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Abstract

Graph contrastive learning has made remarkable
advances in settings where there is a scarcity
of task-specific labels. Despite these advances,
the significant computational overhead for rep-
resentation inference incurred by existing meth-
ods that rely on intensive message passing makes
them unsuitable for latency-constrained applica-
tions. In this paper, we present GraphECL, a
simple and efficient contrastive learning method
for fast inference on graphs. GraphECL does
away with the need for expensive message pass-
ing during inference. Specifically, it introduces
a novel coupling of the MLP and GNN models,
where the former learns to computationally effi-
ciently mimic the computations performed by the
latter. We provide a theoretical analysis showing
why MLP can capture essential structural infor-
mation in neighbors well enough to match the
performance of GNN in downstream tasks. The
extensive experiments on widely used real-world
benchmarks that show that GraphECL achieves
superior performance and inference efficiency
compared to state-of-the-art graph constrastive
learning (GCL) methods on homophilous and het-
erophilous graphs. Code is available at: https:
//github.com/tengxiaol/GraphECL.

1. Introduction

Over the past decade, there has been considerable interest
in graph learning problems such as node classification, link
prediction, and graph classification (Grover & Leskovec,
2016; Cui et al., 2018; Xu et al., 2019; Wu et al., 2020; Xiao
etal., 2021; Chen et al., 2022; Xiao et al., 2024). Graph con-
trastive learning (GCL) has recently emerged as an attractive
approach to graph representation learning in settings where
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there is a scarcity of task-specific labels (Zhu et al., 2021;
Thakoor et al., 2021). On many key benchmarks, GCL has
been shown to achieve performance that is competitive with
or superior to that of state-of-the-art methods trained using
ground truth labels (Zhu et al., 2021; Thakoor et al., 2021).

However, the significant computational overhead incurred
by existing GCL methods, which rely on message pass-
ing for representation inference, limits their usefulness in
latency-constrained applications. In particular, we observe
that the state-of-the-art GCL methods achieve their supe-
rior performance using a graph neural network (GNN) en-
coder (see Figure 1). The message passing in GNN involves
fetching the topology and features of numerous neighbor-
ing nodes to perform inference on a target node, which is
computation-intensive during inference. Hence, there is an
urgent need for inference-efficient alternatives to the state-
of-the-art GCL methods. Recent work has begun to tackle
the inference latency of GNN (Zheng et al., 2021; Zhang
et al., 2021b; Tian et al., 2022; Wu et al., 2023), e.g., using
knowledge distillation (KD) (Hinton et al., 2015) to learn
an inference-efficient student MLP to mimick the output of
a teacher GNN. However, they require task-specific labels to
first train a good teacher GNN, limiting their applicability to
GCL in settings where there is a lack of task-specific labels.

To the best of our knowledge, the following critical ques-
tion, with important implications for real-world latency-
constrained applications of GCL, remains unanswered: How
can we design a new GCL algorithm that outperforms
state-of-the-art GCL methods on downstream tasks while
avoiding high inference latency? To answer this question,
we present GraphECL, a simple, effective, and efficient
contrastive regime on graphs. Specifically, to capture the
graph structure of the nodes and achieve fast inference,
GraphECL introduces a cross-model contrastive architec-
ture in which positive examples consist of cross-model pairs
(e.g., MLP-GNN) directly derived from neighborhood rela-
tions extracted from the graph. These positive samples are
obtained from the representations of MLP and GNN of cen-
tral nodes and their neighbors, respectively. This simple
architecture allows GraphECL to benefit from the graph
structure during training via GNN while using MLP to avoid
relying on the graph structure during inference. Based on
this cross-model architecture, we introduce a novel general-
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Figure 1. Inference latency v.s Accuracy on Pubmed. For GCL
baselines, we test them on using both MLP and GNN backbones.
We can observe that SOTA methods require GNN as the encoder to
achieve good performance, which is computation-intensive during
inference. GraphECL is fast with even higher accuracy.

ized contrastive loss, which facilitates the learning of a com-
putationally efficient MLP encoder, allowing the resulting
model to effectively capture graph structural information so
as to match the performance of state-of-the-art GCL meth-
ods on benchmark datasets, but without their prohibitive
computational cost during inference.

Key Contributions. (i) We identify the key limitations of
current GCL methods that limit their applicability to repre-
sentation learning in latency-constrained real-world applica-
tions that require fast inference. (ii) We design GraphECL,
a novel coupling of MLP and GNN models where the for-
mer learns to computationally efficiently mimic the com-
putations performed by the latter. We show that the re-
sulting model can effectively learn graph structural infor-
mation and conduct fast inference with a simple MLP. (iii)
We present theoretical analyses that offer insight into how
GraphECL gradually encodes useful structural information
using an MLP. Specifically, we show how GraphECL can
theoretically achieve good generalization performance on
downstream tasks. (iv) We demonstrate through extensive
experiments that GraphECL can achieve ultra-fast infer-
ence speed and superior performance on downstream tasks
simultaneously. Specifically, we show that the proposed
GraphECL can run significantly faster than baselines on
graphs, making it especially useful for latency-constrained
applications where fast inference is a key requirement.

2. Related Work

Graph Contrastive Learning. GCL has emerged as a class
of effective methods for learning useful representations from
unlabeled graph data (Velickovié et al., 2018; Zhu et al.,
2021; Guo et al., 2024; Suresh et al., 2021; Zhang et al.,
2021a; Zhu et al., 2024; Meng et al., 2019). Some authors
have proposed freeing GCL from the need for negative
samples (Thakoor et al., 2021; Zhang et al., 2021a) or even
the need for graph augmentation (Xiao et al., 2022; Xiao &

Wang, 2021; Lee et al., 2022; Zhang et al., 2022). Others
have explored approaches to accelerate GCL training (Zheng
et al., 2022b; Yang et al., 2022a; Han et al., 2022). Despite
this progress, current methods of GCL incur significant
computational overhead during inference, which limits their
usefulness in latency-constrained real-world applications.
This is largely due to their need to fetch neighbors and
their associated features for a target node while performing
inference (Zhang et al., 2021b). In this paper, we aim to
address this limitation by avoiding the need for expensive
message passing during inference by coupling MLP and GNN
models so that the former MLP learns to computationally
efficiently mimic the computations performed by GNN.

Learning MLPs on Graphs. Our work is also related to
graph-regularized MLP (Yang et al., 2016; Hu et al., 2021;
Yang et al., 2021b; Liu et al., 2020), which incorporates
graph structure into MLPs through various auxiliary regu-
larization terms inspired by traditional network embedding
methods (Hamilton et al., 2017b; Grover & Leskovec, 2016;
Tang et al., 2015). By implicitly encoding structural infor-
mation into MLPs, one can enhance the representational
power of MLP encoders while maintaining fast inference.
It is worth noting that these methods, despite their differ-
ences, share a reliance on the strong homophily assump-
tion (McPherson et al., 2001), which posits that one-hop
neighbors of nodes that are linked should exhibit similar la-
tent representations. Consequently, graph-regularized MLP
significantly falls short of the performance achievable by
GCL methods (Velickovi¢ et al., 2018; You et al., 2020), as
shown in our experiments. GraphECL on the other hand, is
designed to match the performance of state-of-the-art GCL
methods, while achieving significantly faster inference.

Knowledge Distillation on Graphs. Knowledge distillation
on graphs, which aims to distill pre-trained teacher GNN’s
into smaller student MLPs, has recently garnered significant
attention (Yang et al., 2020; 2022b; Yan et al., 2020; Yang
etal., 2021a; Joshi et al., 2022). Since student GNNs still re-
quire time-consuming message passing in inference, recent
studies (Yang et al., 2023; Zhang et al., 2021b; Zheng et al.,
2021; Tian et al., 2022; Wu et al., 2023) have shifted their
focus towards GNN-MLP distillation. This involves learning
an inference-efficient student MLP by distilling knowledge
from the teacher GNN. However, these methods typically
rely on task-specific labels to train the teacher GNN, which
can be challenging in real-world scenarios where labels are
often inaccessible. In contrast, our work aims to develop an
inference-efficient and structure-aware MLP for faster infer-
ence in settings where task-specific labels are unavailable.

