostafa Dehghani, Samira Abnar, Yikang Shen, Dara Bahri, Philip Pham, Jinfeng
Rao, Liu Yang, Sebastian Ruder, and Donald Metzler. Long Range Arena: A benchmark for
efficient Transformers. In International Conference on Learning Representations, 2021.

Ankit Gupta, Albert Gu, and Jonathan Berant. Diagonal state spaces are as effective as
structured state spaces. In Advances in Neural Information Processing Systems, 2022.

Albert Gu, Karan Goel, Ankit Gupta, and Christopher Ré. On the parameterization and
initialization of diagonal state space models. In Advances in Neural Information Processing
Systems, 2022.

Ramin Hasani, Mathias Lechner, Tsun-Hsuan Wang, Makram Chahine, Alexander Amini, and
Daniela Rus. Liquid structural state-space models. In International Conference on Learning
Representations, 2023.

Karan Goel, Albert Gu, Chris Donahue, and Christopher Re. It’s raw! Audio generation with
state-space models. In Proceedings of the 39th International Conference on Machine Learning,
volume 162 of Proceedings of Machine Learning Research, pages 7616-7633. PMLR, 17-23
Jul 2022.

Eric Nguyen, Karan Goel, Albert Gu, Gordon Downs, Preey Shah, Tri Dao, Stephen Baccus,
and Christopher Ré. S4ND: Modeling images and videos as multidimensional signals with
state spaces. In Advances in Neural Information Processing Systems, 2022.

Md Mohaiminul Islam and Gedas Bertasius. Long movie clip classification with state-space
video models. In Computer Vision—-ECCV 2022: 17th European Conference, Tel Aviv, Israel,
October 23-27, 2022, Proceedings, Part XXXV, pages 87-104, 2022.

Shmuel Bar David, Itamar Zimerman, Eliya Nachmani, and Lior Wolf. Decision S4: Efficient
sequence-based RL via state spaces layers. In The Eleventh International Conference on
Learning Representations, 2023.

Chris Lu, Yannick Schroecker, Albert Gu, Emilio Parisotto, Jakob Foerster, Satinder Singh,
and Feryal Behbahani. Structured state space models for in-context reinforcement learning.
arXiv preprint arXiv:2303.03982, 2023.

Lingi Zhou, Michael Poli, Winnie Xu, Stefano Massaroli, and Stefano Ermon. Deep latent
state space models for time-series generation. arXiv preprint arXiv:2212.12749, 2022.

Daniel Y Fu, Tri Dao, Khaled Kamal Saab, Armin W Thomas, Atri Rudra, and Christopher Re.
Hungry hungry hippos: Towards language modeling with state space models. In The Eleventh
International Conference on Learning Representations, 2023.

13

[51]

[52]

(53]

[54]

[55]

[56]

[57]

(58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]
[68]

Harsh Mehta, Ankit Gupta, Ashok Cutkosky, and Behnam Neyshabur. Long range language
modeling via gated state spaces. In The Eleventh International Conference on Learning
Representations, 2023.

Junxiong Wang, Jing Nathan Yan, Albert Gu, and Alexander M Rush. Pretraining without
attention. arXiv preprint arXiv:2212.10544, 2022.

Michael Poli, Stefano Massaroli, Eric Nguyen, Daniel Y Fu, Tri Dao, Stephen Baccus, Yoshua
Bengio, Stefano Ermon, and Christopher Ré. Hyena hierarchy: Towards larger convolutional
language models. arXiv preprint arXiv:2302.10866, 2023.

Nitish Srivastava, Elman Mansimov, and Ruslan Salakhudinov. Unsupervised learning of
video representations using LSTMs. In International conference on machine learning, pages
843-852. PMLR, 2015.

Arieh Iserles. A first course in the numerical analysis of differential equations. 44. Cambridge
university press, 2009.

Albert Gu, Isys Johnson, Karan Goel, Khaled Saab, Tri Dao, Atri Rudra, and Christopher Ré.
Combining recurrent, convolutional, and continuous-time models with linear state space layers.
Advances in Neural Information Processing Systems, 34, 2021.

Antonio Orvieto, Samuel L. Smith, Albert Gu, Anushan Fernando, Caglar Gulcehre, Razvan
Pascanu, and Soham De. Resurrecting recurrent neural networks for long sequences. arXiv
preprint arXiv:2303.06349, 2023.

Antonio Orvieto, Soham De, Caglar Gulcehre, Razvan Pascanu, and Samuel L Smith. On
the universality of linear recurrences followed by nonlinear projections. arXiv preprint
arXiv:2307.11888, 2023.

Eric Martin and Chris Cundy. Parallelizing linear recurrent neural nets over sequence length.
In International Conference on Learning Representations, 2018.

James Bradbury, Stephen Merity, Caiming Xiong, and Richard Socher. Quasi-recurrent neural
networks. In International Conference on Learning Representations, 2017.

Tao Lei, Yu Zhang, Sida Wang, Hui Dai, and Yoav Artzi. Simple recurrent units for highly
parallelizable recurrence. In Proceedings of the 2018 Conference on Empirical Methods in
Natural Language Processing, pages 4470-4481, 2018.

Albert Gu, Tri Dao, Stefano Ermon, Atri Rudra, and Christopher Ré. HiPPO: Recurrent
memory with optimal polynomial projections. Advances in Neural Information Processing
Systems, 33:1474-1487, 2020.

Guy Blelloch. Prefix sums and their applications. Technical report, Tech. rept. CMU-CS-90-
190. School of Computer Science, Carnegie Mellon, 1990.

Wonmin Byeon, Qin Wang, Rupesh Kumar Srivastava, and Petros Koumoutsakos. ContextVP:
Fully context-aware video prediction. In Proceedings of the European Conference on Computer
Vision (ECCV), pages 753-769, 2018.

Vincent Dumoulin and Francesco Visin. A guide to convolution arithmetic for deep learning.
arXiv preprint arXiv:1603.07285, 2016.

Kumar Chellapilla, Sidd Puri, and Patrice Simard. High performance convolutional neural
networks for document processing. In Tenth international workshop on frontiers in handwriting
recognition. Suvisoft, 2006.

Yangqing Jia. Learning semantic image representations at a large scale. 2014.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770-778, 2016.

14

[69]

[70]

(71]

[72]

(73]

[74]

[75]

[76]

[77]

(78]

[79]

[80]

[81]

[82]

[83]

[84]

Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining
Xie. A Convnet for the 2020s. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 11976-11986, 2022.

Marijn F Stollenga, Wonmin Byeon, Marcus Liwicki, and Juergen Schmidhuber. Parallel
multi-dimensional LSTM, with application to fast biomedical volumetric image segmentation.
Advances in neural information processing systems, 28, 2015.

Reza Azad, Maryam Asadi-Aghbolaghi, Mahmood Fathy, and Sergio Escalera. Bi-directional
ConvLSTM U-net with densely connected convolutions. In Proceedings of the IEEE/CVF
international conference on computer vision workshops, pages 0-0, 2019.

Si Woon Lee and Ha Young Kim. Stock market forecasting with super-high dimensional
time-series data using ConvLSTM, trend sampling, and specialized data augmentation. expert
systems with applications, 161:113704, 2020.

Qingqging Wang, Ye Huang, Wenjing Jia, Xiangjian He, Michael Blumenstein, Shujing Lyu,
and Yue Lu. FACLSTM: ConvLSTM with focused attention for scene text recognition. Science
China Information Sciences, 63:1-14, 2020.

Mohamadreza Bakhtyari and Sayeh Mirzaei. ADHD detection using dynamic connectivity
patterns of EEG data and ConvLSTM with attention framework. Biomedical Signal Processing
and Control, 76:103708, 2022.

