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ABSTRACT

To increase the energy utilization of a pMUT array, an
advanced design scheme for asymmetrical piezoelectric
micromachined ultrasonic transducers (pMUTs) has been
developed with focused acoustic pressure via the deep
deterministic policy gradient (DDPG) algorithm. Three
distinctive accomplishments have been achieved in: 1) a
highly-efficient interface platform between Python and
COMSOL for asymmetry factor (AF) simulations; 2) fast
freeform pMUT designs without the initial dataset; and 3)
superior designs with increased 34% pressure outputs for
potential applications such as contact-less haptics. As such,
the proposed design scheme could be applied to other
MEMS devices to improve system efficiency.
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INTRODUCTION

PMUT arrays have shown promising applications in
various fields, such as 3D-ranging [1], haptic interfaces [2],
fingerprint sensing [3], ... etc. In the state-of-art pMUT

designs, identically PMUT elements are arranged in an
array to enhance the acoustic pressure profile. This setup
often results in low acoustic pressue without using control
mechanisms such as beam forming to assist and focus the
outputs. In large scale systems, bulky acoustic transducers
are often placed on a curved surface as an array format to
efficiently use the acoustic pressure distributions in the 3D
space. This scheme is generally not possible for pMUTs
with small form-factors on a flat silicon wafer. This work
proposes to change the shape of individual pMUT elements
in an array setup to generate asymmetrical pressure outputs
and to focus the acoustic energy for enhanced outputs.
Previously, machine learning techniques have shown
reliable and efficient results in the design of Micro-Electro-
Mechanical Systems (MEMS) [4], especially in geometric-
related problems. Supervised learning, in particular, has
been widely used by collecting large amounts of data to
train a predictive model. However, even with a perfect
predictive model, it is impossible to perform inverse design
or design optimization because the model can only predict
performances based on a given design geometry and it
cannot generate specific geometries with desired properties.
To address this issue, the supervised learning scheme is
combined with other optimization algorithms, such as the
genetic algorithms [5]. While simulations are convenient to
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Figure 1: Overall flow chart of the proposed optimization framework. In each episode, the geometry
will be initialized as a circle at first. The policy will suggest an action to change the feature according
to the current state. The new geometry will be evaluated by FEA to calculate the asymmetry factor. By
adding the current and new geometry, action, and reward to the replay buffer for training, the Q net
for reward estimation and the policy net will be updated for better accuracy.



generate data, it is time-consuming to randomly generate a
dense dataset in the entire design space. For example, it is
unnecessary to learn data pointsfar from desired properties.
Deep reinforcement learning (DRL) is a widely utilized
technique in Al as it offers better options for inverse design
problems. Unlike supervised learning, the agent in DRL
can access the simulation environment during the training
process, allowing it to find the most useful data points. By
exploring and training simultaneously, a policy for the best
objective is quickly established to eliminate the need to
combine other optimization methods.

In this study, we present a novel deep reinforcement
learning (DRL) framework that utilizes the deep
deterministic policy gradient (DDPQG) algorithm [6] for the
design optimization of highly asymmetrical pMUTs. This
proposed framework requires no prior knowledge and can
iteratively interact with COMSOL simulation environment
to generate new data points automatically. An interface
platform has been constructed between Python and
COMSOL to enable the seamless operation of the process.
After about 250 episodes of exploration and training, a
well-behaved feature-changing policy is established,
resulting in well-performed designs. This framework offers
a powerful alternative to enhance the optimization process,
opening up new avenues for MEMS designs.

SYSTEM ARCHITECTURE

Fig. 1 depicts the fully automated and DRL-based
optimization flow chart. Each optimization cycle begins
with a circular shape pMUT and progresses by sequentially
adjusting the coordinates of key points to determine the
diaphragm shape. The closed interpolation curve of all key
points guarantees smoothness, and all coordinates of key
points are located in a continuous feasible domain,

requiring continuous actions to represent key point changes.

