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Abstract—In many complex networking systems, identifying

critical nodes whose removal maximally disrupts network con-

nectivity remains an important yet computationally challenging

problem for network vulnerability analysis. Finding near-optimal

solutions is known to be NP-hard. In this paper, we explore

the potential of near-term quantum computing devices to effi-

ciently solve the k-Critical Node Detection (k-CND) problem.

We formulate the problem as a quadratic unconstrained binary

optimization (QUBO), a mathematical optimization over binary

variables amenable to solution on quantum annealers. We present

a novel integer linear programming (ILP) formulation and its

conversion into QUBOs and provide benchmarking results on D-

Wave’s quantum annealers. Our theoretical analysis proves that

our proposed formulation, ILP2, generates substantially smaller

QUBO than the state-of-the-art ILP1 formulation. Experimen-

tally, our efficient QUBO yields a 59.7% decrease in QUBO

variables on a graph with 10 vertices and 40 edges, and an 11.7%

reduction in qubits on a 15-vertex, 22-edge graph compared to

that of QUBO1. We analyze the solution quality and running

time across quantum, classical, and hybrid solvers to assess

the potential for quantum advantage. Our work showcases the

promise and challenges of tackling this important graph problem

on near-term quantum hardware.

I. INTRODUCTION

Networks are pervasive in various domains, from social
interactions and biological systems to technological infrastruc-
ture and financial markets. The connectivity patterns of these
networks often determine their functionality, efficiency, and
resilience. Robust networks maintain their operational integrity
in the face of random failures or targeted attacks, while fragile
networks are vulnerable to disintegration when critical nodes
are compromised [1], [2]. Quantifying network robustness and
identifying critical nodes is thus crucial for understanding and
optimizing real-world systems.

The k-Critical Node Detection (k-CND) problem aims to
identify a set of k nodes whose removal maximally disrupts
pairwise network connectivity [3]–[6]. This problem has di-
verse applications, such as assessing the resilience of networks
(e.g., power grids, transportation systems) [7], identifying
key players in social networks [8], and characterizing the
robustness of biological systems (e.g., protein interaction net-
works) [9]. However, the k-CND problem is computationally

challenging, known to be NP-hard and inapproximable within
any constant factor on general graphs [6].

A. Related Works

Classical approaches to the k-CND problem encompass a
wide range of techniques, including exact algorithms, approx-
imation algorithms, and heuristics. Exact methods, such as
branch-and-cut algorithms based on integer linear program-
ming (ILP) formulations [10]–[12], guarantee optimality but
are limited to small instances due to their exponential worst-
case time complexity. Approximation algorithms provide sub-
optimal solutions with provable quality guarantees, but their
practical performance often falls short of expectations [3]–[5],
[13]. Heuristic methods, such as greedy strategies and local
search algorithms [14], and volutionary algorithms [15] have
been used to solve the k-CND problem. While these heuristic
methods can handle larger instances, they lack optimality
guarantees.

Given the limitations of classical approaches, there has
been growing interest in leveraging quantum computing to
tackle computationally hard problems like k-CND. Quantum
algorithms have the potential to provide exponential speedups
over their classical counterparts for certain problems, such
as integer factorization [16] and unstructured search [17].
Quantum annealing, in particular, is a promising paradigm
for solving combinatorial optimization problems [18], [19].
By exploiting quantum fluctuations, quantum annealers can
explore the solution space more efficiently than classical
optimizers, potentially leading to faster convergence and better
solutions [20].

Recent advancements in quantum computing have spurred a
race on applying quantum computers for real-world problems.
In 2019, Google achieved a major milestone in quantum
computing by demonstrating quantum supremacy using a 53-
qubit superconducting quantum processor [21]. They per-
formed a task involving the generation of random numbers
that would take the world’s most powerful supercomputer
approximately 10,000 years to complete, while their quantum
processor completed it in just 200 seconds. This achievement
marked a significant step forward in the field of quantum
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computing and showcased the potential of quantum devices to
outperform classical computers on certain tasks. Furthermore,
Bravyi et al. [22] presented an end-to-end quantum error cor-
rection protocol that implements fault-tolerant memory using
a family of low-density parity-check codes. Their approach
achieves an error threshold of 0.7% for the standard circuit-
based noise model, on par with the surface code that was
the leading code in terms of error threshold for 20 years.
This advancement brings demonstrations of a low-overhead
fault-tolerant quantum memory within the reach of near-term
quantum processors.

In addition to universal quantum computers, quantum an-
nealing hardware, such as D-Wave’s quantum annealers [23],
have sparked a flurry of research on solving real-world op-
timization problems. Quantum annealing has been applied to
various domains, including machine learning, in which Neven
et al. used quantum annealing to help boost weak classifiers
for identifying cars in images [24], traffic flow optimization,
in which Neukart et al. showed empirically that quantum
approaches can be suitable even for real-world, time-critical
tasks [25], and portfolio optimization, in which Rosenberg
et al. investigated different methods for encoding integer
variables to a format amenable to quantum annealers [26].

A recent breakthrough by King et al. [27] demonstrated
quantum-critical spin-glass dynamics on thousands of qubits
with a superconducting quantum annealer. They showed that
quantum annealing can bring spin glasses into low-energy
states faster than conventional thermal annealing, providing
both theoretical and experimental support for large-scale quan-
tum simulation and a scaling advantage in energy optimiza-
tion. Furthermore, King et al. [28] established computational
supremacy in quantum simulation by demonstrating that super-
conducting quantum annealing processors can rapidly generate
samples in close agreement with solutions of the Schrödinger
equation, outperforming state-of-the-art classical simulations.
Despite these promising developments, the applicability of
quantum annealing to complex network problems like k-CND
remains largely unexplored.