Li Kang, Ziqi Zhou, Jianjun Huang, Wenzhong Han, and IEEE Member. Renal tumors
segmentation in abdomen CT images using 3D-CNN and ConvLSTM. Biomedical Signal
Processing and Control, 72:103334, 2022.

Tie Liu, Mai Xu, and Zulin Wang. Removing rain in videos: a large-scale database and a
two-stream ConvLLSTM approach. In 2019 IEEE International Conference on Multimedia and
Expo (ICME), pages 664—669. IEEE, 2019.

Xiaofang Xia, Jian Lin, Qiannan Jia, Xiaoluan Wang, Chaofan Ma, Jiangtao Cui, and Wei
Liang. ETD-ConvLSTM: A deep learning approach for electricity theft detection in smart
grids. IEEE Transactions on Information Forensics and Security, 2023.

Xingjian Shi, Zhihan Gao, Leonard Lausen, Hao Wang, Dit-Yan Yeung, Wai-kin Wong, and
Wang-chun Woo. Deep learning for precipitation nowcasting: A benchmark and a new model.
Advances in neural information processing systems, 30, 2017.

Mohammad Babaeizadeh, Chelsea Finn, Dumitru Erhan, Roy H. Campbell, and Sergey
Levine. Stochastic variational video prediction. In International Conference on Learning
Representations, 2018.

Yunbo Wang, Haixu Wu, Jianjin Zhang, Zhifeng Gao, Jianmin Wang, S Yu Philip, and
Mingsheng Long. PredRNN: A recurrent neural network for spatiotemporal predictive learning.
IEEFE Transactions on Pattern Analysis and Machine Intelligence, 45(2):2208-2225, 2022.

Yunbo Wang, Zhifeng Gao, Mingsheng Long, Jianmin Wang, and S Yu Philip. PredRNN++:
Towards a resolution of the deep-in-time dilemma in spatiotemporal predictive learning. In
International Conference on Machine Learning, pages 5123-5132. PMLR, 2018.

Yunbo Wang, Lu Jiang, Ming-Hsuan Yang, Li-Jia Li, Mingsheng Long, and Li Fei-Fei. Eidetic
3D LSTM: A model for video prediction and beyond. In International conference on learning
representations, 2019.

Wei Yu, Yichao Lu, Steve Easterbrook, and Sanja Fidler. Efficient and information-preserving
future frame prediction and beyond. In International Conference on Learning Representations,
2020.

Jiahao Su, Wonmin Byeon, Jean Kossaifi, Furong Huang, Jan Kautz, and Anima Anandkumar.

Convolutional tensor-train LSTM for spatio-temporal learning. Advances in Neural Information
Processing Systems, 33:13714-13726, 2020.

15

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

(93]

[94]

[95]

[96]

[97]

(98]

[99]

[100]

Jue Wang, Wentao Zhu, Pichao Wang, Xiang Yu, Linda Liu, Mohamed Omar, and Raffay
Hamid. Selective structured state-spaces for long-form video understanding. arXiv preprint
arXiv:2303.14526, 2023.

Adron Van Den Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. Pixel recurrent neural
networks. In International conference on machine learning, pages 1747-1756. PMLR, 2016.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks
for biomedical image segmentation. In Medical Image Computing and Computer-Assisted
Intervention—-MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9,
2015, Proceedings, Part 111 18, pages 234-241. Springer, 2015.

Ozgiin Cicek, Ahmed Abdulkadir, Soeren S Lienkamp, Thomas Brox, and Olaf Ronneberger.
3D U-net: learning dense volumetric segmentation from sparse annotation. In Medical
Image Computing and Computer-Assisted Intervention—-MICCAI 2016: 19th International
Conference, Athens, Greece, October 17-21, 2016, Proceedings, Part II 19, pages 424-432.
Springer, 2016.

Tobias Hoppe, Arash Mehrjou, Stefan Bauer, Didrik Nielsen, and Andrea Dittadi. Diffusion
models for video prediction and infilling. Transactions on Machine Learning Research.

Mohammad Babaeizadeh, Mohammad Taghi Saffar, Suraj Nair, Sergey Levine, Chelsea Finn,
and Dumitru Erhan. FitVid: Overfitting in pixel-level video prediction. arXiv preprint
arXiv:2106.13195, 2021.

Ruslan Rakhimov, Denis Volkhonskiy, Alexey Artemov, Denis Zorin, and Evgeny Burnaev.
Latent video Transformer. arXiv preprint arXiv:2006.10704, 2020.

Younggyo Seo, Kimin Lee, Fangchen Liu, Stephen James, and Pieter Abbeel. HARP: Autore-
gressive latent video prediction with high-fidelity image generator. In 2022 IEEE International
Conference on Image Processing (ICIP), pages 3943-3947. IEEE, 2022.

Ivan Skorokhodov, Sergey Tulyakov, and Mohamed Elhoseiny. StyleGAN-V: A continuous
video generator with the price, image quality and perks of StyleGAN2. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 3626-3636, 2022.

Masaki Saito and Shunta Saito. TGANvV2: Efficient training of large models for video
generation with multiple subsampling layers. arXiv preprint arXiv:1811.09245, 2(6), 2018.

Sihyun Yu, Jihoon Tack, Sangwoo Mo, Hyunsu Kim, Junho Kim, Jung-Woo Ha, and Jinwoo
Shin. Generating videos with dynamics-aware implicit generative adversarial networks. In
International Conference on Learning Representations, 2022.

Tim Brooks, Janne Hellsten, Miika Aittala, Ting-Chun Wang, Timo Aila, Jaakko Lehtinen,
Ming-Yu Liu, Alexei Efros, and Tero Karras. Generating long videos of dynamic scenes.
Advances in Neural Information Processing Systems, 35:31769-31781, 2022.

Wenyi Hong, Ming Ding, Wendi Zheng, Xinghan Liu, and Jie Tang. Cogvideo: Large-scale
pretraining for text-to-video generation via Transformers. arXiv preprint arXiv:2205.15868,
2022.

Huiwen Chang, Han Zhang, Lu Jiang, Ce Liu, and William T Freeman. MaskGit: Masked
generative image Transformer. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 11315-11325, 2022.

Charles Beattie, Joel Z Leibo, Denis Teplyashin, Tom Ward, Marcus Wainwright, Heinrich
Kiittler, Andrew Lefrancq, Simon Green, Victor Valdés, Amir Sadik, et al. Deepmind Lab.
arXiv preprint arXiv:1612.03801, 2016.

William H Guss, Brandon Houghton, Nicholay Topin, Phillip Wang, Cayden Codel, Manuela

Veloso, and Ruslan Salakhutdinov. MineRL: A large-scale dataset of Minecraft demonstrations.
arXiv preprint arXiv:1907.13440, 2019.

16

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

Manolis Savva, Abhishek Kadian, Oleksandr Maksymets, Yili Zhao, Erik Wijmans, Bhavana
Jain, Julian Straub, Jia Liu, Vladlen Koltun, Jitendra Malik, et al. Habitat: A platform for
embodied Al research. In Proceedings of the IEEE/CVF international conference on computer
vision, pages 9339-9347, 2019.

Yann Dauphin, Angela Fan, Michael Auli, and David Grangier. Language modeling with gated
convolutional networks. In International Conference on Machine Learning, pages 933-941.
PMLR, 2017.

Keyu Tian, Yi Jiang, Qishuai Diao, Chen Lin, Liwei Wang, and Zehuan Yuan. Designing
BERT for convolutional networks: Sparse and hierarchical masked modeling. arXiv preprint
arXiv:2301.03580, 2023.

Sunghyun Park, Kangyeol Kim, Junsoo Lee, Jaegul Choo, Joonseok Lee, Sookyung Kim, and
Edward Choi. Vid-ODE: Continuous-time video generation with neural ordinary differential
equation. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pages
2412-2422, 2021.