To accomplish non-discrete geometric feature changes,
two deep neural networks, a policy network, and a critic
network (Q network), are used synergistically. The Q-value
predicted by the critic network estimates the final
asymmetry factor (AF) after each optimization episode to
give a certain pair of action and state. In discrete problems,
the best action is easily determined by comparing Q-values.
For continuous problems, however, infinite possibilities
make direct comparison impossible. The policy network
resolves this by taking the current state as input and
outputting the suggested feature-changing action,
providing optimal action choices throughout the space.
Each step is determined by the policy net's feature-
changing policy. The reward for each step, representing the
variation of the AF, is measured via finite element analysis
(FEA) in COMSOL. The FEA involved two distinct steps:
the resonance frequency detection step and the acoustic
field simulation step. To ensure that pMUTs with different
shapes have the same resonance frequency (50 kHz in this
study), their shapes will be scaled based on the original
resonance frequency obtained from the first step.
Subsequently, at the desired frequency, a multi-physical
simulation will be performed to analyze the AF. The
current and new geometry, action, and reward are collected
in the replay buffer to update the critic network and policy
network with stochastic gradient descent (SGD) for more
accurate long-term reward predictions. After enough
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Figure 2: A) Geometry of a representative pMUT. B)
cross sectional schematic of the pMUT. The thickness for
the silicon dioxide layer, silicon layer and aluminum
nitride layer is 1 ym, 5 um and 2 um, respectively. C)
The mode shape of a representative pMUT. D) The
arrangement of different pMUTs in an array. The
peripheral pMUTs result in the asymmetrical pressure
output to increase the energy utilization. E) The sound
pressure level of the representative pMUT. The plane is
0.1 m above the pMUT.

training steps, the optimal pMUT design is obtained when
the policy net and critic net make the best choice and
accurately estimate the reward.

Fig. 2A illustrates a design example of the pMUT
diaphragm composed of three layers: the thin SiO2 layer
(green), the thick inactive Si layer (red), and the active
piezoelectric AIN layer (blue). This diaphragm functions as
the vibrational structure defined by the backside etching
process, as shown in the cross-sectional view in Fig. 2B.
The boundaries of the three layers are fixed to the silicon
substrarte. PMUTs with complex membrane shapes can be
designed to produce different vibrational patterns, such as
an example shown in Fig. 2C. The deformation of the
diaphragm follows its shape as a heart-like contour in this
case and this asymmetrical design will generate a resulting
asymmetrical acoustic field to exert stronger pressure in
certain directions. The acoustic field of this heart-like
pMUT structure has been simulated in COMSOL. The
sound pressure level (SPL) distribution 0.1 m away from
the diaphragm surface is demonstrated in Fig. 2E. In this
case, the SPL contour exhibits the egg-like shape with
higher pressure outputs in the upper half. To quantify this
result, the average SPL difference between the upper and
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Figure 3: Asymmetry factors with respect to the number
of episodes. In the initial 20 episodes, the agent randomly
explores the design space. After that, the training and
exploration proceed simulataneously. With 50 episodes,
a design with AF over 1 is found.

lower halves of the external-field circle far away from the
pMUT is defined as the asymmetry factor (AF). Since the
directionality in the far-field barely changes with distance,
the radius of the external-field circle is not critical. In this
work, the radius is fixed at 0.1 m for each pMUT. Due to
the non-uniform energy distribution generated by the
asymmetrical pMUT designs, the output pressure can be
analyzed accordingly. When the target focal point of the
ultrasound pressure is not directly above a single pMUT in
an array setup, as shown in Fig. 2D, the asymmetrical
pMUT designs can increase energy utilization as compared
to that of using only circular-shape pMUTs without using
the conventional scheme of phase differences of individual
pMUTs for beam-forming operaitons. Specifically in this
case, the heart-like pMUTs can increase the energy
utilization by ~8% as compared to that of the same array
by using only circular-shape pMUTs. Specifically, for a
large array structure composed of only circular-shape
pMUTs, the peripheral ones have low contributions to the
focal point pressure. Therefore, it is desirable to construct
asymmetrical pMUTs in the array format with large AF to
increase the energy utilization.

RESULTS AND DISCUSSION

To validate the credibility of the simulation results, the
parameters are set to be identical to those in a prior work
with comparison results in Table 1. A strong agreement is
observed between the simulation and experimental data as
the validation of our simulations.