3. Preliminaries

Notations and Problem Setup. The input graph is denoted
as G = (V,€), where V = {v1,..., vy} is a set of |V
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(b) Graph-regularized MLP
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Figure 2. Existing contrastive schemes and GraphECL. (a) and (c) rely on invariant assumptions, aiming to learn augment-invariant
representations of the same node. (b) is based on homophily assumptions, forcing neighboring nodes to exhibit same representations. In
contrast, (d) showcases our GraphECL, which achieves significant inference efficiency and strong performance using learned MLP.

nodes and £ denotes the set of edges. Each edge e; ; € £
denotes a link between v; and v;. We use X € RIVIXD
to denote the node attributes, where i-th row of X, i.e., X;,
is the attribute vector of node v;. The graph structure can
be characterized by its adjacency matrix A € [0, 1]VI*IVI,
where A; ; = 1 if there exists anedge e; ; € £, and A, ; =
0 otherwise. Then, the graph G can be also denoted as a
tuple of matrices: G = (X, A). Given G, our goal is to
learn an efficient MLP encoder denoted by fj; with only
attributes X as input, so that the inferred representation for
node v: v = fur(X)[v] € R¥ is useful for downstream
tasks. For brevity, in what follows, we omit the input X and
use fas(v) to denote v’s representation from MLP.

Graph Contrastive Learning (GCL) with Augmenta-
tions. GCL aims to learn representations (Trivedi et al.,
2022; Velickovi¢ et al., 2018; Zhu et al., 2021; You et al.,
2020; Suresh et al., 2021) by contrasting augmented views
as presented in Figure2 (a). Thus, for a given node v, its
representation in an augmented view is trained to be similar
to the representation of the same node v from another aug-
mented view, while being distinct from the representations
of other nodes, which serve as negative samples. Given two
views G; and G, a widely-used contrastive objective is:

LgeL = v log £(v), where 1)

_1
V] S
N exp(fe ()T fo(v?)/7)

O e G T T/ + 5
vTEVT
Here f(v) = fo(Gh)[v] and fo(v?) = fo(Ga)[v] are
GNN representations of the same node v from two views,
where fo denote the GNN encoder. V_ is the set of negative
samples from inter- or intra- augmented view (Zhu et al.,
2020). 7 is the temperature. Although GCL with augmen-
tations has achieved remarkable success, we note that such
methods predominantly rely on the GNN encoder to cap-
ture structural invariances in different augmented views of
the graph. This reliance is further discussed in Section 4.1
and results in substantial computational overhead during
inference compared to MLP, as shown in Figure 1.

Graph-regularized MLP. Graph-MLP (Yang et al., 2016;
Hu et al., 2021; Yang et al., 2021b; Liu et al., 2020) pro-
poses to avoid the need for GNN neighbor fetching by learn-

exp (fa(v') T fo(v™)/7)

ing an inference-efficient MLP model with a neighbor con-
trastive loss inspired by traditional graph embedding meth-
ods (Hamilton et al., 2017b; Grover & Leskovec, 2016;
Tang et al., 2015). All such methods essentially minimize
the following contrastive loss over neighbors in the graph:

1 1
Lo =~ 2w N w)] EN:U et e .
t(v) & exp(fm (v) T far(u)/7)
exp (fu ()T far(W)/T)+ X exp(far(0)T faur(v=)/7)’

vTEVT

where fis(v), far(u) and fr(v™) are projected represen-
tations by MLP of nodes v, u and v, respectively. N (v)
denotes the set of positive examples containing local neigh-
borhoods of the node v and V™ denotes the set of negative
examples that are randomly sampled from V. This approach
is illustrated in Figure 2 (b). Despite its improved inference
efficiency due to its exclusive use of MLP, this approach
takes a significant hit in performance compared to GCL
with augmentations (See Figure ). Moreover, this scheme
over-emphasizes homophily, assuming that nodes that are
linked in the graph should have similar representations in the
latent space, at the expense of structural information (You
et al., 2020), making it difficult to generalize to graphs with
heterophily (Lim et al., 2021). Table 6 in Appendix A details
comparisons between current graph contrastive schemes and
our GraphECL in terms of design assumptions, effective-
ness (or representational power) and inference efficiency.

4. Efficient Graph Contrastive Learning

We proceed to introduce GraphECL, which aims to dramat-
ically speed up inference while matching the performance
of GCL. GraphECL adopts a cross-model contrastive archi-
tecture, wherein we design an asymmetric GNN-MLP archi-
tecture for the nodes and their neighbors to extract effective
positive and negative examples in contrastive training (Sec-
tion 4.1). To capture structural information in the graph,
we introduce a generalized contrastive loss that extends
the classic InfoNCE loss (Chen et al., 2020) from indepen-
dent instance discrimination over augmentations to non-
independent neighborhood contrast over graph structures,
taking into account meaningful distance between neighbor-
ing nodes. Finally, we provide a theoretical analysis to show
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Figure 3. Current GCL methods that employ a GNN-MLP archi-
tecture (where MLP is used for inference) exhibit a significant
performance decay compared to those using a GNN-GNN architec-
ture (where GNN is used for inference). We illustrate Pubmed as
an example, though we observe the similar trend in other datasets.
that GraphECL can encode structural information to ensure
good performance on downstream tasks (Section 4.2).

4.1. Simple Cross-model Contrastive Learning

As shown in Figure 1, the state-of-the-art GCL methods
incur substantial computational overhead and hence infer-
ence latency due to the layer-wise message passing in GNN
encoders. A straightforward idea is to replace the GNN en-
coders with the MLP encoders to speed up inference. How-
ever, as seen in Figure 1, the performance of current GCL
methods using MLP instead of GNN is significantly worse
than that of those using GNN. These results are consistent
with what our expectations in that, while replacing GNN
with MLP eliminates message passing and hence speeds up
inference, does so by ignoring critical structural information
from the graph. Thus, the encoder GNN plays a critical role
in the success of GCL based on graph augmentations.

Cross-model Contrastive Architecture. To address this
limitation, we first introduce a simple cross-model architec-
ture of GraphECL. As Figure 1 shows, using MLP as the
encoder for GCL achieves substantial speedup in inference
but does so at the cost of substantial drop in performance.
Conversely, utilizing GNN as the encoder yields superior
performance but at the cost of significant slowdown dur-
ing inference. Our solution to resolving this dilemma is
elegantly simple, yet, as we will demonstrate, remarkably
effective. Specifically, we employ a cross-model architec-
ture with two encoders, one of which is a GNN, and the other
an MLP. GNN in this architecture is exclusively dedicated
to extracting and encoding structural information from the
graph during the learning phase, whereas the MLP is used
during the inference process to circumvent the need for
computationally expensive message passing.

Can we directly apply this architecture to speed up inference
in GCL? For instance, can we minimize the following cross-
model InfoNCE-style loss, referred to as MLP-Augmented

GCL loss for the architecture shown in Figure 2 (c)?

Lyva = —ﬁ ZUGV log £(v), where (3)
. exp(fa(0') " fur(v?)/7)
exp (fo(0)T fu(v?)/T)+ X exp(fe(vt)T fur(v)/7)’

v EVT

Unfortunately, the answer to this question is negative. As
shown in Figure 3, even with the cross-model architecture,
current GCL methods take a significant performance loss
compared to those that use GNN encoders in Equation (3).
In what follows, we introduce an effective and efficient
contrastive learning loss that addresses this problem.