Mark Harris, Shubhabrata Sengupta, and John D Owens. Parallel prefix sum (scan) with
CUDA. GPU gems, 3(39):851-876, 2007.

Albert Gu, Isys Johnson, Aman Timalsina, Atri Rudra, and Christopher Re. How to train your
HIPPO: State space models with generalized orthogonal basis projections. In International
Conference on Learning Representations, 2023.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Thomas Unterthiner, Sjoerd Van Steenkiste, Karol Kurach, Raphael Marinier, Marcin Michal-
ski, and Sylvain Gelly. Towards accurate generative models of video: A new metric &
challenges. arXiv preprint arXiv:1812.01717, 2018.

Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment:
from error visibility to structural similarity. /IEEE transactions on image processing, 13(4):
600-612, 2004.

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreason-
able effectiveness of deep features as a perceptual metric. In CVPR, 2018.

Yann LeCun. The MNIST database of handwritten digits. http://yann. lecun. com/exdb/mnist/,
1998.

Santhosh K Ramakrishnan, Aaron Gokaslan, Erik Wijmans, Oleksandr Maksymets, Alex
Clegg, John Turner, Eric Undersander, Wojciech Galuba, Andrew Westbury, Angel X Chang,
et al. Habitat-Matterport 3D dataset (HM3D): 1000 large-scale 3D environments for embodied
Al arXiv preprint arXiv:2109.08238, 2021.

Angel Chang, Angela Dai, Thomas Funkhouser, Maciej Halber, Matthias Niessner, Manolis
Savva, Shuran Song, Andy Zeng, and Yinda Zhang. Matterport3D: Learning from RGB-D
data in indoor environments. arXiv preprint arXiv:1709.06158, 2017.

Fei Xia, Amir R Zamir, Zhiyang He, Alexander Sax, Jitendra Malik, and Silvio Savarese. Gib-
son env: Real-world perception for embodied agents. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 9068-9079, 2018.

17

Appendix for: Convolutional State Space Models for Long-range
Spatiotemporal Modeling

Contents:
* Appendix A: Propositions
¢ Appendix B: ConvS5 Details: Parameterization, Initialization, Discretization
» Appendix C: Supplementary Results
* Appendix D: Experiment Configurations
¢ Appendix E: Datasets

18

A Propositions

A.1 Parallel Scan for Convolutional Recurrences

Proposition 1. Consider a convolutional recurrence as in (7) and define initial parallel scan elements
¢k = (Cka Cup) = (A BxUy). The binary operator ®, defined below, is associative.

Ci®cj:=(Cja0Cia Cja*Cib + Cjp) (14)

where o denotes convolution of two kernels, x denotes convolution between a kernel and input, and +
is elementwise addition.

Proof. Using that o is associative and the companion operator of *, i.e. (doe) * f = d* (e * f) (see
Blelloch [63], Section 1.4), we have:

(ci®cj)®ck = (¢ja0Cia Cja*Cip + Cjp) ® (Cha Chb) (15)

= (Ck,a 0(€j,a©Cia) Cha*(Cja*xcip+cip)+ Ck,b) (16)

= ((Ck,a ©Cja)OCia Cha* (Cja*Cip)+ Cha*Cjp+ Ck,b) an

= ((ck,a 0¢Cja)0Cia (ChaOCja)*Cip~+ Cha*xcip+ ck,b> (18)
=¢; ® (Cha ©Cja Cha*Cjp+ Crp) (19)
=¢® (¢; ®cy) (20)

O

A.2 Computational Cost of Parallel Scan for Convolutional Recurrences

Proposition 2. Given the effective inputs B x Uy.;, € REXIXWXP gnd g pointwise state kernel
A € RPXPXIXL the computational cost of computing the convolutional recurrence in Equation 7
with a parallel scan is O(L(P® + P2HW)).

Proof. Following Blelloch [63], given a single processor, the cost of computing the recurrence
sequentially using the binary operator ® defined in Proposition 1 is O(L(T, + T + T'.)) where T,
refers to the cost of convolving two kernels, T is the cost of convolution between a kernel and input
and T is the cost of elementwise addition. The cost of elementwise addition is Ty = O(PHW).
For state kernels with resolution k4, T, = O(P3k%) and T, = O(P?k3HW). For pointwise
convolutions this becomes T, = O(P?) and T, = O(P?HW). Thus, the cost of computing the
recurrence sequentially using & is O(L(P3 + P?H W)) Since there are work-efficient algorithms

for parallel scans [105], the overall cost of the parallel scan is also O(L(P3 + P?H W)) O

Note that ConvS5’s diagonalized parameterization discussed in Section 3.4 and Appendix B leads to
T, = O(P) and T, = O(PHW). Therefore the cost of applying the parallel scan with ConvS5 is
O(LPHW).

A.3 Connection Between ConvSSMs and SSMs

Proposition 3. Consider a ConvSSM state update as in (5) with pointwise state kernel A €

REXPXIXL input kernel B € RP*UXkeXks - and input U(t) € REXW'XU [0t Uimacol (t) €

REXWXUKS pe the reshaped result of applying the Image to Column (im2col) [66, 67] operation on

the input U(t). Then the dynamics of each state pixel of (5), X (t); ; € RY, evolve according to the
following differential equation

X' (t);; = AssmX (t)i; + BssmUimacor (t)i (21)

RPXxP RPx(Uk%)

where the state matrix, Assnm € , and input matrix, Bssy €
reshaping the state kernel, A, and input kernel, B, respectively.

, can be formed by

19

Proof. Let Ujmacor € RUF*HW denote the result of performing the im2col operation on the input

. 2
U (t) for convolution with the kernel 3. Reshape this matrix into the tensor Usmacol (t) € REXW XUy
Reshape Uioc01(t) once more into the tensor V(t) € REXWxUxksxks,

Now, we can write the evolution for the individual channels of each pixel, X’ (t)s, k> i (5) as

P—1 U—-1kp—1kp—1
X(igk =D Acr00XBiji+ > > Y BrgmnVijagmn (22)
=0 q=0 m=0 n=0

et Agsm € e a matrix with rows, Agsn.; € , corresponding to a flattened version o
Let A RP*P b t th Agsn; € RP ponding to a flattened f
the output features of A, i.e. A; € RPX1*1 Similarly, reshape B into a matrix Bgsy € RP*(UkE)
2 . .
where the rows, Bgsn; € B correspond to a flattened version of the output features of B, i.e.
here th Bgsm,; € RUF pond to a flattened f the output feat fB
Bi c RkaBka_

Then we can rewrite (22) equivalently as

P_1 U—1kp—1kp—1
X'(t)ije = Z Aj,00X ()i + Z Z Z Bigman V()i j.qmmn (23)
=0 q=0 m=0 n=0
P-1 Uk?% -1
= Asgsn k1 X ()i, + Z Bssu, k,olim2col (t)i,5,0 (24)
=0 v=0
= Al x X ()i j + Blsp alhimacol ()i (25)

20

B ConvS5 Details: Parameterization, Discretization, Initialization

B.1 Background: S5

S5 Parameterization and Discretization S5 [20] uses a diagonalized parameterization of the
general SSM in (3).