B. Contributions
In this work, we bridge this gap by investigating the

potential of quantum annealing for the k-CND problem. We
propose a novel ILP formulations, called ILP2, and the conver-
sions of the studied ILPs into quadratic unconstrained binary
optimizations (QUBOs) [29], which are amenable to solution
on quantum annealers. We prove that ILP2 substantially yields
fewer QUBO variables than those for ILP1, potentially leading
to more efficient quantum annealing. We conduct extensive
experiments on D-Wave’s quantum annealers, comparing the
performance of quantum, classical, and hybrid solvers in terms
of solution quality and running time. Our results demonstrate
the promise and challenges of solving the k-CND problem on
near-term quantum hardware.

The main contributions of this work are threefold:
1) We introduce two novel ILP formulations for the k-

CND problem and provide efficient QUBO mappings for
quantum annealing. We theoretically prove the efficiency
of ILP2 over ILP1 in terms of QUBO size.

2) We present extensive experimental results on D-Wave’s
quantum annealers, benchmarking the performance of
quantum, classical, and hybrid solvers on the k-CND
problem. We analyze the impact of problem size, net-
work density, and annealing parameters on solution
quality and running time.

3) We discuss the practical challenges and future prospects
of solving network optimization problems on near-term
quantum hardware. We highlight the need for algo-
rithmic innovations, error mitigation techniques, and
hardware improvements to fully harness the potential of
quantum annealing.

The rest of the paper is organized as follows. Section II
presents preliminaries on the k-CND problem and an overview
of quantum annealing. Section III introduces our efficient ILP-
to-QUBO mappings. Section IV describes our experimental
methodology and results. We conclude in Section V with a
discussion of our findings and future research directions.

II. PRELIMINARIES

A. Integer Linear Programming for k-CND
We present an Integer Linear Programming (ILP) formu-

lation, denoted as ILP1, to solve the k-CND problem, for an
arbitrary graph, G = (V,E). Let si and dij be binary variables
defined as follows:

si =

(
1 if vertex i is removed from the graph
0 otherwise

dij =

(
1 if i and j are in different connected components
0 otherwise

The ILP1 formulation for the k-CND problem is given by:

minimize
nX

i=1

X

j 6=i

(1� dij) (ILP1)

subject to dij  si + sj , (i, j) 2 E, (1a)
dij + djk � dik, 8i 6= j 6= k, (1b)
nX

i=1

si  K (1c)

si  dij , i 6= j, (1d)
si, dij 2 {0, 1}, i, j 2 [1..n] (1e)

The objective function (ILP1) minimizes the pairwise con-
nectivity of the graph by maximizing the number of vertex
pairs that are in different connected components. Intuitively,
this captures the goal of fragmenting the graph into discon-
nected components by removing a set of vertices.

Constraint (1a) ensures that if an edge exists between
vertices i and j, and neither vertex is removed, then they must
remain in the same connected component. In other words, if
si = sj = 0, then dij must also be 0. Constraint (1b) enforces
the triangle inequality, which is a key property of connected
components in a graph. It states that if vertices i and j are
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in the same component (i.e., dij = 0), and vertices j and k

are in the same component (i.e., djk = 0), then vertices i

and k must also be in the same component (i.e., dik = 0).
This constraint ensures the transitivity of connectivity among
vertices. Constraint (1c) limits the number of removed vertices
to at most k, which is the budget for the k-CND problem. This
constraint allows the ILP solver to explore different subsets of
vertices to remove while respecting the budget. Constraint (1d)
guarantees that if a vertex i is removed (i.e., si = 1), it cannot
be in the same connected component as any other vertex j.
This constraint captures the effect of vertex removal on the
connectivity of the graph. Finally, constraint (1e) defines the
binary nature of the decision variables si and dij .

a) Formulation Size: The ILP1 formulation provides a
precise mathematical model for the k-CND problem, allowing
it to be solved using standard ILP solvers. However, the
number of constraints in ILP1 grows rapidly with the size
of the graph. In particular, constraint (1b) introduces O(n3)
triangle inequality constraints, where n = |V | is the number
of vertices in the graph. This makes the ILP1 formulation
computationally challenging for large graphs.

b) Improved ILP Formulations: To mitigate the com-
plexity of the ILP1 formulation, Santos et al. [30] consider
an alternative formulation that provides a stronger linear
programming (LP) relaxation bound at the cost of a larger
number of constraints. This formulation, denoted as ILP1-S,
replaces constraint (1b) with the following set of constraints:

djk � dij � si,(i, j) /2 E, |N(i)|  |N(j)|, k 2 N(i), (2a)
dik � dij � sj ,(i, j) /2 E, |N(i)| > |N(j)|, k 2 N(j) (2b)

Here, N(i) denotes the set of neighbors of vertex i. Con-
straint (2a) applies when the degree of vertex i is less than
or equal to the degree of vertex j, and constraint (3) applies
otherwise. These constraints enforce the triangle inequality in
a more granular way by considering the connectivity between
pairs of vertices that are not directly connected by an edge.

The ILP1-S formulation introduces O(n2
d) constraints,

where d is the maximum degree of any vertex in the graph. In
addition to using fewer constraints than ILP1, this formulation
provides a tighter LP relaxation bound, which can lead to faster
convergence of the ILP solver. The choice between ILP1 and
ILP1-S depends on the specific characteristics of the graph
and the available computational resources.