Efficient Contrastive Learning Loss on Graphs. Before
proceeding to introduce the proposed contrastive loss, we
first motivate it. Existing state-of-the-art GCL methods
adopt graph augmentations that emphasize similarities in
the encoding of a same node in different “augmented views”,
using GNN as the encoder (See Figure 2). In contrast, we
want GraphECL to avoid relying on graph augmentations,
but instead, learn an MLP representation of node by extract-
ing and encoding its neighborhood structure and features
from GNN. In particular, positive pairs in GCL are gener-
ated by random graph augmentations of the same node. In
contrast, positive examples in GraphECL are cross-model
pairs (e.g., MLP-GNN) directly provided by neighborhood
relations present in graphs. These positive examples are ob-
tained through MLP and GNN representations, respectively,
of nodes and their neighbors. The preceding suggests a
contrastive loss for GraphECL, minimizing which has the
effect of pushing the MLP representation of each node closer
to the GNN representations of its neighbors:

1 1

LecL = —m P V@] ue;(v) log ¢(v), where 4)
£(v) 2 eXP(fM(U)TfG(U)/T)
3 exp(fo() fo(v)/m) + Aexp(far () fa(v7)/7)’

where fys(v) and fg(u) are the L2-normalized representa-
tions obtained from the MLP and GNN encoders, respectively,
of node v and its neighbor u. Here, (fg(u), fc(v™)) and
(famr(v), fa(v™)) represent intra-modael and inter-model
negative pairs, respectively. v~ is independently sampled
as a negative example and A serves as a hyperparameter to
control the balance between the two types of negative pairs.
For large graphs, we randomly sample M negative pairs for
each node as an efficient approximation.

We highlight the benefits of using this simple alignment
loss. First, the MLP encoder f); can effectively preserve the
local neighborhood distribution captured by GNN encoder
fo without the need for graph augmentation. GraphECL en-
codes the latent distributions (representations from GNN) of
neighborhoods into the representation of central node from
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Figure 4. (a) The toy graph where the color denotes node’s seman-
tic class. (b) Uni-model contrastive learning in GR-MLP encour-
ages one-hop neighbors to have similar representations (c) Multi-
model contrastive objective in GraphECL is not based on the
one-hop homophily assumption but automatically captures graph
structures based on different graphs beyond homophily. Thus,
GraphECL exhibits robustness and generalizability on both ho-
mophilic and heterophilic graphs (See section 5).

MLP, enabling MLP to implicitly encode the structural in-
formation captured by GNN. As latent neighbors’ represen-
tations encode high-order information through multi-layer
message passing of GNN, MLP effectively distills the high-
order structural information from the GNN. Second, in con-
trast to the GR-MLP model, which performs uni-model con-
trastive learning shown in Figure 4 (b), GraphECL aims to
push cross-model contrastive learning, pushing the represen-
tation of a node f; (v) and that of its neighbors f(u) close
to each other. In particular, GraphECL does not necessar-
ily imply the learned MLP representations ( fas (v), far(u))
become identical (homophily assumption). In other words,
the multi-model signals ensure that node pairs v and v with
the same same neighborhood context serve as positive pairs
for contrastive learning as illustrated in Figure 4 (c).

Interpretation. Ly, is a simple yet very effective gener-
alization of the popular InfoNCE loss in Equation (3) from
uni-model instance discrimination over augmentations to
cross-model contrast over graph neighbors. During the learn-
ing process, cross-model positive pairs of neighbors (fas (v),
fa(u)) are pulled together in the latent space, while inter-
modal (fy(v), fa(v™)) and intra-model negative pairs
(fa(u), fa(v™)) are pushed apart. We empirically demon-
strate in Section 5 that GraphECL generalizes as well as
state-of-the-art GCL methods during the inference, with the
additional benefit of significantly faster inference.

4.2. Theoretical Analysis

In this section, we provide theoretical evidence to support
the design of our simple GraphECL. All detailed proofs
can be found in Appendix B. We denote the normalized
adjacency matrix D! A, with D being the diagonal de-
gree matrix. We define the two representation metrics
M and G where the v-th row (M), = fa(v) and the
u-th row (G), = fo(u) represent the corresponding en-
coded representations from MLP and GNN, respectively. Let
A = exp(MG T /7) is the estimated affinity matrix based
on representation similarity. D = deg(A) is the diagonal
matrix, whose element (A)i,i is the sum of the ¢-th row

of A. Next, we reveal the stationary point of the learning
dynamics of GraphECL, which implies the equilibrium as:

Theorem 4.1. The learning dynamics w.r.t the MLP en-
coder fy; with efficient contrastive loss (A = 1) in Equa-
tion (4) saturates when the true normalized adjacency and
the estimated normalized affinity matrices agree: D71 A =
DA, implying that, for Vv, u € V, we have:

exp(far(v) T fa(u)/T)

Pn(u | v) = Soevexp(fu )T fa()/T)’

Pr(u|v) S

5

where Py (u | v) is the 1-hop neighborhood distribution
(i.e., the v-th row of the normalized adjacency matrix) and
Ps(u | v) is the estimated neighborhood distribution.

Theorem 4.1 implies that GraphECL essentially learns a
probabilistic model based on cross-modal encoders to pre-
dict the conditional 1-hop neighborhood distribution. Specif-
ically, our assumption is more general than the homophily
assumption. Even in heterophilic graphs, two nodes of the
same semantic class tend to share similar structural roles,
i.e., the 1-hop neighborhood context as shown in (Ma et al.,
2021; Xiao et al., 2023) and statistics in Appendix C.2.

We also establish formal guarantees for the generalization of
GraphECL on downstream tasks for learned MILLP and GNN
encoders. Without loss of generality, we use the linear prob-
ing task as an example. In this task, we train a linear classi-
fier to predict class labels y € ) based on the MLP represen-
tation fys using grw(v) = argmax.eic)(fur (W) W),
where W € R%*C represents the weight matrix.

Theorem 4.2. Let f3, be the global minimum of generalized
contrastive loss (A = 1) in Equation (4) and y(v) denote
the label of v. 01 > - -+ > o are the eigenvalues with de-
scending order of the normalized adjacency matrix D™ A.
Then, the linear probing error of f}, is upper-bounded by:

N 1—«
(fM = |V\ Uze;ﬂ[gf W(U # y(v)] < ﬁ (6)
where o = 55 32,y VIN ()] X enro) Ly(0) = y(u)]

and K is the dimensionality of the representation.

This theorem establishes a significant relationship between
the downstream error in learned representations and two cru-
cial factors: the parameter « and the (/{+1)-th largest eigen-
value. Remarkably, o coincides precisely with the node
homophily ratio metric (Pei et al., 2019; Lim et al., 2021).
This metric calculates the proportion of a node’s neighbors
that share the same class label and then averages these val-
ues across all nodes within the graph. Homophilous graphs
(o — 1), exhibit a tendency for nodes to connect with oth-
ers of the same class, while heterophilic graphs (o« — 0),
display a preference for connections across different classes.
This theorem shows that graphs characterized by a low ho-
mophily value (i.e., heterophilic graphs) may require a larger



Efficient Contrastive Learning for Fast and Accurate Inference on Graphs

Table 1. Node classification results (%) under the transductive setting on benchmarking homophilic and heterophilic graphs.