Let Ags = VAgs V1 € RPXP where Ags € CP*P is a complex-valued diagonal matrix and
V € CP*P corresponds to the eigenvectors. Defining x(¢) = V~'x(¢), B= V!B, and C = CV
we can reparameterize the SSM of (3) as the diagonalized system:

dx(t

% = Agsx(t) + Bu(t) y(t) = Cx(t) + Du(t) (26)
S5 uses learnable timescale parameters A € R and the following zero-order hold (ZOH) disretiza-
tion:

Ags = DISCRETIZEA (Ags A) := elssd (27)
Bss = DISCRETIZEg(Ag; B A) := Ag (Ags —I)B (28)

S5 Initialization S5 initializes its state matrix by diagonalizing A g5 as defined here:
(n+) k+3)Y? n>k
1 n=k (29)
(n+) (k+3)Y? n<k

This matrix is the normal part of the normal plus low-rank HiPPO-LegS matrix from the HiPPO frame-
work [62] for online function approximation. S4 originally initialized its single-input, single-output
(SISO) SSMss with a representation of the full HIPPO-LegS matrix. This was shown to be approximat-
ing long-range dependencies at initialization with respect to an infinitely long, exponentially-decaying
measure [106]. Gupta et al. [41] empirically showed that the low-rank terms could be removed with-
out impacting performance. Gu et al. [42] showed that in the limit of infinite state dimension, the
linear, single-input ODE with this normal approximation to the HiPPO-LegS matrix produces the
same dynamics as the linear, single-input ODE with the full HiPPO-LegS matrix. The S5 work
extended these findings to the multi-input SSM setting [20].

AS5nk =

Importance of SSM Parameterization, Discretization and Initialization Prior research has
highlighted the importance of parameterization, discretization and initialization choices of deep
SSM methods through ablations and analysis [56, 19, 42, 20, 57]. Concurrent work from Orvieto
et al. [57] provides particular insight into the favorable initial eigenvalue distributions provided by
initializing with HiPPO-inspired matrices as well as an important normalization effect provided by the
explicit discretization procedure. They also introduce a purely discrete-time parameterization that can
perform similarly to the continuous-time discretization of S4 and S5. However, their parameterization
practically ends up quite similar to the equations of (27-28). We choose to use the continuous-time
parameterization of S5 for the implicit parameterization of ConvS5 since it can also be leveraged
for zero-shot resolution changes [19, 20, 45] and processing irregularly sampled time-series in
parallel [20]. However, due to Proposition 3, other long-range SSM parameterization strategies can
also be used, such as in Orvieto et al. [57] or potential future innovations.

B.2 ConvSS Diagonalization

We leverage S5’s diagonalized parameterization to reduce the cost of the parallel scan of ConvSS5.

Concretely, we initialile Ags as in (29) and diagonalize as Ag; = VAgsV~L To apply ConvSS5,
we compute Ags and Bgs using (27-28), and then form the ConvS5 state and input kernels:

A pPxp reshape —¢ PxPx1x1

ASS eR x —€ ACOHVS5 eR XX (30)
= 2 h. = .
BSS c RPX(Uk:B) MEC BCOHVSS € RPXUXkBXkB (31)

See Listing 1 for an example of the core implementation. Note, the state kernel Zcogsga is "diagonal-
ized" in the sense that all entries in the state kernel are zero except Aconvss,i,i = Agsi,i Vi € [P].

21

This means that the pointwise convolutions reduce to channel-wise multiplications. However, this
does not reduce expressivity compared to a full pointwise convolution. This is because, given the
ConvSSM to SSM equivalence of Proposition 3 and the use of complex-valued kernels, the diagonal-
ization maintains expressivity since almost all SSMs are diagonalizable [41, 42], which follows from
the well-known fact that almost all square matrices diagonalize over the complex plane.

22

import jax

import Jjax.numpy as np

from ConvSSM _helpers import discretize, Conv2D, ResNet_Block
parallel scan = jax.lax.associative_scan

def apply_ConvS5_layer (A, B, B_shape, C_kernel, log_Delta, resnet_params, us, x0):

C N R WD —

def

def

"""Compute the outputs of ConvS5 layer given Input sequence.

Args:
A (complex64): S5 state matrix (P,)
B (complex64): S5 input matrix (P, Uk_B"2)
B _shape (tuple): shape of B_kernel
C_kernel (complex64) output kernel (U,P,k_C,k_C)

log Delta (float32): learnable timescale params (P,)
resnet_params (dict): ResNet block params

us (float32): input sequence of features (L,bsz,H,W,U)

x0 (complex64): initial state (bsz,H, W, P)
Returns:

outputs (float32): the ConvS5 layer outputs (L,bsz,H, W, U)

x L (complex64): the last state of the ConvSSM (bsz,H,W,P)
wum
Discretize and reshape ConvS5 state and input kernels
P, U, k_B = B_shape
A_bar, B_bar = discretize (A, B, np.exp(log_Delta))
A_kernel = A _bar # already correct shape due to diagonalization
B_kernel = B_bar.reshape (P, U, k_B, k_B)

Apply ConvS5
ys, xs = apply_ConvS5 (A_kernel, B_kernel, C_kernel, us, x0)

Apply ResNet activation function
outputs = jax.vmap (ResNet_Block, axis=(None,0)) (resnet_params, ys)
return outputs, xs[-1]

apply_ConvS5 (A_kernel, B_kernel, C_kernel, us, x0):
"""Compute the output sequence of the convolutional SSM
given the input sequence using a parallel scan.
Computes x_k = A * x {k-1} + B * u_k
vk =C * x k
where +* 1s a convolution operator.
Args:
A _kernel (complex64): state kernel (P,)
B kernel (complex64): input kernel (P,U,k_B,k_B)
C_kernel (complex64): output kernel (U,P,k_C,k_C)

us (float32): input sequence (L,bsz,H, W, U)

x0 (complex64): initial state (bsz,H, W, P)
Returns:

ys (float32): the convS5 outputs (L,bsz,H, W, U)

x L (complex64): the last state (bsz,H, W, P)

mwo

Compute initial scan elements

As = np.repeat (A_kernel[None, ...], us.shape[0], axis=0
Bus = jax.vmap (Conv2D) (B_kernel, np.complex64 (us))

Bus = Bus.at[0].add(np.expand_dims (A_bar, (0, 1, 2)) = x0)

Convolutional recurrence with parallel scan
_, xs = parallel_scan(conv_pbinary_operator, (As, Bus))

Compute ConvS5 outputs
ys = jax.vmap (Conv2D) (C_kernel, xs).real
return ys, xs

conv_binary_ operator(g_i, g_j):
"""Binary operator for convolutional recurrence
with "diagonalized" 1X1 state kernels.

Args:
g i, g j (tuples): scan elements q i=(A_i, BU_1i) where
A i1 (complex64) is state kernel (P,)
BU_i (complex64) is effective input (bsz,H,W,P)
Returns:

output tuple g i \circledast q_j
o
A i, BU_i = g i
A_j, BU_J = aqj
Convolve "diagonal" 1X1 kernels
AA = A_j * A_i
Convolve "diagonal" A_j with BU_1i
A_3jBU_1i = np.expand_dims(A_j, (0, 1, 2)) % BU_i
return AA, A_JBU_i + BU_J

Listing 1: JAX implementation of core code to apply a single ConvS5 layer to a batch of spatiotem-
poral input sequences.

23

C Supplementary Results

We include expanded tables and sample trajectories from the experiments in the main paper. Sample
videos can be found at:

https://sites.google.com/view/convssm.

Cl1

Moving-MNIST

Table 6: Full results on the Moving-MNIST dataset [54]. For the top table, all models are trained on
300 frames. For the bottom table, all models are trained on 600 frames. The evaluation task is to
condition on 100 frames, and then generate forward 400, 800 and 1200 frames. ConvSSM (ablation)
is performed by randomly initializing the state kernel (see Section 5.3 and Appendix D.4).

