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Abstract

We propose a model-based offline reinforcement
learning (RL) algorithm for confounded partially
observable Markov decision processes (POMDPs)
under general function approximations and show
it is provably efficient under some technical con-
ditions such as the partial coverage imposed on
the offline data distribution. Specifically, we first
establish a novel model-based identification result
for learning the effect of any action on the reward
and future transitions in the confounded POMDP.
Using this identification result, we then design a
nonparametric two-stage estimation procedure to
construct an estimator for off-policy evaluation
(OPE), which permits general function approx-
imations. Finally, we learn the optimal policy
by performing a conservative policy optimization
within the confidence regions based on the pro-
posed estimation procedure for OPE. Under some
mild conditions, we establish a finite-sample up-
per bound on the suboptimality of the learned
policy in finding the optimal one, which depends
on the sample size and the length of horizons
polynomially.

1. Introduction

Reinforcement Learning (RL) (Sutton & Barto, 2018) has
been recognized as an effective approach for optimizing
sequential decision-making processes. It seeks to learn an
optimal policy by maximizing the expected cumulative re-
wards. However, most existing literature has focused on
environments that are fully observable with Markovian tran-
sition dynamics, which may not be known a priori. In
practice, the challenge of partial observability of state in-
formation frequently arises, making the Markov decision
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processes (MDPs) unsuitable for modeling the underlying
data-generating processes. For example, in autonomous
driving, the environment is typically not fully observed. In-
stead, only partial information, such as noisy images or
videos captured by cameras, is available (Sun et al., 2020).
Considering partial observability inherent in many appli-
cations, partially observable Markov decision processes
(POMDPs) (Monahan, 1982) are considered as a more ap-
propriate framework for sequential decision-making for a
wide range of applications (e.g., Sawaki & Ichikawa, 1978;
Albright, 1979; Monahan, 1982; Singh et al., 1994; Jaakkola
et al., 1994; Cassandra, 1998; Young et al., 2013; Zhang &
Bareinboim, 2016; Bravo et al., 2019). Moreover, in light of
the ethical and logistical challenges faced by online learning
such as the assignment of patients to potentially inferior or
harmful treatments in healthcare (Gottesman et al., 2019),
offline RL emerged and has recently received a lot of re-
search interests (Levine et al., 2020). In the offline setting,
an agent aims to perform policy evaluation and learning
by only using a pre-collected dataset, which may be more
practical in solving decision-making problems in some high
stake domains.

Due to these practical challenges, there is a recent line of
research focusing on developing offline RL methods for
confounded POMDPs (e.g., Tennenholtz et al., 2020; Ben-
nett & Kallus, 2021; Nair & Jiang, 2021; Shi et al., 2022;
Miao et al., 2022; Lu et al., 2022; Hong et al., 2023). The
confounding effect (Pearl, 2009) in this context arises from
the offline data-generating processes, wherein the behavior
policy depends on the unobserved states. In this setting,
unobserved state variables act as unmeasured confounders
at each decision point, which can simultaneously affect the
action, the reward, and the future transition. This complex-
ity introduces a confounding bias when standard offline RL
methods designed for MDPs fail. To address this issue,
some aforementioned works employ proxy variables for pol-
icy evaluation and learning. A significant portion of these
investigations focuses on the task of off-policy evaluation
(e.g., Tennenholtz et al., 2020; Bennett & Kallus, 2021; Nair
& Jiang, 2021; Shi et al., 2022; Miao et al., 2022), with only
a few exploring the problem of offline policy learning (Lu
et al., 2022; Hong et al., 2023). In particular, Hong et al.
(2023) introduced a first policy gradient method for con-
founded POMDPs, but under some stringent full coverage
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assumption, which requires that the offline data can cover
trajectories generated by all policies - a condition that is
often hard to verify. On the other hand, to relax the full
coverage assumption, Lu et al. (2022) adopted a pessimistic
principle (Xie et al., 2021; Uehara & Sun, 2021; Fu et al.,
2022, e.g.,), which is commonly applied in offline RL meth-
ods for standard MDPs, and extend it to POMDPs. Thus,
their algorithm can find an in-class optimal policy by only
requiring partial coverage, meaning that the offline data
only needs to cover the trajectories of the optimal policy.
Nonetheless, Lu et al. (2022)’s exploration of this problem
is restricted to a model-free context, leaving a gap in model-
based RL algorithms for confounded POMDPs under the
partial coverage assumption. Motivated by these, this paper
aims to bridge this gap by proposing a model-based RL
method for confounded POMDPs.

In this article, we introduce a novel offline model-based
policy learning method for confounded POMDPs with con-
tinuous state and observation spaces under partial coverage.
Specifically, we first establish a novel nonparametric identi-
fication for the policy value of any history-dependent policy
from a model-based viewpoint. This identification enables
consistent estimation of policy values using only observable
offline data, eliminating the confounding bias introduced by
partial observability. Furthermore, our approach accommo-
dates general function approximation, which is necessary
given continuous state spaces and observation spaces. Fol-
lowing the identification, which entails solving a sequence
of conditional moment equations, we design a nonparamet-
ric two-stage estimation procedure to estimate the policy
value. Finally, to relax the full coverage assumption, we
extend the principle of pessimism to confounded POMDPs
tailored for our model-based structure. In particular, we con-
struct a series of confidence regions based on the estimation
procedure and perform a conservative policy optimization
within the constructed confidence regions, i.e. learning a
policy that aims to maximize the most pessimistic estimator
of the policy value within confidence regions.

We summarize the main technical challenges addressed in
this paper. (1) Developing model-based policy value identi-
fication under confounded POMDPs presents a significant
challenge due to the unobservable states/confounders, which
make it hard to extract the information of reward and tran-
sition model from the offline dataset. (2) In the estimation
process of the bridge function b, we encounter a new type
of conditional moment restriction problem, which deviates
from existing methods. This new challenge motivates the
development of new estimating approaches and theoretical
analysis, distinguishing our work from existing literature.
(3) In establishing an upper bound on the suboptimality, we
face the challenge of decomposing the suboptimality into
one-step errors which comes from the estimation of reward
and transition models.

Our contributions can be summarized as follows. First, to
the best of our knowledge, the proposed policy value iden-
tification for confounded POMDPs is the first result under
the function approximation settings within the model-based
framework. While Tennenholtz et al. (2020) proposed a
model-based identification in the tabular setting, their meth-
ods are not applicable to settings with continuous obser-
vation/state spaces. Compared to the existing model-free
methods such as Shi et al. (2022); Bennett & Kallus (2021);
Miao et al. (2022), our theoretical derivation is novel. In
particular, they typically rely on solving a series of Bellman-
type backward moment equations to directly identify the pol-
icy value, while our approach emphasizes the extraction of
information from both reward and transition models, which
are independent of the policy. Due to this intrinsic charac-
teristic of our model-based framework, as a by-product, the
marginal distribution of the cumulative reward induced by
any policy can also be identified and more efficiently com-
puted, compared with model-free methods. See Remark 3.6
for more details.

Secondly, we introduce a nonparametric two-stage estima-
tion method aimed at solving a new-type conditional mo-
ment restriction problem, i.e., estimating the function b by
solving Ew [b(W,y) | X] = p(y | X) for every y, where
W, X are generic random vectors and p(y | X) denotes the
conditional density function. Note that this is different from
the standard conditional moment restriction problem as y
is deterministic and one needs to solve it simultaneously
across all y for obtaining the target function b. The explo-
ration of this problem in the existing literature is scarce and
there is little theoretical result. In this paper, we formalize
a valid risk functional, based on which we design the esti-
mation method, and establish the corresponding theoretical
guarantee.

Finally, we demonstrate the validity of the proposed al-
gorithm by providing a finite-sample upper bound of the
performance between the learned policy and the optimal pol-
icy under the partial coverage assumption. In particular, a
novel theoretical derivation for decomposing the differences
of the true policy value and the estimated policy value into
a polynomial function of key parameters and error terms
(Lemma C.1) could be of independent interest. Moreover,
we provide a sharp contrast between the proposed model-
based and those model-free approaches such as (Lu et al.,
2022) for confounded POMDPs. Notably, our proposed
model-based method does not have restriction on the policy
space, compared with the model-free methods in this set-
ting. This is particularly appealing when the global optimal
policy is not contained in the pre-specified policy class. See
Remarks 3.7 and 4.3 for more details on the comparisons.
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2. Preliminaries

Consider an episodic and finite-horizon POMDP denoted by
M= (8,0, AT, v, {P Y, {E} 1, {rs}l,), where
S, O and A denote the state, observation and action spaces
respectively. Without loss of generality, we assume that
both S and O are continuous, while the action space A is
finite. The integer 7' is set as the total length of the horizon.
We use v1 € A(S) to denote the distribution of the initial
state, where A(S) is a class of all probability distributions
over S. In addition, we denote {P;}Z_; by the collection
of state transition kernels over S x A to S, and {&;}1_; by
the collection of observation emission kernels over S to O.
Lastly, we use {r;}7_, to denote the collection of reward
functions, i.e., 1 : S x A — [—1,1] at each decision
point t. In a standard POMDP, at each decision point ¢,
Oy ~ &(- | St) is observed given the current (hidden)
state S;. Then the agent selects an action A; following
some policy, and receives an immediate reward R; with
E[R; | St = s, A+ = a] = r¢(s,a) for every (s,a). The
system then transits to the next state S;y; according to
some transition kernel P;(- | S¢, A¢). Thus the underlying
dynamics follows MDP. The corresponding directed acyclic
graph (DAG) is depicted in Figure 1. Different from an
MDP, the state variable S; cannot be observed in a POMDP.

The goal of this paper is to find an optimal history-dependent
policy for POMDPs. Define the observed history up to
the decision point t by Hy := (O1, Ay, ...,0, Ay) € Hy,
where H; = H;Zl O x A is the corresponding space. Then
at each ¢, the history-dependent policy 7, is defined as a
function mapping from O x H;_; to A(A). For any generic
policy = {m;}1_,, the corresponding value is defined as

T
V(m) :=E"[Y_ Ry | S ~wl,
t=1

where E™ is taken with respect to the distribution such that
all actions are determined by the policy 7. In this work,
we aim to develop a model-based RL algorithm to find an
optimal policy m* defined as,

7 € arg max V(7).

In the offline setting, we assume that a decision maker can
only access a pre-collected dataset, which is generated by
some behavior policy {7?}Z_,, but unable to further interact
with the environment. The behavior policy considered in
this work could possibly depend on the unobserved state S,
ie., S — A(A) for each ¢, which makes our problem
more challenging compared with online POMDPs. We use
P to denote the offline data distribution and summarize the
data as D := (o}, a}, r1*)?=, which are N i.i.d. copies
from P~

To develop a model-based algorithm for finding an opti-
mal policy 7* using the offline data, one needs to identify
and compute the effect of actions on the immediate reward
and future transitions. Once the dynamic is learned, a pes-
simistic model-based RL algorithm can be implemented to
learn the optimal policy. To proceed with this idea, there are
two main challenges: (1) estimating the reward and future
transitions based on the action with function approxima-
tions only using the offline dataset D and (2) developing an
algorithm with theoretical guarantee for finding an optimal
policy under the partial coverage assumption. The first chal-
lenge lies in that the state variable S; is unobserved and the
history-dependent transition dynamics conditioning on all
past actions may not be identified by the offline data. Fur-
thermore, function approximations are needed when both
state and observation spaces are continuous. The second
challenge involves developing a valid confidence set to quan-
tify the uncertainty associated with estimating the dynamics
using the offline data.

Notations. Throughout this paper, we assume that [E is taken
with respect to the offline distribution. Similarly, we use
the notation X 1L Y | Z when X and Y are conditionally
independent given Z under the offline distribution. For
any two sequences {a, }52 1, {bn}52 1, an < by, denotes
a, < Cb, for some N,C' > 0 and every n > N. If
an < b, and b, < ag, then a,, < by,. Big O and Op are

used as conventions. For any policy 7 that depends on the
observed data, the suboptimality gap is defined as

SubOpt(7) := V(7*) — V(7).

Figure 1. The directed acyclic graph illustrates the data generating
process in confounded POMDPs, where states S; are unobserved.
Red arrows represent the generation of actions via the behavior
policy, while blue arrows denote the generation through a history-
dependent policy.

3. Methods

In this section, we introduce the proposed model-based RL
method for confounded POMDPs.

In Section 3.1, we first establish a novel model-based policy
value identification result for addressing the issue of con-
founding bias caused by partial observability in POMDPs
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with continuous state and observation spaces. In particular,
the policy value of any policy can be identified via a series of
reward-emission bridge functions and a series of dynamic-
emission bridge functions which are solutions to a sequence
of conditional moment restrictions. Then, inspired by Singh
et al. (2019); Mastouri et al. (2021), we develop a two-stage
nonparametric estimation procedure in Section 3.2 for esti-
mating the required bridge functions based on these condi-
tional moment restrictions. Such nonparametric estimation
procedure will allow general function approximations for
estimating bridge functions and subsequently for estimating
policy values. We remark that function approximation is
inevitable when state and observation spaces are continu-
ous. Finally, in Section 3.3, we incorporate the pessimism
principle into our model-based method to handle the issue
of distribution shift in the offline setting. In particular, we
perform a conservative policy optimization within two con-
fidence regions of bridge functions so that the learned policy
is restricted within the offline data distribution and does not
induce over-exploration.

3.1. Policy Value Identification

Since the observed decision process does not satisfy the
Markov property, standard off-policy evaluation methods
developed for MDPs cannot be applied. This becomes more
challenging when the behavior policy could depend on the
hidden states as well. In this case, at each decision point ¢,
S; will confound the effect of action A; on the immediate
reward and all future transitions. Without taking this into
account will lead to bias estimation of the policy value
(Hong et al., 2023).

To address this confounding bias, we establish a novel policy
value identification result from the model-based perspective
for confounded POMDPs when both state and observation
spaces are continuous. To start with, we impose several
standard assumptions on the data-generating process under
the framework of POMDPs. See Figure 1. In addition,
we restrict our study to a class of POMDPs in which the
information of unobserved states can be captured by the
observed variables in the dataset.

Same as many existing works on POMDP (Shi et al., 2022;
Miao et al., 2022; Lu et al., 2022), we first assume the
availability of some baseline covariates, represented by Oy,
which carry some information before the decision-making
process. The initial data for all individuals can be recorded
as {of }N_,. To enable the observable trajectory {O;}~_,
for identifying the policy value, we impose Assumption 3.1

in the following.
Assumption 3.1. It holds that

Assumption 3.1 is a mild condition when Oy is pre-collected

before the decision process. To identify the policy value, we
assume the existence of certain bridge functions, which are
summarized in the following assumption.

