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ABSTRACT 

To increase the energy utilization of a pMUT array, an 
advanced design scheme for asymmetrical piezoelectric 
micromachined ultrasonic transducers (pMUTs) has been 
developed with focused acoustic pressure via the deep 
deterministic policy gradient (DDPG) algorithm. Three 
distinctive accomplishments have been achieved in: 1) a 
highly-efficient interface platform between Python and 
COMSOL for asymmetry factor (AF) simulations; 2) fast 
freeform pMUT designs without the initial dataset; and 3) 
superior designs with increased 34% pressure outputs for 
potential applications such as contact-less haptics. As such, 
the proposed design scheme could be applied to other 
MEMS devices to improve system efficiency. 
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INTRODUCTION 

PMUT arrays have shown promising applications in 
various fields, such as 3D-ranging [1], haptic interfaces [2], 
fingerprint sensing [3], … etc. In the state-of-art pMUT 

designs, identically PMUT elements are arranged in an 
array to enhance the acoustic pressure profile. This setup 
often results in low acoustic pressue without using control 
mechanisms such as beam forming to assist and focus the 
outputs. In large scale systems, bulky acoustic transducers 
are often placed on a curved surface as an array format to 
efficiently use the acoustic pressure distributions in the 3D 
space. This scheme is generally not possible for pMUTs 
with small form-factors on a flat silicon wafer. This work 
proposes to change the shape of individual pMUT elements 
in an array setup to generate asymmetrical pressure outputs 
and to focus the acoustic energy for enhanced outputs. 

Previously, machine learning techniques have shown 
reliable and efficient results in the design of Micro-Electro-
Mechanical Systems (MEMS) [4], especially in geometric-
related problems. Supervised learning, in particular, has 
been widely used by collecting large amounts of data to 
train a predictive model. However, even with a perfect 
predictive model, it is impossible to perform inverse design 
or design optimization because the model can only predict 
performances based on a given design geometry and it 
cannot generate specific geometries with desired properties. 
To address this issue, the supervised learning scheme is 
combined with other optimization algorithms, such as the 
genetic algorithms [5]. While simulations are convenient to 

Figure 1: Overall flow chart of the proposed optimization framework. In each episode, the geometry 
will be initialized as a circle at first. The policy will suggest an action to change the feature according 
to the current state. The new geometry will be evaluated by FEA to calculate the asymmetry factor. By 
adding the current and new geometry, action, and reward to the replay buffer for training, the Q net 
for reward estimation and the policy net will be updated for better accuracy. 



generate data, it is time-consuming to randomly generate a 
dense dataset in the entire design space. For example, it is 
unnecessary to learn data pointsfar from desired properties. 
Deep reinforcement learning (DRL) is a widely utilized 
technique in AI as it offers better options for inverse design 
problems. Unlike supervised learning, the agent in DRL 
can access the simulation environment during the training 
process, allowing it to find the most useful data points. By 
exploring and training simultaneously, a policy for the best 
objective is quickly established to eliminate the need to 
combine other optimization methods. 

In this study, we present a novel deep reinforcement 
learning (DRL) framework that utilizes the deep 
deterministic policy gradient (DDPG) algorithm [6] for the 
design optimization of highly asymmetrical pMUTs. This 
proposed framework requires no prior knowledge and can 
iteratively interact with COMSOL simulation environment 
to generate new data points automatically. An interface 
platform has been constructed between Python and 
COMSOL to enable the seamless operation of the process. 
After about 250 episodes of exploration and training, a 
well-behaved feature-changing policy is established, 
resulting in well-performed designs. This framework offers 
a powerful alternative to enhance the optimization process, 
opening up new avenues for MEMS designs. 

