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Abstract

We propose a model-based offline reinforcement

learning (RL) algorithm for confounded partially

observable Markov decision processes (POMDPs)

under general function approximations and show

it is provably efficient under some technical con-

ditions such as the partial coverage imposed on

the offline data distribution. Specifically, we first

establish a novel model-based identification result

for learning the effect of any action on the reward

and future transitions in the confounded POMDP.

Using this identification result, we then design a

nonparametric two-stage estimation procedure to

construct an estimator for off-policy evaluation

(OPE), which permits general function approx-

imations. Finally, we learn the optimal policy

by performing a conservative policy optimization

within the confidence regions based on the pro-

posed estimation procedure for OPE. Under some

mild conditions, we establish a finite-sample up-

per bound on the suboptimality of the learned

policy in finding the optimal one, which depends

on the sample size and the length of horizons

polynomially.

1. Introduction

Reinforcement Learning (RL) (Sutton & Barto, 2018) has

been recognized as an effective approach for optimizing

sequential decision-making processes. It seeks to learn an

optimal policy by maximizing the expected cumulative re-

wards. However, most existing literature has focused on

environments that are fully observable with Markovian tran-

sition dynamics, which may not be known a priori. In

practice, the challenge of partial observability of state in-

formation frequently arises, making the Markov decision
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processes (MDPs) unsuitable for modeling the underlying

data-generating processes. For example, in autonomous

driving, the environment is typically not fully observed. In-

stead, only partial information, such as noisy images or

videos captured by cameras, is available (Sun et al., 2020).

Considering partial observability inherent in many appli-

cations, partially observable Markov decision processes

(POMDPs) (Monahan, 1982) are considered as a more ap-

propriate framework for sequential decision-making for a

wide range of applications (e.g., Sawaki & Ichikawa, 1978;

Albright, 1979; Monahan, 1982; Singh et al., 1994; Jaakkola

et al., 1994; Cassandra, 1998; Young et al., 2013; Zhang &

Bareinboim, 2016; Bravo et al., 2019). Moreover, in light of

the ethical and logistical challenges faced by online learning

such as the assignment of patients to potentially inferior or

harmful treatments in healthcare (Gottesman et al., 2019),

offline RL emerged and has recently received a lot of re-

search interests (Levine et al., 2020). In the offline setting,

an agent aims to perform policy evaluation and learning

by only using a pre-collected dataset, which may be more

practical in solving decision-making problems in some high

stake domains.

Due to these practical challenges, there is a recent line of

research focusing on developing offline RL methods for

confounded POMDPs (e.g., Tennenholtz et al., 2020; Ben-

nett & Kallus, 2021; Nair & Jiang, 2021; Shi et al., 2022;

Miao et al., 2022; Lu et al., 2022; Hong et al., 2023). The

confounding effect (Pearl, 2009) in this context arises from

the offline data-generating processes, wherein the behavior

policy depends on the unobserved states. In this setting,

unobserved state variables act as unmeasured confounders

at each decision point, which can simultaneously affect the

action, the reward, and the future transition. This complex-

ity introduces a confounding bias when standard offline RL

methods designed for MDPs fail. To address this issue,

some aforementioned works employ proxy variables for pol-

icy evaluation and learning. A significant portion of these

investigations focuses on the task of off-policy evaluation

(e.g., Tennenholtz et al., 2020; Bennett & Kallus, 2021; Nair

& Jiang, 2021; Shi et al., 2022; Miao et al., 2022), with only

a few exploring the problem of offline policy learning (Lu

et al., 2022; Hong et al., 2023). In particular, Hong et al.

(2023) introduced a first policy gradient method for con-

founded POMDPs, but under some stringent full coverage
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assumption, which requires that the offline data can cover

trajectories generated by all policies - a condition that is

often hard to verify. On the other hand, to relax the full

coverage assumption, Lu et al. (2022) adopted a pessimistic

principle (Xie et al., 2021; Uehara & Sun, 2021; Fu et al.,

2022, e.g.,), which is commonly applied in offline RL meth-

ods for standard MDPs, and extend it to POMDPs. Thus,

their algorithm can find an in-class optimal policy by only

requiring partial coverage, meaning that the offline data

only needs to cover the trajectories of the optimal policy.

Nonetheless, Lu et al. (2022)’s exploration of this problem

is restricted to a model-free context, leaving a gap in model-

based RL algorithms for confounded POMDPs under the

partial coverage assumption. Motivated by these, this paper

aims to bridge this gap by proposing a model-based RL

method for confounded POMDPs.

In this article, we introduce a novel offline model-based

policy learning method for confounded POMDPs with con-

tinuous state and observation spaces under partial coverage.

Specifically, we first establish a novel nonparametric identi-

fication for the policy value of any history-dependent policy

from a model-based viewpoint. This identification enables

consistent estimation of policy values using only observable

offline data, eliminating the confounding bias introduced by

partial observability. Furthermore, our approach accommo-

dates general function approximation, which is necessary

given continuous state spaces and observation spaces. Fol-

lowing the identification, which entails solving a sequence

of conditional moment equations, we design a nonparamet-

ric two-stage estimation procedure to estimate the policy

value. Finally, to relax the full coverage assumption, we

extend the principle of pessimism to confounded POMDPs

tailored for our model-based structure. In particular, we con-

struct a series of confidence regions based on the estimation

procedure and perform a conservative policy optimization

within the constructed confidence regions, i.e. learning a

policy that aims to maximize the most pessimistic estimator

of the policy value within confidence regions.

We summarize the main technical challenges addressed in

this paper. (1) Developing model-based policy value identi-

fication under confounded POMDPs presents a significant

challenge due to the unobservable states/confounders, which

make it hard to extract the information of reward and tran-

sition model from the offline dataset. (2) In the estimation

process of the bridge function b, we encounter a new type

of conditional moment restriction problem, which deviates

from existing methods. This new challenge motivates the

development of new estimating approaches and theoretical

analysis, distinguishing our work from existing literature.

(3) In establishing an upper bound on the suboptimality, we

face the challenge of decomposing the suboptimality into

one-step errors which comes from the estimation of reward

and transition models.

Our contributions can be summarized as follows. First, to

the best of our knowledge, the proposed policy value iden-

tification for confounded POMDPs is the first result under

the function approximation settings within the model-based

framework. While Tennenholtz et al. (2020) proposed a

model-based identification in the tabular setting, their meth-

ods are not applicable to settings with continuous obser-

vation/state spaces. Compared to the existing model-free

methods such as Shi et al. (2022); Bennett & Kallus (2021);

Miao et al. (2022), our theoretical derivation is novel. In

particular, they typically rely on solving a series of Bellman-

type backward moment equations to directly identify the pol-

icy value, while our approach emphasizes the extraction of

information from both reward and transition models, which

are independent of the policy. Due to this intrinsic charac-

teristic of our model-based framework, as a by-product, the

marginal distribution of the cumulative reward induced by

any policy can also be identified and more efficiently com-

puted, compared with model-free methods. See Remark 3.6

for more details.

Secondly, we introduce a nonparametric two-stage estima-

tion method aimed at solving a new-type conditional mo-

ment restriction problem, i.e., estimating the function b by

solving EW [b(W, y) | X] = p(y | X) for every y, where

W,X are generic random vectors and p(y | X) denotes the

conditional density function. Note that this is different from

the standard conditional moment restriction problem as y
is deterministic and one needs to solve it simultaneously

across all y for obtaining the target function b. The explo-

ration of this problem in the existing literature is scarce and

there is little theoretical result. In this paper, we formalize

a valid risk functional, based on which we design the esti-

mation method, and establish the corresponding theoretical

guarantee.

Finally, we demonstrate the validity of the proposed al-

gorithm by providing a finite-sample upper bound of the

performance between the learned policy and the optimal pol-

icy under the partial coverage assumption. In particular, a

novel theoretical derivation for decomposing the differences

of the true policy value and the estimated policy value into

a polynomial function of key parameters and error terms

(Lemma C.1) could be of independent interest. Moreover,

we provide a sharp contrast between the proposed model-

based and those model-free approaches such as (Lu et al.,

2022) for confounded POMDPs. Notably, our proposed

model-based method does not have restriction on the policy

space, compared with the model-free methods in this set-

ting. This is particularly appealing when the global optimal

policy is not contained in the pre-specified policy class. See

Remarks 3.7 and 4.3 for more details on the comparisons.
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2. Preliminaries

Consider an episodic and finite-horizon POMDP denoted by

M := (S,O,A, T, ν1, {Pt}Tt=1, {Et}Tt=1, {rt}Tt=1), where

S , O and A denote the state, observation and action spaces

respectively. Without loss of generality, we assume that

both S and O are continuous, while the action space A is

finite. The integer T is set as the total length of the horizon.

We use ν1 ∈ ∆(S) to denote the distribution of the initial

state, where ∆(S) is a class of all probability distributions

over S. In addition, we denote {Pt}Tt=1 by the collection

of state transition kernels over S × A to S , and {Et}Tt=1 by

the collection of observation emission kernels over S to O.

Lastly, we use {rt}Tt=1 to denote the collection of reward

functions, i.e., rt : S × A → [−1, 1] at each decision

point t. In a standard POMDP, at each decision point t,
Ot ∼ Et(· | St) is observed given the current (hidden)

state St. Then the agent selects an action At following

some policy, and receives an immediate reward Rt with

E[Rt | St = s,At = a] = rt(s, a) for every (s, a). The

system then transits to the next state St+1 according to

some transition kernel Pt(· | St, At). Thus the underlying

dynamics follows MDP. The corresponding directed acyclic

graph (DAG) is depicted in Figure 1. Different from an

MDP, the state variable St cannot be observed in a POMDP.

The goal of this paper is to find an optimal history-dependent

policy for POMDPs. Define the observed history up to

the decision point t by Ht := (O1, A1, ..., Ot, At) ∈ Ht,

where Ht :=
∏t

j=1 O×A is the corresponding space. Then

at each t, the history-dependent policy πt is defined as a

function mapping from O×Ht−1 to ∆(A). For any generic

policy π = {πt}Tt=1, the corresponding value is defined as

V(π) := E
π[

T∑

t=1

Rt | S1 ∼ ν1],

where E
π is taken with respect to the distribution such that

all actions are determined by the policy π. In this work,

we aim to develop a model-based RL algorithm to find an

optimal policy π∗ defined as,

π∗ ∈ argmax
π

V(π).

In the offline setting, we assume that a decision maker can

only access a pre-collected dataset, which is generated by

some behavior policy {πb
t}Tt=1, but unable to further interact

with the environment. The behavior policy considered in

this work could possibly depend on the unobserved state St,

i.e., πb
t : S → ∆(A) for each t, which makes our problem

more challenging compared with online POMDPs. We use

P
πb

to denote the offline data distribution and summarize the

data as D := (ont , a
n
t , r

n
t )

n=1:N
t=1:T , which are N i.i.d. copies

from P
πb

.

To develop a model-based algorithm for finding an opti-

mal policy π∗ using the offline data, one needs to identify

and compute the effect of actions on the immediate reward

and future transitions. Once the dynamic is learned, a pes-

simistic model-based RL algorithm can be implemented to

learn the optimal policy. To proceed with this idea, there are

two main challenges: (1) estimating the reward and future

transitions based on the action with function approxima-

tions only using the offline dataset D and (2) developing an

algorithm with theoretical guarantee for finding an optimal

policy under the partial coverage assumption. The first chal-

lenge lies in that the state variable St is unobserved and the

history-dependent transition dynamics conditioning on all

past actions may not be identified by the offline data. Fur-

thermore, function approximations are needed when both

state and observation spaces are continuous. The second

challenge involves developing a valid confidence set to quan-

tify the uncertainty associated with estimating the dynamics

using the offline data.

Notations. Throughout this paper, we assume that E is taken

with respect to the offline distribution. Similarly, we use

the notation X ⊥⊥ Y | Z when X and Y are conditionally

independent given Z under the offline distribution. For

any two sequences {an}∞n=1, {bn}∞n=1, an ≲ bn denotes

an ≤ Cbn for some N,C > 0 and every n > N . If

an ≲ bn and bn ≲ an, then an ≍ bn. Big O and OP are

used as conventions. For any policy π that depends on the

observed data, the suboptimality gap is defined as

SubOpt(π) := V(π⋆)− V(π).

Figure 1. The directed acyclic graph illustrates the data generating

process in confounded POMDPs, where states St are unobserved.

Red arrows represent the generation of actions via the behavior

policy, while blue arrows denote the generation through a history-

dependent policy.

3. Methods

In this section, we introduce the proposed model-based RL

method for confounded POMDPs.

In Section 3.1, we first establish a novel model-based policy

value identification result for addressing the issue of con-

founding bias caused by partial observability in POMDPs

3



Model-based Reinforcement Learning for Confounded POMDPs

with continuous state and observation spaces. In particular,

the policy value of any policy can be identified via a series of

reward-emission bridge functions and a series of dynamic-

emission bridge functions which are solutions to a sequence

of conditional moment restrictions. Then, inspired by Singh

et al. (2019); Mastouri et al. (2021), we develop a two-stage

nonparametric estimation procedure in Section 3.2 for esti-

mating the required bridge functions based on these condi-

tional moment restrictions. Such nonparametric estimation

procedure will allow general function approximations for

estimating bridge functions and subsequently for estimating

policy values. We remark that function approximation is

inevitable when state and observation spaces are continu-

ous. Finally, in Section 3.3, we incorporate the pessimism

principle into our model-based method to handle the issue

of distribution shift in the offline setting. In particular, we

perform a conservative policy optimization within two con-

fidence regions of bridge functions so that the learned policy

is restricted within the offline data distribution and does not

induce over-exploration.

3.1. Policy Value Identification

Since the observed decision process does not satisfy the

Markov property, standard off-policy evaluation methods

developed for MDPs cannot be applied. This becomes more

challenging when the behavior policy could depend on the

hidden states as well. In this case, at each decision point t,
St will confound the effect of action At on the immediate

reward and all future transitions. Without taking this into

account will lead to bias estimation of the policy value

(Hong et al., 2023).

To address this confounding bias, we establish a novel policy

value identification result from the model-based perspective

for confounded POMDPs when both state and observation

spaces are continuous. To start with, we impose several

standard assumptions on the data-generating process under

the framework of POMDPs. See Figure 1. In addition,

we restrict our study to a class of POMDPs in which the

information of unobserved states can be captured by the

observed variables in the dataset.

Same as many existing works on POMDP (Shi et al., 2022;

Miao et al., 2022; Lu et al., 2022), we first assume the

availability of some baseline covariates, represented by O0,

which carry some information before the decision-making

process. The initial data for all individuals can be recorded

as {on0}Nn=1. To enable the observable trajectory {Ot}Tt=0

for identifying the policy value, we impose Assumption 3.1

in the following.

Assumption 3.1. It holds that

O0 ⊥⊥ (Ot, Ot+1, Rt) | St, At, Ht−1, ∀t = 1, ..., T. (1)

Assumption 3.1 is a mild condition when O0 is pre-collected

before the decision process. To identify the policy value, we

assume the existence of certain bridge functions, which are

summarized in the following assumption.

Assumption 3.2 (Existence of bridge functions). There

exist reward-emission bridge functions {b[t]R : A × O ×
[−1, 1]×O → R}Tt=1 and dynamic-emission bridge func-

tions {b[t]D : A×O×O×O → R}T−1
t=1 that satisfy the follow-

ing conditional moment restrictions for each t = 1, ..., T :

E[b
[t]
R (At, Ot, rt, ot) | Ht−1, At, O0]

=p(rt, ot | Ht−1, At, O0), and,
(2)

E[b
[t]
D (At, Ot, ot+1, ot)|Ht−1, At, O0]

=p(ot+1, ot | Ht−1, At, O0).
(3)

The existence of such bridge functions is justified by some

mild regularity conditions of conditional expectation op-

erators EAt,Ot|At,Ht−1,O0
with tools from singular value

decomposition in functional analysis (Kress et al., 1989,

Chapter 15). See also Appendix B.1 of Hong et al. (2023)

for an instantiation of required regularity conditions in con-

founded POMDPs.

Similar versions of Assumption 3.2 have also been utilized

in one recently developed causal inference method called

double negative control (Miao et al., 2018; Tchetgen et al.,

2020) and off-policy evaluation methods in confounded

POMDPs with continuous state and observation spaces in

the model-free settings (Bennett & Kallus, 2021; Shi et al.,

2022; Miao et al., 2022). In this work, we study the model-

based counterpart along with the following completeness

assumption for identifying the policy value.

Assumption 3.3 (Completeness). For any measurable func-

tion gt : S ×A → R, and any 1 ≤ t ≤ T ,

E[gt(St, At) | At, Ht−1, O0] = 0

almost surely if and only if gt(St, At) = 0 almost surely.

Assumption 3.3 essentially requires that the observed

{O0, Ht−1} carries sufficient information of the unobserved

St. There are many commonly-used statistical and econo-

metric models which satisfy Assumption 3.3. Examples

include exponential families (Newey & Powell, 2003) and

location-scale families (Hu & Shiu, 2018). The complete-

ness assumption is also widely made to ensure the unique-

ness of instrumental variable estimation. See Newey &

Powell (2003) for more details.

Remark 3.4. The main difference between our assumptions

and those in the model-free settings (Shi et al., 2022; Lu

et al., 2022; Hong et al., 2023) lies in Assumption 3.2. In

this paper, bridge functions depend on (rt, ot) and (ot+1, ot)
(compared to the model-free counterpart), and the equations

need to hold for all (rt, ot) and all (ot+1, ot). In contrast,

4



Model-based Reinforcement Learning for Confounded POMDPs

the counterpart assumption in model-free settings addition-

ally depends on the policy πθ (compared to the model-based

version), and the equations need to hold for all πθ. Intu-

itively, when the policy space is very large, the model-based

framework, as delineated by Assumption 3.2, may offer

a more feasible approach due to its simpler validation re-

quirements and a theoretical upper bound independent of

the policy space size. Conversely, when the policy space

is rather small, and the reward/state space is very large,

the model-free framework might present advantages due

to the lower complexity in satisfying the bridge function’s

existence assumption.

Assumptions 3.2 and 3.3 imply that the confounding ef-

fect of each action due to the unobservable state St on the

bridge function matches that on the outcome of interest,

i.e., the current reward, the current weight, and the next

state. Hence the bridge function can be used as a good

ªsubstitute.º Moreover, thanks to the conditional indepen-

dence of At given St, the bridge function can correct the

bias and eventually identify the policy value. It is known

that solving a general POMDP is NP-hard (Burago et al.,

1996; Vlassis et al., 2012). In this paper, we navigate away

from the NP-hard complexity by focusing on a more man-

ageable problem classÐa learnable subclass of POMDPs

that satisfies Assumptions 3.2 and 3.3.

A medical application scenario can be introduced to further

illustrate the assumptions listed above. The latent state St

represents some clinical state of a patient, while the ob-

servable variable Ot corresponds to data accessible to a

physician through medical diagnostics, reflecting the pa-

tient’s state St. In this context, At denotes the administered

treatment. According to Assumptions 3.1, 3.2, 3.3, our strat-

egy involves selecting observations {Ot}Tt=1 (e.g. blood

pressure, heart rate) such that both Ot and the history Ht−1

contain sufficient information to reflect the latent state St.