Assumption 3.2 (Existence of bridge functions). There
exist reward-emission bridge functions {b[Ig t Ax O x
[-1,1] x O — R}, and dynamic-emission bridge func-
tions {b%] t AXOxOx O — R} that satisfy the follow-
ing conditional moment restrictions for eacht =1,..., 7"

E[b%] (Ag, Oy, e, 00) | He—1, Ay, Og

(2)
:p(rtaot | Ht—I)At700)7 and,

E[b[zt)] (A¢, O, 0041,00)|Hi—1, Ag, Op)

3)
=p(ot41,0¢ | Hi—1, A, Op).

The existence of such bridge functions is justified by some
mild regularity conditions of conditional expectation op-
erators B4, 0,(4,,H,_,,0, With tools from singular value
decomposition in functional analysis (Kress et al., 1989,
Chapter 15). See also Appendix B.1 of Hong et al. (2023)
for an instantiation of required regularity conditions in con-
founded POMDPs.

Similar versions of Assumption 3.2 have also been utilized
in one recently developed causal inference method called
double negative control (Miao et al., 2018; Tchetgen et al.,
2020) and off-policy evaluation methods in confounded
POMDPs with continuous state and observation spaces in
the model-free settings (Bennett & Kallus, 2021; Shi et al.,
2022; Miao et al., 2022). In this work, we study the model-
based counterpart along with the following completeness
assumption for identifying the policy value.

Assumption 3.3 (Completeness). For any measurable func-
tiong; : S x A— Ryandany 1 <t < T,

E[g:(St, A¢) | Ay, Hi—1,00] =0
almost surely if and only if g;(S, A;) = 0 almost surely.

Assumption 3.3 essentially requires that the observed
{Oy, Hy_1} carries sufficient information of the unobserved
S;. There are many commonly-used statistical and econo-
metric models which satisfy Assumption 3.3. Examples
include exponential families (Newey & Powell, 2003) and
location-scale families (Hu & Shiu, 2018). The complete-
ness assumption is also widely made to ensure the unique-
ness of instrumental variable estimation. See Newey &
Powell (2003) for more details.

Remark 3.4. The main difference between our assumptions
and those in the model-free settings (Shi et al., 2022; Lu
et al., 2022; Hong et al., 2023) lies in Assumption 3.2. In
this paper, bridge functions depend on (¢, 0;) and (0441, 0;)
(compared to the model-free counterpart), and the equations
need to hold for all (r, 0¢) and all (0441, 0¢). In contrast,
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the counterpart assumption in model-free settings addition-
ally depends on the policy 7y (compared to the model-based
version), and the equations need to hold for all 7y. Intu-
itively, when the policy space is very large, the model-based
framework, as delineated by Assumption 3.2, may offer
a more feasible approach due to its simpler validation re-
quirements and a theoretical upper bound independent of
the policy space size. Conversely, when the policy space
is rather small, and the reward/state space is very large,
the model-free framework might present advantages due
to the lower complexity in satisfying the bridge function’s
existence assumption.

Assumptions 3.2 and 3.3 imply that the confounding ef-
fect of each action due to the unobservable state S; on the
bridge function matches that on the outcome of interest,
i.e., the current reward, the current weight, and the next
state. Hence the bridge function can be used as a good
“substitute.” Moreover, thanks to the conditional indepen-
dence of A; given S;, the bridge function can correct the
bias and eventually identify the policy value. It is known
that solving a general POMDP is NP-hard (Burago et al.,
1996; Vlassis et al., 2012). In this paper, we navigate away
from the NP-hard complexity by focusing on a more man-
ageable problem class—a learnable subclass of POMDPs
that satisfies Assumptions 3.2 and 3.3.

A medical application scenario can be introduced to further
illustrate the assumptions listed above. The latent state S;
represents some clinical state of a patient, while the ob-
servable variable O, corresponds to data accessible to a
physician through medical diagnostics, reflecting the pa-
tient’s state .S;. In this context, A; denotes the administered
treatment. According to Assumptions 3.1, 3.2, 3.3, our strat-
egy involves selecting observations {O;}7_; (e.g. blood
pressure, heart rate) such that both O; and the history H;_;
contain sufficient information to reflect the latent state S;.

Finally, the key identification results for policy value under
the model-based perspective are summarized in Theorem
3.5. A detailed proof is provided in Appendix B.

Theorem 3.5 (Main identification results). Under Assump-
tions 3.1, 3.2, 3.3, for each t = 1,....,T, p™(ry) can be
identified by

t
p"(re) :/h [ 1 oji by ) filrishe), @)
t =1
where fi(re, he) 2 [—1,1] x Hy — Ris defined as

ft(Tt,ht) =

t—1

[ b (a0, 00) T] 09 (05,651,641, 0)p(61).
Ot yerns oy j=1
5

Therefore, the policy value V(1) can be identified by

T t
vm=;AﬁpEm@wmﬂmm%»

(6

The rationale for expressing the policy value through
the sequential integration of bridge functions orig-
inates from Lemma B.1 for decomposing p”(r;)
in terms of transition dynamics, reward models

and policies, and that V(m) = E7 {Zle Rf,:| =

Zthl S 7ep™ (r¢)dry.  Based on the expression of
p™ (r;) in Lemma B.1, the challenge lies in learning
t—1
fst,,,,,slp(rmot | s¢,a) Hj=1p(5j+1a0j | 55,a;)p(s1),
which is impeded by the inaccessibility of states di-
rectly from observations. Thanks to the introduction
of bridge functions and the conditional moment re-
strictions (Assumption 3.2), we are able to extract
the reward and dynamic information from the ob-
servable offline dataset. In addition, we establish that

fst,...,sl p(rtaot | 8t7at) H;;llp(sj+170j | sj7aj)p(81) =

t - t—1 1[4 R ~
f(;h___ﬁ/l b[R] (a/t7 Ot, Tt Ot) Hj:l b[é] (aja 05,0541, Oj) p (01)'
This equation underscores the bridge functions’ capacity to
encapsulate sufficient reward and dynamic information for

policy value identification.

According to Theorem 3.5 and conditional moment restric-
tions (2)(3), the policy value can be successfully identified
under the offline distribution because both bridge functions
and conditional moment restrictions rely solely on the ob-
served offline data.

Remark 3.6. It is noteworthy that the marginal distribution
of reward p™ (r;) can also be identified according to Theo-
rem 3.5, which is an extra property of our method compared
to the model-free methods that directly identify policy val-
ues (Bennett & Kallus, 2021; Shi et al., 2022; Miao et al.,
2022). As a trade-off, the proposed model-based method
requires a sequential integration of bridge functions (4)(5)
to identify p™(r;) for each t = 1,...,T, which might be
computationally expensive. Nevertheless, in some RL tasks
where maximizing the expected cumulative reward is not
the only goal, such as risk-sensitive RL, multi-objective RL,
Bayesian RL, the proposed model-based method could also
be potentially useful because it is crucial to identify and
learn the marginal distribution of reward p™ (r;) in these
tasks. We note that the issue of sequential integration in-
volved in learning the marginal distribution can be addressed
through the application of Monte Carlo methods, which
provide a feasible and efficient way to approximate these
integrations.
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3.2. Estimation of Bridge Functions

According to Equation (6) presented in Theorem 3.5, to
estimate the policy value, it suffices to estimate f; (7, ht).
Further, according to Equation (5), we need to estimate
the bridge functions {b[lt{]}tT:l, {b[lt)] 5L, and p(61). We
simply assume p(61 ) is known, or we can estimate p(61) by
its empirical version, denoted as p(é7). For the two sets of
bridge functions, motivated by Singh et al. (2019); Mastouri
et al. (2021), we design a two-stage estimation procedure to
estimate {b%] M, {b%] }E5! according to the conditional
moment restrictions, i.e., Equations (2) and (3).

For clarity, we simplify the conditional moment restrictions
(2)(3) as
Ep(W,y) | X] = p(y | X), ™

where we use W to denote (A, O;), y to denote (ry, o)
or (0441,0:), and X to denote (H;_1, A¢, Op), and drop
the subscript £. We need to estimate b based on the dataset
(Wn Yn, Tn)N_,. The estimation procedure can be decom-
posed into two stages. At the first stage, we learn empirical
representations of p(w | x) and p(y | =) separately. At the
second stage, we learn b as a mapping from the representa-
tion of p(w | ) to the representation of p(y | ). RKHS en-
dowed kernel ridge regressions are adopted in this two-stage
estimation procedure so that we can obtain a closed-form
solution of b. We note that the studied problem in Singh et al.
(2019); Mastouri et al. (2021) is E[p(W) —Y | X] = 0. We
adapt their idea to specifically cater to the problem (7).

We assume that b(w, y) is in the tensor products of Hyy and
Hy,ie. Hyw @ Hy. Thatis to say, if b € Hyy K Hy, then
b= Zle fjg; for some k € N and such that f; € Hyy,
g; € Hy forall j € [k]. Hyy and Hy are both set to be
RKHSs, which implies that the tensor product Hyy Q) Hy
is also a RKHS. We let ¢(y) denote the canonical feature
map of Hy. Let uy |, € Hyy be the conditional mean
embedding of p(W | z), i.e. pw ), = [ ¢(w)dp(w | x)
(Song et al., 2009). Then, we have

according to Lemma A.1.

According to (7)(8), we design the following risk functional:

co) = /y E[(wix © 6(1), ey — p(y | X))2)dy.

)
The goal is to find b € Hyy @Q Hy to minimize L(b). To
achieve this goal, we first learn an empirical estimate of
Hw |, and an empirical estimate of p(y | x) at the first
stage, denoted as fiyy|, and p(y | =) respectively. At the
second stage, we learn an estimate of b based on the first
stage estimate fiyy|, and p(y | x). To alleviate the finite
sample bias of the proposed two-stage estimation proce-

dure, we adopt the idea of sample splitting: use N; ran-
domly chosen observations in stage 1 and the remaining
Ny = N — N observations in stage 2 (Angrist & Krueger,
1995; Singh et al., 2019). We denote the stage 1 obser-
vations by (wy,yn,,)NL, and stage 2 observations by
(W Y )21

Stage 1. From the first sample (w,,, Yn, xn)ﬁgl, we learn
the conditional mean embedding of p(W | z), i.e., fiyy|, :=
CA'W‘ x¢(x) where 5W| x denotes the conditional mean em-
bedding operator (Song et al., 2013). Specifically, we com-
pute Cyy| x as a solution to:

6’W‘X = argmin E(C’), with
CeHr

~ 1 N
E(C) = N D e (wn) = Co (@a)ll34,, + MICI,
n=1

(10)
where Hr is the vector-valued RKHS of operators map-
ping Hx to Hy. It can be shown that Cyx =
S(W) (Kx 4+ N1A1) " ®T(X) where Kx is the Ny x N;
kernel matrix and ® (W) is a vectors of Ny columns, with
¢ (wy,) in its n th column (Song et al., 2009; Griinewilder
etal., 2012; Singh et al., 2019; Mastouri et al., 2021). Conse-
quently, fiy |, = (W) (Kx + Nl)\l)_l K., where K is
a N1 x 1 vector with its n-th element denoting & (z,,, z) eval-
uated at all z,, in the first sample. p(y | z) can be learned by
any parametric methods like maximum likelihood methods
or nonparametric methods like kernel conditional density
estimation or generative adversarial networks.

N2 we learn

Stage 2. From the second sample (w),, y,,, €} )21

n
b via empirical risk minimization (ERM):

b= argmin L(b), where
beHW @ Hy
~ L 11

~ 2
=D W | 2))” + A2llbll3 ems s

and {y”}2, ~; ;4. unif()). The estimator b obtained via
the ERM (11) has a closed-form solution (75 + A2) 1G>
where

N2
~ 1 ~ n
= > [Awie, ® 6 ()] @ [Twie, ® ¢ (4r)]
n=1
N2
1 R ~
92 =, > [wie, @ 6 ()] By, | =7,)-
n=1

(12)
The formula (12) is a direct adaption of Theorem 1 in
Mastouri et al. (2021) except that their response vari-
able y is replaced by p(y | x) in this work. Indeed,
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by the representer theorem (Schoélkopf et al., 2001), b
can be expressed as a linear combination of feature maps

b= Z ZzNzl Cij (wl) ® ¢(yj) where the coefficients
Cij, i =1,.,Ni,j=1,. N2 are obtained by solv-

ing a quadratrc mrmmrzatron problem (11) with respect to
b= SN SN e id(w) @ 6 y7). See Appendix B.3
and B.5 of Mastouri et al. (2021) for more details on the
closed-form solutions to the two-stage estimation procedure.

Next, we adopt the above two-stage estimation procedure
to estimate the bridge functions {b%]}tT:l, {b[g]}f;f. I
particular, we let W, := A x O, X} := Hy, Yy =R x O,
and Z; := O x O. We define W; = (A, 0;) € Wy,
Xt = (A, Hi-1,00) € Hi, Yy = (R,04) € Yy and
Zy = (Ot41,0:) € Z;. We also define the Hilbert
spaces Br¢ := Hw, Q Hy, and Bp ; := Hw, Q Hz, to
model the reward-emission bridge function and the dynamic-
emission bridge function respectively.

Then we can obtain the empirical conditional mean operator
Hw, |, and the estimates of conditional density functions
Py | @), D(2¢ | @) fort = 1,...,T according to the in-
troduced state 1 estimation procedure Subsequently, the
estimated bridge functions {b }t 1> {b
tained at the second stage through

! can be ob-

II;[I%] = argmin E[Ig](bRiL where
brt€BR: '

~ 1N2

Lo = 57 2 ((Awiger, @0 (0fn) . (13

n=1

2
b, =B Wi | 0)) + Aellbmallh,

and /l;[[t)] = argmin E%] (bp.t), where
bp,t€Bp.¢

N2

~ 1 =N

23000 = 5 2 (A, @0 (). (9
n=1

~

2
bD,t>BD,t ~ (| x;,n)) + dollbo.illE -

and {y;,

~unif (), {2, ~ unif(Z;).

3.3. Conservative Policy Optimization within
Confidence Regions

Based on (13)(14), we develop two confidence regions
for bp = (bR,la’ .- ;bR,T) € ®f:1 BR,t and bp =
(bp,1,--- ,bpr-1) € ®tT:_11 Bp, as

T
={bgc ®BR¢ :

U <a,vi=1,..,7},

confp(a) 15)

EE? (br,t) —

Algorithm 1 Conservative model-based policy optimization
for POMDPs
Input: Dataset D, regularization parameters A1, A, con-
fidence parameters «, 3, policy class II, kernel functions
for RKHSs
Estimation of bridge functions:
(BT by (13)(14)
Constructlon of confidence regions: Obtain confr(«),

confp(f3) by (15)(16)
Conservative policy optimization:

Obtain {B17 .