Trained on 300 frames

100 — 400 100 — 800 100 — 1200
Method Params FVD | PSNR 1 SSIM 1 LPIPS | FVD | PSNR 1 SSIM 1 LPIPS | FVD | PSNR 1 SSIM 1 LPIPS |
Transformer 164M 73 +£3 13.5£0.1 0.669£0.002 0.213£0.003 159+ 7 12.6+ 0.1 0.609 +0.002 0.287 +0.001 265 +8 12.44+0.1 0.591 +0.002 0.321 £ 0.002
Performer 164M 111 +9 13.4£0.1 0.653£0.002 0.288+0.001 234+1 13.4+0.1 0.65240.006 0.379+0.002 27545 13.24+0.1 0.592+0.001 0.393 £+ 0.001
CW-VAE 20M 78 +1 12.7+ 0.1 0.611 4 0.002 0.254 4+ 0.001 104+2 12.44+0.1 0.592£0.002 0.277 £0.002 117 +2 12.3+0.1 0.585 £ 0.002 0.286 £ 0.001
ConvLSTM 20M 574+3 16.9+0.2 0.796 +0.004 0.113 4+0.002 128 +4 15.0+ 0.1 0.737 £0.003 0.169 £0.001 187 +6 14.1+0.1 0.706 £+ 0.003 0.203 + 0.001
ConvSSM (ablation) 20M 67+3 15.5+0.1 0.742+£0.001 0.168 £0.001 287 +5 13.6+ 0.1 0.577 +0.001 0.293 +0.001 511 +8 13.3+0.1 0.515+0.001 0.348 4+ 0.001
ConvSs 20M 26+1 18.1+£0.1 0.830 +0.003 0.094+£0.002 72+3 16.0+0.1 0.761+0.005 0.156 £ 0.003 187 +5 14.5+0.1 0.678 & 0.003 0.230 & 0.004
Trained on 600 frames
100 — 400 100 — 800 100 — 1200
Method Params FVD | PSNR 1 SSIM 1 LPIPS | FVD | PSNR 1 SSIM 1 LPIPS | FVD | PSNR 1 SSIM 1 LPIPS |
Transformer 164M 21 +1 15.0£0.1 0.741 £0.002 0.138 £0.001 42+2 13.7+0.1 0.67240.002 0.207 &+ 0.003 914+6 13.14+0.1 0.631 4 0.004 0.252 4 0.002
Performer 164M 27+1 13.1+0.1 0.654 +0.004 0.206 & 0.001 93+5 12.44+0.1 0.616 +0.002 0.274 +0.001 243 +7 12.24+0.1 0.608 & 0.001 0.312 4 0.002
CW-VAE 20M 73+2 129+ 0.1 0.621 +0.004 0.242 4 0.001 944+ 3 12.5+0.9 0.598+0.004 0.269+0.001 107 +2 12.3+0.1 0.590+ 0.004 0.280 + 0.002
ConvLSTM 20M 39+5 17.3+£0.2 0.812+0.005 0.100+0.003 91+7 15.54+0.2 0.757 +0.005 0.1494+0.003 137+9 14.64+ 0.1 0.727 4+ 0.004 0.180 4 0.003
ConvSSM (ablation) 20M 81+6 15.5+0.1 0.743£0.002 0.163 £0.003 145+8 14.3+0.1 0.696 +0.002 0.218 +0.002 215+9 13.44+0.1 0.614 +0.001 0.287 4 0.001
ConvS5 20M 23+3 18.1£0.1 0.832 1+ 0.003 0.092 + 0.003 47+ 7 16.4+ 0.1 0.788 £ 0.002 0.134 £0.003 71+9 15.6+ 0.1 0.763 + 0.002 0.162 + 0.003
Table 7: Model runtime comparison for Moving-MNIST results in Table 6. ConvS5 can be parallelized
like a Transformer but maintains the constant cost-per-step autoregressive generation of ConvRNNs.
100 — 400 100 — 800 100 — 1200
Method Parallelizable Train Step Time (s) | Sample Throughput (frames/s) T Sample Throughput (frames/s) T Sample Throughput (frames/s) 1
Transformer YES 0.77 (1.0x) 1.1 (1.0%) 0.34 (1.0x) 0.21 (1.0x)
ConvLSTM NO 3.0 (3.9x) 117 (106 %) 117 (345x) 117 (557x)
ConvS5 YES 0.93 (1.2x) 90 (82x) 90 (265x) 90 (429%)

24

Condition Predicted Frames

Ground Truth

Transformer

ConvLSTM

ConvSs5

t=0 50 99 100 250 400 550 700 850 1000 1150 1299

(a) Example 1
Condition Predicted Frames

Ground Truth

Transformer

ConvLSTM

ConvS5

t=0 50 99 100 250 400 550 700 850 1000 1150 1299

(b) Example 2
Condition Predicted Frames

Ground Truth

Transformer

ConvLSTM

ConvS5

t=0 50 99 100 250 400 550 700 850 1000 1150 1299

(c) Example 3
Figure 3: Moving-MNIST Samples: 1200 frames generated conditioned on 100.

25

C.2 3D Environments

Table 8: Full results for DMLab long-range benchmark dataset [13]. Results from Yan et al. [13] are
indicated with *. We separate out the methods trained using the TECO [13] training framework in
the bottom of the table. TECO-ConvSSM (ablation) refers to the ablation performed by randomly

initializing the state kernel (see Section 5.3 and Appendix D.5).

DMLab

Method Params FVD | PSNR 1 SSIM 1 LPIPS |
FitVid* 165M 176 + 4.86 12.0£0.013 0.356 £+ 0.00171 0.491 + 0.00108
CW-VAE* 111M 125+ 7.95 12.6 +0.059 0.372 £ 0.00033 0.465 £ 0.00156
Perceiver AR* 30M 96.3 +3.64 11.240.004 0.304 + 0.00004 0.487 £+ 0.00123
Latent FDM* 31M 181 +2.20 17.8+0.111 0.588 +0.00453 0.222 £ 0.00493
Transformer I152M 97.0+5.98 19.94+0.108 0.619 + 0.00506 0.123 + 0.00191
Performer 152M 80.3 £3.21 17.3 £ 0.074 0.513 £ 0.00492 0.205 £ 0.00315
S5 140M 221 +£13.1 19.3 +0.128 0.641 4+ 0.00400 0.162 + 0.04510
ConvS5 100M 66.6 £4.81 23.2+0.053 0.769+0.01020 0.079 £+ 0.00073
TECO-Transformer* 173M 27.5+1.77 22.440.368 0.709 £ 0.0119 0.155 £ 0.00958
TECO-Transformer (our run) 173M 28.2+0.66 21.6 + 0.079 0.696 + 0.02640 0.082 +0.00119
TECO-S5 180M 34.6+0.26 20.1 +0.037 0.687 £ 0.00132 0.143 £ 0.00049
TECO-ConvSSM (ablation) 175M 44.3+£2.69 21.0+0.106 0.691 + 0.00004 0.010 £ 0.00267
TECO-ConvS5 175M 31.24+0.23 23.8+£0.056 0.803 =0.0020 0.085 +0.00179

Table 9: Full results for ablation of ConvSS5 convolutional ablations for DMLab long-range benchmark
dataset [13]. To make parameter counts comparable for different configurations, when possible,
we adjust parameters in the activation blocks, e.g. increasing the size of the ResNet convolution
kernels or increasing the features of the GLU activation. With these adjustments, the models also
have similar training speeds. Note the last entry is the S5 run which serves as an additional ablation

of the convolutional structure.

DMLab
Bkernel Ckernel Activation Params FVD | PSNR 1 SSIM 1 LPIPS | Train Step Time (s) |
3x3 3x3 ResNet 100M 66.6 -4.81 23.2+0.053 0.769+0.00043 0.079 +0.00073 2.31
1x1 3x3 ResNet 35M 67.5+0.73 22.8£0.041 0.756 + 0.00039 0.085 + 0.00124 2.52
1x1 1x1 ResNet 100M 81.1+£6.06 23.0+0.074 0.767 £+ 0.00186 0.083 + 0.00139 2.21
3x3 3x3 GLU 71M 96.1 £5.20 22.7 +£0.157 0.762 + 0.00363 0.088 + 0.00287 2.75
1x1 5%x5 GLU 33M 89.1+0.61 21.5+0.072 0.713 + 0.00290 0.106 + 0.00289 2.58
1x1 1x1 GLU 30M 187 £ 2.77 21.0 +0.064 0.689 + 0.00007 0.112 £+ 0.00183 1.73
- - GLU 140M 221 +£13.1 19.3 +0.128 0.641 4+ 0.00400 0.162 = 0.04510 1.34

26

Condition Predicted Frames

Ground Truth F
Transformer
S5

ConvS5 |

TECO-Transformer

TECO-S5 |

TECO-ConvS5 |

t=0 73 143 144 163 182 202 221 240 260 279 299

(a) 156 frames generated conditioned on 144 (action-conditioned).