Finally, the key identification results for policy value under

the model-based perspective are summarized in Theorem

3.5. A detailed proof is provided in Appendix B.

Theorem 3.5 (Main identification results). Under Assump-

tions 3.1, 3.2, 3.3, for each t = 1, ..., T , pπ(rt) can be

identified by

pπ(rt) =

∫

ht

t∏

j=1

πj(aj | oj , hj−1)ft(rt, ht), (4)

where ft(rt, ht) : [−1, 1]×Ht → R is defined as

ft(rt, ht) :=
∫

õt,...,õ′1

b
[t]
R (at, õt, rt, ot)

t−1∏

j=1

b
[j]
D (aj , õj , õj+1, oj)p(õ1).

(5)

Therefore, the policy value V(π) can be identified by

V(π) =
T∑

t=1

∫

rt

∫

ht

rt

t∏

j=1

πj(aj | oj , hj−1)ft(rt, ht).

(6)

The rationale for expressing the policy value through

the sequential integration of bridge functions orig-

inates from Lemma B.1 for decomposing pπ(rt)
in terms of transition dynamics, reward models

and policies, and that V(π) = E
π
[∑T

t=1 Rt

]
=

∑T
t=1

∫
R rtp

π (rt) drt. Based on the expression of

pπ (rt) in Lemma B.1, the challenge lies in learning∫
st,...,s1

p (rt, ot | st, at)
∏t−1

j=1 p (sj+1, oj | sj , aj) p (s1),
which is impeded by the inaccessibility of states di-

rectly from observations. Thanks to the introduction

of bridge functions and the conditional moment re-

strictions (Assumption 3.2), we are able to extract

the reward and dynamic information from the ob-

servable offline dataset. In addition, we establish that∫
st,...,s1

p (rt, ot | st, at)
∏t−1

j=1 p (sj+1, oj | sj , aj) p (s1) =∫
õt,...,õ′1

b
[t]
R (at, õt, rt, ot)

∏t−1
j=1 b

[j]
D (aj , õj , õj+1, oj) p (õ1).

This equation underscores the bridge functions’ capacity to

encapsulate sufficient reward and dynamic information for

policy value identification.

According to Theorem 3.5 and conditional moment restric-

tions (2)(3), the policy value can be successfully identified

under the offline distribution because both bridge functions

and conditional moment restrictions rely solely on the ob-

served offline data.

Remark 3.6. It is noteworthy that the marginal distribution

of reward pπ(rt) can also be identified according to Theo-

rem 3.5, which is an extra property of our method compared

to the model-free methods that directly identify policy val-

ues (Bennett & Kallus, 2021; Shi et al., 2022; Miao et al.,

2022). As a trade-off, the proposed model-based method

requires a sequential integration of bridge functions (4)(5)

to identify pπ(rt) for each t = 1, ..., T , which might be

computationally expensive. Nevertheless, in some RL tasks

where maximizing the expected cumulative reward is not

the only goal, such as risk-sensitive RL, multi-objective RL,

Bayesian RL, the proposed model-based method could also

be potentially useful because it is crucial to identify and

learn the marginal distribution of reward pπ(rt) in these

tasks. We note that the issue of sequential integration in-

volved in learning the marginal distribution can be addressed

through the application of Monte Carlo methods, which

provide a feasible and efficient way to approximate these

integrations.

5



Model-based Reinforcement Learning for Confounded POMDPs

3.2. Estimation of Bridge Functions

According to Equation (6) presented in Theorem 3.5, to

estimate the policy value, it suffices to estimate ft(rt, ht).
Further, according to Equation (5), we need to estimate

the bridge functions {b[t]R }Tt=1, {b[t]D }T−1
t=1 , and p(õ1). We

simply assume p(õ1) is known, or we can estimate p(õ1) by

its empirical version, denoted as p̂(õ1). For the two sets of

bridge functions, motivated by Singh et al. (2019); Mastouri

et al. (2021), we design a two-stage estimation procedure to

estimate {b[t]R }Tt=1, {b[t]D }T−1
t=1 according to the conditional

moment restrictions, i.e., Equations (2) and (3).

For clarity, we simplify the conditional moment restrictions

(2)(3) as

E[b(W, y) | X] = p(y | X), (7)

where we use W to denote (At, Ot), y to denote (rt, ot)
or (ot+1, ot), and X to denote (Ht−1, At, O0), and drop

the subscript t. We need to estimate b based on the dataset

(wn, yn, xn)
N
n=1. The estimation procedure can be decom-

posed into two stages. At the first stage, we learn empirical

representations of p(w | x) and p(y | x) separately. At the

second stage, we learn b as a mapping from the representa-

tion of p(w | x) to the representation of p(y | x). RKHS en-

dowed kernel ridge regressions are adopted in this two-stage

estimation procedure so that we can obtain a closed-form

solution of b. We note that the studied problem in Singh et al.

(2019); Mastouri et al. (2021) is E[b(W )−Y | X] = 0. We

adapt their idea to specifically cater to the problem (7).

We assume that b(w, y) is in the tensor products of HW and

HY , i.e. HW
⊗HY . That is to say, if b ∈ HW

⊗HY , then

b =
∑k

j=1 fjgj for some k ∈ N and such that fj ∈ HW ,

gj ∈ HY for all j ∈ [k]. HW and HY are both set to be

RKHSs, which implies that the tensor product HW
⊗HY

is also a RKHS. We let ϕ(y) denote the canonical feature

map of HY . Let µW |x ∈ HW be the conditional mean

embedding of p(W | x), i.e. µW |x :=
∫
ϕ(w) d p(w | x)

(Song et al., 2009). Then, we have

E[b(W, y) | X = x] = ⟨µW |x ⊗ ϕ(y), b⟩HW⊗HY
(8)

according to Lemma A.1.

According to (7)(8), we design the following risk functional:

L(b) :=
∫

Y
E[(⟨µW |X ⊗ ϕ(y), b⟩HW⊗HY

− p(y | X))2]dy.

(9)

The goal is to find b ∈ HW
⊗HY to minimize L(b). To

achieve this goal, we first learn an empirical estimate of

µW |x and an empirical estimate of p(y | x) at the first

stage, denoted as µ̂W |x and p̂(y | x) respectively. At the

second stage, we learn an estimate of b based on the first

stage estimate µ̂W |x and p̂(y | x). To alleviate the finite

sample bias of the proposed two-stage estimation proce-

dure, we adopt the idea of sample splitting: use N1 ran-

domly chosen observations in stage 1 and the remaining

N2 = N −N1 observations in stage 2 (Angrist & Krueger,

1995; Singh et al., 2019). We denote the stage 1 obser-

vations by (wn, yn, xn)
N1
n=1 and stage 2 observations by

(w′
n, y

′
n, x

′
n)

N2
n=1.

Stage 1. From the first sample (wn, yn, xn)
N1
n=1, we learn

the conditional mean embedding of p(W | x), i.e., µ̂W |x :=

ĈW |Xϕ(x) where ĈW |X denotes the conditional mean em-

bedding operator (Song et al., 2013). Specifically, we com-

pute ĈW |X as a solution to:

ĈW |X = argmin
C∈HΓ

Ê(C), with

Ê(C) =
1

N1

N1∑

n=1

∥ϕ (wn)− Cϕ (xn)∥2HW
+ λ1∥C∥2HΓ

,

(10)

where HΓ is the vector-valued RKHS of operators map-

ping HX to HW . It can be shown that ĈW |X =

Φ(W ) (KX +N1λ1)
−1

ΦT (X) where KX is the N1× N1

kernel matrix and Φ(W ) is a vectors of N1 columns, with

ϕ (wn) in its n th column (Song et al., 2009; GrÈunewÈalder

et al., 2012; Singh et al., 2019; Mastouri et al., 2021). Conse-

quently, µ̂W |x = Φ(W ) (KX +N1λ1)
−1 Kx, where Kx is

a N1×1 vector with its n-th element denoting k (xn, x) eval-

uated at all xn in the first sample. p̂(y | x) can be learned by

any parametric methods like maximum likelihood methods

or nonparametric methods like kernel conditional density

estimation or generative adversarial networks.

Stage 2. From the second sample (w′
n, y

′
n, x

′
n)

N2
n=1, we learn

b̂ via empirical risk minimization (ERM):

b̂ = argmin
b∈HW

⊗HY

L̂(b), where

L̂(b) = 1

N2

N2∑

n=1

(〈
µ̂W |x′

n
⊗ ϕ (y′′n) , b

〉
HW⊗HY

−p̂ (y′′n | x′
n))

2
+ λ2∥b∥2HW⊗HY

,

(11)

and {y′′n}N2
n=1 ∼i.i.d. unif(Y). The estimator b̂ obtained via

the ERM (11) has a closed-form solution (T̂2 + λ2)
−1ĝ2

where

T̂2 =
1

N2

N2∑

n=1

[
µ̂W |x′

n
⊗ ϕ (y′′n)

]
⊗
[
µ̂W |x′

n
⊗ ϕ (y′′n)

]
,

ĝ2 =
1

N2

N2∑

n=1

[
µ̂W |x′

n
⊗ ϕ (y′′n)

]
p̂(y′′n | x′

n).

(12)

The formula (12) is a direct adaption of Theorem 1 in

Mastouri et al. (2021) except that their response vari-

able y is replaced by p̂(y | x) in this work. Indeed,

6
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by the representer theorem (SchÈolkopf et al., 2001), b̂
can be expressed as a linear combination of feature maps

b̂ =
∑N1

i=1

∑N2

i=1 ĉi,jϕ(wi)⊗ ϕ(y′′j ) where the coefficients

ĉi,j , i = 1, ..., N1, j = 1, ..., N2 are obtained by solv-

ing a quadratic minimization problem (11) with respect to

b =
∑N1

i=1

∑N2

i=1 ci,jϕ(wi) ⊗ ϕ(y′′j ). See Appendix B.3

and B.5 of Mastouri et al. (2021) for more details on the

closed-form solutions to the two-stage estimation procedure.

Next, we adopt the above two-stage estimation procedure

to estimate the bridge functions {b[t]R }Tt=1, {b[t]D }T−1
t=1 . In

particular, we let Wt := A×O, Xt := Ht, Yt := R×O,

and Zt := O × O. We define Wt = (At, Ot) ∈ Wt,

Xt = (At, Ht−1, O0) ∈ Ht, Yt = (Rt, Ot) ∈ Yt and

Zt = (Ot+1, Ot) ∈ Zt. We also define the Hilbert

spaces BR,t := HWt

⊗HYt and BD,t := HWt

⊗HZt to

model the reward-emission bridge function and the dynamic-

emission bridge function respectively.

Then we can obtain the empirical conditional mean operator

µ̂Wt|xt
and the estimates of conditional density functions

p̂(yt | xt), p̂(zt | xt) for t = 1, ..., T according to the in-

troduced state 1 estimation procedure. Subsequently, the

estimated bridge functions {b̂[t]R }Tt=1, {b̂[t]D }T−1
t=1 can be ob-

tained at the second stage through

b̂
[t]
R = argmin

bR,t∈BR,t

L̂[t]
R (bR,t), where

L̂[t]
R (bR,t) =

1

N2

N2∑

n=1

(〈
µ̂Wt|x′

t,n
⊗ ϕ

(
y′′t,n
)
,

bR,t⟩BR,t
− p̂

(
y′′t,n | x′

t,n

))2
+ λ2∥bR,t∥2BR,t

,

(13)

and b̂
[t]
D = argmin

bD,t∈BD,t

L̂[t]
D (bD,t), where

L̂[t]
D (bD,t) =

1

N2

N2∑

n=1

(〈
µ̂Wt|x′

t,n
⊗ ϕ

(
z′′t,n
)
,

bD,t⟩BD,t
− p̂

(
z′′t,n | x′

t,n

))2
+ λ2∥bD,t∥2BD,t

,

(14)

and {y′′t,n}N2
n=1 ∼ unif(Yt), {z′′t,n}N2

n=1 ∼ unif(Zt).

3.3. Conservative Policy Optimization within

Confidence Regions

Based on (13)(14), we develop two confidence regions

for bR := (bR,1, · · · , bR,T ) ∈ ⊗T
t=1 BR,t and bD :=

(bD,1, · · · , bD,T−1) ∈
⊗T−1

t=1 BD,t as

confR(α) = {bR ∈
T⊗

t=1

BR,t :

L̂[t]
R (bR,t)− L̂[t]

R (̂b
[t]
R ) ≤ α, ∀t = 1, ..., T},

(15)

Algorithm 1 Conservative model-based policy optimization

for POMDPs

Input: Dataset D, regularization parameters λ1, λ2, con-

fidence parameters α, β, policy class Π, kernel functions

for RKHSs

Estimation of bridge functions: Obtain {b̂[t]R }Tt=1,

{b̂[t]D }T−1
t=1 by (13)(14)

Construction of confidence regions: Obtain confR(α),
confD(β) by (15)(16)

Conservative policy optimization:

π̂ = argmax
π∈Π

min
(bR,bD)∈confR(α)×confD(β)

V(π,bR,bD).

Return: π̂

confD(β) = {bD ∈
T−1⊗

t=1

BD,t :

L̂[t]
D (bD,t)− L̂[t]

D (̂b
[t]
D ) ≤ β, ∀t = 1, ..., T − 1}.

(16)

where α, β are two constants that will be specified later.

Intuitively, these two confidence regions contain all bR ∈⊗T
t=1 BR,t, bD ∈⊗T−1

t=1 BD,t whose risks do not exceed

too much than the ones for {b̂[t]R }Tt=1, {b̂[t]D }T−1
t=1 . They are

used to construct a conservative estimate of V(π) under the

model-based perspective.

We first use V(π,bR,bD) to denote the policy value of π by

replacing the true bridge functions {b[t]R }Tt=1, {b[t]D }T−1
t=1 with

any bR, bD in Theorem 3.5 (policy value identification).

We note that V(π, {b[t]R }Tt=1, {b[t]D }T−1
t=1 ) is exactly the true

policy value V(π). We then define a conservative estimation

of V(π) as

V̂ (π) = min
(bR,bD)∈confR(α)×confD(β)

V(π,bR,bD). (17)

Given (17), we propose to choose π̂ that maximizes the

conservative estimate of policy value V̂ (π):

π̂ := argmax
π∈Π

V̂ (π). (18)

Intuitively, the learned policy π̂ defined in (18) aims to

maximize the most pessimistic estimator of the policy value

within two confidence regions. In Section 4, we provide a a

finite-sample upper bound on the suboptimality of π̂ under

some technical assumptions where only partial coverage of

the offline dataset is assumed. We summarize the proposed

algorithm in Algorithm 1.

Remark 3.7. We point out that Lu et al. (2022) is the

first work to design confidence regions based on empiri-

cal risk functionals for bridge functions used in confounded

POMDPs, which inspires our construction of confidence

regions. Compared to their model-free method, our work

7
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deals with different bridge functions and risk functionals

that stem from a model-based perspective. More impor-

tantly, the confidence regions used in Lu et al. (2022) de-

pend on policy π, but our proposed ones do not involve

π. Such appealing property enjoys both the computational

and theoretical advantages. Computationally, any practical

algorithm that relies on iterated updates does not need to

re-compute the constraint sets at each iteration, therefore

greatly reducing the computational cost. Theoretically, the

proposed estimation procedure and the construction of con-

fidence regions allow an unrestricted policy class. More

details on the comparison to Lu et al. (2022) are provided

in the final paragraph of Section 4.

4. Theoretical Results

In this section, we study the theoretical properties of Algo-

rithm 1 under some technical assumptions. We focus on

establishing a finite-sample upper bound on the suboptimal-

ity of the learned policy π̂, i.e., SubOpt(π̂). In particular,

such an upper bound will depend on the sample size of the

offline data N , the number of stages T , the size of func-

tion classes {BR,t}Tt=1, {BD,t}T−1
t=1 , and the concentrability

coefficients {Cπ∗

t }Tt=1, which are defined as

Cπ∗

t :=

√∫

ot

E[wπ∗

t (At, Ht−1, O0, ot)2],

for t = 1, · · ·T . Here {wπ∗

t : A×O×Ht−1×O → R}Tt=1

is a sequence of weight bridge functions that satisfy the

following equations for each t = 1, ...T

E[w
[t]
π∗(At, O0, Ht−1, ot) | St, At, Ht−1]

=
pπ

∗

(St, Ht−1)π
∗
t (At | ot, Ht−1)

pπb (St, Ht−1)πb
t (At | St)

.
(19)

We assume the existence of such {wπ∗

t }Tt=1. It can be

seen from (19) that the concentrability coefficient {Cπ∗

t }Tt=1

quantifies a distribution mismatch effect between πb and π∗

in a certain sense.

To begin with, we impose the following key assumptions

that are used in the theoretical analysis.

Assumption 4.1. The following conditions hold.

(a) (Partial coverage). The concentrability coefficient

Cπ∗

t < ∞, ∀t = 1, ..., T .

(b) (Consistency of conditional density estimation at stage 1).

For any δ > 0, there exist rR(δ,N1) → 0, rD(δ,N1) → 0

as N1 → ∞ such that for each t = 1 : T , with P
πb

-

probability at least 1 − δ, the following inequalities hold:

EXt
[
∫
Yt

|p̂(yt | Xt) − p(yt | Xt)| d yt] ≤ rR(δ,N1),

EXt
[
∫
Zt

|p̂(zt | Xt)− p(zt | Xt)| d zt] ≤ rD(δ,N1).
(c) (Consistency of empirical conditional mean operator at

stage 1). For any δ > 0, there exists rC(δ,N1, c1) → 0,

as N1 → ∞ such that for each t = 1 : T and each

xt ∈ Xt, with P
πb

-probability at least 1 − δ, it holds that:

∥µ̂Wt|xt
−µWt|xt

∥HWt
≤ rC(δ,N1, c1). Here c1 is defined

in Assumption D.10 in the appendix.

(d) (Realizability). For each t = 1 : T , the RKHSs BR,t,

BD,t contain the solutions b
[t]
R , b

[t]
D to the conditional mo-

ment restrictions (2)(3).

(e) (Sizes of {BR,t}Tt=1, {BD,t}T−1
t=1 ). Let {λ↓

j (KF )}∞j=1

denote the non-increasing eigenvalue sequence of the re-

producing kernel KF for any RKHS F . We assume that

λ↓
j (KBR,t

) ≍ j−γ , λ↓
j (KBD,t

) ≍ j−γ for some γ > 0.

(f) (Uniform boundness). There exist MR, MD > 0 such

that maxt=1:T supb∈BR,t
∥b∥∞ ≤ MR, maxt=1:T−1

supb∈BD,t
∥b∥∞ ≤ MD, and maxt=1:T supp∈PR,t∪PD,t

∥p∥∞ < ∞.