T = argmax min V(m,bgr,bp).
mell (br,bp)Econfr(a)xconfp (B)
Return: 7
confp(B) = {bp € ®BD¢ : a6)

L80p) - LU0y < g vt =1,...T —1}.

where «, [ are two constants that will be specified later.
Intultlvely, these two conﬁdence regions contain all by €
®/_, Brt. bp € @' Bp, whose rlsks do not exceed

too much than the ones for {b[t] Y, {b Syt They are
used to construct a conservative estimate of V(7) under the
model-based perspective.

We first use V(m, bg, bp) to denote the policy value of 7 by
replacing the true bridge functions {bg’g M, {bg 1 with
any bg, bp in Theorem 3.5 (policy value identification).
We note that V(7 {b }t 1 {bD =1 is exactly the true

policy value V(7). We then define a conservative estimation
of V(7) as

V(n) = min V(m

br,bp).
(br,bp)Econfr(a)xconfp (B) OR D) (17
Given (17), we propose to choose 7 _that maximizes the
conservative estimate of policy value V ():

7 := argmax V(7). (18)
mell

Intuitively, the learned policy 7 defined in (18) aims to
maximize the most pessimistic estimator of the policy value
within two confidence regions. In Section 4, we provide a a
finite-sample upper bound on the suboptimality of 7 under
some technical assumptions where only partial coverage of
the offline dataset is assumed. We summarize the proposed
algorithm in Algorithm 1.
Remark 3.77. We point out that Lu et al. (2022) is the
first work to design confidence regions based on empiri-
cal risk functionals for bridge functions used in confounded
POMDPs, which inspires our construction of confidence
regions. Compared to their model-free method, our work
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deals with different bridge functions and risk functionals
that stem from a model-based perspective. More impor-
tantly, the confidence regions used in Lu et al. (2022) de-
pend on policy 7, but our proposed ones do not involve
7. Such appealing property enjoys both the computational
and theoretical advantages. Computationally, any practical
algorithm that relies on iterated updates does not need to
re-compute the constraint sets at each iteration, therefore
greatly reducing the computational cost. Theoretically, the
proposed estimation procedure and the construction of con-
fidence regions allow an unrestricted policy class. More
details on the comparison to Lu et al. (2022) are provided
in the final paragraph of Section 4.

4. Theoretical Results

In this section, we study the theoretical properties of Algo-
rithm 1 under some technical assumptions. We focus on
establishing a finite-sample upper bound on the suboptimal-
ity of the learned policy 7, i.e., SubOpt (7). In particular,
such an upper bound will depend on the sample size of the
offline data IV, the number of stages 7', the size of func-
tion classes {Br +}1_1, {Bp.+}1—;', and the concentrability
coefficients {C7 }I_,, which are defined as

CZT* = \// E[U}Zr*(At,Ht_l,OO,Ot)ZL

fort =1,---T. Here {w] : AxOxH;_1xO — R},
is a sequence of weight bridge functions that satisfy the
following equations for each ¢t = 1,...T

E[w;ﬂ (At? 007 Ht717 Ot) | St7 Ata Htfl]
:pﬁ* (S, Hy_1) i (A¢ | o, Hi 1) (19)
pﬂb (St7Ht71) 771? (At ‘ St)

We assume the existence of such {w7 }7_,. It can be
seen from (19) that the concentrability coefficient {7 }1_,
quantifies a distribution mismatch effect between 7* and 7*
in a certain sense.

To begin with, we impose the following key assumptions
that are used in the theoretical analysis.

Assumption 4.1. The following conditions hold.

(a) (Partial coverage). The concentrability coefficient
Cr <oo,Vt=1,..,T.

(b) (Consistency of conditional density estimation at stage 1).
For any § > 0, there exist rg(, N1) — 0, rp(6,N1) = 0
as N; — oo such that for each ¢t = 1 : T, with P
probability at least 1 — 4, the following inequalities hold:
Ex,[fy, Py | Xi) — plye | Xe)ldy] < rr(6, M),
Ex,[[z, [P(2 | Xo) = p(2e | Xo)|d 2] < 7p(6,N1).

(c) (Consistency of empirical conditional mean operator at
stage 1). For any § > 0, there exists r¢(d, N1,¢1) — 0,

as Ny — oo such that for each ¢t = 1 : T and each
z; € X;, with ]P”Tb-probability at least 1 — 4, it holds that:
12w, |2, — w2, 12w, < 7C(0, N1,c1). Here ¢ is defined
in Assumption D.10 in the appendix.

(d) (Realizability). For eacht = 1 : T, the RKHSs Bg ¢,

Bp + contain the solutions b[;;], b[g to the conditional mo-

ment restrictions (2)(3).

(e) (Sizes of {Br,}Fy. {Bp.}i3"). Let {\H(Kr)}2,
denote the non-increasing eigenvalue sequence of the re-
producing kernel K for any RKHS F. We assume that
)\_J;(KBR,JL) = j77, )‘j(KBD,t) = j~7 for some 7y > 0.

(f) (Uniform boundness). There exist Mg, Mp > 0 such
that max;—1.7 Supyeg,, , [|blloc < Mp, max;=1.7-1
SUPyes, , Ib]|co < Mp, and max;—1.7 SUPpePy \UPD .
[Plloo < 00

Assumption 4.1(a) requires that the offline distribution pr
can calibrate the distribution induced by the optimal policy
7*. Similar concepts have also been considered in the lit-
erature of offline model-free and model-based algorithms
for MDPs (Xie et al., 2021; Uehara & Sun, 2021), and
model-free algorithms for POMDPs (Lu et al., 2022). This
assumption is necessary to ensure the tractability of the prob-
lem (Chen & Jiang, 2019). Assumptions 4.1(b)(c) imply
that the estimators obtained at stage 1 are sufficiently good
to play their roles at stage 2, and thereby guarantee the over-
all performance of the whole algorithm. In particular, when
{Pri}l1, {Pp.}o)t are parameterized space and p is
obtained by MLE, then (4, N1), (9, N1) usually scale
with \/LNT under some regular conditions on the complexi-
ties of {Pr.+}7 1, {Pp.+} ' (Geer, 2000). In addition, the
convergence rate r¢(d, N1, ¢1) for the empirical conditional
mean embedding at stage 1 is calibrated by a quantity c;
that measures the smoothness of yw, |5,,t = 1,...,T (Singh
etal., 2019). Details of results and additional assumptions
about realizations of Assumptions 4.1(b)(c) are shown in
Appendix D.7. Assumption 4.1(d) requires that the function
spaces {Br.i} 1, {Bp.}1-)' are sufficiently large such
that there is no model misspecification error when solving
the conditional moment restrictions (2)(3). Assumption
4.1(e) requires that RKHSs {Br}1_;, {BDyt}tT:_ll enjoy
the polynomial eigen-decay rates, which are commonly con-
sidered in practice (e.g. Sobolev space). The constants ~y
quantify the sizes of {Br}7_,, {Bp.:}i_," in the sense
that a larger ~ implies smaller {Bg ¢ }/_, {Bp.¢ ;=" As-
sumption 4.1(f) is a mild technical condition, which can be
easily satisfied.

Next, we present an upper bound on the suboptimality of 7
(18) in the following theorem. All the required lemmas and
the complete proof are provided in Appendix C.

Theorem 4.2. Under Assumptions 3.1, 3.2, 3.3, 4.1, for
1

some constant ¢ > 0, by setting \y = N; Aty =
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_ c1+1 y(eg+1)
> 1 21 —1 1
N, "% Ny = N7 72" and the confidence param-
eters o, 8 as

v o
a = clog(T/0)MprNy >, B = clog(T/0)MpN, **7,

then with probability at least 1 — 6, it holds that

T

SubOpt(7) SO (VMg + (T — t)\/Mp)CT") 0

VIog(T/8)N, 7.

Here Cf*, v, Mg, Mp are defined in Assumption 4.1(a),
(e), (f). Constants c1, co denote a measure of smoothness
and are defined in Assumption D.10, D.16 in Appendix D.7.

According to Theorem 4.2, we have a finite-sample up-
per bound on the suboptimality of the learned policy 7
in terms of several key parameters. It indicates that the
performance of 7 is getting closer to the performance of
m* when the number of samples N — oo. The con-
stants M, Mp denote the uniform upper bounds on the
bridge function classes {Br.;},, {Bp.}-" respectively.
Typically, they do not scale with the number of stages
T. Therefore, the upper bound is roughly of the order

p
(S (T =t +1)CF")/log(T)N, ™, where there is
a trade-off at the term (7' — ¢ 4+ 1)C7 . Intuitively, if ¢ is
increasing, then it is harder to require the coverage of trajec-
tory up to stage ¢, which implies that C[ " is increasing, and
meanwhile the term 7" — ¢ 4 1 is decreasing. The decay rate
v quantifies the speed of eigen-decay in the RKHS. A rapid
decay in eigenvalues (or a large ) implies that the offline
data can be effectively represented in a lower-dimensional
subspace of the RKHSs {Br +}7 |, {Bp.+} 1), suggesting
that the kernels capture significant structure in the data with
a few dimensions. Therefore, they are often associated with
better generalization or faster statistical rate, which is also

Jiiie SN
indicated in the upper bound Op(N,"*).

More importantly, the upper bound (20) only relies on the
concentrability coefficients {C7~ }7_, of the optimal policy,
which requires that the offline data covers the trajectory
generated by the optimal policy 7*. This partial cover-
age assumption is significantly milder than the restrictive
full coverage assumption max—1.7 sup,cry Cf < oo con-
sidered in some existing offline methods for confounded
POMDPs (Hong et al., 2023).

Remark 4.3. Tt should be also noted that the upper bound
(20) does not involve the size of the policy space |II|. This
is because the way of estimating bridge functions (13)(14)
and constructing confidence sets (15)(16) does not depend
on any specific policy 7 in this work. We take a counter-
part result in the model-free method (Lu et al., 2022) as
an example to illustrate the advantage of our model-based

method. In Theorem 4.4 of Lu et al. (2022), there is a term
/log(|I1]) included in the upper bound, which implies that
their policy class II cannot be too large. The effect of this
restriction is severe when the optimal policy is not included
in the pre-specified limited policy class. Furthermore, under
the POMDP settings, we can expect that the dimension of
m, grows with ¢ because of the inclusion of history in 7.
Therefore, it is harder to control |II| in this case. In compar-
ison, the policy space used in our work can be unrestricted
and therefore must contain the global optimal policy as long
as its concentrability coefficient is finite. This property is
especially meaningful when the policy update rule does not
need explicit policy parameterization (see e.g. Lan (2022)).

5. Discussion

We propose a model-based offline RL method for con-
founded POMDPs. Under some mild conditions, we es-
tablish a finite-sample upper bound on the performance of
the learned policy under the partial coverage assumption
from a model-based perspective.

We present some discussions and limitations in this sec-
tion. First, it would be intriguing to design a practical al-
gorithm with further empirical evaluation to demonstrate
the practical effectiveness of the proposed method. In par-
ticular, since RKHS can be employed for modeling bridge
functions, the bridge functions can be expressed as linear
combinations of many feature functions, making the ERM
a quadratic function with respect to the coefficients asso-
ciated with the bridge functions. As a result, the estima-
tors of the bridge functions will have closed forms, making
them computationally tractable and applicable to subsequent
tasks. To perform conservative policy optimization, the idea
of an existing work that designed a practical pessimistic
model-based algorithm in standard MDP contexts (Rigter
et al., 2022) could be potentially adapted to our confounded
POMDP settings. Second, in this paper, we focus on the
case when the bridge functions are realizable (Assumption
4.1(d)), the estimated conditional density functions at stage
1 are consistent (Assumption 4.1(b)), and the empirical con-
ditional mean operator at stage 1 is consistent (Assumption
4.1(c)). In other words, all the required function spaces
for the bridge functions, conditional density functions, and
conditional mean operators are sufficiently large so that
there is no approximation error occurring in this work. It
would be interesting to relax these assumptions and allow
for approximation error. Techniques like balancing the esti-
mation error and approximation error could potentially be
applied to broaden the applicability of the method. Lastly,
it would be also meaningful to apply the established model-
based identification in some RL tasks where maximizing the
expected cumulative reward is not the only goal, but also
controlling the risk or optimizing some other objectives.
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A. Definitions and Auxiliary Lemmas

Lemma A.1. Let jiyy|, be the conditional mean embedding of p(W | x), then it holds that

where ¢(y) denotes the canonical feature map of Hy.

Definition A.2 (Population risk functional). For any generic br; andt = 1, ..., T, the population risk functional EE@ (br.t)

is defined as
1
Ll () =

m /Ron {(P(TmOt | A¢, Hi—1,00) — E[br+(As, O, 1, 0¢) | At7Ht717OO])2} dridos.  (22)

Similarly, for any generic bp ; and ¢ = 1, ...,T" — 1, the population risk functional C[lt)] (bp.+) is defined as

1

[0 _
£p(boe) = vol(O x O)

/ E |:(p(0t+17 Ot | At, Ht—la 00) — E[bD7t(At, Ot, Ot+1, Ot) ‘ At, Ht—l, Oo])2:| d0t+1d0t.
OxO
(23)

Definition A.3 (Concentrability coefficient). For each 7 € II, the concentrability coefficient at each stage t = 1, ..., T is
defined as

CZT - \// E[w;r(Atht7170070t)2] (24)

where w] is defined in Assumption 3.2.
Definition A.4 (Star convex hull of ). For a function class H, we define star(#) := {rh: h € H,r € [-1,1]}.
Lemma A.5 (Lemma 14 of (Foster & Syrgkanis, 2023)). Consider a function class F, with sup s r || f||c < 1, and pick

any f* € F. Let 62 > W be any solution to the inequalities:

R (6, star (F — f*)) < 62,

Moreover, assume that the loss € is L-Lipschitz in its first argument with respect to the {o norm. Then for some universal
constants cs, cg, with probability 1 — c5 exp (cﬁnéi),

|(Balef ),)] = B 160 (@), 9)]) = BI(S @), )] — B (@), )
<1826, (I = £*lly + 00), VF € F.

(25)

B. Proof of Theorem 3.5

In this section, we present a complete proof of the identification results summarized in Theorem 3.5. In the first part, we
show that under Assumptions 3.1, 3.2, 3.3, we have a sequence of conditional moment restrictions that are conditioned
on the unobserved (S, A;). In the second part, we derive the identification results based on the first part and conclude the
proof.