The ILP1 formulation provides a straightforward mathe-
matical model for the k-CND problem, but it suffers from
a large number of triangle inequality constraints. The ILP1-S
formulation offers a stronger LP relaxation bound, but may
require more constraints than other similar formulations [30].

In a similar vein, we present a more suitable representation
for ILP1 than (1) in the sections to follow. This alternative
formulation, which we will denote ILP1-S2, is also constructed
to reduce the number of constraints, and replaces constraint
(1b), with the following constraint:

dij + djk � dik, 8i 6= j, k 2 N(i) (3)

Theorem 1: The ILP1-S2 formulation (3) is equivalent to
the ILP1 formulation (1) for the k-CND problem.

Proof: We prove the equivalence by showing that any
feasible solution to ILP1 is also feasible for ILP1-S2, and
vice versa.
()) Let (s, d) be a feasible solution to ILP1. Since (3)

enforces only a subset of the constraints from (1b), any valid
solution for ILP1 which satisfies (1b) must also satisfy (3).
Hence, any such feasible solution to ILP1 must also be valid
for ILP1-S2.
(() Let (s, d) be a feasible solution to ILP1-S2. Notice that

(1b) can only be violated if there exists some i, j, k 2 V , such
that dij = 0, djk = 0, dik = 1. Since constraint (1b) is already
enforced by (3) in the case where k 2 N(i), we need only
prove that this constraint is enforced by ILP1-S2 even when
k /2 N(i). In other words, we will show that if there exists
some dij = 0, djk = 0, such that k /2 N(i), then dik = 0.

Since djk = 0, there must exist some path of vertices,
{k, v1, ..., vn, j} ✓ V . From (3), dik <= div1 + dkv1 . And,
since we know sk = sv1 = 0, since there is an edge
between k and v1, it follows from (1a) that dkv1 = 0. Hence,
dik <= div1+0. Using the same argument, dik <= div1 <=
div2 + dv1v2 = div2 <= ... <= dvnj + dij = 0. Hence, the
triangle inequality is enforced using (3), since this constraint
ensures there exist no triplets of vertices, (i, j, k) 2 V such
that dij + djk < dik.

These formulations (ILP1, ILP1-S, and ILP1-S2) serve as
the foundation for developing efficient solution methods for
the k-CND problem, including quantum-inspired approaches
that will be discussed in the following sections.

B. Solving Combinatorial Problems with Quantum Annealing
To solve a problem using quantum annealing, it must first be

formulated as a Quadratic Unconstrained Binary Optimization
(QUBO) problem [29]. A QUBO is an optimization problem
of the form:

minimize H(x) =
X

i<j

Qijxixj +
X

i

hixi, (4)

where xi 2 {0, 1} are binary variables, and Qij and hi are
real-valued coefficients.

To convert an ILP into a QUBO, a penalty approach is
commonly used [31]. Each constraint in the ILP is transformed
into a quadratic penalty term that is added to the objective
function. The penalty terms are designed such that they are
minimized when the corresponding constraints are satisfied.
The resulting unconstrained optimization problem is a QUBO.

Once the problem is formulated as a QUBO, it can be solved
using a quantum annealer. However, the QUBO must first be
mapped onto the quantum hardware graph through a process
called minor-embedding [32]. The quantum hardware graph
has a limited number of qubits and a specific connectivity
pattern, which may not directly match the structure of the
QUBO. Minor-embedding involves representing each logical
variable in the QUBO with a chain of physical qubits on
the hardware graph, ensuring that the necessary interactions
between variables can be realized.

The quantum annealing process itself involves evolving
the quantum system from an initial state, where the qubits
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are in a superposition of all possible states, to a final state
that represents the solution to the optimization problem. This
evolution is guided by an annealing schedule, which controls
the strength of the interactions between qubits and the level
of quantum fluctuations in the system [20].

Current quantum annealers have limitations in terms of the
number of qubits and their connectivity [23]. These limitations
can make it challenging to solve large-scale problems or
problems with complex interaction patterns. Therefore, there is
a strong motivation to find more compact QUBO formulations
that can be efficiently embedded and solved on existing
quantum hardware.

III. EFFICIENT QUBO FORMULATION FOR THE k-CND
PROBLEM

In this section, we introduce a new ILP formulation for
the k-CND problem, denoted as ILP2, which leads to a more
compact QUBO formulation compared to ILP1. The motiva-
tion behind ILP2 is to reduce the number of constraints in the
formulation, which in turn results in a smaller QUBO with
fewer variables and non-zero entries. We prove the correctness
of ILP2 and provide a detailed analysis of the QUBO size
reduction achieved by this formulation.

A. ILP2 Formulation

The ILP2 formulation for the k-CND problem is given by:

minimize
nX

i=1

X

j 6=i

(1� dij) (ILP2)

subject to dij  si + sj , (i, j) 2 E, (5a)
1

|N(i)|
X

k2N(i)

dkj � dij � si,81  i < j  n

(5b)
nX

i=1

si  K (5c)

si  dij , i 6= j, (5d)
si, dij 2 {0, 1}, i, j 2 [1..n] (5e)

The key difference between ILP2 and ILP1 is the replace-
ment of the triangle inequality constraint (1b) in ILP1, which
is given by:

dij + djk � dik, 8i 6= j 6= k, (6)

with the following constraint (5b) in ILP2:

1

|N(i)|
X

k2N(i)

dkj � dij � si, 81  i < j  n. (7)

Here, N(i) denotes the set of neighbors of vertex i, and
|N(i)| is the degree of vertex i. Constraint (5b) enforces the
triangle inequality in a more compact manner by considering
only the neighbors of each vertex, rather than all possible
triples of vertices as in constraint (1b). This reduction in the

number of constraints is crucial for obtaining a smaller QUBO
formulation.