Assumption 4.1(a) requires that the offline distribution P
πb

can calibrate the distribution induced by the optimal policy

π∗. Similar concepts have also been considered in the lit-

erature of offline model-free and model-based algorithms

for MDPs (Xie et al., 2021; Uehara & Sun, 2021), and

model-free algorithms for POMDPs (Lu et al., 2022). This

assumption is necessary to ensure the tractability of the prob-

lem (Chen & Jiang, 2019). Assumptions 4.1(b)(c) imply

that the estimators obtained at stage 1 are sufficiently good

to play their roles at stage 2, and thereby guarantee the over-

all performance of the whole algorithm. In particular, when

{PR,t}Tt=1, {PD,t}T−1
t=1 are parameterized space and p̂ is

obtained by MLE, then rR(δ,N1), rD(δ,N1) usually scale

with 1√
N1

under some regular conditions on the complexi-

ties of {PR,t}Tt=1, {PD,t}T−1
t=1 (Geer, 2000). In addition, the

convergence rate rC(δ,N1, c1) for the empirical conditional

mean embedding at stage 1 is calibrated by a quantity c1
that measures the smoothness of µWt|xt

, t = 1, ..., T (Singh

et al., 2019). Details of results and additional assumptions

about realizations of Assumptions 4.1(b)(c) are shown in

Appendix D.7. Assumption 4.1(d) requires that the function

spaces {BR,t}Tt=1, {BD,t}T−1
t=1 are sufficiently large such

that there is no model misspecification error when solving

the conditional moment restrictions (2)(3). Assumption

4.1(e) requires that RKHSs {BR,t}Tt=1, {BD,t}T−1
t=1 enjoy

the polynomial eigen-decay rates, which are commonly con-

sidered in practice (e.g. Sobolev space). The constants γ
quantify the sizes of {BR,t}Tt=1, {BD,t}T−1

t=1 in the sense

that a larger γ implies smaller {BR,t}Tt=1, {BD,t}T−1
t=1 . As-

sumption 4.1(f) is a mild technical condition, which can be

easily satisfied.

Next, we present an upper bound on the suboptimality of π̂
(18) in the following theorem. All the required lemmas and

the complete proof are provided in Appendix C.

Theorem 4.2. Under Assumptions 3.1, 3.2, 3.3, 4.1, for

some constant c > 0, by setting λ1 = N
− 1

c1+1

1 , λ2 =

8
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N
− γ

γc2+1

2 , N1 = N
c1+1
c1−1

γ(c2+1)
γc2+1

2 , and the confidence param-

eters α, β as

α = c log(T/δ)MRN
− γ

2γ+2

2 , β = c log(T/δ)MDN
− γ

2γ+2

2 ,

then with probability at least 1− δ, it holds that

SubOpt(π̂) ≲(

T∑

t=1

(
√
MR + (T − t)

√
MD)Cπ∗

t )

√
log(T/δ)N

− γ
4γ+4

2 .

(20)

Here Cπ∗

t , γ, MR, MD are defined in Assumption 4.1(a),

(e), (f). Constants c1, c2 denote a measure of smoothness

and are defined in Assumption D.10, D.16 in Appendix D.7.

According to Theorem 4.2, we have a finite-sample up-

per bound on the suboptimality of the learned policy π̂
in terms of several key parameters. It indicates that the

performance of π̂ is getting closer to the performance of

π∗ when the number of samples N → ∞. The con-

stants MR, MD denote the uniform upper bounds on the

bridge function classes {BR,t}Tt=1, {BD,t}T−1
t=1 respectively.

Typically, they do not scale with the number of stages

T . Therefore, the upper bound is roughly of the order

(
∑T

t=1(T − t + 1)Cπ∗

t )
√
log(T )N

− γ
4γ+4

2 , where there is

a trade-off at the term (T − t + 1)Cπ∗

t . Intuitively, if t is

increasing, then it is harder to require the coverage of trajec-

tory up to stage t, which implies that Cπ∗

t is increasing, and

meanwhile the term T − t+1 is decreasing. The decay rate

γ quantifies the speed of eigen-decay in the RKHS. A rapid

decay in eigenvalues (or a large γ) implies that the offline

data can be effectively represented in a lower-dimensional

subspace of the RKHSs {BR,t}Tt=1, {BD,t}T−1
t=1 , suggesting

that the kernels capture significant structure in the data with

a few dimensions. Therefore, they are often associated with

better generalization or faster statistical rate, which is also

indicated in the upper bound OP (N
γ

4γ+4

2 ).

More importantly, the upper bound (20) only relies on the

concentrability coefficients {Cπ∗

t }Tt=1 of the optimal policy,

which requires that the offline data covers the trajectory

generated by the optimal policy π∗. This partial cover-

age assumption is significantly milder than the restrictive

full coverage assumption maxt=1:T supπ∈Π Cπ
t < ∞ con-

sidered in some existing offline methods for confounded

POMDPs (Hong et al., 2023).

Remark 4.3. It should be also noted that the upper bound

(20) does not involve the size of the policy space |Π|. This

is because the way of estimating bridge functions (13)(14)

and constructing confidence sets (15)(16) does not depend

on any specific policy π in this work. We take a counter-

part result in the model-free method (Lu et al., 2022) as

an example to illustrate the advantage of our model-based

method. In Theorem 4.4 of Lu et al. (2022), there is a term√
log(|Π|) included in the upper bound, which implies that

their policy class Π cannot be too large. The effect of this

restriction is severe when the optimal policy is not included

in the pre-specified limited policy class. Furthermore, under

the POMDP settings, we can expect that the dimension of

πt grows with t because of the inclusion of history in πt.

Therefore, it is harder to control |Π| in this case. In compar-

ison, the policy space used in our work can be unrestricted

and therefore must contain the global optimal policy as long

as its concentrability coefficient is finite. This property is

especially meaningful when the policy update rule does not

need explicit policy parameterization (see e.g. Lan (2022)).

5. Discussion

We propose a model-based offline RL method for con-

founded POMDPs. Under some mild conditions, we es-

tablish a finite-sample upper bound on the performance of

the learned policy under the partial coverage assumption

from a model-based perspective.

We present some discussions and limitations in this sec-

tion. First, it would be intriguing to design a practical al-

gorithm with further empirical evaluation to demonstrate

the practical effectiveness of the proposed method. In par-

ticular, since RKHS can be employed for modeling bridge

functions, the bridge functions can be expressed as linear

combinations of many feature functions, making the ERM

a quadratic function with respect to the coefficients asso-

ciated with the bridge functions. As a result, the estima-

tors of the bridge functions will have closed forms, making

them computationally tractable and applicable to subsequent

tasks. To perform conservative policy optimization, the idea

of an existing work that designed a practical pessimistic

model-based algorithm in standard MDP contexts (Rigter

et al., 2022) could be potentially adapted to our confounded

POMDP settings. Second, in this paper, we focus on the

case when the bridge functions are realizable (Assumption

4.1(d)), the estimated conditional density functions at stage

1 are consistent (Assumption 4.1(b)), and the empirical con-

ditional mean operator at stage 1 is consistent (Assumption

4.1(c)). In other words, all the required function spaces

for the bridge functions, conditional density functions, and

conditional mean operators are sufficiently large so that

there is no approximation error occurring in this work. It

would be interesting to relax these assumptions and allow

for approximation error. Techniques like balancing the esti-

mation error and approximation error could potentially be

applied to broaden the applicability of the method. Lastly,

it would be also meaningful to apply the established model-

based identification in some RL tasks where maximizing the

expected cumulative reward is not the only goal, but also

controlling the risk or optimizing some other objectives.
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A. Definitions and Auxiliary Lemmas

Lemma A.1. Let µW |x be the conditional mean embedding of p(W | x), then it holds that

E[b(W, y) | X = x] = ⟨b, µW |x ⊗ ϕ(y)⟩HW⊗HY
(21)

where ϕ(y) denotes the canonical feature map of HY .

Definition A.2 (Population risk functional). For any generic bR,t and t = 1, ..., T , the population risk functional L[t]
R (bR,t)

is defined as

L[t]
R (bR,t) =

1

vol(R×O)

∫

R×O
E

[
(p(rt, ot | At, Ht−1, O0)− E[bR,t(At, Ot, rt, ot) | At, Ht−1, O0])

2
]
drtdot. (22)

Similarly, for any generic bD,t and t = 1, ..., T − 1, the population risk functional L[t]
D (bD,t) is defined as

L[t]
D (bD,t) =

1

vol(O ×O)

∫

O×O
E

[
(p(ot+1, ot | At, Ht−1, O0)− E[bD,t(At, Ot, ot+1, ot) | At, Ht−1, O0])

2
]
dot+1dot.

(23)

Definition A.3 (Concentrability coefficient). For each π ∈ Π, the concentrability coefficient at each stage t = 1, ..., T is

defined as

Cπ
t =

√∫

ot

E[wπ
t (At, Ht−1, O0, ot)2] (24)

where wπ
t is defined in Assumption 3.2.

Definition A.4 (Star convex hull of H). For a function class H, we define star(H) := {rh : h ∈ H, r ∈ [−1, 1]}.

Lemma A.5 (Lemma 14 of (Foster & Syrgkanis, 2023)). Consider a function class F , with supf∈F ∥f∥∞ ≤ 1, and pick

any f⋆ ∈ F . Let δ2n ≥ 4d log(41 log(2c2n))
c2n

be any solution to the inequalities:

R (δ, star (F − f⋆)) ≤ δ2.

Moreover, assume that the loss ℓ is L-Lipschitz in its first argument with respect to the ℓ2 norm. Then for some universal

constants c5, c6, with probability 1− c5 exp
(
c6nδ

2
n

)
,

∣∣∣
(
Ên[ℓ(f(x), y)]− Ên [ℓ (f

⋆(x), y)]
)
− (E[ℓ(f(x), y)]− E [ℓ (f⋆(x), y)])

∣∣∣
≤ 18Lδn (∥f − f⋆∥2 + δn) , ∀f ∈ F .

(25)

B. Proof of Theorem 3.5

In this section, we present a complete proof of the identification results summarized in Theorem 3.5. In the first part, we

show that under Assumptions 3.1, 3.2, 3.3, we have a sequence of conditional moment restrictions that are conditioned

on the unobserved (St, At). In the second part, we derive the identification results based on the first part and conclude the

proof.

Part I. According to Assumption 3.2, the following two equations hold almost surely with respect to P
πb

:

E[b
[t]
R (At, Ot, rt, ot) | Ht−1, At, O0] = p(rt, ot | Ht−1, At, O0), (26)

E[b
[t]
D (At, Ot, ot+1, ot)|Ht−1, At, O0] = p(ot+1, ot | Ht−1, At, O0). (27)

In the rest of this part, we will show that equations (26)(27) also hold when the projected space is replaced by the one

generated by the unobserved (St, At), under Assumption 3.3.

We first analyze the equation (26). The LHS of (26) can be written as

E[b
[t]
R (At, Ot, rt, ot) | Ht−1, At, O0]

=E[E[b
[t]
R (At, Ot, rt, ot) | St, Ht−1, At, O0] | Ht−1, At, O0]

=E[E[b
[t]
R (At, Ot, rt, ot) | St, Ht−1, At] | Ht−1, At, O0]

=E[E[b
[t]
R (At, Ot, rt, ot) | St, At] | Ht−1, At, O0].

(28)
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The first equality comes from the law of total expectation. The second equality comes from Assumption 3.1: Ot ⊥⊥ O0 |
St, At, Ht−1. The last equality is due to Ot ⊥⊥ Ht−1 | St, At.

The RHS of (26) can be written as

p(rt, ot | Ht−1, At, O0)

=E[p(rt, ot | St, Ht−1, At, O0) | Ht−1, At, O0]

=E[p(rt, ot | St, At) | Ht−1, At, O0]

(29)

where the last equality is due to (Rt, Ot) ⊥⊥ (Ht−1, O0) | St, At based on the data generating processes. More specifically,

given (St, At) and under the offline distribution P
πb

, Ot depends on St through the observation emission kernel, and Rt

depends on (St, At) through the reward kernel. Therefore, (Rt, Ot) are conditional independent of (Ht−1, O0) given the

state-action pair (St, At).

By combining equations (28)(29), we have

E[E[b
[t]
R (At, Ot, rt, ot) | St, At] | Ht−1, At, O0] = E[p(rt, ot | St, At) | Ht−1, At, O0], (30)

which means

E[E[b
[t]
R (At, Ot, rt, ot) | St, At]− p(rt, ot | St, At) | Ht−1, At, O0] = 0. (31)

Then, the combination of Assumption 3.3 and equation (31) implies that

E[b
[t]
R (At, Ot, rt, ot) | St, At] = p(rt, ot | St, At) (32)

for all (rt, ot) ∈ R×O, Pπb

-a.s. (St, At), and for all t = 1, ..., T .

Next, we use almost the same arguments to analyze the equation (27). The LHS of (27) can be written as

E[b
[t]
D (At, Ot, ot+1, ot) | Ht−1, At, O0]

=E[E[b
[t]
D (At, Ot, ot+1, ot) | St, Ht−1, At, O0] | Ht−1, At, O0]

=E[E[b
[t]
D (At, Ot, ot+1, ot) | St, Ht−1, At] | Ht−1, At, O0]

=E[E[b
[t]
D (At, Ot, ot+1, ot) | St, At] | Ht−1, At, O0]

(33)

Similarly, the first equality comes from the law of total expectation. The second equality comes from Assumption 3.1:

Ot ⊥⊥ O0 | St, At, Ht−1. The last equality is due to Ot ⊥⊥ Ht−1 | St, At.

The RHS of (27) can be written as

p(ot+1, ot | Ht−1, At, O0)

=E[p(ot+1, ot | St, Ht−1, At, O0) | Ht−1, At, O0]

=E[p(ot+1, ot | St, At) | Ht−1, At, O0]

(34)

where the last equality is due to (Ot+1, Ot) ⊥⊥ (Ht−1, O0) | St, At based on the data generating processes. More

specifically, given (St, At) and under the offline distribution P
πb

, Ot depends on St through the observation emission kernel,

and Ot+1 depends on (St, At) through the observation emission kernel at time t+ 1 as well as the transition kernel at time

t, i.e. Ot+1 ∼ E(St+1), St+1 ∼ Pt(· | St, At). Therefore, (Ot+1, Ot) are conditional independent of (Ht−1, O0) given the

state-action pair (St, At).

By combining equations (33)(34), we have

E[E[b
[t]
D (At, Ot, ot+1, ot) | St, At] | Ht−1, At, O0] = E[p(ot+1, ot | St, At) | Ht−1, At, O0], (35)

which means

E[E[b
[t]
D (At, Ot, ot+1, ot) | St, At]− p(ot+1, ot | St, At) | Ht−1, At, O0] = 0. (36)

Then, the combination of Assumption 3.3 and equation (36) implies that

E[b
[t]
D (At, Ot, ot+1, ot) | St, At] = p(ot+1, ot | St, At) (37)
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for all (ot+1, ot) ∈ O ×O, Pπb

-a.s. (St, At), and for all t = 1, ..., T − 1.

In summary, we have shown in part I that under Assumptions 3.1, 3.2, 3.3, the following equations hold for all (rt, ot, ot+1) ∈
R×O ×O and P

πb

-a.s. (St, At).

E[b
[t]
R (At, Ot, rt, ot) | St, At] = p(rt, ot | St, At), ∀t = 1, ..., T (38)

E[b
[t]
D (At, Ot, ot+1, ot) | St, At] = p(ot+1, ot | St, At), ∀t = 1, ..., T − 1. (39)

Part II.

By the definition of the policy value

V(π) = E
π[

T∑

t=1

Rt] =

T∑

t=1

∫

R
rtp

π(rt)drt,

it remains to identify the marginal distribution of the reward Rt induced by the policy π, i.e. pπ(rt). In the following

lemma, we express pπ(rt) in terms of the combination of policy functions πt, reward-emission models p(rt, ot | st, at), and

dynamic-emission models p(st+1, ot | st, at).
Lemma B.1. For each 1 ≤ t ≤ T , we have

pπ(rt) =

∑

at,at−1,...,a1

∫

ot,ot−1,...,o1

t∏

j=1

πj(aj | oj , aj−1, oj−1, ...)

∫

st,st−1,...,s1

p(rt, ot | st, at)
t−1∏

j=1

p(sj+1, oj | sj , aj)p(s1).
(40)

Lemma B.1 has also been used in Tennenholtz et al. (2020) which focuses on the tabular settings. We generalize it to the

continuous settings by simply extending summation to integration. The proof of Lemma B.1 is directed adapted from

Tennenholtz et al. (2020). For completeness, we provide a proof in Appendix D.2.

According to Lemma B.1, in order to identify pπ(rt), it suffices to identify the following function

ft(rt, ht) :=

∫

st,st−1,...,s1

p(rt, ot | st, at)
t−1∏

j=1

p(sj+1, oj | sj , aj)p(s1). (41)

which encodes both the information of the reward model and the dynamic model at each step t under the offline distribution.

According to Lemma B.1 and the definition of ft, it can be seen easily that

pπ(rt) =
∑

at,at−1,...,a1

∫

ot,ot−1,...,o1

t∏

j=1

πj(aj | oj , hj−1)ft(rt, ht). (42)

In the rest of part II, we present a novel analysis on ft(rt, ht), proving that it can be identified under Assumptions 3.1,

3.2, 3.3 under the general function approximation settings. In particular, we show that it can be expressed as the form of

sequential integration of bridge functions.