 
SYSTEM ARCHITECTURE 

Fig. 1 depicts the fully automated and DRL-based 
optimization flow chart. Each optimization cycle begins 
with a circular shape pMUT and progresses by sequentially 
adjusting the coordinates of key points to determine the 
diaphragm shape. The closed interpolation curve of all key 
points guarantees smoothness, and all coordinates of key 
points are located in a continuous feasible domain, 
requiring continuous actions to represent key point changes. 
To accomplish non-discrete geometric feature changes, 
two deep neural networks, a policy network, and a critic 
network (Q network), are used synergistically. The Q-value 
predicted by the critic network estimates the final 
asymmetry factor (AF) after each optimization episode to 
give a certain pair of action and state. In discrete problems, 
the best action is easily determined by comparing Q-values. 
For continuous problems, however, infinite possibilities 
make direct comparison impossible. The policy network 
resolves this by taking the current state as input and 
outputting the suggested feature-changing action, 
providing optimal action choices throughout the space. 
Each step is determined by the policy net's feature-
changing policy. The reward for each step, representing the 
variation of the AF, is measured via finite element analysis 
(FEA) in COMSOL. The FEA involved two distinct steps: 
the resonance frequency detection step and the acoustic 
field simulation step. To ensure that pMUTs with different 
shapes have the same resonance frequency (50 kHz in this 
study), their shapes will be scaled based on the original 
resonance frequency obtained from the first step. 
Subsequently, at the desired frequency, a multi-physical 
simulation will be performed to analyze the AF. The 
current and new geometry, action, and reward are collected 
in the replay buffer to update the critic network and policy 
network with stochastic gradient descent (SGD) for more 
accurate long-term reward predictions. After enough 

training steps, the optimal pMUT design is obtained when 
the policy net and critic net make the best choice and 
accurately estimate the reward.  

Fig. 2A illustrates a design example of the pMUT 
diaphragm composed of three layers: the thin SiO2 layer 
(green), the thick inactive Si layer (red), and the active 
piezoelectric AlN layer (blue). This diaphragm functions as 
the vibrational structure defined by the backside etching 
process, as shown in the cross-sectional view in Fig. 2B. 
The boundaries of the three layers are fixed to the silicon 
substrarte. PMUTs with complex membrane shapes can be 
designed to produce different vibrational patterns, such as 
an example shown in Fig. 2C. The deformation of the 
diaphragm follows its shape as a heart-like contour in this 
case and this asymmetrical design will generate a resulting 
asymmetrical acoustic field to exert stronger pressure in 
certain directions. The acoustic field of this heart-like 
pMUT structure has been simulated in COMSOL. The 
sound pressure level (SPL) distribution 0.1 m away from 
the diaphragm surface is demonstrated in Fig. 2E. In this 
case, the SPL contour exhibits the egg-like shape with 
higher pressure outputs in the upper half. To quantify this 
result, the average SPL difference between the upper and 

Figure 2: A) Geometry of a representative pMUT. B) 
cross sectional schematic of the pMUT. The thickness for 
the silicon dioxide layer, silicon layer and aluminum 
nitride layer is 1 𝜇𝑚, 5 𝜇𝑚 and 2 𝜇𝑚, respectively. C) 
The mode shape of a representative pMUT. D) The 
arrangement of different pMUTs in an array. The 
peripheral pMUTs result in the asymmetrical pressure 
output to increase the energy utilization. E) The sound 
pressure level of the representative pMUT. The plane is 
0.1 m above the pMUT. 



lower halves of the external-field circle far away from the 
pMUT is defined as the asymmetry factor (AF). Since the 
directionality in the far-field barely changes with distance, 
the radius of the external-field circle is not critical. In this 
work, the radius is fixed at 0.1 m for each pMUT. Due to 
the non-uniform energy distribution generated by the 
asymmetrical pMUT designs, the output pressure can be 
analyzed accordingly. When the target focal point of the 
ultrasound pressure is not directly above a single pMUT in 
an array setup, as shown in Fig. 2D, the asymmetrical 
pMUT designs can increase energy utilization as compared 
to that of using only circular-shape pMUTs without using 
the conventional scheme of phase differences of individual 
pMUTs for beam-forming operaitons. Specifically in this 
case, the heart-like pMUTs can increase the energy 
utilization by ~8% as compared to that of the same array 
by using only circular-shape pMUTs. Specifically, for a 
large array structure composed of only circular-shape 
pMUTs, the peripheral ones have low contributions to the 
focal point pressure. Therefore, it is desirable to construct 
asymmetrical  pMUTs in the array format with large AF to 
increase the energy utilization.  
 
RESULTS AND DISCUSSION 

To validate the credibility of the simulation results, the 
parameters are set to be identical to those in a prior work 
with comparison results in Table 1. A strong agreement is 
observed between the simulation and experimental data as 
the validation of our simulations. 
 