Datasets Cora Citeseer Pubmed Photo WikiCS Flickr Cornell Wisconsin Texas Actor

Graph-MLP 76.70+0.18 70.30:0.27 78.70+0.33 89.59+0.45 71.7520.15 41.33+0.25 42.65+221 57.96+1.11 60.22+1.76 25.66+0.77
VGAE 76.30+021 66.80+0.23 75.80+0.40 91.50+0.20 72.19+0.31 40.7120.22 48.73+4.19 55.67+1.37 50.27+2.21 26.99+1.56
DGI 82.30+0.60 71.80+0.70 76.80+0.60 91.61+0.22 75.35+0.14 44.70+0.26 45.33+6.11  55.21+1.02 58.53+2.98 28.30+0.76
GCA 82.93+0.42 72.19+031 80.79+0.45 91.70+0.10 78.35+0.05 46.10+0.19 52.31£1.09 59.55+0.81 52.92+0.46 28.77+0.29
SUGRL 83.40+0.50 73.00+0.40 81.90+0.30 93.07+0.15 79.83+0.31 46.22+0.31 50.18+0.30 61.31+2.07 57.88+2.21 30.31+0.82
BGRL 82.70+0.60 71.1020.80 79.60+0.50 92.90+0.30 79.98+0.10 45.33+0.19 50.33+2.29 51.23+1.17 52.77+1.98 28.80+0.54
CCA-SSG  84.00+0.40 73.10+0.30 81.00+0.40 93.14+0.14 79.31+0.21 47.54+0.14 52.17+1.04 58.46+0.96 59.89+0.78 27.82+0.60
GGD 83.90+0.40 73.00+0.60 81.30+0.30 92.50+0.60 78.72+0.61 46.33+0.20 51.46+0.33 58.93+0.65 60.17+0.52 28.27+0.23
SGCL 82.97+020 72.58+0.25 81.25+0.32 93.46+0.30 79.85+0.53 46.35+0.18 53.28+1.37 59.93+0.75 61.26+0.65 26.51+0.47
GraphACL 84.20:0.31 73.63x0.22 82.02+0.15 93.31+0.19 78.75+0.36 46.95+0.27 59.33+1.48 69.22+0.40 71.08+0.34 30.03+0.13
AF-GCL 83.16+0.13 71.96x042 79.16+0.73 92.49+0.31 79.01+0.51 46.95+0.33 52.29+1.21 60.12+0.39 59.81+1.33 28.94+0.69
AFGRL 81.30+0.20 68.70+0.30 80.60+0.40 93.22+0.28 77.62+0.49 46.81+020 55.37+3.56 63.21+1.55 60.35+1.05 30.31+0.95
GraphECL 84.25:0.05 73.15+041 82.21:0.05 94.22+0.11 80.17+0.15 48.49+0.15 69.19:6.86 79.41+2.19 75.95+5.33 35.80+0.89

Table 2. Node classification results on large-scale graphs.

Datasets snap-patents ogbn-arxiv ogbn-papersl00M
BGRL 24.33+0.13 71.64+0.24 58.75+0.31
CCA-SSG 25.51+0.46 71.210.20 57.31x0.18
GraphACL 26.18+0.39 71.72+0.26 59.35+0.27
SUGRL 25.1120.32 69.30+0.20 60.31+0.22
SGCL 24.91=0.46 70.99+0.09 59.96+0.37
GraphECL 27.22+0.06 71.75+0.22 61.45+0.31

representation dimension, i.e., smaller (K + 1)-th largest
o +1 to effectively bound the downstream error.

5. Experiments

Datasets. We use established benchmarks for ho-
mophilic graphs: Cora, Citeseer, Pubmed, Photo,
WikiCS, and Flickr, and for heterophilic graphs:
Cornell, Wisconsin, Texas, and Actor. Addition-
ally, we evaluate GraphECL on large-scale graphs, specif-
ically the heterophilic Snap-patents, and homophilic
Ogbn-arxiv and Ogbn-papers100M. In all datasets,
we use the standard splits used in prior studies (Zhang et al.,
2021a). The dataset details, splits, and statistics are in C.3.

Baselines. We compare GraphECL with the following
graph contrative learning methods: Graph-MLP (Hu et al.,
2021), VGAE (Kipf & Welling, 2016), DGI (Velickovié
et al., 2018), GCA (Zhu et al., 2021), SUGRL (Mo et al.,
2022), BGRL (Thakoor et al., 2021), CCA-SSG (Zhang
etal., 2021a), AF-GCL (Wang et al., 2022), AFGRL (Lee
et al., 2022), GGD (Zheng et al., 2022b), GraphACL (Xiao
et al., 2023), and SGCL (Sun et al., 2024).

Evaluation Protocol. Following (Veli¢kovi¢ et al., 2018;
Thakoor et al., 2021), we consider three downstream tasks:
node classification and graph classification. We use standard
linear-evaluation protocol, where a linear classifier is trained
on top of the frozen node or graph representations, and test
accuracy is used as a proxy for representation quality.

Transductive vs. Inductive. Evaluation of node represen-
tations obtained using unsupervised learning through trans-
ductive node classification is a prevalent practice in the GCL
literature. However, such evaluation neglects the scenarios
of inferring representations for previously unseen nodes.
Thus, it can not evaluate the real-world applicability of a
deployed model, which often requires the inference of rep-
resentations of novel nodes. Hence, following (Zhang et al.,
2021b), we consider evaluation of learned representations
under two settings: transductive (tran) and inductive (ind).
The details about these two settings are in Appendix C.4.

Setup. For a fair comparison, we employ a standard GCN
model (Kipf & Welling, 2017) as the GNN encoder for full-
batch training on small graphs. For large-scale graphs,
we use Graphsage (Hamilton et al., 2017a) with the sub-
graph sampling strategy in a mini-batch manner. For ogbn
paper datasets, we utilize all-roberta-large-v1 (Reimers &
Gurevych, 2019; Duan et al., 2023) as the feature extractor.
We conduct experiments using several random seeds and
report both the average performance and standard devia-
tion. We select the optimal hyperparameters solely based
on accuracy on the validation set. In cases where publicly
available and standardized data splits were used in the origi-
nal paper, we adopt their reported results. For baselines that
deviated from standardized data splits, we either reproduce
the results using the authors’ official code. The details of
hyperparameter search are provided in Appendix C.5.

5.1. Main Results and Comparison on both
Transductive and Inductive Settings

In this section, we evaluate the node representations from
the MLP encoder learned by our GraphECL.

Transductive Setting. We first consider the standard trans-
ductive setting in the task of node classification. We provide
the results of other tasks in Table 8 in Appendix, respectively.
Table 1 reports the average accuracy on both heterophilic
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Table 3. Node classification results in a real-world scenario with both inductive and transductive nodes. tran denotes the accuracy on seen
test transductive nodes. ind indicates the accuracy on unseen test inductive nodes.

Citeseer Pubmed Photo Actor Flickr ogbn-arxiv
Methods
tran ind tran ind tran tran ind tran ind tran ind
DGI 63.82+1.69 66.25:254  70.33x261 7048241  87.11x165 88.14x045 28.07:219 28.08+1.96 37.84x022 39.71x030 65.21x035 63.91:037
GCA 66.33:1.16  69.02:208 81.16:080 81.52:056 90.54:054 90.59:051 27.94:162 27.72+151 41.25:033  42.95:018 67.15:029 66.95:025
BGRL 67.04+144  67.62+124  78.36x041 79.55:040 87.95:068 88.30:045 29.04x1.06 29.07:065 40.78:020 41.75:0.15 68.57x031 67.11:029
SUGRL 69.16:063 71.24:106 81.07x076  80.52+1.21 89.88:064 89.11x024 28.95:1.37 28.68:1.18  40.37:020 41.33x025 69.96:039 68.21:037
CCA-SSG  68.81:1.05  70.05:270 79.76:232 80.34:232 88.60x1.95 88.77x1.85 28.52:1.11  28.06+2.60 42.16:025 43.22:027 68.34x0.17 67.72+029
GraphECL  69.96:0.10 72.87:130 81.71x091 82.47:1.00 92.18:0.15 89.42:003 36.18:1290 37.17:1.84 45.43:014 43.50x020 70.58x0.23 70.12:0.12
Table 4. Ablation studies on Flicker dataset. 103 = (S)r;i’giz:ts
Ablation Accuracy (%) — == Ogbn-papers100M
A1 w/o inter-model negative pair 42.3420.03 g 102
A2 w/o intra-model negative pair 42.34+0.01 ~
A3 w/o both types of negative pairs ~ 40.25£0.05 QEJ 101
A4 w/ only MLP encoder 44.83+0.06 o
Al & A4 42.34+0.04 100
A2 & A4 42.32+0.10
A3 & A4 41.28+0.02 10-1
BGRL CCA-SSG SUGRL GraphACL SGCL GraphECL
GraphECL 48.49+0.15 Method

and homophilic graphs. As shown in the table, across dif-
ferent datasets, GraphECL can learn representations that
outperform other methods. These results are indeed re-
markable, given that GraphECL exclusively employs the
learned MLP representations for inference without any re-
liance on input graph structures. This demonstrates that
MLP learned by GraphECL is able to capture meaningful
structural information that is beneficial and generalized to
downstream tasks. Since the inference time is much more
heavily weighted in the large-scale graphs, we compare
GraphECL with baselines in large-scale graphs in Table 2.
From the table, we can observe that our efficient GraphECL
can still achieve better performance on large-scale graphs.