We focus on

ft(rt, ht) =

∫

st,st−1,...,s1

p(rt, ot | st, at)
t−1∏

j=1

p(sj+1, oj | sj , aj)p(s1). (43)

We first look at the term p(rt, ot | st, at) in (43). According to the results (38) shown in part I, we have

E[b
[t]
R (At, Ot, rt, ot) | St, At] = p(rt, ot | St, At). (44)

By plugging (44) into (43), it holds that
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ft(rt, ht)

=

∫

st,st−1,...,s1

p(rt, ot | st, at)
t−1∏

j=1

p(sj+1, oj | sj , aj)p(s1)

=

∫

st,st−1,...,s1

E[b
[t]
R (At, Ot, rt, ot) | St = st, At = at]

t−1∏

j=1

p(sj+1, oj | sj , aj)p(s1) by (44)

=

∫

st,st−1,...,s1

E[b
[t]
R (at, Ot, rt, ot) | St = st, At = at]

t−1∏

j=1

p(sj+1, oj | sj , aj)p(s1)

=

∫

st,st−1,...,s1

E[b
[t]
R (at, Ot, rt, ot) | St = st]

t−1∏

j=1

p(sj+1, oj | sj , aj)p(s1) by Ot ⊥⊥ At | St

=

∫

st,st−1,...,s1

∫

õt

b
[t]
R (at, õt, rt, ot)p(õt | st)

t−1∏

j=1

p(sj+1, oj | sj , aj)p(s1)

=

∫

st,st−1,...,s1

∫

õt

b
[t]
R (at, õt, rt, ot)p(õt | st)p(st, ot−1 | st−1, at−1)

t−2∏

j=1

p(sj+1, oj | sj , aj)p(s1)

=

∫

st−1,...,s1

∫

õt

b
[t]
R (at, õt, rt, ot)(

∫

st

p(õt | st)p(st, ot−1 | st−1, at−1))

t−2∏

j=1

p(sj+1, oj | sj , aj)p(s1)

=

∫

st−1,...,s1

∫

õt

b
[t]
R (at, õt, rt, ot)(

∫

st

p(õt | st, ot−1, st−1, at−1)p(st, ot−1 | st−1, at−1))

t−2∏

j=1

p(sj+1, oj | sj , aj)p(s1)

=

∫

st−1,...,s1

∫

õt

b
[t]
R (at, õt, rt, ot)(

∫

st

p(õt, st, ot−1 | st−1, at−1))

t−2∏

j=1

p(sj+1, oj | sj , aj)p(s1)

=

∫

st−1,...,s1

∫

õt

b
[t]
R (at, õt, rt, ot)p(õt, ot−1 | st−1, at−1)

t−2∏

j=1

p(sj+1, oj | sj , aj)p(s1) (45)

Next, we look at the term p(õt, ot−1 | st−1, at−1) in the last equality of (45). According to the results (39) shown in part I,

we have

E[b
[t−1]
D (At−1, Ot−1, õt, ot−1) | St−1, At−1] = p(õt, ot−1 | St−1, At−1). (46)

By plugging (46) into the last equality of (45), we have

ft(rt, ht)

=

∫

st−1,...,s1

∫

õt

b
[t]
R (at, õt, rt, ot)p(õt, ot−1 | st−1, at−1)

t−2∏

j=1

p(sj+1, oj | sj , aj)p(s1) by (45)

=

∫

st−1,...,s1

∫

õt

b
[t]
R (at, õt, rt, ot)E[b

[t−1]
D (At−1, Ot−1, õt, ot−1) | St−1 = st−1, At−1 = at−1]

t−2∏

j=1

p(sj+1, oj | sj , aj)p(s1) by (46)

=

∫

st−1,...,s1

∫

õt

b
[t]
R (at, õt, rt, ot)E[b

[t−1]
D (at−1, Ot−1, õt, ot−1) | St−1 = st−1, At−1 = at−1]
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t−2∏

j=1

p(sj+1, oj | sj , aj)p(s1)

=

∫

st−1,...,s1

∫

õt

b
[t]
R (at, õt, rt, ot)E[b

[t−1]
D (at−1, Ot−1, õt, ot−1) | St−1 = st−1]

t−2∏

j=1

p(sj+1, oj | sj , aj)p(s1) by Ot−1 ⊥⊥ At−1 | St−1

=

∫

st−1,...,s1

∫

õt

b
[t]
R (at, õt, rt, ot)

∫

õt−1

b
[t−1]
D (at−1, õt−1, õt, ot−1)p(õt−1 | st−1)

t−2∏

j=1

p(sj+1, oj | sj , aj)p(s1)

=

∫

st−1,...,s1

∫

õt

b
[t]
R (at, õt, rt, ot)

∫

õt−1

b
[t−1]
D (at−1, õt−1, õt, ot−1)p(õt−1 | st−1)p(st−1, ot−2 | st−2, at−2)

t−3∏

j=1

p(sj+1, oj | sj , aj)p(s1)

=

∫

st−2,...,s1

∫

õt,õt−1

b
[t]
R (at, õt, rt, ot)b

[t−1]
D (at−1, õt−1, õt, ot−1)(

∫

st−1

p(õt−1 | st−1)p(st−1, ot−2 | st−2, at−2))

t−3∏

j=1

p(sj+1, oj | sj , aj)p(s1)

=

∫

st−2,...,s1

∫

õt,õt−1

b
[t]
R (at, õt, rt, ot)b

[t−1]
D (at−1, õt−1, õt, ot−1)(

∫

st−1

p(õt−1, st−1, ot−2 | st−2, at−2))

t−3∏

j=1

p(sj+1, oj | sj , aj)p(s1)

=

∫

st−2,...,s1

∫

õt,õt−1

b
[t]
R (at, õt, rt, ot)b

[t−1]
D (at−1, õt−1, õt, ot−1)p(õt−1, ot−2 | st−2, at−2)

t−3∏

j=1

p(sj+1, oj | sj , aj)p(s1).

(47)

Based on the derivations in (45)(47), we have shown the ways to tackle the reward-emission model p(rt, ot | st, at) at

time t and the dynamic-emission model p(õt, ot−1 | st−1, at−1) at the time t− 1. By repeating the procedure of tackling

p(õj , oj−1 | sj−1, aj−1) at the time j = 1, ..., t− 2 along with

E[b
[j−1]
D (Aj−1, Oj−1, õj , oj−1) | Sj−1, Aj−1] = p(õj , oj−1 | Sj−1, Aj−1), ∀j = 1, ..., t− 1, (48)

we can write the last equality of (47) as

ft(rt, ht)

=

∫

st−2,...,s1

∫

õt,õt−1

b
[t]
R (at, õt, rt, ot)b

[t−1]
D (at−1, õt−1, õt, ot−1)p(õt−1, ot−2 | st−2, at−2)

t−3∏

j=1

p(sj+1, oj | sj , aj)p(s1) by (47)

=

∫

st−3,...,s1

∫

õt,õt−1,õt−2

b
[t]
R (at, õt, rt, ot)b

[t−1]
D (at−1, õt−1, õt, ot−1)b

[t−2]
D (at−2, õt−2, õt−1, ot−2)

p(õt−2, ot−3 | st−3, at−3)
t−4∏

j=1

p(sj+1, oj | sj , aj)p(s1)
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= · · ·

=

∫

s1

∫

õt,õt−1,...,õ2

b
[t]
R (at, õt, rt, ot)

t−1∏

j=2

b
[j]
D (aj , õj , õj+1, oj)p(õ2, o1 | s1, a1)p(s1)

=

∫

s1

∫

õt,õt−1,...,õ2

b
[t]
R (at, õt, rt, ot)

t−1∏

j=2

b
[j]
D (aj , õj , õj+1, oj)E[b

[1]
D (A1, O1, õ2, o1) | S1 = s1, A1 = a1]p(s1)

=

∫

s1

∫

õt,õt−1,...,õ2

b
[t]
R (at, õt, rt, ot)

t−1∏

j=2

b
[j]
D (aj , õj , õj+1, oj)E[b

[1]
D (a1, O1, õ2, o1) | S1 = s1, A1 = a1]p(s1)

=

∫

s1

∫

õt,õt−1,...,õ2

b
[t]
R (at, õt, rt, ot)

t−1∏

j=2

b
[j]
D (aj , õj , õj+1, oj)E[b

[1]
D (a1, O1, õ2, o1) | S1 = s1]p(s1) by O1 ⊥⊥ A1 | S1

=

∫

s1

∫

õt,õt−1,...,õ2

b
[t]
R (at, õt, rt, ot)

t−1∏

j=2

b
[j]
D (aj , õj , õj+1, oj)

∫

õ1

b
[1]
D (a1, õ1, õ2, o1)p(õ1 | s1)p(s1)

=

∫

õt,õt−1,...,õ2

b
[t]
R (at, õt, rt, ot)

t−1∏

j=2

b
[j]
D (aj , õj , õj+1, oj)

∫

õ1

b
[1]
D (a1, õ1, õ2, o1)p(õ1) by integrating out s1

=

∫

õt,...õ1

b
[t]
R (at, õt, rt, ot)

t−1∏

j=1

b
[j]
D (aj , õj , õj+1, oj)p(õ1). (49)

Consequently, for each t, ft(rt, ht) can be identified as

ft(rt, ht) =

∫

õt,...õ1

b
[t]
R (at, õt, rt, ot)

t−1∏

j=1

b
[j]
D (aj , õj , õj+1, oj)p(õ1), (50)

which implies the identification of pπ(rt) for each t = 1, ..., T :

pπ(rt)

=
∑

at,...,a1

∫

ot,...,o1

t∏

j=1

πj(aj | oj , aj−1, oj−1, ...)ft(rt, ht)

=
∑

at,...,a1

∫

ot,...,o1

t∏

j=1

πj(aj | oj , aj−1, oj−1, ...)

∫

õt,...õ1

b
[t]
R (at, õt, rt, ot)

t−1∏

j=1

b
[j]
D (aj , õj , õj+1, oj)p(õ1).

(51)

The policy value V(π) is then identified as

V(π)

=E
π[

T∑

t=1

Rt]

=

T∑

t=1

∫

rt

rtp
π(rt)

=

T∑

t=1

∫

rt

rt
∑

at,...,a1

∫

ot,...,o1

t∏

j=1

πj(aj | oj , aj−1, oj−1, ...)

∫

õt,...õ1

b
[t]
R (at, õt, rt, ot)

t−1∏

j=1

b
[j]
D (aj , õj , õj+1, oj)p(õ1).

(52)

The proof of Theorem 3.5 is completed.
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C. Proof of Theorem 4.2

In this section, we provide a detailed proof of Theorem 4.2, which provides an upper bound on the suboptimality of π̂.

We rely on the following three useful lemmas. The first lemma is quantifies the performance difference between the true

bridge function and the function in the bridge function class.

Lemma C.1 (Error decomposition). Under Assumptions 3.1, 3.2, 3.3, D.3, for each π ∈ Π, bR ∈ ⊗T
t=1 HWt

⊗HYt
,

bD ∈⊗T−1
t=1 HWt

⊗HZt
, it holds that

|V(π)− V(π,bR,bD)| ≤
T∑

t=1

Cπ
t

√
vol(R×O)

√
L[t]
R (bR,t) +

T−1∑

t=1

Cπ
t (T − t)

√
vol(O ×O)

√
L[t]
D (bD,t), (53)

where Cπ
t is defined in Definition A.3, and L[t]

R , L[t]
D denotes the risk functionals defined in Definition A.2.

Proof. The proof is provided in Appendix D.3.

The next lemma essentially shows that the true bridge functions are contained in the constructed confidence sets with high

probability.

Lemma C.2. Under Assumptions 3.1, 3.2, 3.3, 4.1, D.16, with probability at least 1 − δ, for some c > 0, by setting

λ1 = N
− 1

c1+1

1 , λ2 = N
− γ

γc2+1

2 , N1 = N
c1+1
c1−1

γ(c2+1)
γc2+1

2 , and setting

α = c log(T/δ)MRN
− γ

2γ+2

2 , β = c log(T/δ)MDN
− γ

2γ+2

2 ,

it holds that

(b
[1]
R , ..., b

[T ]
R ) ∈ confR(α), (b

[1]
D , ..., b

[T−1]
D ) ∈ confD(β). (54)

Here γ, are defined in Assumption 4.1. Constants c1, c2 denote a measure of smoothness and are defined in Assumption

D.10, D.16 in Appendix D.7.

Proof. See Appendix D.5 for a proof.

Next, the following lemma requires a uniform upper bound within the confidence regions.

Lemma C.3. Under Assumptions 3.1, 3.2, 3.3, 4.1, D.16, with probability at least 1 − δ, for some c > 0, by setting

λ1 = N
− 1

c1+1

1 , λ2 = N
− γ

γc2+1

2 , N1 = N
c1+1
c1−1

γ(c2+1)
γc2+1

2 , and setting

α = c log(T/δ)MRN
− γ

2γ+2

2 , β = c log(T/δ)MDN
− γ

2γ+2

2 ,

it holds that

sup
bR∈confR(α)

max
t=1:T

√
L[t]
R (bR,t) ≤

√
α, (55)

sup
bD∈confD(β)

max
t=1:T−1

√
L[t]
D (bD,t) ≤

√
β. (56)

Here γ, MR, MD are defined in Assumption 4.1. Constants c1, c2 denote a measure of smoothness and are defined in

Assumption D.10, D.16 in Appendix D.7.

Proof. See Appendix D.5 for a proof.

Then, by combining Lemma C.1, Lemma C.2 and Lemma C.3, we obtain the following upper bounds

V(π⋆)− V(π̂)
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=V(π⋆)− min
(bR,bD)∈confR(α)×confD(β)

V(π⋆,bR,bD) + min
(bR,bD)∈confR(α)×confD(β)

V(π⋆,bR,bD)− V(π̂)

≤V(π⋆)− min
(bR,bD)∈confR(α)×confD(β)

V(π⋆,bR,bD) + min
(bR,bD)∈confR(α)×confD(β)

V(π̂,bR,bD)− V(π̂)

≤V(π⋆)− min
(bR,bD)∈confR(α)×confD(β)

V(π⋆,bR,bD) + 0

≤ sup
(bR,bD)∈confR(α)×confD(β)

{
T∑

t=1

Cπ∗

t

√
vol(R×O)

√
L[t]
R (bR,t) +

T−1∑

t=1

Cπ∗

t (T − t)
√
vol(O ×O)

√
L[t]
D (bD,t)}

≲

T∑

t=1

Cπ∗

t

√
log(T/δ)MRN

− γ
4γ+4

2 +

T−1∑

t=1

Cπ∗

t (T − t)
√
log(T/δ)MDN

− γ
4γ+4

2

=(

T∑

t=1

(
√
MR + (T − t)

√
MD)Cπ∗

t )
√
log(T/δ)N

− γ
4γ+4

2 (57)

The first inequality is by the definition of π̂. The second inequality is from Lemma C.2. The third inequality is from Lemma

C.1. The final inequality is from Lemma C.3.

The proof of Theorem 4.2 is completed.

D. Proof for Lemmas

D.1. Proof of Lemma A.1

Proof.

E[b(W, y) | X = x]

=

∫

W
b(w, y)p(w | x)dw

=

∫

W
⟨b, ϕ(w)⊗ ϕ(y)⟩HW⊗HY

p(w | x)dw

=⟨b,
∫

W
ϕ(w)p(w | x)dw ⊗ ϕ(y)⟩HW⊗HY

=⟨b, µW |x ⊗ ϕ(y)⟩HW⊗HY

(58)

where we have used the Bochner integrability of the feature map ϕ(w) to take the expectation inside the dot product. See

Definition A.5.20 for more details (Steinwart & Christmann, 2008).

D.2. Proof of Lemma B.1

Proof of Lemma B.1. Let H̄t := (S1, O1, A1, ..., St, Ot, At) and Ht := (O1, A1, ..., Ot, At). We have

pπ(rt+1)

=

∫
pπ(rt+1 | h̄t+1)p

π(h̄t+1)

=

∫
p(rt+1 | st+1, at+1)p

π(h̄t+1)

=
∑

at+1

∫

ot+1,st+1,h̄t

p(rt+1 | st+1, at+1)π(at+1 | ot+1, ht)p(ot+1 | st+1)p(st+1 | st, at)pπ(h̄t)

= · · ·

=
∑

at+1,at,...,a1

∫

ot+1,st+1,...,o1,s1

p(rt+1 | st+1, at+1)

t+1∏

i=1

{π(ai | oi, hi−1)p(oi | si)p(si | si−1, ai−1)}
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=
∑

at+1,at,...,a1

∫

ot+1,...,o1

t+1∏

i=1

π(ai | oi, hi−1)

∫

st+1,...,s1

p(rt+1, ot+1 | st+1, at+1)

t∏

i=1

p(si+1, oi | si, ai)p(s1) (59)

D.3. Proof of Lemma C.1

We need to upper bound |V(π)− V(π,bR,bD)|, for any π ∈ Π, bR ∈ ⊗T
t=1HWt

⊗HYt
, bD ∈ ⊗T−1

t=1 HWt
⊗HZt

.

According to Theorem 3.5, we have

ft(rt, ht) =

∫

õt,õt−1,...,õ1

b
[t]
R (at, õt, rt, ot)

t−1∏

j=1

b
[j]
D (aj , õj , õj+1, oj)p(õ1), (60)

and that pπ(rt) can be identified by

pπ(rt) =
∑

at,at−1,...,a1

∫

ot,ot−1,...,o1

t∏

j=1

πj(aj | oj , aj−1, oj−1, ...)ft(rt, ht). (61)

In this section, we also define two other notions:

f̃t(rt, ht) =

∫

õt,õt−1,...,õ1

bR,t(at, õt, rt, ot)

t−1∏

j=1

b
[j]
D (aj , õj , õj+1, oj)p(õ1), (62)

and

f̂t(rt, ht) =

∫

õt,õt−1,...,õ1

bR,t(at, õt, rt, ot)

t−1∏

j=1

bD,j(aj , õj , õj+1, oj)p(õ1). (63)

In f̃t, the true reward-emission bridge function b
[t]
R is replaced by a generic bR,t ∈ HWt

⊗HZt
. In f̂t, all the true bridge

functions are replaced by generic elements bR,t and {bD,j}t−1
j=1.

Similarly, we define

p̃πt (rt) =
∑

at,at−1,...,a1

∫

ot,ot−1,...,o1

t∏

j=1

πj(aj | oj , aj−1, oj−1, ...)f̃t(rt, ht), (64)

p̂πt (rt) =
∑

at,at−1,...,a1

∫

ot,ot−1,...,o1

t∏

j=1

πj(aj | oj , aj−1, oj−1, ...)f̂t(rt, ht). (65)

Next, we observe that

V(π)− V(π, bR, bD)

=

T∑

t=1

∫

rt

rtp
π
t (rt)−

T∑

t=1

∫

rt

rtp̂
π
t (rt)

=

T∑

t=1

∫

rt

rtp
π
t (rt)−

T∑

t=1

∫

rt

rtp̃
π
t (rt) +

T∑

t=1

∫

rt

rtp̃
π
t (rt)−

T∑

t=1

∫

rt

rtp̂
π
t (rt)

=V(π)− Ṽ(π, bR) + Ṽ(π, bR)− V(π, bR, bD)

(66)

where we denote
∑T

t=1

∫
rt
rtp̃

π
t (rt) as Ṽ(π, bR).
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In the rest of the proof, we provide upper bounds on V(π)− Ṽ(π, bR) and Ṽ(π, bR)− V(π, bR, bD) separately.

Bounding V(π)− Ṽ(π, bR).

By definition, we have

V(π)− Ṽ(π, bR)

=

T∑

t=1

∫

rt

rtp
π
t (rt)−

T∑

t=1

∫

rt

rtp̃
π
t (rt)

=

T∑

t=1

∫

rt

rt(p
π
t (rt)− p̃πt (rt))

(67)

where

pπt (rt)− p̃πt (rt)

=
∑

at,at−1,...,a1

∫

ot,ot−1,...,o1

t∏

j=1

πj(aj | oj , aj−1, oj−1, ...)(ft(rt, ht)− f̃t(rt, ht))
(68)

with

ft(rt, ht)− f̃t(rt, ht)

=

∫

õt,õt−1,...,õ1

b
[t]
R (at, õt, rt, ot)

t−1∏

j=1

b
[j]
D (aj , õj , õj+1, oj)p(õ1)−

∫

õt,õt−1,...,õ1

bR,t(at, õt, rt, ot)

t−1∏

j=1

b
[j]
D (aj , õj , õj+1, oj)p(õ1)

=

∫

õt,õt−1,...,õ1

(b
[t]
R (at, õt, rt, ot)− bR,t(at, õt, rt, ot))

t−1∏

j=1

b
[j]
D (aj , õj , õj+1, oj)p(õ1).

(69)

Then, we apply the same strategy from the proof of Theorem 3.5. In particular, recall that we have shown

ft(rt, ht)

=

∫

st,st−1,...,s1

∫

õt

b
[t]
R (at, õt, rt, ot)p(õt | st)

t−1∏

j=1

p(sj+1, oj | sj , aj)p(s1)

=

∫

õt,...õ1

b
[t]
R (at, õt, rt, ot)

t−1∏

j=1

b
[j]
D (aj , õj , õj+1, oj)p(õ1).