Theorem 2: The ILP2 formulation (5) is equivalent to the
ILP1 formulation (1) for the k-CND problem.

Proof: We prove the equivalence by showing that any
feasible solution to ILP1 is also feasible for ILP2, and vice
versa.
()) Let (s, d) be a feasible solution to ILP1. Suppose,

for the sake of contradiction, that (s, d) violates constraint
(5b) for some i, j 2 V . This implies that si = 0, dij = 1,
and 1

|N(i)|
P

k2N(i) dkj < 1. The last condition means that
there exists a vertex k

0 2 N(i) such that dk0j = 0. From
constraint (1a), we have sk0 = 0. Since (s, d) is feasible
for ILP1, constraint (1b) implies that dik0 = 0. However,
this contradicts the assumption that dij = 1, as the triangle
inequality is violated. Therefore, (s, d) must also be feasible
for ILP2.
(() Let (s, d) be a feasible solution to ILP2. Suppose, for

the sake of contradiction, that (s, d) violates constraint (1b)
for some i, j, k 2 V . This implies that dij = 0, djk = 0, and
dik = 1. Since dij = 0, there must be a path from i to j in the
graph induced by the vertices not removed by the solution. Let
i, v1, . . . , vm, j be the shortest such path. By constraint (5a),
we have sv1 = 0, and by constraint (5b), we have dv1j = 0.
This contradicts the assumption that dik = 1, as constraint (5b)
would imply dik = 0. Therefore, (s, d) must also be feasible
for ILP1. Thus, ILP1 and ILP2 are equivalent formulations for
the k-CND problem.

B. Converting ILP to QUBO: General Approach
Before diving into the specific QUBO formulations of ILP1

and ILP2, let us discuss the general approach for converting
an ILP to a QUBO. An ILP can be written in the following
standard form:

minimize c
T
x (8a)

subject to Ax  b, (8b)
x 2 {0, 1}n, (8c)

where c 2 Rn, A 2 Rm⇥n, and b 2 Rm.
To convert the ILP into a QUBO, we first transform each

inequality constraint into an equality constraint by introducing
slack variables. For each constraint a

T
i x  bi, where a

T
i is

the i-th row of matrix A, we introduce a non-negative slack
variable si � 0 such that:

a
T
i x+ si = bi. (9)

If the slack variable si is not restricted to be binary, we can
represent it using a binary encoding. Let si =

Pli
j=0 2

j
yij ,

where yij 2 {0, 1} and li = blog2(bi � minaT
i x)c. The

equality constraint becomes:

a
T
i x+

liX

j=0

2jyij = bi. (10)

Next, we apply the penalty method to convert the equality-
constrained problem into an unconstrained QUBO. For each
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equality constraint, we introduce a penalty term in the objec-
tive function:

Pi

0

@a
T
i x+

liX

j=0

2jyij � bi

1

A
2

, (11)

where Pi > 0 is a penalty coefficient. The penalty terms
are designed such that they are minimized when the corre-
sponding constraints are satisfied. The resulting unconstrained
optimization problem is a QUBO.

C. QUBO Formulation of ILP1

To convert ILP1 into a QUBO, we introduce penalty terms
for each constraint and add them to the objective function. Let
us go through the constraints one by one.

a) Constraint (1a): dij  si + sj , (i, j) 2 E.
We can transform this inequality constraint into an equality

constraint by introducing a binary slack variable yij :

dij � si � sj + yij = 0, (i, j) 2 E. (12)

The corresponding penalty term in the QUBO is:

P1

X

(i,j)2E

(dij � si � sj + yij)
2
. (13)

However, we can eliminate the need for the slack variable
yij by observing that when si = sj = 1, the constraint is
always satisfied regardless of the value of dij . Therefore, we
can rewrite the penalty term as:

P1

X

(i,j)2E

(dij � dijsi � dijsj + sisj). (14)

b) Constraint (3): dij + djk � dik, 8i 6= j, k 2 N(i).
We can rewrite this constraint as:

dij + djk + (1� dik) � 1, 8i 6= j, k 2 N(i). (15)

To convert this inequality into a QUBO penalty term, we
can use the following transformation for x+ y + z � 1:

xy + yz + zx+ 2w � (1 + w)(x+ y + z), (16)

where w is an auxiliary binary variable. Applying this
transformation to our constraint, we get:

P2

X

i 6=j

X

k2N(i)

⇣
dijdjk + djk(1� dik) + (1� dik)dij

+ 2yijk � (1 + yijk)(dij + djk + (1� dik))
⌘
, (17)

where yijk are auxiliary binary variables. This transforma-
tion reduces the number of slack variables needed compared
to the direct conversion of the inequality into an equality.

c) Constraint (1c):
Pn

i=1 si  K.
We can convert this constraint into an equality by introduc-

ing dlog2(K + 1)e binary slack variables. However, we can
simplify this by observing that there must exist an optimal
solution where exactly K vertices are removed. Therefore, we
can replace the inequality with an equality:

nX

i=1

si = K. (18)