Condition Predicted Frames

Ground Truth

Transformer

S5)
A I.?.‘. "n':\

ConvS5

TECO-Transformer

oE2E0

TECO-S5

TECO-ConvS5

t=0 17 35 36 68 101 134 167 200 233 266 299
(b) 264 frames generated conditioned on 36 (no action-conditioning).

Figure 4: DMLab Samples

27

Condition Predicted Frames

Ground Truth

TECO-Transformer

TECO-ConvS5

t=0 73 143 144 163 182 202 221 240 260 279 299

(a) 156 frames generated conditioned on 144 (action-conditioned).

Condition Predicted Frames

Ground Truth
TECO-Transformer

TECO-ConvS5

t=0 17 35 36 68 101 134 167 200 233 266 299
(b) 264 frames generated conditioned on 36 (action-conditioned).

Figure 5: Minecraft Samples

Condition Predicted Frames

‘F&

Ground Truth

TECO-Transformer

TECO-ConvS5

t=0 73 14 144 163 182 202 221 240 260 279 299

(a) 156 frames generated conditioned on 144 (action-conditioned).

Condition Predicted Frames

Ground Truth

TECO-Transformer

TECO-ConvS5

t=0 17 35 36 68 101 134 167 200 233 266 299

(b) 264 frames generated conditioned on 36 (no action-conditioning).

Figure 6: Habitat Samples

28

Table 10: Full results on the Minecraft and Habitat long-range benchmark datasets [13]. Results from
Yan et al. [13] are indicated with *. Note that Yan et al. [13] did not evaluate FitVid or CW-VAE on
Habitat due to cost.

Minecraft
Method Params FVD | PSNR 1 SSIM t LPIPS |
FitVid* 176M 956 +15.8 13.0£0.0089 0.343 =0.00380 0.519 4 0.00367
CW-VAE* 140M 397+ 155 13.44+0.0610 0.338 £0.00274 0.441 4 0.00367
Perceiver AR* 166M 76.3+1.72 13.24+0.0711 0.323 £0.00336 0.441 = 0.00207
Latent FDM* 33M 167 +6.26 13.44+0.0904 0.349 £ 0.00327 0.429 4 0.00284
TECO-Transformer* 274M 116 £5.08 15.44+0.0603 0.381 +0.00192 0.340 + 0.00264
TECO-ConvS5 214M 70.7 £3.05 14.8+0.0984 0.374+0.00414 0.355 £ 0.00467
Habitat

Method Params FVD | PSNR 1 SSIM t LPIPS |
Perceiver AR* 200M 164 +£12.6 12.84+0.0423 0.405 =+ 0.00248 0.676 = 0.00282
Latent FDM* 87M 433 +£2.67 12.5+0.0121 0.311 £0.00083 0.582 4+ 0.00049
TECO-Transformer* 386M 76.3 +1.72 12.84+0.0139 0.363£0.00122 0.604 &+ 0.00451
TECO-ConvS5 351IM 95.1+£3.74 12.9+0.212 0.390+0.01238 0.632 4 0.00823

Table 11: Model runtime comparison for 3D Environment results in Tables 8-10. The implementations
of the baselines FitVid, CW-VAE, Perceiver AR and Latent FDM used in the TECO work [13] are not
publicly available in the TECO repository, so we were unable to include direct runtime comparisons
for those methods.

DMLab
Method Train Step Time (s) | Sampling Speed (frames/s)
Transformer 1.25 (1.0x%) 9.1 (1.0x)
Performer 1.25 (1.0x) 7 6(0 8x%)
S5 1.34 (1.1x) 28 (3.1x)
ConvS5 2.31 (1.8x) 56 (6.2x)
TECO-Transformer 0.75 (0.6x) 16 (1.8%)
TECO-S5 0.81 (0.7x) (2 3x)
TECO-ConvS5 1.17 (0.9%) 18 (2.0x)

Minecraft
Method Train Step Time (s) | Sampling Speed (frames/s)
TECO-Transformer 1.91 (1.0x%) 8.1 (1.0x)
TECO-ConvS5 2.53 (1.3x) 14 (1.7x%)

Habitat

Method Train Step Time (s) | Sampling Speed (frames/s)
TECO-Transformer 2.71 (1.0%) 6.8 (1.0x)
TECO-ConvS5 3.10 (1.1x) 11 (1.6x%)

29

D Experiment Configurations

Our codebase modifies the TECO codebase from Yan et al. [13] and we reuse their core Transformer
and TECO framework implementations. More architectural details and dataset-specific details are
described below.

D.1 Spatiotemporal Sequence Model Architectures

ConvS5, ConvLSTM and S5 models are formed by stacking multiple ConvS5, ConvLSTM or S5
layers, respectively. For each of these models, layer normalization [107] with a post-norm setup is
used along with residual connections. For the Transformer, we use the Transformer implementation
from Yan et al. [13] which consists of a stack of multi-head attention layers.

ConvS5 and ConvLSTM are applied directly to sequences of frames of shape [sequence length, latent
height, latent width, latent features], where the original data has been convolved to a latent resolution
and latent number of features. Since S5 and Transformer act on vector-valued sequences, these
models require an additional downsampling convolution operation to project the latent frames into
a token and an upsampling transposed convolution operation to project the Transformer backbone
output tokens back into latent frames. We use the same sequence of compression operations for this
as in Yan et al. [13]. The Encoder and Decoder referred to for all models in the hyperparameter tables
below consist of ResNet Blocks with 3 x 3 kernels as implemented in Yan et al. [13].

D.2 Evaluation Metrics

We follow Yan et al. [13] and evaluate methods by computing Fréchet Video Distance (FVD) [108],
peak signal-to-noise ratio (PSNR), structural similarity index measure [109] and Learned Perceptual
Image Patch Similarity (LPIPS) [110] between sampled trajectories and ground truth trajectories.
See Yan et al. [13] for a more in-depth discussion of the use of these metrics for the 3D environment
benchmarks.

D.3 Compute

All models were trained with 32GB NVIDIA V100 GPUs. For Moving-MNIST, models were trained
with 8 V100s. For all other experiments, models were trained with 16 V100s. We list V100 days in
the hyperparameters, which denotes the number of days it would take to train on a single V100.

D.4 Moving-MNIST

All models were trained to minimize L1+L2 loss over the frames directly in pixel space, as in Su et al.
[84]. We trained models on 300 frames. We then repeated the experiment and trained models on 600
frames. For ConvS5 and ConvLSTM, we fixed the hidden dimensions (layer input/output features)
and state sizes to be 256, and we swept over the following learning rates [1 x 1074, 5 x 1074,
1 x 10~2] and chose the best model. For Transformer, we swept over model size, considering hidden
dimensions of [512, 2014] and learning rates [1 x 1074, 5% 107, 1 x 10~3] and chose the best model.
We also observed better performance for the Transformer by convolving frames down to an 8 x 8
latent resolution (rather than the 16 x 16 used by ConvS5 and ConvLSTM) before downsampling to
a token. All other relevant training parameters were kept the same between the three methods. See
Tables 12-14 for detailed experiment configurations.

Each model was evaluated by collecting 1024 trajectories using the following procedure: condition
on 100 frames from the ground truth test set, then generate forward 1200 frames. These samples were
compared with the ground truth to compute FVD, PSNR, SSIM and LPIPS.