(70)

By the same arguments, it is also straightforward to have

∫

õt,...õ1

bR,t(at, õt, rt, ot)

t−1∏

j=1

b
[j]
D (aj , õj , õj+1, oj)p(õ1)

=

∫

st,st−1,...,s1

∫

õt

bR,t(at, õt, rt, ot)p(õt | st)
t−1∏

j=1

p(sj+1, oj | sj , aj)p(s1).
(71)
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We use ∆(b
[t]
R , bR,t) to denote b

[t]
R − bR,t. Then, we have

ft(rt, ht)− f̃t(rt, ht)

=

∫

õt,õt−1,...,õ1

(b
[t]
R (at, õt, rt, ot)− bR,t(at, õt, rt, ot))

t−1∏

j=1

b
[j]
D (aj , õj , õj+1, oj)p(õ1)

=

∫

õt,õt−1,...,õ1

∆(b
[t]
R , bR,t)(at, õt, rt, ot)

t−1∏

j=1

b
[j]
D (aj , õj , õj+1, oj)p(õ1)

=

∫

st,st−1,...,s1

∫

õt

∆(b
[t]
R , bR,t)(at, õt, rt, ot)p(õt | st)

t−1∏

j=1

p(sj+1, oj | sj , aj)p(s1)

(72)

where the last equality comes from (70)(71).

Therefore, we have

pπt (rt)− p̃πt (rt)

=
∑

at,at−1,...,a1

∫

ot,ot−1,...,o1

t∏

j=1

πj(aj | oj , aj−1, oj−1, ...)(ft(rt, ht)− f̃t(rt, ht))

=
∑

at,at−1,...,a1

∫

ot,ot−1,...,o1

t∏

j=1

πj(aj | oj , hj−1)

∫

st,st−1,...,s1

∫

õt

∆(b
[t]
R , bR,t)(at, õt, rt, ot)p(õt | st)

t−1∏

j=1

p(sj+1, oj | sj , aj)p(s1)

(73)

We need the following lemma to proceed.

Lemma D.1. For any measurable function g(at, õt, ht−1, ot): A×O ×Ht−1 ×O → R, it holds that

∑

at,at−1,...,a1

∫

ot,ot−1,...,o1

t∏

j=1

πj(aj | oj , hj−1)

∫

st,st−1,...,s1

∫

õt

g(at, õt, ht−1, ot)p(õt | st)
t−1∏

j=1

p(sj+1, oj | sj , aj)p(s1)

=

∫

ot

E

[
pπ (St, Ht−1)πt (At | ot, Ht−1)

pπb (St, Ht−1)πb
t (At | St)

g (At, Ot, Ht−1, ot)

]
.

(74)

According to Lemma D.1, we can further express pπt (rt)− p̃πt (rt) as

pπt (rt)− p̃πt (rt)

=
∑

at,at−1,...,a1

∫

ot,ot−1,...,o1

t∏

j=1

πj(aj | oj , hj−1)

∫

st,st−1,...,s1

∫

õt

∆(b
[t]
R , bR,t)(at, õt, rt, ot)p(õt | st)

×
t−1∏

j=1

p(sj+1, oj | sj , aj)p(s1)

=

∫

ot

E

[
pπ (St, Ht−1)πt (At | ot, Ht−1)

pπb (St, Ht−1)πb
t (At | St)

∆(b
[t]
R , bR,t) (At, Ot, rt, ot)

]
.

(75)

Note that in the application of Lemma D.1 in the above derivation, we let g(at, õt, ht−1, ot) be the function

∆(b
[t]
R , bR,t)(at, õt, rt, ot), where the input of ht−1 is empty, and rt is a fixed number (i.e. not a variable).
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Consequently, we have

V(π)− Ṽ(π, bR)

=

T∑

t=1

∫

rt

rt(p
π
t (rt)− p̃πt (rt))

=

T∑

t=1

∫

rt,ot

rtE

[
pπ (St, Ht−1)πt (At | ot, Ht−1)

pπb (St, Ht−1)πb
t (At | St)

∆(b
[t]
R , bR,t) (At, Ot, rt, ot)

]
by (75).

(76)

Next, we upper bound V(π)− Ṽ(π, bR) based on (76). For each t, we have

∫

rt,ot

rtE

[
pπ (St, Ht−1)πt (At | ot, Ht−1)

pπb (St, Ht−1)πb
t (At | St)

∆(b
[t]
R , bR,t) (At, Ot, rt, ot)

]

=

∫

rt,ot

rtE[E[w
π
t (At, O0, Ht−1, ot) | St, At, Ht−1]∆(b

[t]
R , bR,t)(At, Ot, rt, ot)] by Assumption 3.2

=

∫

rt,ot

rtE[E[w
π
t (At, O0, Ht−1, ot) | St, At, Ht−1, Ot]∆(b

[t]
R , bR,t)(At, Ot, rt, ot)] by Assumption 3.1

=

∫

rt,ot

rtE[E[w
π
t (At, O0, Ht−1, ot)∆(b

[t]
R , bR,t)(At, Ot, rt, ot) | St, At, Ht−1, Ot]] by measurability

=

∫

rt,ot

rtE[w
π
t (At, O0, Ht−1, ot)∆(b

[t]
R , bR,t)(At, Ot, rt, ot)]

=

∫

rt,ot

rtE[E[w
π
t (At, O0, Ht−1, ot)∆(b

[t]
R , bR,t)(At, Ot, rt, ot) | At, Ht−1, O0]]

=

∫

rt,ot

rtE[w
π
t (At, O0, Ht−1, ot)E[∆(b

[t]
R , bR,t)(At, Ot, rt, ot) | At, Ht−1, O0]]

≤
∫

rt,ot

√
E[wπ

t (At, Ht−1, O0, ot)2]

√
E[{E[∆(b

[t]
R , bR,t)(At, Ot, rt, ot) | At, Ht−1, O0]}2]

(Cauchy-Schwartz inequality and |rt| ≤ 1)

≤
√∫

ot

E[wπ
t (At, Ht−1, O0, ot)2]

√∫

rt,ot

E[{E[∆(b
[t]
R , bR,t)(At, Ot, rt, ot) | At, Ht−1, O0]}2]

(Cauchy-Schwartz inequality)

=Cπ
t

√∫

rt,ot

E[{E[∆(b
[t]
R , bR,t)(At, Ot, rt, ot) | At, Ht−1, O0]}2] by definition of concentrability coefficient

=Cπ
t

√∫

rt,ot

∥p(rt, ot | At, Ht−1, O0)− E[bR,t(At, Ot, rt, ot) | At, Ht−1, O0]∥2L2(Pπb )
by Assumption 3.2

=Cπ
t

√
vol(R×O)

√
L[t]
R (bR,t) by Definition A.2.

(77)

Consequently, we can upper-bound V(π)− Ṽ(π, bR) by

V(π)− Ṽ(π, bR) ≤
T∑

t=1

Cπ
t

√
vol(R×O)

√
L[t]
R (bR,t) (78)

through combining (76)(77). In addition, by symmetry, we also have

Ṽ(π, bR)− V(π) ≤
T∑

t=1

Cπ
t

√
vol(R×O)

√
L[t]
R (bR,t). (79)
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Bounding Ṽ(π, bR)− V(π, bR, bD).

Firstly, we introduce a notion as follows

ft,i(rt, ht) =

∫

õt,õt−1,...,õ1

bR,t(at, õt, rt, ot)

min{i,t}−1∏

j=1

b
[j]
D (aj , õj , õj+1, oj)

t−1∏

j=min{i,t}
bD,j(aj , õj , õj+1, oj)p(õ1).

(80)

where
∏q

j=p uj := 1 if p > q. Notice that ft,T = f̃t and ft,1 = f̂t.

Similarly, we define

pπt,i(rt) =
∑

at,at−1,...,a1

∫

ot,ot−1,...,o1

t∏

j=1

πj(aj | oj , aj−1, oj−1, ...)ft,i(rt, ht), (81)

and notice that pπt,T = p̃πt , pπt,1 = p̂πt .

We then define

Gi =

T∑

t=1

∫

rt

rtp
π
t,i(rt) (82)

and notice that

G1 =

T∑

t=1

∫

rt

rtp
π
t,1(rt) =

T∑

t=1

∫

rt

rtp̂
π
t (rt) = V(π, bR, bD) (83)

and

GT =

T∑

t=1

∫

rt

rtp
π
t,T (rt) =

T∑

t=1

∫

rt

rtp̃
π
t (rt) = Ṽ(π, bR). (84)

Therefore, we have

Ṽ(π, bR)− V(π, bR, bD) = GT −G1 =

T−1∑

i=1

(Gi+1 −Gi) (85)

Next, we focus on the term Gi+1 −Gi for each i = 1, ..., T − 1. We first write

Gi+1 −Gi =
T∑

t=1

∫

rt

rtp
π
t,i+1(rt)−

T∑

t=1

∫

rt

rtp
π
t,i(rt). (86)

We notice that if t ≤ i, then pπt,i+1(rt) = pπt,i(rt) for each rt. It is because both ft,i+1(rt, ht) and ft,i(rt, ht) are equal to

ft(rt, ht). Thus, Gi+1 −Gi can be simplified as

Gi+1 −Gi

=

T∑

t=i+1

∫

rt

rtp
π
t,i+1(rt)−

T∑

t=i+1

∫

rt

rtp
π
t,i(rt)

=
T∑

t=i+1

∫

rt

rt(p
π
t,i+1(rt)− pπt,i(rt))

=

T∑

t=i+1

∫

rt

rt

∫

ht

t∏

j=1

πj(aj | oj , hj−1)(ft,i+1(rt, ht)− ft,i(rt, ht))

(87)
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where

ft,i+1(rt, ht)− ft,i(rt, ht)

=

∫

õt,õt−1,...,õ1

bR,t(at, õt, rt, ot)

min{i+1,t}−1∏

j=1

b
[j]
D (aj , õj , õj+1, oj)

t−1∏

j=min{i+1,t}
bD,j(aj , õj , õj+1, oj)p(õ1)

−
∫

õt,õt−1,...,õ1

bR,t(at, õt, rt, ot)

min{i,t}−1∏

j=1

b
[j]
D (aj , õj , õj+1, oj)

t−1∏

j=min{i,t}
bD,j(aj , õj , õj+1, oj)p(õ1)

=

∫

õt,õt−1,...,õ1

bR,t(at, õt, rt, ot)

i∏

j=1

b
[j]
D (aj , õj , õj+1, oj)

t−1∏

j=i+1

bD,j(aj , õj , õj+1, oj)p(õ1)

−
∫

õt,õt−1,...,õ1

bR,t(at, õt, rt, ot)

i−1∏

j=1

b
[j]
D (aj , õj , õj+1, oj)

t−1∏

j=i

bD,j(aj , õj , õj+1, oj)p(õ1)

=

∫

õt,õt−1,...,õ1

bR,t(at, õt, rt, ot)
i−1∏

j=1

b
[j]
D (aj , õj , õj+1, oj)b

[i]
D (ai, õi, õi+1, oi)

t−1∏

j=i+1

bD,j(aj , õj , õj+1, oj)p(õ1)

−
∫

õt,õt−1,...,õ1

bR,t(at, õt, rt, ot)

i−1∏

j=1

b
[j]
D (aj , õj , õj+1, oj)bD,i(ai, õi, õi+1, oi)

t−1∏

j=i+1

bD,j(aj , õj , õj+1, oj)p(õ1)

(88)

Next, we introduce the following definition.

Definition D.2 (Value function). For each t = 1, ..., T and each i ≤ t− 1, we define

ut(õi+1, hi)

=

∫

rt

rt

∫

ai+1,oi+1,...,ot,at

t∏

j=i+1

πj(aj | oj , hj−1)

∫

õt,õt−1,...,õi+2

bR,t(at, õt, rt, ot)

t−1∏

j=i+1

bD,j(aj , õj , õj+1, oj),
(89)

and

Ui+1(õi+1, hi) :=

T∑

t=i+1

ut(õi+1, hi). (90)

Intuitively, Ui+1(õi+1, hi) in Definition D.2 can be understood as a kind of value function in some sense, which plays a

similar role with the value function in the standard MDP settings at the stage i+ 1. In the standard MDP settings, the value

function at the stage i+1 is upper bounded by T − i when the reward function satisfies rt ∈ [−1, 1]. Therefore, in this work,

it is natural to assume that |Ui+1(õi+1, hi)| ≤ T − i for every i = 0, ..., T − 1, which is summarized in Assumption D.3.

Assumption D.3. For each i = 1, ..., T , it holds for all (õi, hi−1) ∈ O ×Hi−1 that

|Ui(õi, hi−1)| ≤ T − i+ 1. (91)

We also use the following notation to denote the difference between the true dynamic-emission bridge function and a generic

element:

∆(b
[i]
D , bD,i)(ai, õi, õi+1, oi) := b

[i]
D (ai, õi, õi+1, oi)− bD,i(ai, õi, õi+1, oi). (92)
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By incorporating Definition D.2 and the notation ∆(b
[i]
D , bD,i), we then have

Gi+1 −Gi

=

T∑

t=i+1

∫

rt

rt

∫

ht

t∏

j=1

πj(aj | oj , hj−1)(ft,i+1(rt, ht)− ft,i(rt, ht))

=

T∑

t=i+1

∫

hi

∫

õi+1,...,õ1

ut(õi+1, hi)

i∏

j=1

πj(aj | oj , hj−1)b
[i]
D (ai, õi, õi+1, oi)

i−1∏

j=1

b
[j]
D (aj , õj , õj+1, oj)p(õ1)

−
T∑

t=i+1

∫

hi

∫

õi+1,...,õ1

ut(õi+1, hi)

i∏

j=1

πj(aj | oj , hj−1)bD,i(ai, õi, õi+1, oi)

i−1∏

j=1

b
[j]
D (aj , õj , õj+1, oj)p(õ1)

=

∫

hi

∫

õi+1,...,õ1

(

T∑

t=i+1

ut(õi+1, hi))

i∏

j=1

πj(aj | oj , hj−1)b
[i]
D (ai, õi, õi+1, oi)

i−1∏

j=1

b
[j]
D (aj , õj , õj+1, oj)p(õ1)

−
∫

hi

∫

õi+1,...,õ1

(

T∑

t=i+1

ut(õi+1, hi))

i∏

j=1

πj(aj | oj , hj−1)bD,i(ai, õi, õi+1, oi)

i−1∏

j=1

b
[j]
D (aj , õj , õj+1, oj)p(õ1)

=

∫

hi

i∏

j=1

πj(aj | oj , hj−1)

∫

õi+1,...,õ1

Ui+1(õi+1, hi)∆(b
[i]
D , bD,i)(ai, õi, õi+1, oi)

i−1∏

j=1

b
[j]
D (aj , õj , õj+1, oj)p(õ1)

(93)

We first focus on the term
∫
õi+1,...,õ1

Ui+1(õi+1, hi)∆(b
[i]
D , bD,i)(ai, õi, õi+1, oi)

∏i−1
j=1 b

[j]
D (aj , õj , õj+1, oj)p(õ1) in the last

equality of (93). By sequentially applying the definition of b
[j]
D (aj , õj , õj+1, oj) and the same arguments used in the proof

of Theorem 3.5, we have

∫

õi+1,...,õ1

Ui+1(õi+1, hi)∆(b
[i]
D , bD,i)(ai, õi, õi+1, oi)

i−1∏

j=1

b
[j]
D (aj , õj , õj+1, oj)p(õ1)

=

∫

si,si−1,...,s1

∫

õi+1,õi

Ui+1(õi+1, hi)∆(b
[i]
D , bD,i)(ai, õi, õi+1, oi)p(õi | si)

i−1∏

j=1

p(sj+1, oj | sj , aj)p(s1).
(94)

Then, by applying Lemma D.1 again for the function
∫
õi+1

Ui+1(õi+1, hi)∆(b
[i]
D , bD,i)(ai, õi, õi+1, oi), we have

Gi+1 −Gi

=

∫

hi

i∏

j=1

πj(aj | oj , hj−1)

∫

õi+1,...,õ1

Ui+1(õi+1, hi)∆(b
[i]
D , bD,i)(ai, õi, õi+1, oi)

i−1∏

j=1

b
[j]
D (aj , õj , õj+1, oj)p(õ1)

=

∫

hi

i∏

j=1

πj(aj | oj , hj−1)

∫

si,si−1,...,s1

∫

õi+1,õi

Ui+1(õi+1, hi)∆(b
[i]
D , bD,i)(ai, õi, õi+1, oi)p(õi | si)

i−1∏

j=1

p(sj+1, oj | sj , aj)p(s1)

=

∫

oi

E

[
pπ (Si, Hi−1)πi (Ai | oi, Hi−1)

pπb (Si, Hi−1)πb
i (Ai | Si)

∫

õi+1

Ui+1(õi+1, Ai, oi, Hi−1)∆(b
[i]
D , bD,i)(Ai, Oi, õi+1, oi)

]
.

(95)

In the above derivation, the function g(ai, õi, hi−1, oi) is defined as
∫
õi+1

Ui+1(õi+1, hi)∆(b
[i]
D , bD,i)(ai, õi, õi+1, oi) when

we apply Lemma D.1.

Next, we provide an upper bound on the last equality of (95). For clarity, we use the notation κ(Ai, Oi, Hi−1, õi+1, oi) to

27



Model-based Reinforcement Learning for Confounded POMDPs

denote Ui+1(õi+1, Ai, oi, Hi−1)∆(b
[i]
D , bD,i)(Ai, Oi, õi+1, oi). Then, we have

Gi+1 −Gi

=

∫

oi,õi+1

E

[
pπ (Si, Hi−1)πi (Ai | oi, Hi−1)

pπb (Si, Hi−1)πb
i (Ai | Si)

Ui+1(õi+1, Ai, oi, Hi−1)∆(b
[i]
D , bD,i)(Ai, Oi, õi+1, oi)

]

=

∫

oi,õi+1

E

[
pπ (Si, Hi−1)πi (Ai | oi, Hi−1)

pπb (Si, Hi−1)πb
i (Ai | Si)

κ(Ai, Oi, Hi−1, õi+1, oi)

]

=

∫

oi,õi+1

E[E[wπ
i (Ai, O0, Hi−1, oi) | Si, Ai, Hi−1]κ(Ai, Oi, Hi−1, õi+1, oi)] by Assumption 3.2

=

∫

oi,õi+1

E[E[wπ
i (Ai, O0, Hi−1, oi) | Si, Ai, Hi−1, Oi]κ(Ai, Oi, Hi−1, õi+1, oi)] by Assumption 3.1

=

∫

oi,õi+1

E[E[wπ
i (Ai, O0, Hi−1, oi)κ(Ai, Oi, Hi−1, õi+1, oi) | Si, Ai, Hi−1, Oi]] by measurability

=

∫

oi,õi+1

E[wπ
i (Ai, O0, Hi−1, oi)κ(Ai, Oi, Hi−1, õi+1, oi)]

=

∫

oi,õi+1

E[E[wπ
i (Ai, O0, Hi−1, oi)κ(Ai, Oi, Hi−1, õi+1, oi) | At, Ht−1, O0]]

=

∫

oi,õi+1

E[wπ
i (Ai, O0, Hi−1, oi)E[κ(Ai, Oi, Hi−1, õi+1, oi) | Ai, Hi−1, O0]]

≤
∫

oi,õi+1

√
E[wπ

i (Ai, Hi−1, O0, oi)2]
√
E[{E[κ(Ai, Oi, Hi−1, õi+1, oi) | Ai, Hi−1, O0]}2]

(Cauchy-Schwartz inequality)

≤
√∫

oi

E[wπ
i (Ai, Hi−1, O0, oi)2]

√∫

oi,õi+1

E[{E[κ(Ai, Oi, Hi−1, õi+1, oi) | Ai, Hi−1, O0]}2]

(Cauchy-Schwartz inequality)

=Cπ
i

√∫

oi,õi+1

E[{E[κ(Ai, Oi, Hi−1, õi+1, oi) | Ai, Hi−1, O0]}2] by definition of concentrability coefficient

≤Cπ
i

√∫

oi,õi+1

E

[
{E[Ui+1(õi+1, Ai, oi, Hi−1) | Ai, Hi−1, O0]}2{E[∆(b

[i]
D , bD,i)(Ai, Oi, õi+1, oi) | Ai, Hi−1, O0]}2

]

(Cauchy-Schwartz inequality for conditional expectation)

≤Cπ
i

√∫

oi,õi+1

E

[
(T − i)2{E[∆(b

[i]
D , bD,i)(Ai, Oi, õi+1, oi) | Ai, Hi−1, O0]}2

]
by Assumption D.3

=Cπ
i (T − i)

√∫

oi,õi+1

∥p(õi+1, oi | Ai, Hi−1, O0)− E[bD,i(Ai, Oi, õi+1, oi) | Ai, Hi−1, O0]∥2L2(Pπb )
by Assumption 3.2

=Cπ
i (T − i)

√
vol(O ×O)

√
L[i]
D (bD,i) by Definition A.2.