The corresponding penalty term in the QUBO is:

P3

 
nX

i=1

si � K

!2

. (19)

d) Constraint (1d): si  dij , i 6= j.
We can rewrite this constraint as:

si � sidij  0, i 6= j. (20)

Observe that si�sidij � 0 always holds, so we can convert
the inequality into an equality:

si � sidij = 0, i 6= j. (21)

The corresponding penalty term in the QUBO is:

P4

X

i 6=j

(si � sidij). (22)

Putting everything together, the QUBO formulation of ILP1,
denoted as QUBO1, is given by:

min P
0

nX

i=1

X

j 6=i

(1� dij) (QUBO1)

+ P1

X

(i,j)2E

(dij � dijsi � dijsj + sisj) (23)

+ P2

X

i 6=j

X

k2N(i)

⇣
dijdjk + djk(1� dik) + (1� dik)dij

(24)

+ 2yijk � (1 + yijk)(dij + djk + (1� dik))
⌘

(25)

+ P3

 
nX

i=1

si � K

!2

(26)

+ P4

X

i 6=j

(si � sidij) (27)

The specific improvements in the QUBO formulation, such
as eliminating slack variables for constraint (1a) and using the
special transformation for constraint (1b), help reduce the size
of the QUBO matrix in terms of the number of variables and
non-zero entries. The number of original variables in ILP1
is n

2 + n, where n is the number of vertices in the graph.
The number of auxiliary variables introduced in the QUBO
formulation is O(n2

d), where d is the maximum node degree,
dominated by the yijk variables introduced for constraint (1b).
Therefore, the total number of variables in QUBO1 is O(n2

d).
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The number of non-zero entries in the QUBO matrix is also
O(n2

d), as each auxiliary variable yijk introduces O(1) non-
zero entries in the matrix.

D. QUBO Formulation of ILP2
The QUBO formulation of ILP2 follows a similar approach

to that of ILP1, with the main difference being the conversion
of constraint (5b). The penalty terms for constraints (5a), (5c),
and (5d) remain the same as in QUBO1.

min z = P
0

nX

i=1

X

j 6=i

(1� dij) (QUBO2)

+ P1

X

(i,j)2E

(dij � dijsi � dijsj + sisj) (28)

+P2

nX

i=1

nX

j=i+1

�
�
X

k2N(i)

(dkj) + |N(i)|dij

�|N(i)|si +
dlog2 2|N(i)|eX

b=0

2by(b)ij

�2
(29)

+ P3

 
nX

i=1

si �K

!2

(30)

+ P4

X

i 6=j

(si � dijsi) (31)

For constraint (5b), we introduce O(n2 log d) binary slack
variables y

(b)
ij , where n is the number of vertices in the graph

and d is the maximum node degree This is because we need
dlog2(|N(i)| + 1)e slack variables for each pair (i, j), and
|N(i)|  n � 1 for all i. The resulting penalty term in the
QUBO is

P2

nX

i=1

nX

j=i+1

⇣ X

k2N(i)

dkj � |N(i)|dij

+ |N(i)|si +
dlog2(|N(i)|+1)eX

b=0

2by(b)ij

⌘2
.

The size of QUBO2 can be analyzed similarly to QUBO1.
The number of original variables remains n2+n. The number
of auxiliary variables introduced in QUBO2 is O(n2 log d),
dominated by the y

(b)
ij variables introduced for constraint

(5b). Therefore, the total number of variables in QUBO2 is
O(n2 log d), which is a significant reduction compared to the
O(n2

d) variables in QUBO1. The number of non-zero entries
in the QUBO2 matrix is also O(n2 log d).

In summary, the main difference between the QUBO for-
mulations of ILP1 and ILP2 lies in the conversion of the
triangle inequality constraint. In QUBO1, this constraint leads
to O(n2

d) auxiliary variables and non-zero entries in the
QUBO matrix. In QUBO2, the modified constraint results in
only O(n2 log d) auxiliary variables and non-zero entries. This
reduction in the size of the QUBO matrix can lead to more
efficient quantum annealing for the k-CND problem.

Theorem 3: For any connected graph G = (V,E) with
|V | > 2, the QUBO2 formulation (QUBO2) requires fewer
binary variables than the QUBO1 formulation (QUBO1).

Proof: Let n = |V | be the number of vertices in the graph
G. Since we proved (5b) was valid for any arbitrary ordering
of vertices, let us number the vertices in V in ascending order
of their degrees, such that V = {v1, ..., vn}, and |N(i)| >=
|N(j)| for all i >= j. We will prove the theorem by induction,
by first showing that QUBO1 requires fewer variables for our
base case. Then we will prove that any augmentation of a
connected graph which yields a connected graph and which
satisfies the invariant that the number of variables for QUBO2
is larger than the number of variables for QUBO1 will yield
a graph which retains this invariant.

For the base case, in which our graph is a tree and |V | = 3,
the number of slack variables used for QUBO1 is 8 (we get
2 slack variables from each vertex of degree 1 and 4 slack
variables from the vertex of degree 2). Using the careful
ordering of vertices described, the number of slack variables
for QUBO2 is 6 (4 and 2 slack variables from our first and
second selected vertices of degree 1, respectively).

Now, suppose we are given a graph G = (V,E), such that
the number of variables for QUBO1 for G is greater than the
number of variables used for QUBO2 for G. We will show
that augmenting G, either by adding an edge from v1 to v2 for
v1, v2 2 V or by adding some vertex, u to V in a way which
leaves G connected (adding some edge (u, vk)|vk 2 V ), will
yield a graph for which the number of variables for QUBO1
for G is greater than the number of variables used for QUBO2
for G.