Part 1. According to Assumption 3.2, the following two equations hold almost surely with respect to P
E[b[é](At,Otﬂ“t,Ot) | Hi—1, Ay, Oo) = p(r, 00 | Hi—1, Ay, Op), (26)
E[b[g (At, O, 0041,0¢) [ Hi—1, A, Oo) = p(0441, 04 | Hi—1, Az, Op). 27

In the rest of this part, we will show that equations (26)(27) also hold when the projected space is replaced by the one
generated by the unobserved (S, A;), under Assumption 3.3.

We first analyze the equation (26). The LHS of (26) can be written as

BB (Ar, O, r1,00) | Hyio1, Ay, O
—E[EBY (As, O, 71, 00) | St Hi—1, Ar, Oo] | Hy—1, Ar, O]
—E[EBY (As, O, 71, 00) | St Ho—1, Ar) | Hi1, Ay, O]
=E[E[BY (As, O, 1, 00) | Sty Ag] | Hi—1, Ay, Op).

(28)

13



Model-based Reinforcement Learning for Confounded POMDPs

The first equality comes from the law of total expectation. The second equality comes from Assumption 3.1: O; 1L Oy |
S, Ay, Hy—1. The last equality is due to Oy 1L H;_1 | Sy, Ay.

The RHS of (26) can be written as
p(re, 00 | Hi—1, Ag, Op)
=E[p(r, 0 | St, Hi—1, A, Oo) | Hi—1, Ay, O] (29)
:E[P(Ttaot | StaAt) | Ht—l;AtvOO]

where the last equality is due to (R, Oy) 1L (Hi—1,0g) | S, A; based on the data generating processes. More specifically,

given (S;, A;) and under the offline distribution P“b, O, depends on S; through the observation emission kernel, and R;
depends on (S;, A;) through the reward kernel. Therefore, (R;, O;) are conditional independent of (H;_1, Og) given the
state-action pair (S, A).

By combining equations (28)(29), we have

EEBH (Ar, Or, v, 00) | Sy Ad] | Hyi—1, Ay, Og] = E[p(ry, 01 | Si, Ar) | Hy_1, Ay, Oy, (30)

which means
E[]E[b%] (At70t7rta0t) ‘ StaAt] —p(TmOt | StaAt) | Ht717At7OU] = 0. (3D

Then, the combination of Assumption 3.3 and equation (31) implies that
E[bgg (At, Ot, Tt, Ot) | St, At] = p(rt, O¢ | St, At) (32)

for all (r¢,0¢) € R x O, P _as. (S, Ay),and forallt = 1,...,T.

Next, we use almost the same arguments to analyze the equation (27). The LHS of (27) can be written as

E[b[;@](AtyOuOtH,Ot) | Ht71,At7Oo]
E[E b[g(At,Ot,OtH,Ot) | S¢, Hy—1, A, O0] | Hi—1, Ay, Og)
¢

- .
=E[E[b}, (A¢, Ot, 0011, 0¢) | Sty He—1, A¢] | Hi—1, At, O]
=E[E]

D
E[E b% (At, Op,0041,0¢) | Sty Ae] | He—1, Ag, Og)

Similarly, the first equality comes from the law of total expectation. The second equality comes from Assumption 3.1:
O; 1L Oqg | St, Ay, Hy—1. The last equality is due to O; 1L Hy_q | S, A;.

The RHS of (27) can be written as
p(og11,0¢ | Hi—1, Az, Op)

=E[p(0t41,0¢ | St; Hi—1, A, 00) | He—1, As, Og] (34)
=E[p(ot41,0¢ | S, Ar) | Hi—1, Ay, Oo]

where the last equality is due to (Oy41,0;) L (Hi—1,0p) | S, A¢ based on the data generating processes. More
specifically, given (S, A;) and under the offline distribution P”b, O; depends on S; through the observation emission kernel,
and O¢41 depends on (St, A;) through the observation emission kernel at time ¢ + 1 as well as the transition kernel at time
t,ie. Opp1 ~ E(Si41), St41 ~ Pi(- | S, At). Therefore, (Oy41, O;) are conditional independent of (H;_1,Og) given the
state-action pair (S, A).

By combining equations (33)(34), we have
E[E[b%] (At7 Ot7 Ot+1, Ot) | Sta At] | Htfla At7 OO] = E[p(0t+l7 Ot | St7 At) | Ht717 At; 00]7 (35)

which means
E[E[b[g(At,Ot,loot) ‘ StaAt] —p(0t+1,0t ‘ St;At) | HtflaAhOO] =0. (36)

Then, the combination of Assumption 3.3 and equation (36) implies that
E[b%} (At,0t70t+1>0t) | StaAt] = p(0t+1;0t \ StaAt) (37

14
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for all (0141,0¢) € O x O, P _as. (S, Ay),and forallt =1,...,7 — 1.

In summary, we have shown in part I that under Assumptions 3.1, 3.2, 3.3, the following equations hold for all (r;, 04, 0¢11) €
R x O x Oand P™ -as. (S;, Ay).

EPY(Ar, Or,rey00) | Siy As) = p(rey 00 | Sp, Ay), VE=1,..,T (38)
E[b[g(AhOt,OtJrhOt) | St, Al = p(0t41,0¢ | S, Ap), VE=1,...,T — 1. (39)

Part I1.

By the definition of the policy value

Vim) =BT S R =3 /72 rep™ (1) dre,
t=1 t=1

it remains to identify the marginal distribution of the reward R; induced by the policy =, i.e. p™(r;). In the following
lemma, we express p™ (1) in terms of the combination of policy functions 7, reward-emission models p(ry, o; | s¢, a;), and
dynamic-emission models p(s;.y1, 0t | S¢, az).

Lemma B.1. Foreach1l <t <T, we have

p"(r) =
t t—1 (40)
> [17i(as 05,051,051, ..) p(re,oc | se,ar) [[ p(sia. 05 | s5,a;)p(s1).
At Gf_1,...,01 0t ,0t—1,...,01 j=1 StySt—1,5--351 j:l

Lemma B.1 has also been used in Tennenholtz et al. (2020) which focuses on the tabular settings. We generalize it to the
continuous settings by simply extending summation to integration. The proof of Lemma B.1 is directed adapted from
Tennenholtz et al. (2020). For completeness, we provide a proof in Appendix D.2.

According to Lemma B.1, in order to identify p™(r;), it suffices to identify the following function

t—1

fe(re, he) 32/ p(re, oc | 8¢, at) Hp(3j+1,0j | 55,a;)p(s1). (41)
St38t—14.-+551

Jj=1

which encodes both the information of the reward model and the dynamic model at each step ¢ under the offline distribution.
According to Lemma B.1 and the definition of f;, it can be seen easily that

t
ORI [T (e | osuhyn) e @)

At At —1,y0ens@ 201 j=1

In the rest of part I, we present a novel analysis on f;(r, h;), proving that it can be identified under Assumptions 3.1,
3.2, 3.3 under the general function approximation settings. In particular, we show that it can be expressed as the form of
sequential integration of bridge functions.

‘We focus on
t—1

fe(re, he) :/ p(re,or | se,ar) [[ p(sjsn,05 | 5,a5)p(s1). (43)
StySt—14.44951 j:1

We first look at the term p(r, oy | s¢, a¢) in (43). According to the results (38) shown in part I, we have

E[b[];] (At, Ot, Tt, Ot) | St, At] = p(’l‘t, O¢ | St, At) (44)
By plugging (44) into (43), it holds that

15
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ft(rtyht)
t—1
=/ p(re,or | st,a) HP(SjJrhOj | s5,a;)p(s1)
St3St—15--4,51 j:1
t—1
:/ BB (Ay, Ory e, 00) | St = 51, Ay = ar] T p(s541,0; | 85, 0;)p(s1) by (44)
St38t—15..4551 7j=1

E[b[}tz] (at, O, 7t,0¢) | St = 8¢, Ay = ay] p(5j+1a0j | Sjvaj)P(Sl)
J

I
T
T

St38t—1,-++,51

)
-

]E[bgz](at,Ot,rt,ot | St = St H PSj+1,05 | Sj,aj)p(sl) by Ot AL At | St

Il
\

Sty8t—14.--551

Jj=1
t—1

Z/ / b[] ataOtaTtaOt) (Ot | St) p<3j+1a0j | Sjvaj>p(51)
StySt—1, j=1

I
\

t—2
/ b[é](at,ét,rtaot)?(at | st)p(st,0¢-1 | S¢-1,a1-1) Hp(8j+170j | sj,aj)p(s1)
St38t—15.-4551 Ot

j=1
t—2
- / / b (s, 60, 01) / PG | 50)p(50,001 | 511, a0-1)) [[ (5541, 05 | 55, a5)p(s1)
St—1,.--,81 Y 0Ot St j=1
t—2
:/ / bg(at,ét,n,ot)(/ P(0¢ | S¢,06—1,5¢—1,01—1)P(5¢,00—1 | S4—1,a1-1)) Hp(sj+1)0j | s5,a5)p(s1)
St—1,...,51 Y Ot St j=1
t—2
:/ / bg(anétﬂ"nOt)(/ P(5t,5t70t—1 \ 5t—17at—1)) Hp(5j+170j | 5jaaj)p(51)
St—1,.-,81 Y 0Ot St j=1
t—2
=/ / bg(atvanrhot)p(()h@t—l | st—1,a¢-1) Hp(3j+1,0j | s5,a;)p(s1) (45)
St_1,..4,51 Ot j=1

Next, we look at the term p(d;, 041 | S¢—1, a¢—1) in the last equality of (45). According to the results (39) shown in part I,
we have

E[b%ﬂ] (Ar—1,04-1,0¢,00-1) | Si—1, Ai—1] = p(04,04—1 | Sp—1, A¢—1). (46)

By plugging (46) into the last equality of (45), we have

ft Ttaht

—2
/ / b (ar, 61,7, 00 )P, 0p—1 | Se-1, s I)Hp(5j+170j | 55, a;)p(s1) by (45)
St—1,---,8

=1

,,,,,

t—2

Hp Sj+1,05 | 8j,a;)p(s1) by (46)
/ / at,Ot,Tt,Ot)E[b%_l] (at7170t71,5t,0t71) | Si—1 =841, A1 = at71]
St—1,-

16
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t—2
H p(8j+1,05 | 85, a5)p(s1)

,,,,,

j=1

/ / b at,Otﬂ“t,Ot) [b[ (at 1,04_1,0¢, 04— 1)|St 1= St-1

t—2

Hp(5j+170j | s5,a;)p(s1) by Op—1 1L Ay 1 | Spy

t—2

-1 ~ - ~
/ / b at,Otﬂ"t,Ot)/ b% ](at—lvot—laOtaot—l)p(ot—l | st-1) Hp(5j+170j | 55, a;)p(s1)
—1

j=1

:/ / b[é] (at75t77"t70t)/ b[,;t)_l](at—l,5t—1,5t,0t—1)P(5t—1 | s¢—1)p(St—1,01—2 | St—2,a1—2)
St—1y.- 1 6t 6t 1

H p(8j+1,05 | 85,a5)p(s1)

:/ / b[é](atvétartvOt)b[é_l](atflaétfhataOtfl)(/ p(5t71 \ St71)p(8t71,0t72 8t72aat72))
St—2,.-+,81 01,0t —1

St—1

H p(sj+1,05 | 85,a5)p(s1)

~ —1 ~ ~ ~
=/ / bgtg](ataotartaot)b% ](at—laf)t—laotaot—l)(/ P(Ot—1,5t—1,0¢—2 | St—2,a1—2))
St—2,-.-,81 0¢,0t—1 St—1

H p(8j+1,05 | 85, a5)p(s1)

t—3

~ —1 ~ ~ ~
=/ /~ } b[jg(ataotyTtaOt)b[é ](at—1,0t—1,0t,0t—1)p(0t—170t—2 St—2, At—2) Hp(5j+1’0j | 85, a5)p(s1).
St—2y.ny Ot,0t—1

j=1

Based on the derivations in (45)(47), we have shown the ways to tackle the reward-emission model p(r, 0; | s¢,a;) at
time ¢ and the dynamic-emission model p(6, 041 | s¢—1,a:—1) at the time ¢ — 1. By repeating the procedure of tackling

p(0j,05-1 | Sj—1,a;—1) atthe time j = 1, ...,t — 2 along with

EbY " (Aj1,0;-1,65,05-1) | Sjo1, Ajo1) = p(85,0j-1 | Sjo1, Aj-1), Vi =1, .t — 1,

we can write the last equality of (47) as

ft rt7ht

/ / b[ at70t,7"t70t)b[1t) 1](at—176t—176t70t—1)p(5t—170t—2 S¢_2,04_2)
St—2,. 0¢,0t—1
H p(sj+1,05 | 55,a5)p(s1) by (47)

_ [t] = [t—1] ~ ~ [t—2] ~ ~
—/ / bR (ataotvrtaot)bp (at71,0t71,0t,0t71)b0 (at7270t7270t7170t72)
St—3,..,81 J 0¢,01—1,0t—2

t—4
p(0t—2,0t—3 | 8t—3,a1-3) Hp<5j+170j | s5,a5)p(s1)
j=1
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t—1
=/ / bg(atﬁtﬂ“t,ot)Hb%](aj,5j>5j+1,0j)p(52,01 | s1,a1)p(s1)
0t,0t—1,.-,02 j=2

t—1

=/ / ) ) bgg(auét,?“uot) Hb%] (aj>5j75j+1>0j>E[b[[1)](Al701752a01) | S1= 51,41 =ai1]p(s
01,0t —1,

15,02 =2

t—1

:/ / 5 i bl (ar, 50,70, 01) Hb%] (aj, 87,6511, 0, E[b}) (a1,01,62,01) | S1 = 51, A1 = an]p(s1
0t,0t—14...,02 ]:2
t—1

1)

)

:/ / i X bg(at’ét’rtvot) Hb[g (aj,65,0i41,0;)E[Y (a1,01,85,01) | S1 = s1]p(s1) by O1 1L A1 | S
0¢,0t—1,

—14..0,02 j=2
-1
:/ /  BR(andnreo) Hb%}(aj,éj,am,oj)[ by (a1, 61,32, 00)p(31 | 51)p(s1)
S1 0t,0t—1,...,02 j:2 o1
=1
:‘/~ ) . b[é] (at,ét,rt,ot) H b%] (aj,éj,éj“,oj)[ b[Dl] (a1,51762701)p((~)1) by integrating out S1
0t,0t—15-..,02 j=2 01
=1
=/~ b (ar, 61, 00) T 08 (05,65, 6541, 0,)p(601). (49)
Ot,...01 j=1
Consequently, for each ¢, fi(r¢, ht) can be identified as
=1
ft(rta ht) = / } bgﬁ](at,ét,n,m) H b[[J)](ajaéjvaj-‘rlaoj)p(al); (50)
Ot,...01 j=1
which implies the identification of p™ (r;) foreach ¢t = 1,...,T":
p"(re)
t
= Z / Hﬁj aj | 0j,aj-1,0j-1,...) fe(re, he)
Qty...yaq ¥ Ots 01 j:l (29
=1
Z / HWJ (aj | 0j,aj-1,05- 17-~-)/ b%](ataétﬂ"taot) Hb%](aj75j75j+170j)p(51)-
ay,. Ot5--501 j—=1 0t,...01 j=1
The policy value V() is then identified as
V()
T
=E"[}_ R
t=1
(52)

_ ZT: / rep™ (re)

t—1

_Z/ Z / Hﬂ-] a; ‘O_]vaj 1,05— 17---)/: ~ b[}g(ataétarhot)Hb[g](ajaajaaj-‘rhoj)p(al)'
Ot,...01

Aty..yar ¥ Ot 01 =1 j=1
The proof of Theorem 3.5 is completed.
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C. Proof of Theorem 4.2

In this section, we provide a detailed proof of Theorem 4.2, which provides an upper bound on the suboptimality of 7.