(96)

Therefore, we have

Ṽ(π, bR)− V(π, bR, bD) =
T−1∑

i=1

(Gi+1 −Gi) ≤
T−1∑

i=1

Cπ
i (T − i)

√
vol(O ×O)

√
L[i]
D (bD,i). (97)

In addition, by symmetry, it also holds that

V(π, bR, bD)− Ṽ(π, bR) ≤
T−1∑

i=1

Cπ
i (T − i)

√
vol(O ×O)

√
L[i]
D (bD,i). (98)
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Combining upper bounds for |V(π)− Ṽ(π, bR)| and |Ṽ(π, bR)− V(π, bR, bD)|

|V(π)− V(π, bR, bD)|
=|V(π)− Ṽ(π, bR) + Ṽ(π, bR)− V(π, bR, bD)|
≤|V(π)− Ṽ(π, bR)|+ |Ṽ(π, bR)− V(π, bR, bD)|

≤
T∑

t=1

Cπ
t

√
vol(R×O)

√
L[t]
R (bR,t) +

T−1∑

t=1

Cπ
t (T − t)

√
vol(O ×O)

√
L[t]
D (bD,t).

(99)

The proof is completed.

D.4. Proof of Lemma C.2

We aim to show that L̂[t]
R (b

[t]
R ) − L̂[t]

R (̂b
[t]
R ) ≤ α with probability at least 1 − δ

2T , and that L̂[t]
D (b

[t]
D ) − L̂[t]

D (̂b
[t]
D ) ≤ β with

probability at least 1− δ
2(T−1) .

To begin with, we decompose L̂[t]
R (b

[t]
R )− L̂[t]

R (̂b
[t]
R ) as follows:

L̂[t]
R (b

[t]
R )− L̂[t]

R (̂b
[t]
R )

=L̂[t]
R (b

[t]
R )− L[t]

R (b
[t]
R ) + L[t]

R (b
[t]
R )− L[t]

R (̂b
[t]
R ) + L[t]

R (̂b
[t]
R )− L̂[t]

R (̂b
[t]
R )

≤L̂[t]
R (b

[t]
R )− L[t]

R (b
[t]
R ) + L[t]

R (̂b
[t]
R )− L̂[t]

R (̂b
[t]
R )

≤2 sup
bR,t∈HWt⊗HYt

|L̂[t]
R (bR,t)− L[t]

R (bR,t)|

(100)

where the first inequality comes from L[t]
R (b

[t]
R )− L[t]

R (̂b
[t]
R ) ≤ 0 as L[t]

R (b
[t]
R ) = 0 and L[t]

R (̂b
[t]
R ) ≥ 0.

It remains to upper bound the term supbR,t∈HWt⊗HYt
|L̂[t]

R (bR,t)− L[t]
R (bR,t)|.

We employ the following lemma to proceed.

Lemma D.4. Under Assumptions 3.1, 3.2, 3.3, 4.1, D.16, with probability at least 1 − δ, for some c > 0, by setting

λ1 = N
− 1

c1+1

1 , λ2 = N
− γ

γc2+1

2 , N1 = N
c1+1
c1−1

γ(c2+1)
γc2+1

2 , with probability at least 1− δ, it holds that

max
t=1:T

sup
bR,t∈HWt⊗HYt

|L̂[t]
R (bR,t)− L[t]

R (bR,t)| = OP (MR log(T/δ)N
− γ

2γ+2

2 )

and

max
t=1:T−1

sup
bD,t∈HWt⊗HZt

|L̂[t]
D (bD,t)− L[t]

D (bD,t)| = OP (MD log(T/δ)N
− γ

2γ+2

2 ).

Proof of Lemma D.4. See Appendix D.8 for a proof.

Next, according to Lemma D.4, and by the definition of α = c log(T/δ)MRN
− γ

2γ+2

2 , β = c log(T/δ)MDN
− γ

2γ+2

2 , we

have

max
t=1:T

{L̂[t]
R (b

[t]
R )− L̂[t]

R (̂b
[t]
R )} = OP (α)

and

max
t=1:T−1

{L̂[t]
D (b

[t]
D )− L̂[t]

D (̂b
[t]
D )} = OP (β).

The proof is done.
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D.5. Proof of Lemma C.3

We aim to show that L[t]
R (bR,t) can be upper bounded uniformly for any bR,t ∈ confR(α) and uniformly for all t = 1, .., T .

Similarly, we need to show L[t]
D (bD,t) can be upper bounded uniformly for any bD,t ∈ confD(β) and uniformly for all

t = 1, .., T − 1.

We first present the following decomposition.

L[t]
R (bR,t)

=L[t]
R (bR,t)− L̂[t]

R (bR,t) + L̂[t]
R (bR,t)− L̂[t]

R (̂b
[t]
R ) + L̂[t]

R (̂b
[t]
R )− L[t]

R (̂b
[t]
R ) + L[t]

R (̂b
[t]
R )

≤2 sup
bR,t

|L[t]
R (bR,t)− L̂[t]

R (bR,t)|+ α+ L[t]
R (̂b

[t]
R ).

(101)

Similarly, we have

L[t]
D (bD,t)

≤2 sup
bD,t

|L[t]
D (bD,t)− L̂[t]

D (bD,t)|+ β + L[t]
D (̂b

[t]
D ).

(102)

We need Lemma D.4 and the following lemma to proceed.

Lemma D.5. Under Assumptions 3.1, 3.2, 3.3, 4.1, D.16, with probability at least 1 − δ, for some c > 0, by setting

λ1 = N
− 1

c1+1

1 , λ2 = N
− γ

γc2+1

2 , N1 = N
c1+1
c1−1

γ(c2+1)
γc2+1

2 , and setting

α = c log(T/δ)MRN
− γ

2γ+2

2 , β = c log(T/δ)MDN
− γ

2γ+2

2 ,

it holds that

max
t=1:T

L[t]
R (̂b

[t]
R ) = OP (log(T/δ)N

− γc2
γc2+1

2 )

and

max
t=1:T−1

L[t]
D (̂b

[t]
D ) = OP (log(T/δ)N

− γc2
γc2+1

2 ).

Here γ are defined in Assumption 4.1.

Proof of Lemma D.5. See Appendix D.7 for a proof.

In particular, according to Lemma D.4, we have

max
t=1:T

sup
bR,t∈HWt⊗HYt

|L̂[t]
R (bR,t)− L[t]

R (bR,t)| = OP (MR log(T/δ)N
− γ

2γ+2

2 )

and

max
t=1:T−1

sup
bD,t∈HWt⊗HZt

|L̂[t]
D (bD,t)− L[t]

D (bD,t)| = OP (MD log(T/δ)N
− γ

2γ+2

2 ).

We can see that maxt=1:T supbR,t∈HWt⊗HYt
|L̂[t]

R (bR,t) − L[t]
R (bR,t)| and maxt=1:T−1 supbD,t∈HWt⊗HZt

|L̂[t]
D (bD,t) −

L[t]
D (bD,t)| are the dominating terms, which are of the order α, β respectively.

Therefore, we have maxt=1:T supbR,t∈HWt⊗HYt
L[t]
R (bR,t) = OP (α) and maxt=1:T−1 supbD,t∈HWt⊗HZt

L[t]
D (bD,t) =

OP (β). The proof is completed by taking a square root at both sides.
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D.6. Proof of Lemma D.1

We need to show

∑

at,at−1,...,a1

∫

ot,ot−1,...,o1

t∏

j=1

πj(aj | oj , hj−1)

∫

st,st−1,...,s1

∫

õt

g(at, õt, ht−1, ot)p(õt | st)
t−1∏

j=1

p(sj+1, oj | sj , aj)p(s1)

=

∫

ot

E

[
pπ (St, Ht−1)πt (At | ot, Ht−1)

pπb (St, Ht−1)πb
t (At | St)

g (At, Ot, Ht−1, ot)

]
.

(103)

For clarity, we simply use
∫
at

to denote
∑

at
for every t. Then we do a direct calculation in the following

∫

ot

E

[
pπ (St, Ht−1)πt (At | ot, Ht−1)

pπb (St, Ht−1)πb
t (At | St)

g (At, Ot, Ht−1, ot)

]

=

∫

at,ot,õt,st,ht−1

pπ(st, ht−1)πt(at | ot, ht−1)

pπb(st, ht−1)πb
t (at | st)

g(at, õt, ht−1, ot)p
πb

(at, õt, st, ht−1)

=

∫

at,ot,õt,st,ht−1

pπ(st, ht−1)πt(at | ot, ht−1)

pπb(st, ht−1)πb
t (at | st)

g(at, õt, ht−1, ot)p
πb

(at, õt | st, ht−1)p
πb

(st, ht−1)

=

∫

at,ot,õt,st,ht−1

pπ(st, ht−1)πt(at | ot, ht−1)

pπb(st, ht−1)πb
t (at | st)

g(at, õt, ht−1, ot)p
πb

(at, õt | st)pπ
b

(st, ht−1)

=

∫

at,ot,õt,st,ht−1

pπ(st, ht−1)πt(at | ot, ht−1)

pπb(st, ht−1)πb
t (at | st)

g(at, õt, ht−1, ot)π
b
t (at | st)p(õt | st)pπ

b

(st, ht−1) by At ⊥⊥ Ot | St

=

∫

at,ot,õt,st,ht−1

πt(at | ot, ht−1)g(at, õt, ht−1, ot)p(õt | st)pπ(st, ht−1).

(104)

We then provide an expression of pπ(st, ht−1) in the following:

pπ(st, ht−1)

=

∫

st−1

pπ(st, st−1, ht−1)

=

∫

st−1

pπ(st | st−1, ht−1)p
π(st−1, ht−1)

=

∫

st−1

p(st | st−1, at−1)p
π(st−1, ht−1) by St ⊥⊥ (Ht−2, Ot−1) | (St, At)

=

∫

st−1

p(st | st−1, at−1)p
π(st−1, at−1, ot−1, ht−2)

=

∫

st−1

p(st | st−1, at−1)p
π(at−1 | st−1, ot−1, ht−2)p

π(ot−1 | st−1, ht−2)p
π(st−1, ht−2)

=

∫

st−1

p(st | st−1, at−1)πt−1(at−1 | ot−1, ht−2)p(ot−1 | st−1)p
π(st−1, ht−2)

=

∫

st−1

p(st | st−1, at−1)πt−1(at−1 | ot−1, ht−2)p(ot−1 | st−1, at−1)p
π(st−1, ht−2)

=

∫

st−1

p(st, ot−1 | st−1, at−1)πt−1(at−1 | ot−1, ht−2)p
π(st−1, ht−2)

= · · ·

=

∫

st−1,st−2,...,s1

t−1∏

j=1

p(sj+1, oj | sj , aj)
t−1∏

j=1

πj(aj | oj , hj−1)p(s1). (105)
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By plugging (105) into the last equality of (104), we have
∫

ot

E

[
pπ (St, Ht−1)πt (At | ot, Ht−1)

pπb (St, Ht−1)πb
t (At | St)

g (At, Ot, Ht−1, ot)

]

=

∫

at,ot,õt,st,ht−1

πt(at | ot, ht−1)g(at, õt, ht−1, ot)p(õt | st)pπ(st, ht−1)

=

∫

at,ot,õt,st,ht−1

πt(at | ot, ht−1)g(at, õt, ht−1, ot)p(õt | st)
∫

st−1,st−2,...,s1

t−1∏

j=1

p(sj+1, oj | sj , aj)
t−1∏

j=1

πj(aj | oj , hj−1)p(s1)

=

∫

ht

t∏

j=1

πj(aj | oj , hj−1)

∫

st,st−1,st−2,...,s1

∫

õt

g(at, õt, ht−1, ot)p(õt | st)
t−1∏

j=1

p(sj+1, oj | sj , aj)p(s1).

(106)

The proof is done.

D.7. Proof of Lemma D.5

We prove finite-sample upper bounds on L[t]
R (̂b

[t]
R ) and L[t]

D (̂b
[t]
D ) in this proof. Most of the proof for this lemma is adapted

from Mastouri et al. (2021); Singh et al. (2019); SzabÂo et al. (2016); Caponnetto & De Vito (2007), excepted that we need to

deal with p̂(yt | xt), p̂(zt | xt) in this work rather than the true observed p(yt | xt), p(zt | xt). To begin with, we focus on

L[t]
R (̂b

[t]
R ). We are going to analyze the stage 1 error at first, and then analyze the stage 2 error.

We first introduce some notations for the sake of convenience. As HX ⊗ HY is isometrically isomorphic to HXY , we

use their features interchangeably, i.e. ϕ(x, y) = ϕ(x)⊗ ϕ(y). k(·, ·) is a general notation for a kernel function, and ϕ(·)
denotes RKHS feature maps. To simplify notation, the argument of the kernel/feature map identifies it: for instance, k(x, ·)
and ϕ(x) denote the respective kernel and feature map on X . We denote Kxx̃ := k(x, x̃).

For any Hilbert space F , we denote L(F) the space of bounded linear operators from F to itself. For any Hilbert space G,

we denote by L2(F ,G) the space of Hilbert-Schmidt operators from F to G. We denote by L2(F ,Pπb

) the space of square

integrable functions on F with respect to measure P
πb

.

We analyze the stage 1 estimation at first.

Stage 1. At stage 1, we learn the conditional mean embedding of the conditional distribution p(wt | xt). There exist some

works that have studied the finite-sample convergence of the conditional mean embedding. Here, we directly adopt the

theoretical results (including required assumptions, definitions, theorems, etc) from existing works Singh et al. (2019);

Mastouri et al. (2021) regarding the analysis of stage 1 error.

The optimal CWt|Xt
minimizes the expected discrepancy:

CWt|Xt
= argmin

C∈L2(HXt ,HWt)
Et(C), where Et(C) = E∥ϕ(Wt)− Cϕ(Xt)∥2HWt (107)

According to Song et al. (2009; 2013), it suffices to solve a vector-valued regression in order to learn CWt|Xt
. The search

space in the regression problem is the vector-valued RKHS HΓt
of operators mapping HXt

to HWt
. See also a review of

the kernel conditional mean embedding Muandet et al. (2017). In particular, HXt
⊗HWt

is isomorphic to L2 (HXt
,HWt

).
Therefore, by choosing the vector-valued kernel Γt with feature map : (xt, wt) 7→ [ϕ(xt)⊗ ϕ(wt)] := ϕ(xt)⟨ϕ(wt), ·⟩HWt

,

we have HΓt
= L2 (HXt

,HWt
) and they share the same norm. We denote by L2(Xt,P

πb

Xt
) the space of square integrable

functions from Xt to Wt with respect to measure P
πb

Xt
, where P

πb

Xt
is the restriction of Pπb

to Xt.

We drop the subscript with respect to t in the following if it does not cause confusion. Also, we adopt the same notations

and results directly from Mastouri et al. (2021), and they are only used in this proof.

The following assumptions and definitions are needed.
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Assumption D.6. For each t = 1, ..., T , Xt,Yt,Wt,Zt are measurable, separable Polish spaces.

Assumption D.7. (i) k(w, ·) is a characteristic kernel. (ii) k(y, ·), k(x, ·), k(w, ·) and k(z, ·) are continuous, bounded by

κ > 0, and their feature maps are measurable.

The kernel mean embedding of any probability distribution is injective if a characteristic kernel is used (Sriperumbudur

et al., 2011); this guarantees that a probability distribution can be uniquely represented in an RKHS.

Assumption D.8. For each t = 1, ..., T , assume that CWt|Xt
∈ HΓt , i.e. CWt|Xt

= argminC∈HΓt
Et(C)

Definition D.9 (Kernel Integral operator for Stage 1). Define the integral operator:

S1 : L2
(
X ,Pπb

X
)
−→ HX

g 7−→
∫

ϕ(x)g(x)dPπb

X (x).

The uncentered covariance operator is defined by T1 = S1 ◦ S∗
1 , where S∗

1 is the adjoint of S1.

Assumption D.10. Fix γ1 < ∞. For given c1 ∈ (1, 2], we assume that ∃G1 ∈ HΓ s.t. CW |X = T
c1−1

2
1 ◦ G1 and

∥G1∥2HΓ
≤ γ1.

The following theorem provides a closed-form solution to the ERM in stage 1.

Theorem D.11 (Singh et al. (2019), Theorem 1). For any λ1 > 0, the solution of (10) exists, is unique, and is given by:

ĈW |X = (T 1 + λ1)
−1

g1, where T 1 =
1

N1

N1∑

i=1

ϕ (xi)⊗ ϕ (xi) ,

and g1 =
1

N1

N1∑

i=1

ϕ (xi)⊗ ϕ (wi)

and for any x ∈ X , we have µ̂W |x = ĈW |Xϕ(x).

The next theorem provides a finite-sample upper bound on the estimation error.

Theorem D.12 (Finite-sample upper bound at stage 1, Mastouri et al. (2021), Theorem 5). Suppose Assumptions D.6, D.7,

D.8 and D.10 hold. Define λ1 as:

λ1 =



8κ
(
κ+ κ

∥∥CW |X
∥∥
HΓ

)
ln(2/δ)

√
N1γ1 (c1 − 1)




2
c1+1

Then, for any x ∈ X and any δ ∈ (0, 1), the following holds with probability 1− δ :

∥∥µ̂W |x − µW |x
∥∥
HW

≤ κrC (δ,N1, c1) =: κ

√
γ1 (c1 + 1)

4
1

c1+1



4κ
(
κ+ κ

∥∥CW |X
∥∥
HΓ

)
ln(2/δ)

√
N1γ1 (c1 − 1)




c1−1
c1+1

where µ̂W |X = ĈW |Xϕ(x) and ĈW |X is the solution of (10).