Table 1: Simulated and experimental SPL data of an AlN 
circular pMUT for validation. [7] 

 Experimental Results Simulation in this work 
SPL with 2 V 

Voltage 
Amplitude 

(dB) 

107.0 107.5 

SPL with 4 V 
Voltage 

Amplitude 
(dB) 

113.1 113.5 

 
The learning curve in Fig. 3 exhibits progressive 

increases in AF as the training process advances. To 
prevent the algorithm being trapped in local minimums, 
noises are introduced in accordance with the decaying 
exploration parameter, which compels the policy to study 

unexplored designs. Additionally, during the initial 20 
episodes, the policy solely performs exploration without 
learning to enrich the relay buffer and establish a relatively 
random design space. Afterward, the policy learns and 
explores simultaneously to comprehend the design scheme. 
After 50 episodes, exceptional designs with AF above 1 are 
discovered. As the level of randomness decreases, the 
agent converges to a neighborhood of the optimal design.  

Fig. 4 shows the sound pressure level (SPL) 
distributions on the external circle for the optimized pMUT 
with an AF of 1.102 and that of a circular pMUT. The SPL 
results have been normalized to ensure comparability, and 
a strong asymmetry is observed for the optimized design. 
The strongest SPL at 270° is 0.68 dB, while the weakest 
SPL at 90° is -0.89 dB, resulting in a difference of 1.57 dB 
or a pressure difference of 34%. On average, the SPL 
difference between the upper and lower halves of the 
external circle is 1.102 dB or a pressure difference of 14%. 
In other words, there is 30% more energy distributed in the 
lower half of the circle than that in the upper half. 

Figure 3: Asymmetry factors with respect to the number 
of episodes. In the initial 20 episodes, the agent randomly 
explores the design space. After that, the training and 
exploration proceed simulataneously. With 50 episodes, 
a design with AF over 1 is found. 

Figure 4: The normalized SPL configurations after the 
optimization process (blue line) based on a circular-
shape pMUT (red line) at the external-field circle. The 
circular-shape pMUT has the fixed SPL at 0 dB for all 
directions. In contrast, the SPL generated by the 
optimized pMUT shows strong asymmetry with a 
strongest SPL at 270° for 0.68 dB, and a weakest SPL 
at 90° for -0.89 dB. 

Figure 5: Asymmetry factor distributions of the initial 
and final 50 episodes. A significant difference can be 
observed, showing the performance of the optimization 
process. 



Fig. 5 depicts the AF distributions for the starting 
designs of the initial 50 episodes and the optimized designs 
for the last 50 episodes. The starting designs exhibit a 
relatively uniform distribution, with a large number of 
designs in the region below the AF value of 0.4. The lowest 
AF among the starting designs is 0.003, indicating almost 
no asymmetry. In contrast, the optimized designs show a 
significant improvement, with the lowest AF value of 0.45. 
This indicates that the feature-changing policy is effective 
in finding designs with high AF. On average, the optimized 
designs have an AF of 0.642, or a ~22% increase compared 
to that of starting designs with an average AF of 0.525.  

Fig. 6A lists representative optimized design. Notably, 
the spindle-like shape has a significantly large AF, which 
can be qualitatively explained. First, the spindle-like shape 
undergoes horizontal shrinkage and vertical extension, 
concentrating most of the energy near the symmetrical axis. 
Second, the thin tip at the bottom serves as an effective 
boundary to limit the output from this part. In contrast, the 
inferior designs in Fig. 6B differ from the optimized 
designs. Some of them have symmetrical shapes, while 
others have similar dimensions in vertical and horizontal 
directions. These comparisons are important for future 
designing guidances.  

 
CONCLUSION 

This study utilizes a novel deep reinforcement learning 
(DRL)-based framework to design asymmetrical pMUTs 
in the array setup for optimize acoustic pressure outputs. 
The pMUT geometry is transformed into coordinates of 
key points, which are used as the input to the neural 
network. At each step, the policy suggests a feature-
changing action based on the current geometry. The newly 
generated design is then analyzed using FEA to evaluate its 
performance, which serves as training data to update the 
policy. Through adequate exploration and training, the 
policy learns to generate good designs by comprehending 
the rules. The optimized pMUT designs show significant 
improvement in acoustic output utilizations for potential 
pMUT array applications. Therefore, the proposed DRL-
based framework offers an effective alternative for MEMS 
design problems to significantly reduce the time required 
for the data preparation and numerical simulation process. 
Future works may use more advanced algorithms, such as 
the Soft Actor-Critic (SAC) [8] or Proximal Policy 

Optimization (PPO) [9] to further enhance the efficiency. 
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Figure 6: A) Optimized geometric patterns. B) Inferior 
geometric patterns. A spindle-like shape is observed in 
all optimized designs, which can be used as an important 
design guidance. 