The ConvSSM ablation was performed using the exact settings as ConvS5, except the state kernel
was initialized with a Gaussian and we swept over the following learning rates [1 x 1074, 5 x 1074,
1 x1073].

30

Table 12: Experiment Configuration for ConvS5 on Moving-MNIST experiments

Hyperparameters Moving-MNIST-300 Moving-MNIST-600
V100 Days 25 50
Params 20M 20M
Input Resolution 64 x 64 64 x 64
Latent Resolution 16 x 16 16 x 16
Batch Size 8 8
Sequence Length 300 600
LR 1x1073 1x1073
LR Schedule cosine cosine
Warmup Steps 5k 5k
Max Training Steps 300K 300K
Weight Decay 1x107° 1x107°
Encoder Depths 64, 128, 256 64, 128, 256
Blocks 1 1
Decoder Depths 64, 128, 256 64, 128, 256
Blocks 1 1
Hidden Dim (U) 256 256
State Size (P) 256 256
ConvS5 B Kernel Size 3x3 3x3
C Kernel Size 3 x3 3 x3
Layers 8 8
Dropout 0 0
Activation ResNet ResNet

Table 13: Experiment Configuration for ConvLSTM on Moving-MNIST experiments

Hyperparameters Moving-MNIST-300 Moving-MNIST-600
V100 Days 75 150
Params 20M 20M
Input Resolution 64 x 64 64 x 64
Latent Resolution 16 x 16 16 x 16
Batch Size 8 8
Sequence Length 300 600
LR 5x 1074 5x 1074
LR Schedule cosine cosine
Warmup Steps 5k 5k
Max Training Steps 300K 300K
Weight Decay 1x107° 1x107°
Encoder Depths 64, 128, 256 64, 128, 256
Blocks 1 1
Decoder Depths 64, 128, 256 64, 128, 256
Blocks 1 1
Hidden Dim 256 256
State Size 256 256
ConvL.STM Kernel Size 3x3 3x3
Layers 8 8
Dropout 0 0

31

Table 14: Experiment Configuration for Transformer on Moving-MNIST experiments

Hyperparameters Moving-MNIST-300 Moving-MNIST-600
V100 Days 25 50
Params 164M 164M
Input Resolution 64 x 64 64 x 64
Latent Resolution 8§ x8 8§ x 8
Batch Size 8 8
Sequence Length 300 600
LR 5% 107* 1x1074
LR Schedule cosine cosine
Warmup Steps 5k 5k
Max Training Steps 300K 300K
Weight Decay 1x107° 1x107°
Encoder Depths 64, 128, 256, 512 64, 128, 256, 512
Blocks 1 1
Decoder Depths 64, 128, 256, 512 64, 128, 256, 512
Blocks 1 1
Downsample Factor 8 8
Hidden Dim 1024 1024
Temporal Feedforward Dim 4096 4096
Transformer Heads 16 16
Layers 8 8
Dropout 0 0

32

D.5 Long-Range 3D Environment Benchmarks

We follow the procedures from Yan et al. [13] and train models on the same pre-trained vector-
quantized (VQ) 16 x 16 codes used by the baselines evaluated in that work. Models were trained
to optimize a cross-entropy reconstruction loss between the predictions and true VQ codes. The
evaluation of DMLab and Habitat involves both an action-conditioned and unconditioned setting.
Therefore, as in Yan et al. [13], the actions were randomly dropped out half the time during training
on these datasets.

After training, we follow the procedure from Yan et al. [13] for evaluation in two different settings.
The first setting involves computing PSNR, SSIM and LPIPS from 1024 samples generated by
conditioning on the first 144 frames and then generating the next 156 frames while providing the
model with past and future actions. The second setting does not provide actions as input (with the
exception of Minecraft, which also provides actions in this setting). It involves computing FVD using
1024 samples generated by conditioning on the first 36 frames and then predicting the remaining 264
frames.

All sequence models we trained used the same number of layers as the Transformer used in the
TECO-Transformer trained by Yan et al. [13]. In addition, the TECO-Transformer, TECO-S5
and TECO-ConvS5 models we trained used the exact encoder/decoder configuration and MaskGit
configuration as in Yan et al. [13]. The Transformer, S5 and ConvS5 models we trained without
the TECO framework were all trained using the same encoder/decoder configuration. See Tables
15-21 for more detailed experimental configuration details. See dataset-specific paragraphs below for
hyperparameter tuning information.

TECO Training Framework Yan et al. [13] proposed the TECO training framework to train
Transformers on long video data. For some of our experiments, we use ConvS5 layers and S5 layers
as a drop-in replacement for the Transformer in this framework. We refer the reader to Yan et al. [13]
for full details. Briefly, given the original VQ codes, TECO trains an additional encoder/decoder
that compresses the frames to a lower latent resolution (e.g., from 16 x 16 to 8 x 8) by training an
additional encoder/decoder with a codebook loss, Lvq. In addition, a MaskGit [98] dynamics prior
loss, Lorior, 18 used for the latent transitions. The sequence model (e.g. Transformer, S5, ConvS5)
takes the latent frames (compressed into tokens in the case of Transformer and S5) and produces an
output which is used along with the latents by the decoder to produce predictions and a reconstruction
loss, Lyecon- Models are trained to minimize the following total loss:

LTECO = EVQ + Erecon + Eprior- (32)

In addition, TECO includes the use of DropLoss [13], which drops out a percentage of random
timesteps that are not decoded and therefore do not require computing the expensive L econ and
Lorior terms.

DMLab As mentioned above, the actions were randomly dropped out of sequences half the time
(due to the two evaluation scenarios, action-conditioned and unconditioned). We observed that for
DMLab, when provided past and future actions, models converged faster using the simple masking
strategy discussed in Gu et al. [19] that masks the future inputs rather than feeding the predicted
inputs (or true inputs during training) autoregressively. Therefore we trained all models (Transformer,
Performer, S5, ConvS5, Teco-Transformer, TECO-S5, TECO-ConvS5) by using this strategy when
the actions were provided, and using the autoregressive strategy when actions were not provided. We
observed this significantly improved the LPIPS of the Transformer baselines. Note, in pilot runs for
Minecraft and Habitat, we observed this strategy led to lower-quality frames and did not use it for the
reported results for those datasets.

We trained each model, Transformer, Performer, S5, ConvS5, Teco-Transformer, TECO-S5, TECO-
ConvS5, with three different learning rates [1 x 1074, 5 x 1074, 1 x 10~3] and selected the best run
for each model. See Tables 15-20 for more experiment configuration details.

The TECO-ConvSSM ablation used the exact same settings as TECO-ConvS35, except the state kernel
was initialized with a random Gaussian and a lower learning rate of 1 x 1075 was required for stable
training.