The proof of Theorem D.12 is omitted in this paper. Readers can refer to Mastouri et al. (2021); Singh et al. (2019) for a

detailed proof.

Corollary D.13. Under the same conditions from Theorem D.12, for any xt ∈ Xt and any δ ∈ (0, 1), the following holds

uniformly for all t = 1, ..., T with probability 1− δ :

∥∥µ̂Wt|xt
− µWt|xt

∥∥
HWt

≤ κ

√
γ1 (c1 + 1)

4
1

c1+1



4κ
(
κ+ κ

∥∥CWt|Xt

∥∥
HΓt

)
ln(2T/δ)

√
N1γ1 (c1 − 1)




c1−1
c1+1
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Proof of Corollary D.13. Let δ := δ′

T in Theorem D.12 and apply a union bound argument.

Stage 2.

We then analyze the stage 2 error where the output from stage 1 is used as a plug-in estimator. Most of the proof for the

stage 2 analysis can be adapted from Singh et al. (2019); Mastouri et al. (2021), except that we need to deal with p̂(wt | xt)
rather than p(wt | xt).

The optimal b∗R,t minimizes the expected discrepancy:

b∗R,t = argmin
bR,t∈HWt⊗HYt

L[t]
R (bR,t) where (108)

L[t]
R (bR,t) = E

Xt∼Pπb ,Yt∼Unif(Y)

(〈
µWt|Xt

⊗ ϕ (Yt) , bR,t

〉
HWt⊗HYt

− p (Yt | Xt)
)2

. (109)

Throughout the proof of stage 2 error, we use the notation P̃ to denote the probability measure, in which both Wt, Xt follows

P
πb

while Yt follows unif(Y).

Similarly to Stage 1, the problem of learning b∗R,t is transformed into a ridge regression. We list some needed assumptions

and definitions as well in the following.

Assumption D.14. For each t = 1, ..., T , we assume that b
[t]
R = b∗R,t, i.e. the minimization problem argmin

bR,t∈HWt⊗HYt

L[t]
R (bR,t)

is achievable with minbR,t∈HWt⊗HYt
L[t]
R (bR,t) = 0.

Definition D.15. (Kernel integral operator for Stage 2). Define the integral operator :

S2 : HWY −→ HWY

b 7−→
∫ [

µW |x ⊗ ϕ(y)
]
b
[
ϕ(y)⊗ µW |x

]
dP̃HW×X×Y

(
µW |x, y

)
.

The uncentered covariance operator is defined by T2 = S2 ◦ S∗
2 , where S∗

2 is the adjoint of S2.

Assumption D.16. Fix γ2 < ∞. For given c2 ∈ (1, 2], we assume that P̃ belongs to a prior class of functions P (γ2, b2, c2)
such that:

(a) A range space assumption is satisfied : ∃G2 ∈ HWY s.t. b∗R = T
c2−1

2
2 ◦G2, b∗D = T

c2−1
2

2 ◦G2 and ∥G2∥HWY
≤ γ2

(b) The eigenvalues (lk)k∈N∗ of T2 satisfy α2 ≤ lkk
b2 ≤ β2 for b2 > 1, α2, β2 > 0.

(c) The conditional density function p(yt | xt) is uniformly bounded by a constant m for each t = 1, ..., T .

(d) Without loss of generality, HW ⊗ HY is a ∥ · ∥HW⊗HY
normed constrained space with ∥b∥HW⊗HY

≤ 1 for all

b ∈ HW ⊗HY .

(e) There exist MR > 0, MD > 0 such that |bR,t|∞ ≤ MR, |bD,t|∞ ≤ MD for every bR,t ∈ HWt
⊗HYt

, ∀t = 1, ..., T
bD,t ∈ HWt

⊗HZt
, ∀t = 1, ..., T − 1.

Next, we introduce a notation b̃
[t]
R which is the minimizer of the empirical risk of stage 2, when plugging in the true µWt|xt

and the true p(yt | xt) instead of their estimates:

b̃
[t]
R = argmin

bR,t∈HWt

⊗HYt

L̃[t]
R (bR,t), where

L̃[t]
R (bR,t) =

1

N2

N2∑

n=1

(〈
µWt|x′

t,n
⊗ ϕ

(
y′′t,n
)
, bR,t

〉
HWt⊗HYt

− p
(
y′′t,n | x′

t,n

))2

+ λ2∥bR,t∥2HWt⊗HYt
.

(110)

Similarly to b̂
[t]
R , it has a closed form solution given below (see Grunewalder et al. (2012), section D.1).
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Theorem D.17. For any λ2 > 0, the solutions of (110) (with dropped subscript t), exists, is unique, and is given by

(T 2 + λ2)
−1g2, where

T 2 =
1

N2

N2∑

n=1

[
µW |x′

n
⊗ ϕ (y′′n)

]
⊗
[
µW |x′

n
⊗ ϕ (y′′n)

]
,

g2 =
1

M

N2∑

n=1

[
µW |x′

n
⊗ ϕ (y′′n)

]
p(y′′n | x′

n).

(111)

Define also bλ2

R as the minimizer of the population version of (110):

bλ2

R = argmin
bR∈HW

⊗HY

Lλ2

R (bR), where

Lλ2

R (bR) = E
X∼Pπb ,Y∼unif(Y)

(〈
µW |X ⊗ ϕ (Y ) , bR

〉
HW⊗HY

− p (Y | X)
)2

+ λ2∥bR∥2HW⊗HY

(112)

where we dropped the subscript t if no confusion is caused.

Then the upper bound on the L[t]
R (̂b

[t]
R )− L[t]

R (b
[t]
R ) can be bounded by several terms that involve the stage 1 error, stage 2

error, and approximation error.

Lemma D.18 (Mastouri et al. (2021), Proposition 5). The following inequality holds.

L[t]
R (̂b

[t]
R )− L[t]

R (b
[t]
R ) ≤ 5 [S−1 + S0 +A (λ2) + S1 + S2]

where

S−1 =

∥∥∥∥
√

T2 ◦
(
T̂ 2 + λ2

)−1

(ĝ2 − g2)

∥∥∥∥
2

HWY

, S0 =

∥∥∥∥
√
T2 ◦

(
T̂ 2 + λ2

)−1

◦
(
T 2 − T̂ 2

)
b̃
[t]
R

∥∥∥∥
2

HWY

S1 =
∥∥∥
√
T2 ◦ (T 2 + λ2)

−1
(
g2 − T 2b

[t]
R

)∥∥∥
2

HWY

, S2 =
∥∥∥
√
T2 ◦ (T 2 + λ2)

−1 ◦ (T2 − T 2)
(
b
[t],λ2

R − b
[t]
R

)∥∥∥
2

HWY

and the residual A (λ2) =
∥∥∥
√
T2

(
b
[t],λ2

R − b
[t]
R

)∥∥∥
2

HWY

.

Proof. According to Proposition 2 in Vito & Caponnetto (2005), the excess risk can be decomposed as

L[t]
R (̂b

[t]
R )− L[t]

R (b
[t]
R ) =

∥∥∥
√
T2

(
b̂
[t]
R − b

[t]
R

)∥∥∥
2

HWt⊗HYt

=
∥∥∥
√
T2

(
b̂
[t]
R − b̃

[t]
R + b̃

[t]
R − b

[t],λ2

R + b
[t],λ2

R − b
[t]
R

)∥∥∥
2

HWt⊗HYt

.

(113)

Then, readers can refer to the proof of Proposition 5 in Mastouri et al. (2021).

Intuitively, S−1, S0 quantify the estimation error at stage 1; S1, S2 quantify the estimation error at stage 2; A(λ2) quantifies

the bias/approximation error from the regularized regression.

The upper bounds on S1, S2 and A(λ2) can be directly adapted from Vito & Caponnetto (2005); Caponnetto & De Vito

(2007). It is because S1, S2, A(λ2) have replaced the estimates of conditional mean embedding and conditional distribution

from stage 1 to the true ones. In this way, S1, S2, A(λ2) can be viewed as the errors from a regularized least square problem,

which has been studied by Vito & Caponnetto (2005); Caponnetto & De Vito (2007). The following two lemmas provide

upper bounds on S1, S2, A(λ2).

Lemma D.19 (Mastouri et al. (2021), Proposition 6). Suppose Assumption D.16 holds. Then, the residual A (λ2), the

reconstruction error B (λ2), and the effective dimension N (λ2) are defined and bounded as follows:

A (λ2) =
∥∥∥
√

T2

(
b
[t],λ2

R − b
[t]
R

)∥∥∥
2

HWt⊗HYt

≤ γ2λ
c2
2 , B (λ2) =

∥∥∥b[t],λ2

R − b
[t]
R

∥∥∥
2

HWt⊗HYt

≤ γ2λ
c2−1
2

N (λ2) = Tr
[
(T2 + λ2)

−1 ◦ T2

]
≤ β

1
b2
2

π/b2
sin (π/b2)

λ
− 1

b2
2
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Lemma D.20 (Theorem 4 of Caponnetto & De Vito (2007), Proposition 7 of Mastouri et al. (2021)). Assume Assumption

D.14 and Assumption D.16 hold. Assume also that λ2 ≤ ∥T2∥L(HWY) and N2 ≥ 2CϵN (λ2)
λ2

. Then, we can bound S1 and S2

from Lemma D.18 as follows w.p. 1− 2ϵ/3 :

S1 ≤ 32 ln2(6/ϵ)




(
m+

∥∥∥b[t]R

∥∥∥
HWt⊗HYt

)2

(4 +N2λ2N (λ2))

N2
2λ2


 , S2 ≤ 8 ln2(6/ϵ)

[
4B (λ2) +N2A (λ2)

N2
2λ2

]
.

Next, we focus on the stage 1 errors S−1 and S0. The following lemmas are needed.

Lemma D.21 (Proposition 8 of Mastouri et al. (2021)). Assume the assumptions of Theorem D.12 hold and define λ1

accordingly. Suppose also that Assumption D.14 and Assumption D.16 hold. Then, w.p. 1− δ :

∥∥∥T 2 − T̂ 2

∥∥∥
2

L(HW⊗HY)
≤ 4κ6rC (δ,N1, c1)

2

Lemma D.22 (MLE guarantee.). Given a set of models M = {P : X → ∆(Y)} with P ⋆ ∈ M, and a dataset

D = {xi, yi}N1

i=1 following P
πb

, let P̂MLE be

P̂MLE = argmin
P∈M

N1∑

i=1

− lnP (yi | xi) .

With probability at least 1− δ, we have:

Ex∼Pπb TV
(
P̂MLE(· | x), P ⋆(· | x)

)2
≲

ln(|M|/δ)
N1

Proof. See Agarwal et al. (2020)[Section E] for a proof.

Lemma D.23. Assume the assumptions of Theorem D.12 and assumptions of Lemma D.22 hold and define λ1 accordingly.

Suppose also that Assumption D.14 and Assumption D.16 hold. Then, w.p. 1− 3δ :

∥ĝ2 − g2∥2HW⊗HY
≲ m2κ4rC (δ,N1, c1)

2
+ κ4 log(|M|/δ)

N
1
2
1 N2

+ κ4 log(|M|/δ)
N1

.

Proof. The proof is a combination of Lemma D.22, Proposition 8 in Mastouri et al. (2021), and a Bernstein inequality. The

proof is different from the existing works because p̂(y | x) is involved in this work. See Appendix D.9 for a complete proof.

Lemma D.24 (Proposition 11 of Mastouri et al. (2021)). Let Cϵ = 96 ln2(6/ϵ) and suppose that N2 ≥ 2CϵN (λ2)
λ2

and that

λ2 ≤ ∥T2∥L(HWt⊗HYt)
. Then, w.p. 1− 2ϵ/3,

∥∥∥b̃[t]R

∥∥∥
HWt⊗HYt

≤4



32 ln2(6/ϵ)

λ2




(
cY +

∥∥∥b[t]R

∥∥∥
HWt⊗HYt

)2

(4 +N2λ2N (λ2))

N2
2λ2




+
32 ln2(6/ϵ)

λ2

[
4B (λ2) +N2A (λ2)

N2
2λ2

]
+ B (λ2) +

∥∥∥b[t]R

∥∥∥
2

HWt⊗HYt

)
(114)

Following the proof of Proposition 10 in Mastouri et al. (2021), we then have

S−1 ≲
4

λ2
(m2κ4rC (δ,N1, c1)

2
+ κ4 log(|M|/δ)

N
1
2
1 N2

+ κ4 log(|M|/δ)
N1

) (115)
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and

S0 ≤ 4

λ2
κ6rC (δ,N1, c1)

2
∥∥∥b̃[t]R

∥∥∥
2

HW⊗HY

. (116)

Combining all the above results, we then have

S−1 = O

(
rC (δ,N1, c1)

2

λ2
+

1

λ2N
1
2
1 N2

+
1

λ2N1

)

S0 = O

(
rC (δ,N1, c1)

2

λ2
·
(

1

N2
2λ

2
2

+
1

N2λ
1+1/b2
2

+
1

N2
2λ

3−c2
2

+
1

N2λ
2−c2
2

+ λc2−1
2 + 1

))

A (λ2) = O (λc2
2 ) ,

S1 = O

(
1

N2
2λ2

+
1

N2λ
1/b2
2

)
,

S2 = O

(
1

N2
2λ

2−c2
2

+
1

N2λ
1−c2
2

)
.

(117)

We notice that
rC(δ,N1,c1)

2

λ2
dominates 1

λ2N1
in S−1. Furthermore, since b2 > 1 and c2 ∈ (1, 2], we have that 1

N2
dominates

1

N2λ
3−c2
2

; that 1

N2λ
1+1/b2
2

dominates 1

N2λ
2−c2
2

; and that 1 dominates λc2−1
2 (since λ2 → 0 ). In addition, it can be seen that

S1 dominates S2 for the same reasons.

Therefore, we have

L[t]
R (̂b

[t]
R )− L[t]

R (b
[t]
R )

=O

(
rC (δ,N1, c1)

2

λ2

[
1

N2
2λ

2
2

+
1

N2λ
1+1/b2
2

+ 1

]
+ λc2

2 +
1

N2
2λ2

+
1

N2λ
1/b2
2

+
1

λ2N
1
2
1 N2

)
.

(118)

By choosing λ1, N1 and λ2 appropriately, and following the proof of SzabÂo et al. (2016)[Theorem 5], Mastouri et al.

(2021)[Theorem 2], we have the following result:

Fix ζ > 0 and choose λ1 = N
1

c1+1

1 and N1 = N
ζ(c1+1)

(c1−1)

2 .

1. If ζ ≤ b2(c2+1)
b2c2+1 , choose λ2 = N

− ζ
c2+1

2 . Then L[t]
R (̂b

[t]
R ) = Op

(
N

− ζc2
c2+1

2

)
.

2. If ζ ≥ b2(c2+1)
b2c2+1 , choose λ2 = N

− b2
b2c2+1

2 . Then L[t]
R (̂b

[t]
R ) = Op

(
N

− b2c2
b2c2+1

2

)
.

In particular, we only consider the optimal rate and the most efficient sample splitting way here. We can let ζ = b2(c2+1)
b2c2+1 ,

which implies that L[t]
R (̂b

[t]
R ) = Op

(
N

− b2c2
b2c2+1

2

)
.

Repeating the above arguments T times for L[t]
R (̂b

[t]
R ), and T − 1 times for L[t]

D (̂b
[t]
D ), by a union bound argument, it is

straightforward to have

max
t=1:T

L[t]
R (̂b

[t]
R ) = OP (log(T )N

− b2c2
b2c2+1

2 )

and

max
t=1:T−1

L[t]
D (̂b

[t]
D ) = OP (log(T )N

− b2c2
b2c2+1

2 ).

The proof is done by defining γ = b2.
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D.8. Proof of Lemma D.4

We focus on the function bR,t at first, and present the following definition that helps to prove a uniform upper bound.

Definition D.25.

L̃[t]
R (bR,t) = E

Xt∼Pπb ,Yt∼Unif(Y)

(〈
µ̂Wt|Xt

⊗ ϕ (Yt) , bR,t

〉
HWt⊗HYt

− p̂ (Yt | Xt)
)2

(119)

Recall that we have defined the population risk functional and empirical loss functional in Definition A.2 and (13), which

are as follows:

L[t]
R (bR,t) = EXt∼Pπb ,Yt∼Unif(Y)

(〈
µWt|Xt

⊗ ϕ (Yt) , bR,t

〉
HWt⊗HYt

− p (Yt | Xt)
)2

(120)

L̂[t]
R (bR,t) =

1

N2

N2∑

n=1

(〈
µ̂Wt|x′

t,n
⊗ ϕ

(
y′′t,n
)
, bR,t

〉
HWt⊗HYt

− p̂
(
y′′t,n | x′

t,n

))2

+ λ2∥bR,t∥2HWt⊗HYt
. (121)

Then, we have the following decomposition:

L̂[t]
R (bR,t)− L[t]

R (bR,t)

=L̂[t]
R (bR,t)− L̃[t]

R (bR,t) + L̃[t]
R (bR,t)− L[t]

R (bR,t)
(122)

and

sup
bR,t∈HWt⊗HYt

|L̂[t]
R (bR,t)− L[t]

R (bR,t)|

≤ sup
bR,t∈HWt⊗HYt

|L̂[t]
R (bR,t)− L̃[t]

R (bR,t)|+ sup
bR,t∈HWt⊗HYt

|L̃[t]
R (bR,t)− L[t]

R (bR,t)|

=I + II

(123)

Intuitively, the first term I is related to the stage 2 error, while the second term II is related to the stage 1 error. In order to

provide uniform upper bounds on them, the techniques from the subject of empirical process theory can be adopted.

Upper bound term I .

We analyze the term supbR,t∈HWt⊗HYt
|L̂[t]

R (bR,t) − L̃[t]
R (bR,t)| by the empirical process theory. Firstly, we introduce

a concept from the empirical process that are used to measure the size of function classes HWt
⊗ HYt

. The following

definition is adapted from (Wainwright, 2019) and (Foster & Syrgkanis, 2023).

Definition D.26 (Localize population Rademacher complexity and critical radius.). For a real-valued function class G on a

probability space (X , P ), we denote by ∥g∥22 the expectation of g(X)2, that is ∥g∥22 = EX∼P
[
g(X)2

]
. Given any radius

δ > 0, the local population Rademacher complexity is given by

Rn(G, δ) = Eϵ,X [ sup
g∈G:∥g∥2≤δ

|n−1
n∑

i=1

ϵig (Xi) |],

where {Xi}ni=1 are i.i.d. copies of X and {ϵi}ni=1 are i.i.d. Rademacher random variables taking values in {−1,+1} with

equal probability. Further, assume that G is a 1-uniformly bounded function class {g : X → R, supx |g(x)| ≤ 1}. Further,

we assume that G is a star-shaped function class, i.e. αg ∈ G for any g ∈ G and scalar α ∈ [−1, 1]. Then the critical radius

of G, denoted by δn, is the solution to the inequality

Rn(G, δ) ≤ δ2.