Inductive Setting. To gain a better understanding of
GraphECL’s effectiveness, we evaluate the representations
in a realistic production scenario that encompasses both
transductive and inductive settings. In inductive evaluation,
we set aside certain test nodes (20%) from test nodes in
the transductive setting to create an inductive set (see Sec-
tion C.4). We adopt GraphSAGE (Hamilton et al., 2017a)
as the encoder during training for all methods. As shown
in Table 3, GraphECL still achieves superior or competi-
tive performance compared to elaborate methods employing
GNN as the inference encoder. These results support the de-
ployment of MLP learned by GraphECL as a significantly
faster model, with minimal or no performance degradation.

5.2. Inference Time Comparison on Large-Scale Graphs

To demonstrate the inference efficiency of GraphECL,
we compare the inference time on large-scale graphs with
BGRL (GNN-L2W256), CCA-SSG (GNN-L2W128), and
SUGRL (GNN-L1W128), where GNN-LiWj indicates the
method achieving the best performance with ¢ layers of
GraphSAGE with dimensions 7, as shown in Table 1. The

Figure 5. Inference time comparison of different methods on large-
scale graphs. Note that time axes are log-scaled.

MLP learned by GraphECL has 128 hidden dimensions.
Our results in Table 1 and Figure 5 indicate that GraphECL
achieves the highest accuracy while attaining significant
speedups in inference. In large-scale graphs, the MLP
learned by GraphECL is about 200x faster than CCA-SSG
with the same number of layers, which demonstrates the
superior inference efficiency of GraphECL.

5.3. Ablation Studies and Further Model Analysis

Ablation Studies. We study the effects of intra-model and
inter-model negative losses. We consider three ablations:
(A1) Removing the inter-model negative pairs; (A2) Remov-
ing the intra-model negative pairs; and (A3) Removing both
intra-model and inter-model negative pairs. We also explore
the effects of the cross-model contrastive architecture in
GraphECL by removing the asymmetric GNN-MLP archi-
tecture and consider other two ablations for GraphECL:
(A4) using only the MLP as the encoder. Table 4 lists the
results. We also find that the performance of GraphECL
suffers in the absence of negative examples, which shows
that the information provided by negative examples is cru-
cial for good generalization. Additionally, we observe that
GraphECL using only MLP as the encoder can not match
the performance of SOTA methods, although it can achieve
fast inference. These results collectively underscore the im-
portance of each of the components of GraphECL’s GNN-
MLP architecture in achieving SOTA performance on down-
stream tasks while achieving substantial inference speedup.

Effectiveness of Generalized Contrastive Loss. We main-
tain the cross-model contrastive architecture while replacing
our generalized contrastive loss with the vanilla InfoNCE
loss, as shown in Equation (3). Table 5 summarizes the
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Figure 6. (Left) The training dynamics and inference performance on Cora. (Right two) The pairwise cosine similarity of representations
for randomly sampled node pairs, one-hop neighbors, and two-hop neighbors on Cora and Actor. More results are in Appendix D.5.

Table 5. Ablation study on the effectiveness of using cross-model contrastive loss in GraphECL.

Cora Citeseer Pubmed Photo Actor
GraphECL (InfoNCE) 74.55+0.45 67.15+025 76.50+1.20 91.44+0.61 33.39+0.37
GraphECL (Generalized) 84.25:0.05 73.15:0.41 82.21+0.05 94.22+0.11 35.80+0.89

results across all six datasets, demonstrating consistent im-
provements when using the generalized contrastive loss
(Equation (4)) in our GraphECL formulation.

Size of Negative Pairs. We investigate the influence of
different number of negative pairs (i.e., M) in GraphECL
(Appendix D.3). While a proper range can lead to certain
gains (Figure 9), a small number of negative samples (e.g.,
M = 5) is enough to achieve good performance.

Dimensionality of Representation . We study the effects
of dimensionality representation (i.e., K) in Appendix D.4.
Not surprisingly, we find that larger dimensions often yield
better results, with performance leveling off or decreas-
ing when dimensionality becomes very large, for both ho-
mophilic and heterophilic graphs. This observation is consis-
tent with Theorem 4.2, showing that a larger dimension can
effectively reduce the upper bound of downstream errors.

The Parameter \. We explore the effects of the trade-off
parameter of A and message passing layers during training.
As shown in Figure 8, while a specific value can lead to
certain gains, GraphECL is robust to different choices of
the value \ on different graphs and our GraphECL is not
very sensitive to A used in training.

Training Dynamics. We also investigate the training pro-
cess of GraphECL. Figure 6 (left) shows the curves of
training losses and downstream performance using GNN and
MLP, respectively. We find that: (1) GraphECL exhibits
training stability, consistently improving performance as
training losses decrease; (2) As the training proceeds, MLP
gradually and dynamically acquires knowledge from GNN,
facilitating the dynamic exchange of information between
cross-model GNN and MLP in GraphECL.

Visualization. In addition to quantitative analysis, we vi-
sualize pairwise cosine similarities among randomly sam-
pled nodes, one-hop neighbors, and two-hop neighbor pairs

based on learned representations. Figure 6 shows that, in
the homophilic graph (i.e., Cora), nodes exhibit representa-
tions that are similar to those of their neighbors. GraphECL
enhances similarities between neighbor nodes compared to
randomly sampled node pairs, demonstrating its ability to
effectively preserve one-hop neighborhood contexts. In ad-
dition, in the heterophilic graph (i.e., Actor), GraphECL
strives to bring two-hop neighbor nodes closer together. This
observation is consistent with our analytical insights, show-
ing that GraphECL is effective at automatically capturing
regularities in graph structures beyond just homophily.

6. Conclusion

In this paper, we introduced GraphECL, a simple, novel, ef-
fective and inference-efficient GCL framework for learning
effective node representations from graph data. GraphECL
introduces a cross-model contrastive architecture and a gen-
eralized contrastive loss to train a MLP encoder. GraphECL
is faster, often by orders of magnitude, than GCL methods
using the GNN encoder, while also achieving superior per-
formance! We demonstrate theoretically that GraphECL
leverages neighborhood distribution as an inductive bias.
Extensive experiments on real-world small and large-scale
graphs demonstrate its advantages over current methods,
including the vastly superior inference efficiency and gener-
alization on both homophilic and heterophilic graphs.

While our approach relies on node attributes, assuming ac-
cess to these attributes is a modest assumption. In real-world
applications, node attributes are often high-dimensional and
rich in information. Therefore, an MLP optimized with
our GraphECL can effectively distill structural informa-
tion from the GNN even without any labels. Addressing the
challenge of dealing with graphs lacking node attributes is
a promising future direction, potentially involving an early
layer or other pre-processing network embedding methods.
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Table 6. Comparison to previous contrastive schemes on graphs. Our approach does not rely on the invariant assumption that the
augmentation can preserve the semantic nature of samples or the homophily assumption that connected nodes have similar representations.