33

Table 15: Experiment Configuration for ConvS5 on DMLab

Hyperparameters DMLab
V100 Days 150
Params 101IM
Input Resolution 64 x 64
Latent Resolution 16 x 16
Batch Size 16
Sequence Length 300
LR 5x 1074
LR Schedule cosine
Warmup Steps 5k
Max Training Steps 500K
Weight Decay 1x107°
Encoder Depths 256
Blocks 1
Decoder Depths 256
Blocks 4
Hidden Dim (U) 512
State Size (P) 512
ConvS5 B Kernel S.ize 3x3
C Kernel Size 3x3
Layers 8
Dropout 0
Activation ResNet

Table 16: Experiment Configuration for S5 on DMLab

Hyperparameters DMLab
V100 Days 125
Params 140M
Input Resolution 64 x 64
Latent Resolution 16 x 16
Batch Size 16
Sequence Length 300
LR 1x1073
LR Schedule cosine
Warmup Steps Sk
Max Training Steps 500K
Weight Decay 1x107°
Encoder Depths 256
Blocks 1
Decoder Depths 256
Blocks 4
Downsample Factor 16
Hidden Dim (U) 1024
S5 State Size (P) 1024
Layers 8
Dropout 0
Activation GLU (half)

34

Table 17: Experiment Configuration for Transformer on DMLab

Hyperparameters DMLab
V100 Days 125
Params 152M
Input Resolution 64 x 64
Latent Resolution 16 x 16
Batch Size 16
Sequence Length 300
LR 5% 107*
LR Schedule cosine
Warmup Steps 5k
Max Training Steps 500K
Weight Decay 1x107°
Encoder Depths 256
Blocks 1
Decoder Depths 256
Blocks 4
Downsample Factor 16
Hidden Dim 512
Temporal Feedforward Dim 2048
Transformer Heads 16
Layers 8
Dropout 0

35

Table 18: Experiment Configuration for TECO-ConvS5 on DMLab

Hyperparameters DMLab

V100 Days 110
Params 175M
Input Resolution 64 x 64
Latent Resolution 8 x 8
Batch Size 16
Sequence Length 300
LR 5x107%
LR Schedule cosine
Warmup Steps 5k
Max Training Steps 500K
Weight Decay 1x107°
DropLoss Rate 0.9

Encoder Depths 256, 512
Blocks 2
Size 1024

Codebook Embedding Dim 32

Decoder Depths 256,512
Blocks 4
Hidden Dim (U) 512
State Size (P) 1024

ConvS5 B Kernel S.ize 3x3
C Kernel Size 3 x3
Layers 8
Dropout 0
Activation ResNet
Mask Schedule cosine
Hidden Dim 512

. Feedforward Dim 2048

MaskGit Heads 3
Layers 8
Dropout 0

36

Table 19: Experiment Configuration for TECO-S5 on DMLab

Hyperparameters DMLab

V100 Days 80
Params 180M
Input Resolution 64 x 64
Latent Resolution 8 x8
Batch Size 16
Sequence Length 300
LR 1x 1073
LR Schedule cosine
Warmup Steps 5k
Max Training Steps 500K
Weight Decay 1x107°
DropLoss Rate 0.9

Encoder Depths 256, 512
Blocks 2
Size 1024

Codebook Embedding Dim 32

Decoder Depths 256,512
Blocks 4
Downsample Factor 8
Hidden Dim (U) 2048

S5 State Size (P) 2048
Layers 8
Dropout 0
Activation GLU (half)
Mask Schedule cosine
Hidden Dim 512

. Feedforward Dim 2048

MaskGit Heads]
Layers 8
Dropout 0

37

Table 20: Experiment Configuration for TECO-Transformer on DMLab
Hyperparameters DMLab

V100 Days 80
Params 173M
Input Resolution 64 x 64
Latent Resolution 8 x8
Batch Size 16
Sequence Length 300
LR 1x 1074
LR Schedule cosine
Warmup Steps 5k
Max Training Steps 500K
Weight Decay 1x107°
DropLoss Rate 0.9
Encoder Depths 256, 512
Blocks 2
Size 1024
Codebook Embedding Dim 32
Decoder Depths 256,512
Blocks 4
Downsample Factor 8
Hidden Dim 1024
Temporal Feedforward Dim 4096
Transformer Heads 16
Layers 8
Dropout 0
Mask Schedule cosine
Hidden Dim 512
. Feedforward Dim 2048
MaskGit Heads]
Layers 8
Dropout 0

38

Minecraft and Habitat For Minecraft and Habitat, we only trained TECO-ConvS5 due to the costs
of training on these datasets. See dataset details in Appendix E and reported compute costs in Yan
et al. [13]. For Minecraft, we evaluated two different learning rates [1 x 1074, 5 x 10~*] and chose
the best. For Habitat, we only performed one run with no further tuning. See Table 21 for further
experiment configuration details.

Table 21: Experiment Configuration for TECO-ConvS5 on Minecraft and Habitat

Hyperparameters Minecraft Habitat
V100 Days 470 575
Params 214M 351M
Input Resolution 128 x 128 128 x 128
Latent Resolution 8 x 8 8 x 8
Batch Size 16 16
Sequence Length 300 300
LR 5x 104 1x10~*
LR Schedule cosine cosine
Warmup Steps Sk Sk
Max Training Steps IM IM
DropLoss Rate 0.9 0.9
Encoder Depths 256, 512 256, 512
Blocks 4 4
Size 1024 1024
Codebook b e dding Dim 32 32
Decoder Depths 256,512 256, 512
Blocks 8 8
Hidden Dim (U) 512 512
State Size (P) 512 512
ConvS5 B Kernel Size 3x3 3x3
C Kernel Size 3x3 3x3
Layers 12 8
Dropout 0 0
Activation ResNet ResNet
Mask Schedule cosine cosine
Hidden Dim 768 1024
. Feedforward Dim 3072 4096
MaskGit s 12 16
Layers 6 16
Dropout 0 0

39

E Datasets

E.1 Moving-MNIST

The Moving-MNIST [54] dataset is generated by moving two 28 x 28 size MNIST digits from the
MNIST dataset [111] inside a 64 x 64 black background. The digits begin at a random initial location,
and move with constant velocity, bouncing when they reach the boundary. For each of the sequence
lengths we consider, 300 and 600, we follow Wang et al. [81] and Su et al. [84] and generate 10,000
sequences for training.

E.2 DMLab

We use the DMLab long-range benchmark designed by Yan et al. [13] using the DeepMind Lab
(DMLab) [99] simulator. The simulator generates random 3D mazes with random floor and wall
textures. The benchmark consists of 40K action-conditioned, 300 frame videos at a 64 x 64 resolution.
The videos are of an agent randomly navigating 7 x 7 mazes by choosing random points in the maze
and navigating to them through the shortest path.

E.3 Minecraft

We use the Minecraft [100] long-range benchmark designed by Yan et al. [13]. The game features
3D worlds that contain complex terrains such as hills, forests, rivers and lakes. The benchmark was
constructed by collecting 200K action-conditioned 300 frame videos at a 128 x 128 resolution. The
videos are in Minecraft’s marsh biome and the agent iterates walking forward for a random number
of steps and randomly rotating left or right. This results in parts of the scene going out of view and
coming back into view later.

E.4 Habitat

We use the Habitat long-range benchmark designed by Yan et al. [13] using the Habitat simulator [101].
The simulator renders trajectories using scans of real 3D scenes. Yan et al. [13] compiled 1400 indoor
scans from HM3D [112], Matterport3D [113] and Gibson [114] to generate 200K action-conditioned,
300 frame videos with a 128 x 128 resolution. Yan et al. [13] used Habitat’s in-built path traversal
algorithm to construct action trajectories that move the agent between randomly sampled locations.

40

	Introduction
	Background
	Convolutional Recurrent Networks
	Deep State Space Models
	Parallel Scans

	Method
	Convolutional State Space Models
	Parallelizing Convolutional Recurrences
	Connection to State Space Models
	Efficient ConvSSM for Long-Range Dependencies: ConvS5
	ConvS5 Properties

	Related Work
	Experiments
	Long Horizon Moving-MNIST Generation
	Long-range 3D Environment Benchmarks
	ConvS5 ablations

	Discussion
	Propositions
	Parallel Scan for Convolutional Recurrences
	Computational Cost of Parallel Scan for Convolutional Recurrences
	Connection Between ConvSSMs and SSMs

	ConvS5 Details: Parameterization, Discretization, Initialization
	Background: S5
	ConvS5 Diagonalization

	Supplementary Results
	Moving-MNIST
	3D Environments

	Experiment Configurations
	Spatiotemporal Sequence Model Architectures
	Evaluation Metrics
	Compute
	Moving-MNIST
	Long-Range 3D Environment Benchmarks

	Datasets
	Moving-MNIST
	DMLab
	Minecraft
	Habitat