1) Adding an edge between v1, v2 2 V adds 2|V |
slack variables to QUBO1 (|V | for each vertex inci-
dent to the new edge), and since dlog2 2xe + 1 >=
dlog2 2(x+ 1)e, 8x 2 N, the maximum number of slack
variables added for each edge added in QUBO2 is 2|V |
(|V | slack variables for each vertex incident to the new
edge).

2) Adding a vertex, u, and an edge (u, vk)|vk 2 V , to
connect u to some other vertex in the network adds at
least as many variables to QUBO1 as it does to QUBO2.
Note that we only need to worry about the new vertex
and edge incident to it and not the other endpoint of our
new edge, since we already proved that adding another
edge incident to a vertex adds at least as many variables
to QUBO1 as to QUBO2. Adding a new vertex and an
edge to exactly 1 neighbor will increase the number of
variables for QUBO2 by at most |V | � 1, since by our
definition for adding a vertex. This is because u must be
of degree 1, and because of our ordering of vertices by
degree in ascending order, a vertex of degree one will
be the first vertex (WLOG, u can be this first vertex),
which then contributes |V |�1 vertices. Adding a vertex
for QUBO1 also clearly increases number of variables
by at least |V |.

Hence, since we proved for a base case of a tree of 3 vertices
that QUBO1 yields fewer variables than QUBO2 and showed
that any augmentation to a connected graph which has the
invariant that the number of variables for QUBO1 is greater
than the number of variables for QUBO2, which yields a
connected graph must retain this invariant, we have shown
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that any connected graph, G = (V,E) for |V | >= 3 must use
fewer variables for QUBO2.

The major reduction in QUBO size is due to the modified
constraint (5b) in ILP2 allows for a more compact represen-
tation of the triangle inequality, resulting in fewer auxiliary
variables when converting to QUBO. The asymptotic analysis
shows that the number of variables in QUBO2 grows much
slower than in QUBO1 as the graph size increases. In the next
section, we will also show empirically that QUBO2 is always
more compact than QUBO1.

IV. EXPERIMENTS

Computational experiments were run by testing QUBO1 and
QUBO2 with different solvers on random graphs of varying
sizes. The code for each approach was written in Github
Codespaces, using an API key provided by D-Wave, in the
python programming language. We ran two experiments; one
using |V | as the independent variable (while fixing |E|

|V | ),
and one using |E| as the independent variable. Each set of
parameters was tested by constructing 5 graphs using the
networkx library and using our solvers with QUBO1 and
QUBO2.

a) Parameter settings: We set the number of vertices
with a default value of 10, the number of edges with a default
based on an average vertex degree of 3, graph topology with
a default setting of a random graph, the number of vertices
to be removed (denoted as K) with a default of 3, penalty
coefficient which defaulted to the coefficient provided by D-
Wave, number of reads with a default of 1000, and chain
strength which also defaulted to the strength provided by D-
Wave. We also chose to use penalty coefficient of |V |3 for
the constraint which enforces at most K vertices chosen to be
removed (5b) and |V | for the other constraints. These penalties
were chosen, because we would like to keep penalties small
and integral, as choosing larger, fractional penalties causes
solution quality to degrade. The penalty for the QUBO term
for constraint (5b) was chosen to be sufficiently large to
ensure no more than K vertices are removed, which allows
us to perform error correction even on infeasible solutions.
This error correction is conducted by finding the pairwise
connectivity of the |V | � K unremoved vertices via a BFS
on the induced subgraph.

A. Overview of Approaches
We use three different solvers to help compare our QUBO

formulations (Quantum Annealing, Simulated Annealing, Hy-
brid), as well as three more classical approaches to serve as
benchmarks for the quantum approaches (CPLEX, random,
greedy).

Quantum Annealing is an approach to solving optimization
problems via the use of the adiabatic theorem [33]. Here,
we feed our QUBO coefficient matrix through the QA solver
from d-wave to obtain solutions. Note that a major (and time
consuming) challenge with this step is properly embedding
the problem onto the hardware; here we make use of D-Wave
libraries to perform embedding.

The hybrid approach is an approach to finding the optimal
solution to optimization problems by mixing classical and
quantum computing as discussed. The software written for this
project passes the QUBO to this hybrid solver (LeapHybrid-
Sampler with default parameters) to solve.

Simulated annealing approximates solutions to optimization
problems using classical computing behaving like heating and
cooling crystalline solids in order to obtain a lattice with the
lowest energy [34]. The goal of SA is to find a globally optimal
solution by using classical computing and heuristics to obtain
the lowest energy state, analogous to the energy state found by
a quantum computer. Even without finding a global optimum,
SA converges to a locally optimal solution [35]. SA is applied
to the QUBO using D-Wave Simulated Annealing Sampler.

The CPLEX algorithm is used to determine the optimal
solution for the ILP since it always obtains an optimal solution
(so long as the gap is chosen to be small enough such that
the entire solution space is checked by CPLEX). Using the
docplex library, we add the constraints and objective function
to an assignment model and solve the CPLEX for the IP.
CPLEX is also used to help verify the correcness of the
QUBO formulations by transforming the QUBOs back into
MIP formulations and feeding them into CPLEX to verify the
optimal solution is found.

The randomized algorithm, which chooses K random ver-
tices to remove then runs a BFS to determine remaining
pairwise connectivity, is used as a benchmark.