Contrastive Schemes Invariant Assumption Homophily Assumption Task Effective Inference Efficient
GCL with Augmentations v X 4 X
Graph-MLP X v X v
MLP-Augmented GCL 4 X X v
Our GraphECL X X v v

A. Additional Related Work

In this section, we provide a detailed comparison of characteristics with previous contrastive schemes on graphs in Table 6.

Comparisons with GCL methods with augmentation (Trivedi et al., 2022; Velickovi¢ et al., 2018; Zhu et al., 2021; You
et al., 2020; 2022; Suresh et al., 2021; Xia et al., 2022; Meng & Liu, 2023; Guo et al., 2023): This contrastive learning
scheme relies on graph augmentations and is built based on the invariant assumption that the augmentation can preserve the
semantic nature of samples, i.e., the augmented samples have invariant semantic labels with the original ones. This scheme
requires a GNN as the encoder to achieve good performance, which is computation-intensive during inference. However,
our GraphECL is not based on graph augmentations but directly captures the 1-hop neighborhood distribution.

Comparisons with Graph-MLP (Yang et al., 2016; Hu et al., 2021; Yang et al., 2021b; Liu et al., 2020): Despite its inference
efficiency due to the exclusive use of MLP, this approach exhibits significantly lower performance compared to GCL, as
depicted in Figure 1. Moreover, this scheme over-emphasizes homophily (You et al., 2020; Xiao et al., 2022), making
it difficult to generalize to graphs with heterophily (Liu et al., 2023; Xiao et al., 2022; Zheng et al., 2022a). In contrast,
GraphECL enjoys good downstream performance with fast inference speed for both homophilic and heterophilic graphs.

Comparisons with MLP-augmented GCL: This method mentioned in Section 4.1 also relies on the invariant assumption that
augmentation can preserve the semantic nature of samples, i.e., the augmented samples have invariant semantic labels with
the original ones. In addition, it suffers from significant performance degradation on downstream tasks when using MLP
encoder for inference as shown in the results in Section 4.1.

B. Proofs
B.1. Proofs of Theorem 4.1

Theorem 4.1. The learning dynamics w.r.t the MLP encoder f)y with the generalized contrastive loss (A = 1) in Equation (4)
saturates when the true normalized adjacency and the estimated normalized affinity matrices agree: D™1A = DA,
which implies that, for Vv, u € V, we have:

exp(fu (v) " fa(u)/T)

Pole o) = Prled o) = 5= e (0) T () /)

O]

where Py, (u | v) is the 1-hop neighborhood distribution (i.e., the v-th row of the normalized adjacency matrix) and Py (u | v)
is the estimated neighborhood distribution.

Proof. We first show that minimizing GraphECL objective with A = 1 is approximately to minimizing the losses of the
positive and negative pairs on MLP representations.

1 1 exp(fu(v) " fa(u)/7)
L = ——0 lo 3
FET Y ;, () ue;@) ® ey (W) fa(v)/) +exp(far (v) fa(v)/7)
> LS Y @) e+ log S exp(fu ()T fa(T)/m)
|V‘ vEV \J\/’(v)| uweN (v) v EV
1 1 1
= @) faw)/mt+— > log exp(far ()T fa(w™)/7). )
VI ;V W ()] ue%) VI ; U_%
Lpos Lneg

Then, we consider the unfolded iterations of descent steps on MLP representation fy;(v). Specifically, we first consider
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taking the derivatives of £, and L4 on far(v):

aﬁpos _ 6£neq o €Xp fIW (U fG('Ui)/T)fG(Ui)/T 9
i) = VT L2 1 B -5 2 T ey e ) Jolo ®

As we denote representation matrix as M with f;(v) as the v-th row, the gradients in the Equation (9) can be written as the
following matrix forms for simplicity and clarity:
0Lpos 11 OLneg 11

=—— "D AG, = —-D'AG 10
oM 7 oM T ! (19)

where A = exp(MG ' /7) is the affinity matrix based on feature similarity. D = deg(A) is the diagonal matrix, whose
element in the v-th row and v-th column is the sum of the v-th row of A. In order to reduce the losses on positive pairs and
negative pairs, we take a step by performing a gradient descent, which is to update MLP representations M as follows:

o0 Lpo: + Luco) _yp) @ 514 poa)a, (an

MDD — 0
oM T

where M(“+1) and M(®) denote the representations before and after the update, respectively, and o > 0 is the step size of the
gradient descent. Note that the constant 1/ |Vl has been absorbed in . We can easily notice the updating in Equation (11)
reveals the global minimum of the learning: D~!A = D~ A. Combining this with Equation (8) completes the proof. [

B.2. Proofs of Theorem 4.2

To prove Theorem 4.2, we first present the following lemma:

Lemma B.1. (Theorem B.3 (page 32) in (HaoChen et al., 2021)). Let f* be a minimizer of the spectral contrastive loss:
Lsor =) pex =2 Waar - f@)Tf(@) + wewy - (f(2)7 f(2'))?, where w, o = w(z)w(2'|z) is the probability of a
random positive pair being (x, x') while w,, is the probability of a randomly selected data point being x, we have:

£ 2 min Y we - Lgpw (@) £ y(@)] < 2 12)

rzeEX )\k+1

where 9 =3 oy Wae - 1[j(x) # §(a')] and W is the downstream linear classifier. A1 is the (K + 1)-th smallest

eigenvalues of the matrix: T — D™Y/2PD /2 where P € RN*N is a symmetric probability matrix with P, = W, and
Dp € RV*N is a diagonal matrix with (Dp )3z = ws.

We also introduce the following Lemma in (HaoChen et al., 2021) which asserts that multiplying the embedding matrix on
the right by an invertible matrix does not affect the linear probing error.

Lemma B.2. (Lemma 3.1 (page 8) in (HaoChen et al., 2021)). Consider an embedding matrix F € RN** and a linear
classifier B € R¥*". Let D GNRN *N be a diagonal matrix with positive diagonal entries and Q € REXF be an invertible
matrix. Then, for any matrix ¥ = D - F - Q, the linear classifier B = Q~'B on F has the same prediction as B on F.
Thus, we have E(F) = E(F).

Intuitively, this Lemma suggests that although there might not be a single unique optimal solution, when we employ the
representation within the context of linear probing, the linear classifier can efficiently handle variations caused by affine
transformations. Thus, it produces identical classification errors across different variants when operating in optimal settings.

Theorem 4.2. Let fr, be the global minimum of generalized contrastive loss (A = 1) in Equation (4) and y(v) denote the
label of v. o1 > --- > o are the eigenvalues with descending order of the normalized adjacency matrix D~'A. Then, the
linear probing error of i, is upper-bounded by:

(i) £ min 0 S Llapw () £ y0)) € 1 (13)

veV 1= O-K+1
where a = ﬁ Y ovey m > uen(w) Ly(v) = y(u)] and K is the dimension of the representation.
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Proof. Based on Equation (8), we further have the following:

1 1 . .
Lrcr, > mg(m > () fe(w)/T+log Y exp(far (v)" fa(v7)/7)).