We rely on the following three useful lemmas. The first lemma is quantifies the performance difference between the true
bridge function and the function in the bridge function class.

Lemma C.1 (Error decomposition). Under Assumptions 3.1, 3.2, 3.3, D.3, for each m € 11, bg € ®th L Hw, @ Hy,,
bp € @i, Hyw, @ Hz,, it holds that

T T-—1
V() = V(m,br,bp)| < Y CFy/Vol(R x O)\/ LY (br) + 3 CF (T — t)y/¥ol(O x O/ LB (bpy),  (53)
t=1 t=1

where C is defined in Definition A.3, and Egg, ,C[g denotes the risk functionals defined in Definition A.2.
Proof. The proof is provided in Appendix D.3. O

The next lemma essentially shows that the true bridge functions are contained in the constructed confidence sets with high
probability.
Lemma C.2. Under Assumptions 3.1, 3.2, 3.3, 4.1, D.16, with probability at least 1 — ¢, for some ¢ > 0, by setting

1 __x c1+1 v(ca+1)
11 Yoo +1 c1—1 ~ecoFl .
AM =N, T =N, 7T, Ny = Ny? 27 and setting

o = clog(T/(S)MRN;ﬁaﬁ = Clog(T/(DMDN;ﬁv
it holds that
(0, ... b57)) € confr(a), (...l ") € confn(B). oY

Here v, are defined in Assumption 4.1. Constants cy, c denote a measure of smoothness and are defined in Assumption
D.10, D.16 in Appendix D.7.

Proof. See Appendix D.5 for a proof. O

Next, the following lemma requires a uniform upper bound within the confidence regions.

Lemma C.3. Under Assumptions 3.1, 3.2, 3.3, 4.1, D.16, with probability at least 1 — ¢, for some ¢ > 0, by setting

c1+1 y(ca+1)

1 4
A =N, T =N, "2 Ny = Ny 7T and setting

_ 0 _ 0
o = clog(T/§)MrN, ¥, 3 = clog(T/6)MpN, 72,

sup  max \/ LW (br,) < Va, (55)

br€Econfr(a)

sup max \/E[[t,](bD’t) < \/B (56)

bp€econfp(B) t=1:T-1

it holds that

Here vy, Mp, Mp are defined in Assumption 4.1. Constants cq, co denote a measure of smoothness and are defined in
Assumption D.10, D.16 in Appendix D.7.

Proof. See Appendix D.5 for a proof. O

Then, by combining Lemma C.1, Lemma C.2 and Lemma C.3, we obtain the following upper bounds

V(r*) = V(x)
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= ) — i V(n*,bgr,b i V(r*,bgr,bp) — V(7
V(ﬂ' ) (bR,bD)eco?fl}iI(la)xconfD(ﬂ) (ﬂ. DR D) + (bR,bD)ewanl}iI(la)xconfD(ﬁ) (ﬂ- DR D) V(ﬂ')
<Y(7*) — min V(r*,bgr,bp) + min V(7,br,bp) — V(7)
(br,bp)€Econfr (a) xconfp (B) (br,bp)€Econfr (a) xconfp (B)
V(") - V(" b, bp) + 0

min
(br,bp)Econfr(a) xconfp (B)
T

T-1
< sup {>_Cr \/vol(R x 0)y/ cWbgy) + > CF (T — t)y/vol (0 x O) cwp )}

(br,bp)€confr(a)xconfp(B) 7

T T-1
S CF VIog(T/§)MpN, ™7 + 3 CF (T — t)y/log(T/6)MpN,
t=1 t=1

T

—(> (VMg + (T = )/ Mp)CF )/ Tog(T/)N, ™ (57)

t=1

The first inequality is by the definition of 7. The second inequality is from Lemma C.2. The third inequality is from Lemma
C.1. The final inequality is from Lemma C.3.

The proof of Theorem 4.2 is completed.

D. Proof for Lemmas
D.1. Proof of Lemma A.1

Proof.
Eb(W,y) | X = ]

=/ b(w, y)p(w | z)dw
w
- /W<b’ B(w) © ) ey ey Pt | ) (58)

b, /W Hw)p(w | 2)dw ® $))spery

:<b7 Hw |z ® ¢(y)>HW®Hy

where we have used the Bochner integrability of the feature map ¢(w) to take the expectation inside the dot product. See
Definition A.5.20 for more details (Steinwart & Christmann, 2008). ]

D.2. Proof of Lemma B.1
Proof of Lemma B.1. Let Hy := (S1, 01, Ay, ..., Sg, O, Ay) and Hy := (O1, Ay, ..., Oy, A;). We have

P (re41)

Z/P”(Ttﬂ | Bug1)p™ (hes)

=/p(7“t+1 | Se41,a141)p" (hes)

/ p(regr | seprs acp)m(arr | oepn, he)p(opg | sep1)p(ses | s, an)p™ (hy)
0t 41,5t4+1,Nt

at41

t+1
= Z / p(res1 | Se41,aer) H{W(ai | 03, hi—1)p(oi | si)p(si | si—1,ai-1)}
Att1,at,...,a1 7 Ot+1,St+1,--+,01,51 =1
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t+1 t
/ [l o, hi—l)/ p(rect, onp1 | s, an) [ [ p(sizas 00 | siyai)p(s1)  (59)
at41, at _____ Ot41seee; 01 i=1 St41y--+551 i=1

O
D.3. Proof of Lemma C.1
We need to upper bound | V(1) — V(m,bg,bp)|, forany 7 € T, br € @ Hyy, @ Hy,, bp € L " Hyy, @ Hz,.
According to Theorem 3.5, we have
t—1
fi(re, he) = /_ _ ~ bg(at,ét,n,ot)Hb%](aj,éj,éjﬂ,oj)p(él), (60)
60,811,001 i

and that p™ (r;) can be identified by

AOEEDS / TL % (0s [ 05205120512 ulrss). (61)

,0
at,Qt—1,-.-,0Q tj=1

In this section, we also define two other notions:

t—1

‘E(T’t,ht) = [ ) } bR,t(atyahrtvOt) H b[g](aj7(~)j75j+1,0j)p((~)1), (62)
0¢,0t—1,..-,01 j=1
and
N t—1
fe(re, he) 2[ ) ] bR,t(ataataThOt)HbD,j(ajaaja6,j+1>0,j)p(61)- (63)
01 ,0t—1,---5 01 j=1

In ﬁ, the true reward-emission bridge function b%] is replaced by a generic br; € Hw, ® Hz,. In ft, all the true bridge
functions are replaced by generic elements bg ; and {bp ; ;;11

Similarly, we define

@;T(Tt) - Z / Hﬂ-] a; ‘O]7a7 1,05— 17"')};(rt7ht)a (64)

at,ar—1, =501 j=1

@(Tt) = Z / Hﬂ—] aj ‘0]700 170j 17“')ﬁ(rtuht)' (65)
Ot,0t—1,-

At,0¢—1,...,01 =901 =1

Next, we observe that

T T
= TPt (H)-Z/ rDy (1)

t=1"vT"t t=1"Tt

T T T T (66)
DN ETABED S R {OED S R AOED oY {0

t=1"Tt t=1"Tt t=1""t t=1""t

1
= (W)—V(T( bR) V(7T bR) V(Tl',bR,bD)
where we denote 3., J,, mebE (re) as V(r,bg).
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In the rest of the proof, we provide upper bounds on V() — V(, bg) and V(7 bg) — V(7,bg, bp) separately.
Bounding V(7) — V(m,bg).
By definition, we have

V() — V(7 br)

T
:;/ repr (ry) Z/ Py (1¢) (67)
:ZT:/ re(pf (re) — Py (14))

&~
I
-

where
i (re) — Py (1e)
t
> (68)
= Z / Hﬂj(aj | 0j,aj-1,05-1,...)(fe(re; he) = fo(re, b))
a¢,ar_1,...,a1 ¥ Ot0t—1:01 j=1
with
Je(re, he) — J?t(ru ht)
t—1
:/ b[](atvotartvot)Hb%](ajaaja5j+170j)p(6l) _/ bR,t(ataétvrtaot)
0¢,0t—1;-.-,01 j=1 0¢,0t—15..-,01
t—1
; - _ (69)
H b (a;,65,641,05)p(61)
j=1
t=1
:[ } . (bg(ataét,mm) — br,t(as, 0¢,7¢,04)) H b%](aj,ﬁj,5j+1,oj)p(61).
0t,0t—1, 1 7j=1
Then, we apply the same strategy from the proof of Theorem 3.5. In particular, recall that we have shown
fe(re, he)
t—1
Z/ / b (ar, 60,71, 00)p(5 | 51) [ [ (354105 | 55,05)p(s1)
StySt—1,..,51 7 Ot j=1 (70)
t-1
:/~ ) bgt%] (at, 5t7 Tt, Ot) H b[é] (CL]', 6j7 6j+17 oj)p(él).
Ot,...01 j:1
By the same arguments, it is also straightforward to have
t=1
/_ i br,t(at, O, 7, 0¢) Hb%](aj,5j75j+1;0j)p(51)
Ot,...01 j=1
i (71)
-/ [ bntersonrionpor | s0 [ plssr,os |55 ap(sn).
St,St—15--+,51 Oy j=1
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We use A(bg ,br.+) to denote b%] — br,:. Then, we have

Felre,he) = Fe(re, )

t—1

— [ @anserio) ~ brela o) ] b5 55,010.000(a0)
0¢,0¢—1,...,01 j=1
t—1
_ ; - . (72)
:[ ) ~ A(b[ltz],bRyt)(at,ohrt,ot)Hb%](aj,oj,ojﬂ,oj)p(ol)
0t,0¢—1,..-,01 j=1
t—1
= A b[t] b ~ ~ ) . g
} ( R R,t)(at’Ot,T’t,Ot)p(Ot | St) p(53+1a01 | ngag)p(sl)
St,8t—1,- Ot j=1

where the last equality comes from (70)(71).

Therefore, we have
pi (rt) — pf (1)

Z /Ot o s Hﬂg (aj | 0j,ai—1,05—1,..)(fe(re, he) _ﬁ(rhht))

o
At A —14--4,0 91 5=1

Z / Hﬁj(a;‘ | 0j7hj—1)/ /~ A(bggybR,t)(at»ataTt»Ot)p(ét | 5¢)
0t,0t—1,. StySt—1,--+,51

Aty Q150000 01 =1 Ot
t—1

HP(Sjﬂan | s5,a;)p(s1)

j=1

(73)

We need the following lemma to proceed.

Lemma D.1. For any measurable function g(ay, 04, hi—1,0¢): A X O X Hi—1 x O — R, it holds that

t—1

t
Z / Hﬂj(aj | Ojahjq)/ / g(ag, 64, he—1,0¢)p(0t | 8¢) Hp(8j+170j | s5,a;)p(s1)
0t,0t—1,. StySt—1,--+,51

At At —15.00,0 01 j=1 j=1

p" (Stht—l)Wt (A¢ | or, Hy—1) }
= E Ay, O, Hy .
/Ot |: pﬂ.b (St,Ht_l)ﬂ'? (At | St) g( ty Uty t 17Ot)

(74)
According to Lemma D.1, we can further express pJ () — py (1) as

pi (re) — pf (1)

t
Z / Hﬂj(aj | 0j7hj—1)/ /~ A(bgybR,t)(at»ataTt»Ot)p(ét | 5¢)
0t,0t—1,. StySt—1,--+,51

Aty Q150000 901 j=1 Ot

t—1 (75)
X Hp(8j+170j | s5,a;)p(s1)

j=1

p” (St, Ht—l) Tt (At | O, Ht—l) [t]
= E A(bY b A, O .
/o, [ p™ (Sy, Hy—1) w2 (Ay | St) (bksbr.t) (Ar, O, 71, 01)

Note that in the application of Lemma D.1 in the above derivation, we let g(a:, o, hi—1,0;) be the function
A(bgt{], br,i)(a, ¢, 7, 01), where the input of h,_ is empty, and r; is a fixed number (i.e. not a variable).
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Consequently, we have

T
zz/r r(w7 () = 57 (1)) (76)

T
" (Se, Hy—1) e (Ae | 08, He 1) 11
= E A(bY b A, O by (75).
E /TtOtTt [ o™ (Si, Hy1) 72 (4y | S0) (bg,brt) (At, O, 1, 04) | by (75)

Next, we upper bound V() — V(7 bg) based on (76). For each ¢, we have

™ (Se, Hy—1) 7 (Ae | og, He—1) (1] }
E A(bY b A, O
/rt,ot " [ P (Se, He—1) m} (Ay | St) (br:bre) (4, Or. e 00)

= / TtE[E[wf(At, OO, Htfl, Ot) | St, At, Htfl]A(bgt;c] 5 bR,t)(At7 Ot, Tt, Ot)] by ASSUmptiOﬂ 3.2

rE[E[wf (Ay, Oo, Hy—1,0¢) | Sy, Ay, Hy—1, Ot}A(bgtz]va,t)(At, O, 7¢,0¢)] by Assumption 3.1

Tt,0t

rE[E[w] (A, Oo, Hi—1, ot)A(b%],bR,t)(At, Oy¢,1t,0t) | Sty Ary, Hi—1, Oy]] by measurability

Tt,0t

/ TtE[er(At, Oo, Hy_1, Ot)A(b%]7 bR,t)(Ata Ot77”t70t)]
T¢,0¢

/ rE[E[w] (Ay, Oo, Hy,0) A, b ) (A, Or, i, 00) | Av, Hy 1, O]
Tt]E[er(AhOOaHtflaOt)E[A(b[]gva,t)(At;OtyTtaOt) | At>Ht71>OO]] a7
< \/E[wf(At,Ht—l,Oo,Ot)Q}\/E[{E[A(bg,bR,t)(At,Otﬂ“not) | At, Hy—1,00]}?]