The greedy algorithm, which iteratively chooses K vertices,
picking the vertex remaining with the highest degree, is a
benchmark for the other algorithms. As with randomized, a
BFS is used to determine the graph’s pairwise connectivity.

B. Metrics Measured

The datasets were constructed by using the networkx library.
For each experiment, we construct a new graph. We run 5
trials for each independent variable and present the results by
displaying the median and range for the network disruption in
Table I. We also display the median for the number of qubits,
QUBO variables, and QUBO terms used via graphs Figs. 1a–f.
For each trial, we calculate:

1) QUBO Variables - The number of qubits which would
be used to represent the QUBO for QA if each qubit
had a chain of length 1. This is the number of distinct
variables (eg. d00) used in the QUBO formulation.

2) Number of qubits - The number of qubits used by D-
Wave after embedding the QUBO for QA.

3) QUBO Terms The number of total terms (and the
number of quadratic terms) in the constructed QUBO.
(We do not bother to include the number of linear terms,
as from our specific QUBO constructions this is just
equivalent to the number of QUBO variables).

4) OPT - The minimum value of C(G) for the given graph
after removing K vertices.

5) OPT�C(G⇤) - The difference between the minimum
possible pairwise connectivity, C(G), for a graph G,
after removing K vertices (this optimal solution is found
via CPLEX) and the connectivity of the resulting graph,
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G⇤, after applying one of the methods of QA, SA,
hybrid, greedy, or random. Note that in cases where
solutions are invalid, by choosing penalties carefully to
ensure that it is least favorable to violate constraint (1c),
we ensure that we are able to reconstruct a feasible
solution from the chosen vertices and use the subgraph
induced by the removal of K vertices for our connec-
tivity difference measurement.

C. Results

1) Solution Size: As can be seen from Figs. 1a–d, the
number of variables and qubits both grow for QUBO1 and
QUBO2 as the network size increases. As proven in Theorem
3, the number of variables for every graph is greater for
QUBO1 than QUBO2, and from Fig. 1d, there is a 59.7%
decrease in the number of variables used for a graph of 10
vertices and 40 edges. While QUBO2 also used fewer qubits
in all experiments run (Fig. 1a, Fig. 1b), the difference in the
number of qubits is smaller than the difference in variables for
the two formulations. This discrepancy is caused by longer
chain lengths for QUBO2. In other words, each variable is
being represented by more physical qubits, on average for
QUBO2 than QUBO1. The two principal causes for this are:

1) The coefficients for the QUBO2 terms (especially for the
slack variables) are larger than for the QUBO1 terms.

2) The greater number of QUBO terms for QUBO2 than
QUBO1. We see this in the results from Fig. 1e and
Fig. 1f, where the number of quadratic terms and total
QUBO terms for QUBO2 are greater than QUBO1. We
can see why by counting the number of QUBO terms
from constraint (3) for QUBO1 and (5b) for QUBO2
since these are the constraints which contribute the most
QUBO terms for sufficiently large graph instances:

QUBO1 The number of QUBO terms for QUBO1 from
constraint (3) is O(n2

d), where n is the number of
vertices, and where d is the maximum node degree.

QUBO2 We obtain the upper bound from counting the
number of terms from (5b) from the highest order
term. Counting the number of terms each pair
of vertices, i < j 2 V , such that i 6= j,
we get

�|N(i)|+log2 |N(i)|+1
2

�
terms; hence, there

are O(|N(i)|2) terms for each i, j, and there arePn
i=1

Pn
j=i+1 |N(i)|2 total highest order terms for

QUBO2. As analysis from de Caen [36] has shown,
the sum

Pn
i=1 |N(i)|2, known as the first Zagreb

index is bounded by |E|2
|V | . Hence, we can bound the

number of variables for QUBO2 as O(|V | ⇤ |E|2
|V | ),

or, O(|E|2).
Clearly, for sufficiently large, dense graphs, the number
of variables for QUBO2 exceeds the number required for
QUBO1, since there are |N(i)| vertices for every i, j 2
V for QUBO1 and |N(i)|2 vertices for every i, j 2 V

for QUBO2.
Despite the chain strengths being longer, experimentally we

witness that the benefit from QUBO2 having fewer variables
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Fig. 1: Comparison of QUBO and embedding properties for
QUBO1 and QUBO2 on random graphs of varying numbers
of vertices and edges
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TABLE I: Comparison of Network Disruption produced by Solvers For Varying |V |

QUBO1 QUBO2 GREEDY RANDOM CPLEX

QA Hybrid SA QA Hybrid SA — — —

|V
| OPT � C(G⇤) OPT � C(G⇤) OPT � C(G⇤) OPT � C(G⇤) OPT � C(G⇤) OPT � C(G⇤) OPT � C(G⇤) OPT � C(G⇤) OPT

5 1(0-1) 0(0-0) 1(0-1) 1(0-1) 0(0-1) 1(0-1) 0(0-1) 1(0-1) 0(0-0)
10 21(11-21) 4(3-10) 21(6-21) 15(11-21) 10(3-15) 21(10-21) 4(3-21) 21(9-21) 0(0-0)
15 52(50-75) 42(25-50) 50(33-63) 50(26-52) 33(17-51) 51(25-63) 33(19-51) 50(26-52) 3(3-5)