uweN (v) vTEV

IVI Z(IN )ugf:(v fM(u)ch(u)/THog;G:V exp(fu (v)|;‘fc(v‘)/f)|v‘)
= W ;(W u@zv:@) —far(v)" fe(u) /7 + log v_z;v exp(fu (v)|;‘fa(v’)/r) log V)
L M ; th ; gv:( ) feu) /T Hogv% exp(fu (v)|;‘fc(v7)/7))
> WZ(W e%:(v)_fM( ) fo(u)/m+ 2} i @) fo(™)/m) (14)
=1 X w2, et )/T+\V| M;}vzevm o)/
> m; Wt}” ue%:(v) —fu(0)" fa(w) \VI \VI ;}EE:V @) fa(w )2/ 1)
- wluesztvnue% 2 o)+ MUEZV 3 ()7 So(w))* & Lo (16

where the symbol = indicates equality up to a multiplicative and/or additive constant. Here, we utilize Jensen’s inequality in
(14). Inequality (15) holds because f;(v) and fi(u) are £ normalized, and we assume the embedding heads consisting of
last-layer ReLU neural networks. We define the two metrlcs M and G. Equatlon (16) holds if we set the temperature of
positive pairs is twice to it of negative pairs. Here (M |V|_1/2fM( )and (G),, = |V|_1/2fG (u). Then. the loss in
Equation (16) is equivalent to the low-rank asymmetric matrlx factorization loss up to a constant:

Lavr = |[D'A = MG || = Leross + const an

According to Eckart—Young—Mirsky theorem (Eckart & Young, 1936), the optimal solution M* and G* of Lamr can be
respectively represented as follows:

M*(G*)T = U deg(o,...,06)(VE)T (18)

where we denote D"'AUXV T as the spectral decomposition of D™YA. (oy,...,0) are the K-largest eigenvalue
of D~'A. The k-th column of UK ¢ RIVI*XK i the corresponding elgenvector of the k-th largest eigenvalue and
V& € RIVI*K is a unitary matrix. Then the optimal solution M* and G* can be represented as follows:

M* = UXBR, G*=VX®deg(o1,...,06)B'R, (19)
where R € R *X is a unitary matrix and B is an invertible diagonal matrix. Since (M), = \V|_1/ ®far(v) and
(G)y = |V|_1/2fg(u), we have:

far) = VI"(UF)BR) T, ) = VIT2((VE)udeg(on,.,0x)BT'R) . (20)

Similar, if we consider optimizing following uni-model spectral contrastive loss:

S —2fm ()" fur(u + 5 MZ > (@) far(v))?. @1

ueN (v) vEV y— eV

1 1
[funi = Ny
VI 2 V0

The optimal solution f ¢ of this uni-model spectral contrastive loss can be represented as follow:

Frr(@) = VY2 (UL, ) oBuniRuni) - (22)
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Since the uni-model spectral contrastive loss in Equation (21) also decomposes the matrix D=1 A, the UX . = U¥. As B,

R, B..i, Ryn; are invertible matrices, and the product of the invertible matrices is still invertible, we have the following:
frr) = fu(v)T, (23)

where T = (Buni) ™' (Runs) ' BR. With Lemma B.2, we establish that £(f3,) = £(f%,). Additionally, we observe that
the loss in Equation (21) shares the same form as the spectral contrastive loss when we define \VI D 'A=Aie,w; = ﬁ

and w,/|, = (D7*A), o I’'s worth noting that D~ A = D~1/2AD~!/2 forms a symmetric matrix due to our random
sampling process, which ensures that the same neighbors are sampled for each central node, approximately resulting in
equal node degrees. Thus, with Lemma B.1, we can obtain the following:

E(far) = E(fir) & WIZ lg5-w (v) # y(v)] < ——2 24)

~1-0
veEY K41

where o = 1/|V[>, <y W > uen(w) Ly(v) = y(u)] and ok 4y is the (K + 1)-th largest singular value of the
normalized adjacency matrix D~ A. Given the above, the proof is finished. O

C. Experimental Details

Table 7. Statistics of Datasets.
Cora Citeseer Pubmed Photo Flickr  WikiCS  Actor Wisconsin Cornell Texas snap-patents ogbn-arxiv ogbn-papers100M

#Nodes 2,708 3,327 19,717 7,650 89,250 11,701 7,600 251 183 183 2,923,922 169,343 111,059,956
#Edges 5,278 4,552 44324 119,081 899,756 216,123 33,544 466 295 309 13,975,788 1,166,243 1,615,685,872
#Classes 7 6 3 8 7 10 5 5 5 5 5 40 172
H(G) 0.83 0.71 0.79 0.85 0.32 0.65 0.22 0.16 0.11 0.06 0.22 0.66 0.54
S(G) 0.89 0.81 0.87 0.91 0.33 0.75 0.68 0.42 0.40 0.79 0.29 0.79 0.71

C.1. One-hop Node Homophily Level

We use the node homophily ratio to measure the one-hop neighbor homophily of the graph (Pei et al., 2019). Specifically,
the node homophily ratio H(G) can be computed as follows:

i Z Z L(y(v) = y(u)). (25)

uEN(v)

C.2. One-hop Neighborhood Context Similarity

To validate the assumption that nodes belonging to an identical semantic category are likely to exhibit similar patterns in
their one-hop neighborhoods, even in heterophilic graphs, we examine whether nodes with the same label demonstrate
similar distributions of labels in their neighborhoods regardless of homophily. We evaluate this characteristic by computing
the class neighborhood similarity (Ma et al., 2021), which is defined as:

s(m,m’) = _ Z cos(d(u),d(v)), (26)

Vil V| UEVm wEV, ./

where M denotes the total number of classes, V,,, represents the set of nodes classified as m, and d(u) is the empirical
histogram of the labels of node « ’s neighbors across M classes. The cosine similarity function is represented by cos(-).
This metric for cross-class neighborhood similarity quantifies the differences in neighborhood distributions between varying
classes. When m = m/, s (m, m’) determines the intra-class similarity. To quantify the neighborhood similarity, we take
the average of the intra-class similarities across all classes:

N}
= Z Ms(m,m). (27)

m=1

If nodes with identical labels exhibit similar neighborhood distributions, then the class neighborhood similarity S(G) will be
high. Table 7 shows that heterophilic graphs exhibit stronger neighborhood similarity, even when the homophily ratio is low.
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C.3. Datasets Details

The statistics of the benchmark datasets, including homophily levels and 1-hop neighborhood similarities, are given in Table 7.
All datasets and public splits can found in PyTorch Geometric: https://pytorch—-geometric.readthedocs.
io/en/latest/modules/datasets.html.

Cora, Citeseer, and Pubmed. (Yang et al., 2016) These datasets serve as some of the most prevalent benchmarks for node
classification. Each one constitutes a graph representing citations, with nodes symbolizing documents and edges depicting
citation relationships between them. The classification of each node is determined by the respective research field. Features
of the nodes are derived from a bag-of-words model applied to their abstracts. We utilize the public split: a fixed 20 nodes
from each class for training and another distinct set of 500 and 1,000 nodes for validation and testing, respectively.

WikiCS. (Mernyei & Cangea, 2020) This graph consists of nodes corresponding to Computer Science articles, with
edges based on hyperlinks and 10 classes representing different branches of the field. We adopt a 10/10/80% train-
ing/validation/testing public split provided by PyTorch Geometric.

Photo. (McAuley et al., 2015) This graph originates from the Amazon co-purchase graph (McAuley et al., 2015), where
nodes denote products and edges connect pairs of items often bought together. In the Photo dataset, products are categorized
into eight classes based on their category, and the node features are represented by a bag-of-words model of the product’s
reviews. We employ a public split of the nodes into training, validation, and testing sets, following a 10/10/80% ratio as
described in (Thakoor et al., 2021).

Flickr. (Zeng et al., 2020) In this graph, each node symbolizes an individual image uploaded to Flickr. An edge is established
between the nodes of two images if they share certain attributes, such as geographic location, gallery, or user comments. The
node features are represented by a 500-dimensional bag-of-words model provided by NUS-WIDE. Regarding labels, we
examined the 81 tags assigned to each image and manually consolidated them into 7 distinct classes, with each image falling
into one of these categories. We use a random node division method, adhering to a 50/25/25% split for training, validation,
and testing sets, following (Zeng et al., 2020).