Tt,0t

Il
—

(Cauchy-Schwartz inequality and |r¢| < 1)

<\// E[w?(At,chOo,Ot)Q}\// E[{E[A(bg»bR#t)(AmOta'r'hOt) | Ay, Hi—1,00]}?]

(Cauchy-Schwartz inequality)

=CT \// E[{E[A(b[}g, br,t)(As, O, 1, 04) | A, Hi—1, Og)}?] by definition of concentrability coefficient

_Cm\// p(re, 00 | A, Hi—1,00) — E[br,i(As, O, 1, 00) | Agy Hi—1, Opl||? by Assumption 3.2

=C7 \/vol(R x O)y/ ER (br,+) by Definition A.2.

£2(Pr?)

Consequently, we can upper-bound V(7)) — ]7(71', br) by

V() = V(m,bg) < ZC”\/VOI (R x O)\/ LU (bg.4) (78)

through combining (76)(77). In addition, by symmetry, we also have

V(m,br) — V() < ZC”\/VOI R x O)\/ LY (brs). (79)
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Bounding V(7,bz) — V(m,bg, bp).

Firstly, we introduce a notion as follows

min{s,t}—1 t—1

fei(re, he) = / Cbralan o) [ 08(a5.850500,00) T bpu(a5,85,8541,05)p(51),
0¢,0t—1,--+,01

j=1 j=min{i,t}
where H;J-:p u;j := 1if p > ¢. Notice that f; 7 = ﬁ and f;1 = fAt
Similarly, we define

t

)= S /1 TT (a5 | 0,051,051 2) fus(res he)
0t,0t—1,-.-,01

at,at—1,...,a1 "~ O 0t= j=1

and notice that pf' - = pf, pf = Py .

‘We then define
T
Gi=) / ripgi(re)
t=1

and notice that

T T
G = Z/ repi(re) Z/ 7y (re) = V(m, br,bp)
t=17Tt t=1
and
T T
Gr =3 [ vt =Y [ rdt () = Vi, b
t=1"Tt t=1"Tt
Therefore, we have
_ T-1
V(m,bg) — V(m,br,bp) = Gr — G = Z(Gi-H -Gy)
i=1

Next, we focus on the term G;;1 — G; foreachi = 1,...,T — 1. We first write

T T
Gini = Gi =3 [ rfiar) = Y [ it
t=1""t t=1""t

(80)

(81

(82)

(83)

(84)

(85)

(86)

We notice that if £ < 7, then pgiﬂ(rt) = pzi(rt) for each ;. It is because both f; ;41 (r¢, he) and fi ; (7, he) are equal to

fe(rs, he). Thus, G411 — G; can be simplified as

Gi+1 -G
Z /Ttpt i+1(7t) Z / 7epg(Tt)
t=i+17 Tt t=i+1v Tt
- /WMHMJPAM)
t=i+17 7Tt

Z / rt/ Hﬂj(aj | 0j, hj—1)(fiv1(re, he) — fri(re, he))

t=i+1 tj=1
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where

ft,z‘+1(7”t,ht) - ft,i(rt,ht)

min{i+1,t}—1 t—1
~ j O . ~
:[ i i bR,t(at,Ot,Tt,ot) H b[D](aj,oj,OjH,oj) H bD,j(aj70j70j+1,0j)p(01)
Ot,0t—14..,01 j=1 j=min{i+1,t}
min{i,t}—1 t—1
~ (5] = = o 5
_/ i ) bR,t(at,Ot,Tt,Ot) H bD (aj,Oj,0j+1,Oj) H bD,j(aj70j70j+170j)p(01)
0t,0t—1,-.+,01 7j=1 j:Inin{i,t}
i t—1
~ ] ~ ~ ~ ~ ~
=/ bR,t(ahOtaTtaOt)Hb[[)](aj70j70j+170j) H bp,j(a;,05,05+1,05)p(01)
51,6t 1500101 e izt (88)
i-1 t—1
~ J ~ ~ ~ ~ ~
— / br.i(as, o0i,00) [ 69(a;, 65,6541, 0,) [ [ b0.5(a5,65,6541,0,)p(61)
0t,0t—1,-+-,01 j=1 j=i
i—1 t—1
~ j JUR i o~ -~ o~ ~
:/ bri(ar, o0, re00) [ 005,65, 0541, 0,)b 8 (@i, 61,6141, 00) T] b .s(a5,65,6541,05)p(61)
0t,0t—1,-.+,01 j=1 Jj=i+1
i-1 t—1
—/ bR,t(am@t,Tt,Ot)Hb[[])](aj75j75j+17Oj)bD,i(ai,5i75i+1,0i) H bp,j(aj,05,0541,05)p(01)
0t,0t—1,-.-,01 j=1 Jj=i+1

Next, we introduce the following definition.

Definition D.2 (Value function). Foreacht =1,...,T and each 7 <t — 1, we define

Ut (0it1, i)

t 5 t—1 o (89)
=/ " IT mi(a; [0, hi-0) bri(at,6r,7,00) [ bo,j(a,65,8541,05),
Tt Ai1,0i41,--+,0t, Ot ,0t—1,--,0i42

4 j=it+l j=it1

and

T

Uit1(0it1,hi) == Z Ut (Big1, hi)- (90)
t—it1

Intuitively, U;+1(0411, h;) in Definition D.2 can be understood as a kind of value function in some sense, which plays a
similar role with the value function in the standard MDP settings at the stage ¢ + 1. In the standard MDP settings, the value
function at the stage i + 1 is upper bounded by 7' — 7 when the reward function satisfies r; € [—1, 1]. Therefore, in this work,
it is natural to assume that |U;11(0;+1,h;)| < T — i forevery i = 0,...,T — 1, which is summarized in Assumption D.3.

Assumption D.3. For eachi = 1, ..., T, it holds for all (6;,h;—1) € O x H,;_1 that

Ui(65,hi—1)] ST —i+ 1. O

We also use the following notation to denote the difference between the true dynamic-emission bridge function and a generic
element:

A(b%], bp,i)(@i, 05, 0i41,0i) = b%] (@, 04, 0i41,0;) — bp i(a;, 0;,0i41,0:). 92)
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By incorporating Definition D.2 and the notation A(b[g ,bp i), we then have

Gz-‘rl

//
oy

t =1

OZ+1;
t=i+1 it1s501
a / / OZ+1,
t=i+1 Oid1s-005 51
// Ut 0z+17
Oit1,- 101 t= 1+1
/ / Ut(01+1>
Oit1,-- ;01 t=i+1

/ Hﬂ-J aj | 0j,h;— 1)/
} Big1,

'l] 1

We first focus on the term fav

T 7itas [ o b)) (frasa (res he) = feilre b))

i—1

HW] aj | oj, hj— 1) (a1701302+1701) Hb[[])](ajaajaaj+1aoj)p(51)
j=1
i i-1
hi) H m;(a; | 0, hj—1)bp i(ai, 6i,0i11,0;) H b3 (a;, 85,6541, 07)p(61)
j*l j*l (93)
Hﬂ.j Q. |Oj) j— 1) a7,701701+1a02 Hb[ aj70j70j+170])p(01)
Jj=1
7 i—1
H"Tj ag |Oj; j— 1)bD z(a1;01701+1702 Hb[ a]70]70]+170])p(01)
Jj=1 j=1
Uit1(0i41, hi)A(ng)D,i)(aiy 0i, 0i+1,04) H b%} (aj,04,0511,04)p(01)
61 j=1

vy Uik1(0ign, ha) AGH, bp i) (@i, 65, 6141, 05) H;'; b3} (a;, 85,6541, 0;)p(61) in the last

equality of (93). By sequentially applying the definition of b%] (a;,05,0;41,0;) and the same arguments used in the proof

of Theorem 3.5, we have

\/6i+17~~;61

i—1

U1 (611, hi) A, bp i) (ai, 65, 541, 0;) H b2 (07,65, 8i+1,0,)p(61)

=1

i-1 S
(4]

=/ / Uit1(0i41,hi)A(bp, bp,i) (i, 05, 0i41,04)p(0; | S5) Hp<5j+170j | s5,a;5)p(s1)-
8i,8i— 15,51 041,04

Then, by applying Lemma D.1 again for the function fo,-

Giy1 — G,

/ HT‘-J aj | oj,hj— 1)/
1J 1 Ojtlyeeey
LJ 1

i—1

HP(SJ‘H,OJ‘ | 85.a5)p(s1)

j=1

(Sl7H’L l)ﬂ-z(A ‘Oza i— 1)

j=1

Bit1 Ui+1(57;+1, hl)A(b[g s bD,i)(ai, 51‘, 5i+1; Oi), we have

i1
Uis1(8i41, hi) A, bp i) (ai, 61, 6141, 07) 11 b2 (a;,65,641.0;)p(61)
j=1

/ Hﬁj (aj | 0, hj_ 1)/ /~ ) Ui+1(6i+1,hi)A(b%],bD,i)(ai,5i,5i+1701')P(5i | si)
8i,8i—1,---y51 0i41,04

95)

(¢33

ﬂ—b (Su Hzfl)

In the above derivation, the function g(a;, 0;, h;—1,0;) is defined as f

we apply Lemma D.1.

™} (Ai | S)

/ Uit1(0i41, As, 04, Hifl)A(b%]y bp,i)(Ai, Oi, 0i41,0;)
Oi41

500y Uir1(0it1, hi) A}, bp.i)(as, 55, 5541, 0;) when

Next, we provide an upper bound on the last equality of (95). For clarity, we use the notation x(A;, O;, H;_1, 0,41, 0;) to
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denote Ui+1(5i+17 Ai, O;, Hlfl)A(b[[z)], bD,i)(Ai; Oi, 5i+1, Oi). Then, we have
Gi+l - Gz

Ssz 1)771 (A |017
o (S77H7 1) (A’L | Sv)

)H(Ai, O, Hi_1,0i41,0i)

i Sz; i—1) ™ (As 0;, H;_ 5 ’ 3
/~ E{P}E 1) mi (A | 1)U¢+1(0i+1,Ai70¢,Hi,l)A(bngﬂ-)(Ai’Oi70i+1’0i)
04,041
(
p

(Sz,lil ]) (A | S)
/ p
04y 01+

=/ i (Ai, 00, Hi_1,0;) | Si, Ai, Hi_1]K(Ai, O, Hi_1, 0141, 0;)] by Assumption 3.2
0;,0i41
:/ i (Ai, Oo, Hi_1,0) | Siy Ai, Hi—1,04]k(As, Oy, Hi_1, 0441, 0;)] by Assumption 3.1
07,7O7.+1
:/ i (Ai, 0o, Hi_1,0i)k(As, O, Hi_1,0i41,0;) | Si, Ai, Hi—1, O;]] by measurability
0,041
:/ ANOOa 71— 1701) (AiaoiaHi—176i+lvoi)]
07,7O7.+1
:/ A“OO, i— laOi)K/(AivOiaHi7175i+l7Oi) ‘ AtaHtflaOO]]
0,041
:/ i (Ai, Oo, Hi—1,0i)E[k(As, O3, Hi—1,0441,0i) | Ai, Hi—1, Og]
017O’L+1

7/ \/ [ (AZ;H’L 1700701 ]\/E[{]E[K/(AivOi7Hi7176i+170i) | Ai,Hzél,OO]}ﬂ
01,70L+1

(Cauchy-Schwartz inequality)

\// "(Ai, Hy_1, O, 0;)? \// E[{E[x(A;, Os, Hy_1,6,01,05) | Asy Hiv, Oo]}?]
Oj, 01+1

(Cauchy-Schwartz inequality)

=CT \// E{E[k(4;,0;, Hi—1,0i+1,0;) | Aiy Hi—1,0g]}?] by definition of concentrability coefficient
0,041

SCZT\//  E [{E[Ui+1(5i+1,Ai70i,Hi—1) | Ai, Hi—1, Oo]}2{E[A (Y, bp i) (A, 04,8141, 03) | As, Hi—1, Ol }?
04,0441

(Cauchy-Schwartz inequality for conditional expectation)

SCZT\// E |:<T — Z)Q{E[A(b[g, bD7i)(Ai; Oi, 6i+1, Oi) | Ai, H,;l, Oo]}2 by Assumption D.3
0,041

=CT(T —i \// p(Giv1,0i | Aiy Hi—1,00) — E[bpi(Ai, Oi,6i11,0:) | Aiy Hi—1, Op)||? by Assumption 3.2
Oj, 01+1

£2(P%)
—CF (T — i)y/vol(O x O)\/ L (b ;) by Definition A.2.
(96)
Therefore, we have
T-1
V(r,br) — V(m,br,bp) = > (Gis1 — Z CT(T — i)y/~ol(0 x O/ LW (b ). 97)
=1

In addition, by symmetry, it also holds that
V(r,br,bp) — V(m,bg) < Z Cr(T — i)/vol (O x O)\/ L (bp.:). (98)
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Combining upper bounds for |V(7) — V(r,bg)| and |V(7,bg) — V(m,bg, bp)|

V(m) = V(m,br,bp)|
=|V(r) = V(7,bg) + V(m,br) — V(m,br, bp)|
§|V(7T) - T/(ﬂ,bRﬂ + |]7(7T bR) - V(ﬂ' bR,bD)| (99)

Cr\/Vol(R x O/ L (bgy) + Z CF(T — t)y/vol (O x O/ LW (bp ).

o~
Il

1

The proof is completed.

D.4. Proof of Lemma C.2
We aim to show that [,A%] (bgt{]) - [,A%] (3%]) < «a with probability at least 1 — ﬁ, and that ﬁ[t]( [t]) E%] (A[t]) < B with
probability at least 1 — ﬁ
To begin with, we decompose EB;] (b[lt{]) - Egt{] (ﬁg) as follows:
L () ~ L)
=LR(bR) — L OF) + L 05 — £ 6 + LR 6 - L7 B
<ERO) - L)) + L) - 27 @) o

<2 sup |E[t] (brt) — Egz](bR,t”
brt€EHW, QHy,

where the first inequality comes from £E§ (bgfi]) — ngz] (3[1;]) <O0as ngz] (b[é]) =0and E[Ig (3%]) > 0.
It remains to upper bound the term supy, . , ¢, @7y, |£A£§ (br,t) — Egg (br.t)|-

We employ the following lemma to proceed.