In this work, critical radius is used in the theoretical analysis to measure the size of function classes for the bridge functions,

which provides a way to get a uniform law of large numbers with a convergence rate at each time t.

In particular, we apply Lemma A.5 to upper bound supbR,t
|L̂[t]

R (bR,t)− L̃[t]
R (bR,t)|. In this case, L̂[t]

R (bR,t) can be viewed

as a regularized empirical loss function for the regularized least square problem. We can use the random variable Ut to
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denote p̂(Yt | Xt) with Xt ∼ P
πb

, Yt ∼ unif(Yt). And the collected i.i.d. samples are ut,k, k = 1, ..., N2, which represents

p̂(y′′t,n | xt,n) for n = 1, ..., N2. We note that p̂ only depends on the first sample with sample size N1, and therefore

it does not affect the concentration result at the second stage. Similarly, we can use the randome variable Vt to denote

µ̂Wt|Xt
⊗ ϕ(Yt) with Xt ∼ P

πb

, Yt ∼ unif(Yt). And Vt,k, k = 1, ..., N2, are i.i.d. samples denoting µ̂Wt|xt,n
⊗ ϕ(y′′t,n),

n = 1, ..., N2. The inner product
〈
µ̂Wt|Xt

⊗ ϕ (Yt) , bR,t

〉
HWt⊗HYt

in the Hilbert space HWt
⊗ HYt

can be written as

bR,t[µ̂Wt|Xt
⊗ ϕ (Yt)] = bR,t[Vt]. In this perspective, we can view the stage 2 procedure as a regression problem where Ut

is the response variable, bR,t is the regression function, and Vt denotes the independent variable. The loss function l is a

quadratic loss function with l(Ut, b[Vt]) = (Ut − b[Vt])
2.

Then, we have

sup
bR,t∈HWt⊗HYt

|L̂[t]
R (bR,t)− L̃[t]

R (bR,t)|

= sup
bR,t∈HWt⊗HYt

|Ê [l(Ut, bR,t[Vt])] + λ2∥bR,t∥HWt⊗HYt
− E [l(Ut, bR,t[Vt])] |

≤ sup
bR,t∈HWt⊗HYt

|Ê [l(Ut, bR,t[Vt])]− E [l(Ut, bR,t[Vt])] |+ λ2 sup
bR,t∈HWt⊗HYt

∥bR,t∥HWt⊗HYt

(124)

We then apply Lemma A.5 to provide supbR,t∈HWt⊗HYt
|Ê [l(Ut, bR,t[Vt])] − E [l(Ut, bR,t[Vt])] | an upper bound. In

particular, we let δR,N2 be the critical radius (See Definition D.26) of the function class HWt ⊗HYt for bR,t, depending on

the stage 2 sample size N2. To see the function l(Ut, bR,t[Vt]) is Lipschitz continuous with respect to bR,t, we do a direct

calculation in the following.

|l(Ut, bR,t[Vt])− l(Ut, b
′
R,t[Vt])|

=|(Ut, bR,t[Vt])
2 − (Ut, b

′
R,t[Vt])

2|
=|bR,t[Vt]

2 − b′R,t[Vt]
2 + 2UtbR,t[Vt]− 2Ut, b

′
R,t[Vt]|

≤|bR,t[Vt]
2 − b′R,t[Vt]

2|+ 2|Ut||bR,t[Vt]− b′R,t[Vt]|
=|bR,t[Vt] + b′R,t[Vt]||bR,t[Vt]− b′R,t[Vt]|+ 2|Ut||bR,t[Vt]− b′R,t[Vt]|
≤(|bR,t[Vt]|+ |b′R,t[Vt]|+ 2|Ut|)|bR,t[Vt]− b′R,t[Vt]|

(125)

By Assumption D.16, we have |bR,t[Vt]| = |
〈
µWt|Xt

⊗ ϕ (Yt) , bR,t

〉
HWt⊗HYt

| ≤
∥µWt|Xt

∥HWt
∥ϕ (Yt) ∥HYt

∥bR,t∥HWt⊗HYt
≤ κ2. In addition, by Assumption D.16, we have |Ut| ≤ m. There-

fore, l is Lipschitz continuous with respect to the function bR,t with a Lipschitz constant 2κ2 + 2m.

By applying Lemma A.5 and that supbR,t∈HWt⊗HYt
∥bR,t∥HWt⊗HYt

≤ 1, with probability at least 1−c5 exp
(
c6N2δ

2
R,N2

)
,

we have

sup
bR,t∈HWt⊗HYt

|L̂[t]
R (bR,t)− L̃[t]

R (bR,t)|

≤ sup
bR,t∈HWt⊗HYt

|Ê [l(Ut, bR,t[Vt])]− E [l(Ut, bR,t[Vt])] |+ λ2 sup
bR,t∈HWt⊗HYt

∥bR,t∥HWt⊗HYt

≤36(κ2 +m)δR,N2

(
sup

bR,t∈HWt⊗HYt

∥bR,t∥2 + δR,N2

)
+ λ2

≤36(κ2 +m)δR,N2 (MR + δR,N2) + λ2

(126)

where the final inequality is from Assumption D.16 with MR being the uniform upper bound on the function space

HWt ⊗HYt under the ∥ · ∥∞ perspective.

The following lemma provides an upper bound on the critical radius δR,N2 of the RKHS HWt ⊗HYt .

Lemma D.27 (Corollary 14.5 of Wainwright (2019)). Let F = {f ∈ H | ∥f∥H ≤ 1} be the unit ball of an RKHS with
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eigenvalues (µj)
∞
j=1. Then the localized population Rademacher complexity (see Definition D.26) is upper bounded as

Rn(δ;F) ≤
√

2

n

√√√√
∞∑

j=1

min {µj , δ2}.

In this work, we are focusing on the eigenvalues of the covariance operator T2, which are denoted as (lk)k∈N. The

eigenvalues of T2 can also be viewed as the eigenvalues of our kernel in the considered RKHS. See more discussions on this

relationship in Definition 1 and Remark 2 of Caponnetto & De Vito (2007).

According to Assumption D.16, the eigenvalues decay as of the order lk ∼ k−b2 for some b2 > 1. Such decay-rate is usually

named as polynomial eigen-decay rate. We note that the polynomial eigen-decay rate for RKHSs is commonly considered in

practice (e.g. b2/2-order Sobolev space). In particular, larger b2 means faster decay of the eigenvalues of the covariance

operator T2, and smaller effective input dimension.

Following the calculation in Example 13.20 of Wainwright (2019), it can be seen that

δR,N2
≍ N

− b2
2b2+2

2 .

Consequently, with probability at least 1− c5 exp
(
c6N2δ

2
R,N2

)
, we have

sup
bR,t∈HWt⊗HYt

|L̂[t]
R (bR,t)− L̃[t]

R (bR,t)|

≤36(κ2 +m)δR,N2
(MR + δR,N2

) + λ2

≲(κ2 +m)MRN
− b2

2b2+2

2 + λ2.

(127)

Upper bound term II .

Next, we analyze the term L̃[t]
R (bR,t)− L[t]

R (bR,t). Assumptions in Lemma D.5 can be applied here.

By definition, we have

L̃[t]
R (bR,t)− L[t]

R (bR,t)

=EXt∼Pπb ,Yt∼Unif(Y)

(〈
µ̂Wt|Xt

⊗ ϕ (Yt) , bR,t

〉
HWt⊗HYt

− p̂ (Yt | Xt)
)2

− E
Xt∼Pπb ,Yt∼Unif(Y)

(〈
µWt|Xt

⊗ ϕ (Yt) , bR,t

〉
HWt⊗HYt

− p (Yt | Xt)
)2

=E

(〈
µ̂Wt|Xt

⊗ ϕ (Yt) , bR,t

〉
HWt⊗HYt

− p̂ (Yt | Xt) +
〈
µWt|Xt

⊗ ϕ (Yt) , bR,t

〉
HWt⊗HYt

− p (Yt | Xt)
)

(〈
µ̂Wt|Xt

⊗ ϕ (Yt) , bR,t

〉
HWt⊗HYt

− p̂ (Yt | Xt)−
〈
µWt|Xt

⊗ ϕ (Yt) , bR,t

〉
HWt⊗HYt

+ p (Yt | Xt)
)

:= EXt∼Pπb ,Yt∼Unif(Y)[A(Xt, Yt)B(Xt, Yt)]

(128)

where we use the notations as follows:

A(Xt, Yt) =
〈
µ̂Wt|Xt

⊗ ϕ (Yt) , bR,t

〉
HWt⊗HYt

− p̂ (Yt | Xt) +
〈
µWt|Xt

⊗ ϕ (Yt) , bR,t

〉
HWt⊗HYt

− p (Yt | Xt) (129)

B(Xt, Yt) =
〈
µ̂Wt|Xt

⊗ ϕ (Yt) , bR,t

〉
HWt⊗HYt

− p̂ (Yt | Xt)−
〈
µWt|Xt

⊗ ϕ (Yt) , bR,t

〉
HWt⊗HYt

+ p (Yt | Xt) .

(130)

We then have

EXt∼Pπb ,Yt∼Unif(Y)[A(Xt, Yt)B(Xt, Yt)] ≤ EXt∼Pπb ,Yt∼Unif(Y)[|A(Xt, Yt)||B(Xt, Yt)|]. (131)

For |A(Xt, Yt)|, we notice that |A(Xt, Yt)| ≤ |
〈
µ̂Wt|Xt

⊗ ϕ (Yt) , bR,t

〉
HWt⊗HYt

| +

|
〈
µWt|Xt

⊗ ϕ (Yt) , bR,t

〉
HWt⊗HYt

|+ 2m by Assumption D.16. In addition, we have

|
〈
µ̂Wt|Xt

⊗ ϕ (Yt) , bR,t

〉
HWt⊗HYt

| ≤ ∥µ̂Wt|Xt
∥HWt

∥ϕ (Yt) ∥HYt
∥bR,t∥HWt×HYt

≤ κ2
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and similarly |
〈
µWt|Xt

⊗ ϕ (Yt) , bR,t

〉
HWt⊗HYt

| ≤ κ2. Therefore, we have |A(Xt, Yt)| ≤ 2κ2 + 2m. Consequently, the

following inequality holds.

E
Xt∼Pπb ,Yt∼Unif(Y)

[A(Xt, Yt)B(Xt, Yt)] ≤ (2κ2 + 2m)E
Xt∼Pπb ,Yt∼Unif(Y)

[|B(Xt, Yt)|].

Furthermore, with probability at least 1− 2δ, we have

EXt∼Pπb ,Yt∼Unif(Y)[|B(Xt, Yt)|]
=E

Xt∼Pπb ,Yt∼Unif(Y)
[|
〈
µ̂Wt|Xt

⊗ ϕ (Yt) , bR,t

〉
HWt⊗HYt

−
p̂ (Yt | Xt)−

〈
µWt|Xt

⊗ ϕ (Yt) , bR,t

〉
HWt⊗HYt

+ p (Yt | Xt) |]
≤E

Xt∼Pπb ,Yt∼Unif(Y)
[|
〈
µWt|Xt

⊗ ϕ (Yt) , bR,t

〉
HWt⊗HYt

−
〈
µ̂Wt|Xt

⊗ ϕ (Yt) , bR,t

〉
HWt⊗HYt

|]
+ EXt∼Pπb ,Yt∼Unif(Y)[|p̂(Yt | Xt)− p(Yt | Xt)|]

≤κE
Xt∼Pπb ∥µ̂Wt|Xt

− µWt|Xt
∥HWt

+
1

vol(Yt)
EXt∼Pπb TV(p̂(· | Xt), p(· | Xt))

≲κ2rC(δ,N1, c1) +
1

vol(Yt)
E
Xt∼Pπb TV(p̂(· | Xt), p(· | Xt))

≲κ2

√
γ1 (c1 + 1)

4
1

c1+1



4κ
(
κ+ κ

∥∥CW |X
∥∥
HΓ

)
ln(2/δ)

√
N1γ1 (c1 − 1)




c1−1
c1+1

+
ln(|M|/δ)√

N1
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where the last two inequalities come from the estimation error from stage 1 (Theorem D.12 and Lemma D.22).

Therefore, with probability at least 1− 2δ, we have

sup
bR,t∈HWt⊗HYt

|L̃[t]
R (bR,t)− L[t]

R (bR,t)|

≲(2κ2 + 2m)κ2

√
γ1 (c1 + 1)

4
1

c1+1



4κ
(
κ+ κ

∥∥CW |X
∥∥
HΓ

)
ln(2/δ)

√
N1γ1 (c1 − 1)




c1−1
c1+1

+ (2κ2 + 2m)
ln(|M|/δ)√

N1

.

(133)

Combining I and II .

By combining the upper bounds on I and II , with probability at least 1− 2δ − c5 exp
(
c6N2δ

2
R,N2

)
, we have

sup
bR,t∈HWt⊗HYt

|L̂[t]
R (bR,t)− L[t]

R (bR,t)|

≤I + II

≲(κ2 +m)MRN
− b2

2b2+2

2

+ (κ2 +m)κ2

√
γ1 (c1 + 1)

4
1

c1+1



4κ
(
κ+ κ

∥∥CW |X
∥∥
HΓ

)
ln(2/δ)

√
N1γ1 (c1 − 1)




c1−1
c1+1

+ (κ2 +m)
ln(|M|/δ)√

N1

.

(134)

According to a direct computation with the sample splitting procedure N1 = N
c1+1
c1−1

γ(c2+1)
γc2+1

2 , we note that the first term is the

dominating term, which is of the order N
− γ

2γ+2

2 by setting γ as b2. Furthermore, by repeating the above argument T times

for supbR,t∈HWt⊗HYt
|L̂[t]

R (bR,t) − L[t]
R (bR,t)| and T − 1 times for supbD,t∈HWt⊗HZt

|L̂[t]
D (bD,t) − L[t]

D (bD,t)|, it can be

seen that

max
t=1:T

sup
bR,t∈HWt⊗HYt

|L̂[t]
R (bR,t)− L[t]

R (bR,t)| = OP (MR log(T/δ)N
− γ

2γ+2

2 )

41



Model-based Reinforcement Learning for Confounded POMDPs

and

max
t=1:T−1

sup
bD,t∈HWt⊗HZt

|L̂[t]
D (bD,t)− L[t]

D (bD,t)| = OP (MD log(T/δ)N
− γ

2γ+2

2 ).

The proof is done.

D.9. Proof of Lemma D.23

Proof. We have

∥ĝ2 − g2∥HW⊗HY

=

∥∥∥∥∥
1

N2

N2∑

n=1

[
µ̂W |x′

n
⊗ ϕ

(
y′′t,n
)]

p̂(y′′t,n | x′
n)−

1

N2

N2∑

n=1

[
µW |x′

n
⊗ ϕ

(
y′′t,n
)]

p(y′′t,n | x′
n)

∥∥∥∥∥
HW⊗HY

≤
∥∥∥∥∥

1

N2

N2∑

n=1

[
µ̂W |x′

n
⊗ ϕ

(
y′′t,n
)]

p̂(y′′t,n | x′
n)−

1

N2

N2∑

n=1

[
µ̂W |x′

n
⊗ ϕ

(
y′′t,n
)]

p(y′′t,n | x′
n)

∥∥∥∥∥
HW⊗HY

+

∥∥∥∥∥
1

N2

N2∑

n=1

[
µ̂W |x′

n
⊗ ϕ

(
y′′t,n
)]

p(y′′t,n | x′
n)−

1

N2

N2∑

n=1

[
µW |x′

n
⊗ ϕ

(
y′′t,n
)]

p(y′′t,n | x′
n)

∥∥∥∥∥
HW⊗HY

=I + II

(135)

Then,

I

=

∥∥∥∥∥
1

N2

N2∑

n=1

[
µ̂W |x′

n
⊗ ϕ

(
y′′t,n
)]

p̂(y′′t,n | x′
n)−

1

N2

N2∑

n=1

[
µ̂W |x′

n
⊗ ϕ

(
y′′t,n
)]

p(y′′t,n | x′
n)

∥∥∥∥∥
HW⊗HY

≤ 1

N2

N2∑

n=1

∥∥[µ̂W |x′
n
⊗ ϕ

(
y′′t,n
)]

(p̂(y′′t,n | x′
n)− p(y′′t,n | x′

n))
∥∥
HW⊗HY

≤ 1

N2

N2∑

n=1

∥∥[µ̂W |x′
n

]∥∥
HW

∥ϕ
(
y′′t,n
)
∥HY

|p̂(y′′t,n | x′
n)− p(y′′t,n | x′

n)|

≤κ2 1

N2

N2∑

n=1

|p̂(y′′t,n | x′
n)− p(y′′t,n | x′

n)|

=κ2

(
1

N2

N2∑

n=1

|p̂(y′′t,n | x′
n)− p(y′′t,n | x′

n)| −
1

vol(Y)
Ex∼Pπb TV

(
P̂MLE(· | x), P ⋆(· | x)

))

+ κ2 1

vol(Y)
Ex∼Pπb TV

(
P̂MLE(· | x), P ⋆(· | x)

)

=κ2

(
1

N2

N2∑

n=1

|p̂(y′′t,n | x′
n)− p(y′′t,n | x′

n)| − E
X∼Pπb ,Y∼unif(Y)

|p̂(Y | X)− p(Y | X)|
)

+ κ2 1

vol(Y)
E
x∼Pπb TV

(
P̂MLE(· | x), P ⋆(· | x)

)

≲κ2

√
log(|M|/δ)

N
1
2
1 N2

+ κ2

√
log(|M|/δ)

N1
with probability at least 1− 2δ,

(136)

where we apply a Bernstein inequality for the first term, and the convergence rate of the standard MLE (Lemma D.22) for

the second term.
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II

=

∥∥∥∥∥
1

N2

N2∑

n=1

[
µ̂W |x′

n
⊗ ϕ

(
y′′t,n
)]

p(y′′t,n | x′
n)−

1

N2

N2∑

n=1

[
µW |x′

n
⊗ ϕ

(
y′′t,n
)]

p(y′′t,n | x′
n)

∥∥∥∥∥
HW⊗HY

≤ 1

N2

N2∑

n=1

∥∥[(µ̂W |x′
n
− µW |x′

n
)⊗ ϕ

(
y′′t,n
)]

p(y′′t,n | x′
n)
∥∥
HW⊗HY

≤ 1

N2

N2∑

n=1

∥∥[(µ̂W |x′
n
− µW |x′

n
)
]∥∥

HW

∥∥[ϕ
(
y′′t,n
)]∥∥

HY

|p(y′′t,n | x′
n)|

≤mκ2rC (δ,N1, c1) with probability at least 1− δ,

(137)

where we apply the finite sample rate for stage 1 estimation (Lemma D.12) and Assumption D.16 in the final inequality.

Then, we have ∥ĝ2 − g2∥2HW⊗HY
≤ 2(I)2+2(II)2 ≲ m2κ4rC (δ,N1, c1)

2
+κ4 log(|M|/δ)

N
1
2
1 N2

+κ4 log(|M|/δ)
N1

with probability

at least 1− 3δ.
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