Cornell, Wisconsin and Texas. (Pei et al., 2019) These are networks of webpages gathered from the computer science
departments of various universities by Carnegie Mellon University. In each network, the nodes represent individual
webpages, while the edges signify hyperlinks between them. The features of the nodes are depicted using bag-of-words
representations of the webpages. The objective is to categorize each node into one of five classes.

Actor. (Pei et al., 2019) This is a subgraph induced solely by actors, derived from the broader film-director-actor-writer
network. In this subgraph, nodes represent actors, while edges denote the co-occurrence of two nodes on the same Wikipedia
page. The features of the nodes are constituted by keywords found on Wikipedia pages. Labels are categorized into five
groups based on the content of the actor’s corresponding Wikipedia page.

For Texas, Wisconsin, Cornell, and Actor, we use the raw data provided by Geom-GCN (Pei et al., 2019) with the standard
fixed 10-fold split for our experiment. In addition to the above graphs, we also conduct experiments on the following three
large-scale graphs: snap-patents, ogbn-arxiv and ogbn-papers100M,

Snap-patents. (Lim et al., 2021) The Snap-patents dataset encompasses a collection of utility patents from the United States,
where each node represents a patent, and edges are formed between patents that cite one another. The features of the nodes
are extracted from the metadata of the patents. In this work, we introduce a task aiming to predict the time at which a patent
was granted, which is categorized into five classes. We used the unprocessed data from (Lim et al., 2021), employing the
standard 10-fold split for our experimental setup.

Ogbn-arxiv and Ogbn-papers100M. (Hu et al., 2020) These two large-scale datasets are collected by Hu et al. (2020).
Ogbn-arxiv and Ogbn-papers100M are citation networks where each node represents a paper. The corresponding features
consist of titles and abstracts, and node labels are the primary categories of the papers (Chien et al., 2021). We used the
public split ratio provided in the OGB benchmark.

C.4. Transductive and Inductive Settings for Unsupervised Representation Learning

Transductive Setting. To fully evaluate the model, we consider two settings: transductive (tran) and inductive (ind). In
the transductive setting, our evaluation consists of two phases. Initially, we pre-train models on graph G, followed by the
generation of representations for all nodes within the graph, denoted as z, for v € V. Subsequently, we employ a linear
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Table 8. Graph classification results (%) on MUTAG and PROTEINS
Method  Graph-MLP VGAE CCA-SSG BGRL GraphECL

MUTAG 75.842.0 84.4+0.6 85.8+0.4 86.8+x1.3 88.5+1.2
PROTEINS  71.1x1.5 74.0+0.5 73.1x0.6 73.5+0.7 75.2+0.3

classifier trained in fixed learned representations using labeled data Z” and Y'*. Finally, we assess the remaining inferred
representations Z Y with the corresponding labels YY.

Inductive Setting. In the unsupervised inductive setting, we randomly select 20% of the nodes as a test set for inductive
evaluation. Specifically, we partition the unlabeled nodes VY into two separate subsets: observed and inductive (i.e.,
VU = YT uVY). This leads to the creation of three distinct graphs: G = G* U GY U GY,, where no nodes are
shared between G~ U GY and GY,. Importantly, during training, we remove the edges that connect G U GY and GY,.
Upon completing the self-supervised pretraining in G U g([){,s, we generate representations for all nodes. Consequently,
the learned representations and associated labels are partitioned into three separate sets: Z = Z* U ZY U ZY, and
Yy =Y"uU YZ,S U Yﬁd. A downstream classifier is then trained on the learned representations Z” and lables Y'”. Finally,
we evaluate the remaining representations Z and Z{; in the downstream classifier with labels Y, . and Y'{;, respectively.

C.5. Setup and Hyper-parameter Settings

We utilized the official implementations publicly released by the authors for the baselines. To ensure a fair comparison, we
conducted a grid search to determine the optimal hyperparameters. Our experiments were conducted on a machine equipped
with NVIDIA RTX A100 GPUs with 80GB memory. For all experiments, we employed the Adam optimizer (Kingma
& Ba, 2014). A small-scale grid search was used to select the best hyperparameters for all methods. Specifically, for our
approach, we explored the following hyperparameter ranges: A from {0.001, 0.01, 0.1, 0.5, 1}, K from {256, 512, 1024,
2048, 4096}, T from {0.5, 0.75, 0.99, 1}, and the number of negative pairs M from {1, 5, 10} when negative sampling was
used. Furthermore, we tuned the learning rate from the set {1e-3, 5e-3, le-4} and the weight decay from the set {0, le-4,
3e-4, 1e-6}. The selection of the optimal hyperparameter configuration was based on the accuracy on the validation set.

D. Additional Experimental Results
D.1. Graph Classification Performance

For the graph classification task, we can use a non-parameterized graph pooling (readout) function, such as MeanPooling,
to obtain the graph-level representation. In our experiments, we focus on graph classification using two benchmarks:
PROTEINS and MUTAG. We follow the same experimental setup as for GraphCL (You et al., 2020). The results are
presented in Table 8. From the table, we observe that our GraphECL performs well on the graph classification task and
achieves better performance compared to the baselines. This observation, coupled with the node classification results,
underscores the effectiveness of GraphECL in acquiring more expressive and resilient node representations for a variety of
downstream tasks. These findings further validate that modeling one-hop neighborhood patterns confers advantages on
downstream tasks on real-world graphs with varying degrees of homophily.

D.2. Performance on Long Range Graph Benchmark

To further evaluate the effectiveness of GraphECL in capturing inter-neighborhood information, we also evaluate it on Long
Range Graph Benchmark (Dwivedi et al., 2022). Specifically, we compare GraphECL with two graph contrastive learning
methods, BGRL and CCA-SSG, on PascalVOC-SP (Dwivedi et al., 2022) in Table 9. For all methods, we employ the GCN
as the backbone. From the table below, we can observe that GraphECL performs well in Pascal VOC-SP, achieving better
performance compared to the baselines. This further strengthens GraphECL on capturing inter-neighborhood information.

D.3. The Effect of Size of Negative Pairs

We conducted a sweep over the size of negative samples, denoted as M, to study its impact on performance. We varied M
across the values 1, 5, 10. For each value M, we first learned node representations and subsequently applied these learned
representations to node classification. The results of this experiment are shown in Figure 9. From the figure, we observe
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Figure 7. The effect of the dimensions of representations.
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that even a small number of negative samples, such as M = b, is sufficient to achieve good performance across all graphs,

demonstrating that GraphECL is particularly robust to reduced negative pairs.

D.4. The Effect of Representation Dimension

We investigate the impact of different dimensions of representations. Figures 7 show the results of node classification with
varying dimensions on homophilic and heterophilic graphs. From the figure, we can observe that larger dimensions often
yield better results for both homophilic and heterophilic graphs. This observation is consistent with Theorem 4.2, which
shows that a larger dimension can effectively reduce the upper bound of downstream errors. Training with extremely large
dimensions for some graphs may lead to a slight drop of performance, as GraphECL may suffer from the over-fitting issue.

Table 9. The performance on the long-range graph benchmark PascalVOC-SP.
Method BGRL CCA-SSG GraphECL
Pascal VOC-SP 0.1356+0.0087 0.1437+0.0095 0.1588+0.0091
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Figure 10. The pair-wise cosine similarity of representations on randomly sampled node pairs, one-hop neighbors and two-hop neighbors.

D.5. More Similarity Histograms of Representations

Figure 10 presents additional results on representation similarity. As shown in Figure 10, we notice that randomly sampled
node pairs are more easily distinguishable from one-hop and two-hop neighbors based on representation similarity for
homophilic graphs. This demonstration underscores that our GraphECL model effectively captures the semantic meaning
of nodes, encouraging the separation of semantically dissimilar nodes. Furthermore, we observe that the two-hop similarities
in heterophilic graphs are significantly larger than those in homophilic graphs. This observation provides an explanation for
GraphECL’s strong performance, as it effectively captures the 1-hop structural information, and it emphasizes homophily.
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