Lemma D. 4 Under Assumptions 3.1, 3.2, 3.3, 4.1, D.16, with probability at least 1 — 6, for some ¢ > 0, by setting

c1+1 y(e2+1)

A =N, T L Ao = NQ_ 72t Ny = NV 7 with probability at least 1 — 8, it holds that

max sup |E£g(b3’ ) — C[ (br,t)| = Op(Mglog(T/d)N, ZWQ)
=LT bp €Hyw, @Hy,

and
~] .
max sup |E%](bD,t) - ,C[[t)] (bp,t)| = Op(Mplog(T/6)N, *7+2).
t=LT—1pp tEHW, QH =,
Proof of Lemma D.4. See Appendix D.8 for a proof. O

. JE—.
Next, according to Lemma D.4, and by the definition of o = clog(T/§)MgrN, >** |8 = clog(T/§)MpN, 2, we
have

max { L (b)) — L0} = Op(a)

t=1.T

and

max {Z (b)) - LY )} = 0p(8).

t=1:T-1

The proof is done.
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D.5. Proof of Lemma C.3

We aim to show that [,Eé] (br,+) can be upper bounded uniformly for any bg ¢ € confr(«) and uniformly forall t =1, .., 7.

Similarly, we need to show 5[5,] (bp,¢) can be upper bounded uniformly for any bp, € confp(8) and uniformly for all
t=1,.,T 1.

We first present the following decomposition.

W)
=LY (bra) — LY (bra) + LY (bra) — L OW) + L OF) — ) + £ @l (101)
<2sup 1LY 0r) — LY (bra)| + o+ LEGE.
R,t

Similarly, we have
ﬂf} (bp.t)
<2sup| LY (bps) — L1 (bp1)| + B+ LY (0.

bp .t

(102)

We need Lemma D.4 and the following lemma to proceed.

Lemma D.5. Under Assumptions 3.1, 3.2, 3.3, 4.1, D.16, with probability at least 1 — 6, for some ¢ > 0, by setting

1 0 c1+1 y(ea+1)
1 1 —1 C 1 .
A =N, U N =N, "Ny = NSV T and setting

_ 0 __
o = clog(T/§)MrN, 72,3 = clog(T/§)MpN, 772,

it holds that
~ __Te2
max L (0) = Op(log(T/5)N, ™)

and
e

t:I{l;%}ilﬁ%] (Z[Lg]) = Op(log(T/0)N, Feg+l ).

Here 7y are defined in Assumption 4.1.
Proof of Lemma D.5. See Appendix D.7 for a proof. [

In particular, according to Lemma D.4, we have

~ 0
max sup 1LY (brs) — LY (bgs)| = Op(Mglog(T/5)Ny T72)
t=1T pp cHw, @Hy,

and

1 r [,
T sup LY (bp.e) — L1 (bpe)| = Op(Mp log(T/§)N, 7).
t=1:T—1 bpt€EHwW, QHz,

St t At
We can see that max;—;.7 SUD, €y, @My, |£5%](bR7t) — ,C[R] (br,)| and max;=1.7_1 SUDy,, , €ty @Hoz, |,c§3] (bp ) —
C[g (bp,¢)| are the dominating terms, which are of the order «, 3 respectively.

Therefore, we have max;—1.7 SUPy, €y, @My, Lg(bg,t) = Op(«) and maxs—1.7_1 SUPy,, , €My, @Mz, ,C[[t)] (bp) =
Op(B). The proof is completed by taking a square root at both sides.
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D.6. Proof of Lemma D.1

‘We need to show

t t—1
> / [T 7i(a | Oj’hj—l)/ / 9(as, 60, he—1,00)p(r | 50) [ [ p(sjv1,05 | 55,05)p(s1)
Qeyap_1,...,aq Y Ot0t—15-501 j—1 Sty8t—14--4,81 ot j=1

p" (Sthfl)ﬂ't (Ay | o, Hi—q) }
= E A, O Hy .

/ot [ o7 S Hy ) wb (A [ Sy ¢ e O Hio)
(103)

For clarity, we simply use fat to denote Za,, for every t. Then we do a direct calculation in the following

71' (Sf7Ht 1)7715 (At | Ot,Hf 1)
B Ay, O, Hy
/ [ ™ (Sy, Hy—1) 70 (Ay | St) g (A, O, Hy 1, 0¢)

/ (Stahtfl)’frt(at | 0t7ht71)

asoibnsihis DT (s, he1)mh(ay | st)

/ (St,ht—l)ﬂt(a | 01, hi—1)
at,06,5¢,8¢ b1

~ b ~
g(ataohht—laot)pﬂ (ataotvst;ht—l)

~ b . b
g(at, 00, he—1,00)p™ (at, 00 | S¢, he—1)p™ (St he—1)

~ ‘n'b ~ Trb
g(at,Ot,htfl,Ot)p (at70t|5t)p (St,htfl)

/ P (¢, he— 1)7Tt(at|0t7ht 1)
at,0t,0¢,8¢,he—1 p (8t7ht 1)7Tb(at | St)

T (s¢, h a; | o, h - ~ b
:/ P (Wt =) tb| e 1)9(Gt,0t,ht7170t)ﬂf(at | 5¢)p(6¢ | se)p™ (¢, he—1) by A 1L Oy | Sy
a1,00,8¢,80,hi -1 P (St?ht 1)mi(a | se)

=/ me(ag | og, he—1)g(as, O, he—1,0¢)p(0¢ | 5¢)p™ (8¢, he—1)-
at,0¢,0¢,5¢,he—1

(104)
We then provide an expression of p™ (s;, h;—1) in the following:
P (50, hi—1)
Z/ P (8¢, 80—1,he—1)
St—1
:/ P (st | Se—1, he—1)P" (S4—1, he—1)
St—1
:/ P(St ‘ St717at71)Pﬂ(3t71»ht71) by Sy 1L (Ht7270t71) | (StyAt)
St—1
=/ p(St \ 5t—17at—1)pw(5t—1,at—170t—17ht—2)
St—1
=/ (st | se—1,ae—1)p" (ap—1 | S4—1,00—1, hi—2)p™ (0¢—1 | St—1, ha—2)P™ (S¢—1, hy—2)
St—1
=/ p(St \ 5t—17at—1)77t—1(at—1 | Ot—laht—2)p(0t—1 | St—l)pw(st—laht—Q)
St—1
:/ P(St \ Stflaatfl)ﬂtfl(atfl | Otflaht72)p(0t71 | Stflaatfl)pﬂ(stflyht72)
St—1
=/ p(St,Ot—1 | 8t—1,at—1)7Tt—1(at—1 | Ot—lvht—Q)pﬂ-(St—laht—Q)
St—1
t—1 t—1
=/ [T r(sisr05 1 s5.0) [] 7ita; | 05, hj—1)p(s1). (105)
St—1:8t—25--,51 j—=1 j=1
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By plugging (105) into the last equality of (104), we have

/ E {p” (Se, Hy—q) m (Ag | 0p, Hi—1)
ot p™" (St He—1) w0 (Ay | St)

Q(At’Ot,Ht—l,Ot)]
=/ me(as | o, he—1)g(as, O, he—1,0¢)p(0¢ | 5¢)p™ (8¢, he—1)
at,0t,0¢,5¢,he 1

= '/Tt(at | Ot ht71)g(at o htflvot)p(at \ St)/
/at:Ot,5t,St7ht1 ’ o St—1,8t—2,-++,51 (106)

t—1 t—1
[ p(sisr.0i | siva) [ 7i(a; | oj, hj—1)p(s1)
j=1 j=1

! t—1
:/ ij(aj | Oj’hjfl)/ / g(ag, 6p, hi—1,01)p(0¢ | 1) Hp(strlan | s5,a;5)p(s1).
he j=1 St,8t—1,5t—2,---,51  O¢ =1

The proof is done.

D.7. Proof of Lemma D.5

We prove finite-sample upper bounds on EB;] (B[é]) and E%] (’l;[[t)]) in this proof. Most of the proof for this lemma is adapted
from Mastouri et al. (2021); Singh et al. (2019); Szabé et al. (2016); Caponnetto & De Vito (2007), excepted that we need to
deal with p(y; | x+), p(2¢ | 2+) in this work rather than the true observed p(y: | x¢), p(2¢ | 2+). To begin with, we focus on

EE;] (3[1;] ). We are going to analyze the stage 1 error at first, and then analyze the stage 2 error.

We first introduce some notations for the sake of convenience. As Hy ® Hy is isometrically isomorphic to Hyy, we
use their features interchangeably, i.e. ¢(z,y) = ¢(x) ® ¢(y). k(-,-) is a general notation for a kernel function, and ¢(-)
denotes RKHS feature maps. To simplify notation, the argument of the kernel/feature map identifies it: for instance, k(z, -)
and ¢(z) denote the respective kernel and feature map on X'. We denote K,z := k(z, ).

For any Hilbert space F, we denote £(F) the space of bounded linear operators from F to itself. For any Hilbert space G,

we denote by £2(F,G) the space of Hilbert-Schmidt operators from F to G. We denote by L?(F, IP”Tb) the space of square
integrable functions on F with respect to measure P

We analyze the stage 1 estimation at first.

Stage 1. At stage 1, we learn the conditional mean embedding of the conditional distribution p(w; | z). There exist some
works that have studied the finite-sample convergence of the conditional mean embedding. Here, we directly adopt the
theoretical results (including required assumptions, definitions, theorems, etc) from existing works Singh et al. (2019);
Mastouri et al. (2021) regarding the analysis of stage 1 error.

The optimal Cyy, | x, minimizes the expected discrepancy:

Cw,ix, = argmin  E(C), where E;(C) = E[|¢(W;) — Co(Xy)|3,,,,

C€L2(th ,Hwt) (107)

According to Song et al. (2009; 2013), it suffices to solve a vector-valued regression in order to learn Cyy,| x, . The search
space in the regression problem is the vector-valued RKHS Hr, of operators mapping Hx, to Hyy,. See also a review of
the kernel conditional mean embedding Muandet et al. (2017). In particular, H x, ® Hyy, is isomorphic to £2 (Hx,, Hw, ).
Therefore, by choosing the vector-valued kernel I'; with feature map : (2, wy) = [¢(2¢) @ ¢p(wy)] := d(x4)(A(we), ) #om, »

we have Hr, = £? (Hx,, Hw,) and they share the same norm. We denote by L?(X;, P}i) the space of square integrable
functions from &} to W, with respect to measure }P”Ti, where P}i is the restriction of P™" to X;.

We drop the subscript with respect to ¢ in the following if it does not cause confusion. Also, we adopt the same notations
and results directly from Mastouri et al. (2021), and they are only used in this proof.

The following assumptions and definitions are needed.

32



Model-based Reinforcement Learning for Confounded POMDPs

Assumption D.6. Foreacht =1,...,T, X, Vs, W, Z, are measurable, separable Polish spaces.
Assumption D.7. (i) k(w, -) is a characteristic kernel. (ii) k(y, -), k(z, -), k(w, -) and k(z, -) are continuous, bounded by
K > 0, and their feature maps are measurable.

The kernel mean embedding of any probability distribution is injective if a characteristic kernel is used (Sriperumbudur
et al., 2011); this guarantees that a probability distribution can be uniquely represented in an RKHS.

Assumption D.8. Foreacht = 1,...,T, assume that Cyy, x, € Hr,,i.e. Cw,x, = argmingeyy,. E,(C)

Definition D.9 (Kernel Integral operator for Stage 1). Define the integral operator:

Sy : L2 (X,]P’}b) — Ha
g / B(2)g(2) AP ().

The uncentered covariance operator is defined by 77 = S; o Sy, where S7 is the adjoint of 5.
—1

Assumption D.10. Fix ;1 < oo. For given ¢; € (1,2], we assume that 3Gy € Hr s.t. Cyx = TlIT o G1 and
2
1G1ll%,. < -

The following theorem provides a closed-form solution to the ERM in stage 1.

Theorem D.11 (Singh et al. (2019), Theorem 1). For any A1 > 0, the solution of (10) exists, is unique, and is given by:

Ny

~ _ 1

CW|X = (Tl + )\1) lgl, where T1 = 7N1 E (b(il'z) ® qb(xl),
i=1

Ny
and g1 = Nilz¢($z) ® ¢ (w;)
i=1

and for any x € X, we have Jiy |, = 6W|X¢(x).

The next theorem provides a finite-sample upper bound on the estimation error.

Theorem D.12 (Finite-sample upper bound at stage 1, Mastouri et al. (2021), Theorem 5). Suppose Assumptions D.6, D.7,
D.8 and D.10 hold. Define A\ as:

2
S

8k (n + K HCW|XHHF) In(2/6)

AL =
Nl’)/l (Cl — 1)

Then, for any x € X and any ¢ € (0,1), the following holds with probability 1 — § :
\/’W(Cl'f'l) 4K (KJ—FHHCW‘XH”HF) 111(2/(5)
Pzeas VN7 (er — 1)

HﬁWl’I‘ - NW\mHHW < Kre (57 vacl) =k

where [iyy|x = 6W|X¢(a:) and C'\W‘X is the solution of (10).

The proof of Theorem D.12 is omitted in this paper. Readers can refer to Mastouri et al. (2021); Singh et al. (2019) for a
detailed proof.

Corollary D.13. Under the same conditions from Theorem D.12, for any x; € X; and any 6 € (0,1), the following holds
uniformly for all t = 1, ..., T with probability 1 — ¢ :

et

c1+1

[ —— Hﬁ(01+1) 4k (Ii-l-liHCWdXtHHFt)111(2T/5)
e T A, = B VN (e - 1)
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Proof of Corollary D.13. Let § := ‘% in Theorem D.12 and apply a union bound argument. O

Stage 2.

We then analyze the stage 2 error where the output from stage 1 is used as a plug-in estimator. Most of the proof for the
stage 2 analysis can be adapted from Singh et al. (2019); Mastouri et al. (2021), except that we need to deal with p(w; | z;)
rather than p(w; | 2¢).

The optimal b}, , minimizes the expected discrepancy:

bp,=  argmin L[Ig (br,t) where (108)
’ brt€EHW, ®Hy,

2
L0r) =By, s v, i) (< pwiix, © 6 (V) bri)yy agr,, —P (Y| Xt)) : (109)

Throughout the proof of stage 2 error, we use the notation P to denote the probability measure, in which both W;, X; follows
P while Y; follows unif()).