Table 1: Simulated and experimental SPL data of an AIN
circular pMUT for validation. [7]

Experimental Results Simulation in this work

SPL with 2 V
Voltage
Amplitude
(dB)
SPL with 4 V
Voltage
Amplitude
(dB)

107.0 107.5

113.1 113.5

The learning curve in Fig. 3 exhibits progressive
increases in AF as the training process advances. To
prevent the algorithm being trapped in local minimums,
noises are introduced in accordance with the decaying
exploration parameter, which compels the policy to study
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Figure 4: The normalized SPL configurations after the
optimization process (blue line) based on a circular-
shape pMUT (red line) at the external-field circle. The
circular-shape pMUT has the fixed SPL at 0 dB for all
directions. In contrast, the SPL generated by the
optimized pMUT shows strong asymmetry with a
strongest SPL at 270° for 0.68 dB, and a weakest SPL
at 90° for -0.89 dB.
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Figure 5: Asymmetry factor distributions of the initial
and final 50 episodes. A significant difference can be
observed, showing the performance of the optimization
process.

unexplored designs. Additionally, during the initial 20
episodes, the policy solely performs exploration without
learning to enrich the relay buffer and establish a relatively
random design space. Afterward, the policy learns and
explores simultaneously to comprehend the design scheme.
After 50 episodes, exceptional designs with AF above 1 are
discovered. As the level of randomness decreases, the
agent converges to a neighborhood of the optimal design.

Fig. 4 shows the sound pressure level (SPL)
distributions on the external circle for the optimized pMUT
with an AF of 1.102 and that of a circular pMUT. The SPL
results have been normalized to ensure comparability, and
a strong asymmetry is observed for the optimized design.
The strongest SPL at 270° is 0.68 dB, while the weakest
SPL at 90° is -0.89 dB, resulting in a difference of 1.57 dB
or a pressure difference of 34%. On average, the SPL
difference between the upper and lower halves of the
external circle is 1.102 dB or a pressure difference of 14%.
In other words, there is 30% more energy distributed in the
lower half of the circle than that in the upper half.



Fig. 5 depicts the AF distributions for the starting
designs of the initial 50 episodes and the optimized designs
for the last 50 episodes. The starting designs exhibit a
relatively uniform distribution, with a large number of
designs in the region below the AF value of 0.4. The lowest
AF among the starting designs is 0.003, indicating almost
no asymmetry. In contrast, the optimized designs show a
significant improvement, with the lowest AF value of 0.45.
This indicates that the feature-changing policy is effective
in finding designs with high AF. On average, the optimized
designs have an AF of 0.642, or a ~22% increase compared
to that of starting designs with an average AF of 0.525.

Fig. 6A lists representative optimized design. Notably,
the spindle-like shape has a significantly large AF, which
can be qualitatively explained. First, the spindle-like shape
undergoes horizontal shrinkage and vertical extension,
concentrating most of the energy near the symmetrical axis.
Second, the thin tip at the bottom serves as an effective
boundary to limit the output from this part. In contrast, the
inferior designs in Fig. 6B differ from the optimized
designs. Some of them have symmetrical shapes, while
others have similar dimensions in vertical and horizontal
directions. These comparisons are important for future
designing guidances.

A B
AF=1.102 AF=1.062 AF=0.045 AF=0.020
AF=0.804 AF=0.788 AF=0.063 AF=0.031

Figure 6. A) Optimized geometric patterns. B) Inferior
geometric patterns. A spindle-like shape is observed in
all optimized designs, which can be used as an important
design guidance.

CONCLUSION

This study utilizes a novel deep reinforcement learning
(DRL)-based framework to design asymmetrical pMUTs
in the array setup for optimize acoustic pressure outputs.
The pMUT geometry is transformed into coordinates of
key points, which are used as the input to the neural
network. At each step, the policy suggests a feature-
changing action based on the current geometry. The newly
generated design is then analyzed using FEA to evaluate its
performance, which serves as training data to update the
policy. Through adequate exploration and training, the
policy learns to generate good designs by comprehending
the rules. The optimized pMUT designs show significant
improvement in acoustic output utilizations for potential
pMUT array applications. Therefore, the proposed DRL-
based framework offers an effective alternative for MEMS
design problems to significantly reduce the time required
for the data preparation and numerical simulation process.
Future works may use more advanced algorithms, such as
the Soft Actor-Critic (SAC) [8] or Proximal Policy

Optimization (PPO) [9] to further enhance the efficiency.
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