TABLE II: Comparison of Network Disruption produced by Solvers For Varying |E|

QUBO1 QUBO2 GREEDY RANDOM CPLEX

QA Hybrid SA QA Hybrid SA — — —

|E
| OPT � C(G⇤) OPT � C(G⇤) OPT � C(G⇤) OPT � C(G⇤) OPT � C(G⇤) OPT � C(G⇤) OPT � C(G⇤) OPT � C(G⇤) OPT

10 11(6-15) 2(1-2) 2(1-2) 6(1-11) 2(1-7) 2(1-7) 2(1-6) 7(6-15) 0(0-0)
20 20(15-28) 15(14-20) 15(14-20) 20(15-21) 20(9-21) 20(14-21) 15(14-20) 20(15-21) 1(0-1)
30 17(17-18) 17(12-18) 17(11-18) 11(3-17) 11(7-18) 17(12-18) 17(12-18) 17(12-18) 4(3-4)

outweighs the cost in the number of terms and larger coef-
ficients, as the number of qubits was smaller for QUBO2 in
every trial, with as much as an 11.7% decrease in for the
network tested with 15 vertices, 22 edges.

2) Solution Quality: From Table I, we notice that solution
quality degrades for both QUBO1 and QUBO2 as vertices
are added to the network, since OPT � C(G⇤) increases as
|V | increases for all solvers for both QUBO1 and QUBO2.

While solution quality for QA and Hybrid solvers does
degrade for larger graph instances, this result can also partially
be explained by having a stochastic process in which there are
more variables (and the QUBO size squares quadratically as
the number of vertices increases linearly). Let us show this
with an example. Suppose we are given a graph, G = (V,E),
with optimal solution A which partitions V into x > 1 disjoint
sets of an equal number of vertices and suboptimal solution
B which partitions V into one large, disjoint subset (of size
|V | � K. If we augment G to G

0 by adding y vertices to
the graph, even if they all go into the same partition for a
solution for A, the difference between B in G

0 and A in G
0

will be much larger than the difference between B in G and
A in G, because the difference between ( |V |�K

x + y)2 and
(|V |�K+y)2 is larger than the difference between ( |V |�K

x )2

and (|V |�K)2 for y > 0. Hence, we see an example of where
the sheer quantity of a suboptimal solution may grow further
from the optimal solution because |V | is larger. Nevertheless,
the connectivity of the graphs from greedy and random grow
larger than CPLEX quickly, and at times, Hybrid solutions
can outperform greedy solutions and seem to perform better
than random ones. Note that there are some limitations with
larger numbers of vertices for the quantum approaches, as with
|V | = 15, we do see the greedy approach producing better
results than the quantum approaches, and for |V | = 20, the
problem size for QA became too large to embed onto the
hardware at all.

Another challenge with increasing the number of vertices
is that the penalties used for the QUBO are proportional to
|V |, and, as the penalties increase, obtaining an exact solution
becomes more difficult due to a limit to the precision of D-
Wave computers and the stochastic nature of solutions. As a
result, 2 of the solutions obtained for the Hybrid approach for

QUBO2 are invalid, as they select more then K vertices to
remove from the graph.

From Table II, the error for the solutions seems to decrease
from the average degree increasing from 4 to 6 for random,
greedy, SA, and hybrid. This is due to the fact that for a very
dense graph, removing any 3 vertices will yield the same solu-
tion; hence every solution is optimal. One noticeable exception
above, however, is with QA, which seems to be producing
somewhat suboptimal solutions regardless. This is due to the
fact that QA is a stochastic process and because the additional
edges cause greater difficulty in finding an embedding. As a
result, for some of these suboptimal solutions, the QA solver
chooses fewer than K vertices.

V. CONCLUSION AND DISCUSSION

The paper shows that using quantum computing to ap-
proach the k-CND problem does have some merits, as for
large instances of the problem, finding the optimal solution
via CPLEX becomes difficult and the code may take many
hours to run. In testing the two different ILP formulations,
it seems that the theoretical results from Theorem 3 agree
with the experimental results that ILP2 is better suited for
transformation into a QUBO in that there are fewer QUBO
variables generated for ILP2. However, the larger number of
terms for QUBO2 and long chains necessary for embedding
mean that there is a smaller difference in the number of
qubits used for both QUBO formulations in solving the k-
CND problem, although the number of qubits was consistently
slightly lower for QUBO2 (and as much as an 11.7% decrease
in the number of qubits used for |V | = 15). The chain lengths
necessary for embedding (QUBO2) may pose a limitation
on this formulation, since longer chain lengths have higher
incidences of chain breaks, increasing the chance of producing
suboptimal solutions.

There also exist some limitations to the feasibility of using
QA to solve the k-CND problem as the QA approach was
unable to embed problems of size more than |V | � 20.
The time required to obtain optimal solutions is currently a
limitation of using QA for the k-CND problem for any time-
sensitive systems.
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Future work on the k-CND problem may seek to both find
better QUBO penalties and increase the number of vertices
and edges used within the graphs, while focusing more on
using the Hybrid solver, which is able to support larger graph
instances, and may leverage both the benefits of classical
computing and quantum phenomena. Future experiments can
modify the chain strength when performing QA to mitigate
issues with broken chains in embedding (QUBO2). Further
research can aim to improve on (QUBO2) further by reducing
the number of variables from constraint (5b).

The approach used in this paper of constructing an alterna-
tive ILP formulation in order to reduce the number of QUBO
variables in the QUBO formulation between constraints may
be applicable to other optimization problems as well; hence
future work which converts ILP problems to QUBOs should
be sure to consider alternative ILP formulations.
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