Similarly to Stage 1, the problem of learning b7, , is transformed into a ridge regression. We list some needed assumptions
and definitions as well in the following.

Assumption D.14. Foreacht = 1, ..., T, we assume that bgt%] = b}, i.e. the minimization problem  argmin E%] (br.t)
’ br,tEHW, OHy,
is achievable with miny, , ey, @#y, £B§] (brt) =0.

Definition D.15. (Kernel integral operator for Stage 2). Define the integral operator :

SQ : Hwy — 'Hwy

b—s / (1wl @ 6)] b [6(y) @ iw )] APty x v xy (Hw(as y) -

The uncentered covariance operator is defined by T, = Sy 0 S5, where S5 is the adjoint of Ss.

Assumption D.16. Fix v, < oo. For given ¢, € (1,2], we assume that P belongs to a prior class of functions P (y2, bz, ¢2)
such that: oy et

(a) A range space assumption is satisfied : 3G € Hyyy s.t. b =T, > 0 Ga, b}, =T, 2 oGq and ||G2||Hwy <
(b) The eigenvalues (Ij), ¢ of 15 satisfy ap < Ikb2 < By forby > 1, a9, By > 0.

(c) The conditional density function p(y; | «¢) is uniformly bounded by a constant m for eacht =1, ..., T

(d) Without loss of generality, Hyy ® Hy is a || - ||3,,@#, normed constrained space with ||b[|3,,@2, < 1 for all
beHw ®@Hy.

(e) There exist Mg > 0, Mp > 0 such that |br t|cc < MR, |bpt|lcc < Mp forevery bt € Hw, ® Hy,, ¥Vt =1,...,T
bpt € Hw, ®Hz,,Vt=1,..,T — 1.

Next, we introduce a notation Egg which is the minimizer of the empirical risk of stage 2, when plugging in the true piy,|4,
and the true p(y; | x;) instead of their estimates:

Eg = argmin Z[é](bg’t), where
vateHWt ®Hyt
. LN 2 (110)
~t _ " /" ! 2
Lrbre) = 3 nz::l (<MWM;," ® ¢ (Yrn) ’bR7t>HWt®7‘lyt —p (Yt | xt,n)) + A2 llbr .t 3, @ry, -

Similarly to g[t], it has a closed form solution given below (see Grunewalder et al. (2012), section D.1).
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Theorem D.17. For any Ay > 0, the solutions of (110) (with dropped subscript t), exists, is unique, and is given by
(Ts + X2) " Lgo, where

Ny
Z 1wier, ® ¢ (Yn)] @ [pwia, @ 6 (Y]

N (111)
Z e, ® 6 (yn)] p(yn | 7,)-
Define also b;‘g as the minimizer of the population version of (110):
by = argmin L (bgr), where
breHW Q Hy (112)

2
L3 (br) = Exopr® v ounif(y) (<P‘W|X ®e(Y) 7bR>7‘[w®H)} —r (Y] X)) + 2llbr 7y sy
where we dropped the subscript ¢ if no confusion is caused.

Then the upper bound on the E[It%] (3%]) — E[Ig (b%]) can be bounded by several terms that involve the stage 1 error, stage 2
error, and approximation error.

Lemma D.18 (Mastouri et al. (2021), Proposition 5). The following inequality holds.
e — WY <5151 + S + A(Aa) + Si + S
where

o= VEe () o (a2

Hwy

~ -1 2
S_1 = H\/EO (Tz + >\2) (G2 — g2)

Hwy

Sle\/:Eo(TﬁAQ)*l( — Tyl )H oy SQZH\/TZO(TﬁAz)*lo(TQ—Tz) (bgg’kz_bgg)\f

Hwy

and the residual A (\2) = H\/ﬁ (bgfi]’/\2 — bg) HH .
wy

Proof. According to Proposition 2 in Vito & Caponnetto (2005), the excess risk can be decomposed as

£RER) — £R0R) = [V ([ =), o0
e (113)
_ T (g[t] Bl pliAe A b[ﬂ) H )
H \/72 R R R R R How, @y,
Then, readers can refer to the proof of Proposition 5 in Mastouri et al. (2021). O

Intuitively, S_1, Sp quantify the estimation error at stage 1; S1, S quantify the estimation error at stage 2; A(\2) quantifies
the bias/approximation error from the regularized regression.

The upper bounds on Sy, Sy and A()2) can be directly adapted from Vito & Caponnetto (2005); Caponnetto & De Vito
(2007). It is because S1, Sa, A(A2) have replaced the estimates of conditional mean embedding and conditional distribution
from stage 1 to the true ones. In this way, S7, S2, A(A2) can be viewed as the errors from a regularized least square problem,
which has been studied by Vito & Caponnetto (2005); Caponnetto & De Vito (2007). The following two lemmas provide
upper bounds on 57, Sz, A(A2).

Lemma D.19 (Mastouri et al. (2021), Proposition 6). Suppose Assumption D.16 holds. Then, the residual A ()\3), the
reconstruction error B (\2), and the effective dimension N (\2) are defined and bounded as follows:

xo) = VT (v | <922g, Bk = o ol <At
A(X2) 2(3 R) sy, = 12N (A2) sy, = 12N
-1 w  m/b — 75
= < Bb2 2
N (X)) =Tr {(T2 ) oTQ} <O G
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Lemma D.20 (Theorem 4 of Caponnetto & De Vito (2007), Proposition 7 of Mastouri et al. (2021)). Assume Assumption
D.14 and Assumption D.16 hold. Assume also that o < || Ty HL(HWy) and No > %2()‘2) Then, we can bound S and S»
Sfrom Lemma D.18 as follows w.p. 1 —2¢/3 :

([, ) 208 0
t N;2/\2 ’

4B (A2) + N2 A (A2)
N2y

S1 < 321n%(6/¢) Sy < 81In*(6/¢)

Next, we focus on the stage 1 errors S_; and Sy. The following lemmas are needed.

Lemma D.21 (Proposition 8 of Mastouri et al. (2021)). Assume the assumptions of Theorem D.12 hold and define \
accordingly. Suppose also that Assumption D.14 and Assumption D.16 hold. Then, w.p. 1 —§ :
12
HT2 *T2H < 4k%r¢ (8, N1, ¢1)?
L(HwWOHy)

Lemma D.22 (MLE guarantee.). Given a set of models M = {P : X — A(Y)} with P* € M, and a dataset
D = {x;, yi}fill following IF”Tb, let Py be

Ny
PyLg = arg minz —InP (y; | xi).
PeM ‘=
With probability at least 1 — §, we have:

P, 2 _ In(IM|/s
By TV (Runs(c | 2), P | 0)) 5 2R

Proof. See Agarwal et al. (2020)[Section E] for a proof. O

Lemma D.23. Assume the assumptions of Theorem D.12 and assumptions of Lemma D.22 hold and define A1 accordingly.
Suppose also that Assumption D.14 and Assumption D.16 hold. Then, w.p. 1 — 30 :

caloaMI/0) |, 4log(|MI/0)
NZ N, N1

~ 2 2
||92 - gQH’HWQ@’Hy S m2H4TC (57 N17cl) +

Proof. The proof is a combination of Lemma D.22, Proposition 8 in Mastouri et al. (2021), and a Bernstein inequality. The
proof is different from the existing works because p(y | x) is involved in this work. See Appendix D.9 for a complete proof.

O
Lemma D.24 (Proposition 11 of Mastouri et al. (2021)). Let C. = 961n® (6/€) and suppose that No > %ﬂ()‘?) and that

Az < HTQHE(Hwt@Hyt)' Then, w.p. 1 — 2¢/3,

2

2
ey + 4+ NadaN (A
H'g{t]” <y | 3210°(6/¢) (Y ‘ HWﬂ@ﬂy) (44 N2XoN (A2))
R

Hyw, @Hy, A N2X
w, @Hy, 2 2 N2 (114)

L 32 In?(6/e) [4B(A2) + NaA (A2)

b[f]
Ao N3ZXo R

}+B(>\2)+‘

2
Hw, QHy, >
Following the proof of Proposition 10 in Mastouri et al. (2021), we then have

51 A it (5N ) 4t OEIMUG) | ylos(LM1/0),

1 (115)
]\]Ez\]2 N
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and

4
So < — K¢ (8, N1, c1) Hb H (116)
Ao ’Hw@?‘ly

Combining all the above results, we then have

8, N1,c1)? 1 1
5_10<TC(A101)+ ! +AN)
2 Ao NZN, 24V1

rc (67N17cl)2 1 1 1 1 o1
S0 =0 ' + + + g 41
° < A2 N2)X3 Ng)\é+1/b2 N22/\3702 N2)\§7c2 2

Ag) = 0 (A2), (117)
1 1
S1 =0 + ,
! <N22>\2 NQ}\%/@)
1 1
So =0 + .
2 (NQQ)\%C? SYRE )

9,N1,
A2

We notice that <. e1)” dominates 1N in S_;. Furthermore, since b > 1 and c2 € (1, 2], we have that - domlnates

that —+-— dominates %, and that 1 dominates A5~ (since Ay — 0). In addition, it can be seen that
/\2+ /b2 N2)\2 2

N )\3 co 9
S1 domlnates S5 for the same reasons.

Therefore, we have
r [t] ( ) L [t] ( )

TCc (5,N1,Cl)2 1 ].
=0 1
( Ao N22/\% * NQ}\%+1/Z)2 +

Y NI B S e
LN N NN, )

By choosing Ay, N7 and Ay appropriately, and following the proof of Szabé et al. (2016)[Theorem 5], Mastouri et al.
(2021)[Theorem 2], we have the following result:

1 Sle1+1)
Fix ¢ > 0 and choose A\; = N, "' and N; = N, 7V .
Ceo

__< ~ -
1LIf¢C < b2 (e2t1) " hoose Ay = N, “**'. Then »C%](b[]g) =0y <N2 e

catl

s Y _ _boeca
2.1f¢ > et choose Ay = N, 7. Then L (0}) = 0, (Nz )
ba(c2+1)

In particular, we only consider the optimal rate and the most efficient sample splitting way here. We can let ¢ = "2-=-,

~ _ _baea
which implies that E[If?](b[é]) =0, <N2 r2ez )

Repeating the above arguments 1" times for EE;] (35;]), and T — 1 times for L[g (3%]), by a union bound argument, it is
straightforward to have

boco
(t] 7lt] N, P2e2+l
max L (by) = Op(log(T)N, )
and
_ _boco
_max L)) = Op(log(T)N, =),

The proof is done by defining v = bs.
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D.8. Proof of Lemma D.4

We focus on the function bg ; at first, and present the following definition that helps to prove a uniform upper bound.
Definition D.25.

~1 2
LR OR) = Ex ety ((wax, @ 6 () baa) e, o, — D | X0)) (119)

Recall that we have defined the population risk functional and empirical loss functional in Definition A.2 and (13), which
are as follows:

2
LR 0r) = Exprr v, vais ((Bwa, © 0 00) bRy, o, — P (Ve | X)) (120)
No 2
LY (bry) = Z <<I7Wtz;m @ (Y1) ,bR,t>HW o, —D (Y | 2 n)) + 2 1br,el ey, @2y, - (121)

Then, we have the following decomposition:

EB;] (brt) — EE(bR,t)

S, A A1t) [t (122)
=Ly (brt) — LR (brt) + L5 (br¢) — L (br,t)
and . \
sup LY (bry) — LU (bp )]
brt€EHW, Q@Hy,
< swp R~ LY Or)I+ swp LR (bra) — L (bR (123)
brt€EHW, @Hy, brt€EHW, @Hy,
=T +1I

Intuitively, the first term [ is related to the stage 2 error, while the second term I/ is related to the stage 1 error. In order to
provide uniform upper bounds on them, the techniques from the subject of empirical process theory can be adopted.

Upper bound term /.

We analyze the term supy, . , 3, @y, |[:[1§ (brt) — »’353] (br,)| by the empirical process theory. Firstly, we introduce
a concept from the empirical process that are used to measure the size of function classes Hyy, ® Hy,. The following
definition is adapted from (Wainwright, 2019) and (Foster & Syrgkanis, 2023).

Definition D.26 (Localize population Rademacher complexity and critical radius.). For a real-valued function class G on a
probability space (X', P), we denote by ||g||3 the expectation of g(X)?, that is ||g||3 = Ex~» [¢(X)?]. Given any radius
0 > 0, the local population Rademacher complexity is given by

n

Rn(G,0) =Eex|[ sup  [n™' ) eg(Xi)]],

9€G:||gll2<d i=1

where {X;}._, are i.i.d. copies of X and {¢;}"_, are i.i.d. Rademacher random variables taking values in {—1, +1} with
equal probability. Further, assume that G is a 1-uniformly bounded function class {g : X — R, sup, |g(z)| < 1} Further,
we assume that G is a star-shaped function class, i.e. ag € G for any g € G and scalar o € [—1, 1]. Then the critical radius
of G, denoted by §,,, is the solution to the inequality

Rn(G.6) < 6%
In this work, critical radius is used in the theoretical analysis to measure the size of function classes for the bridge functions,
which provides a way to get a uniform law of large numbers with a convergence rate at each time t.

In particular, we apply Lemma A.5 to upper bound sup,, , , |£[t]( 1) — [,N%] (br,¢)|. In this case, Eg (br,t) can be viewed
as a regularized empirical loss function for the regularlzed least square problem. We can use the random variable U; to
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denote p(Y; | X;) with X ~ P”b, Y, ~ unif(}}). And the collected i.i.d. samples are u; j, k = 1, ..., No, which represents
Py | xen) forn = 1,..., No. We note that p only depends on the first sample with sample size N, and therefore
it does not affect the concentration result at the second stage. Similarly, we can use the randome variable V; to denote
fiw,|x, @ ¢(Yy) with X; ~ P™ Y, ~ unif (). And Vy j., k = 1, ..., No, are i.i.d. samples denoting fiyw, |z, ,, © ¢(i'r)»
n = 1, ..., No. The inner product </7Wt|X,, ® ¢ (Y1) ’bR’t>Hw,®Hyt in the Hilbert space Hyy, ® Hy, can be written as
br.t[lw, x, ® ¢ (Yz)] = br,¢[Vi]. In this perspective, we can view the stage 2 procedure as a regression problem where U,

is the response variable, bg ; is the regression function, and V; denotes the independent variable. The loss function [ is a
quadratic loss function with [(Uy, b[V;]) = (U — b[V4])2.

Then, we have
sup LW (br) — L8 (bR
brt€EHW, QHy,

= sup  [E[(U,brs[Vi])] + Aallbr
bR,tEHWt(X)HYt

< sup [EU(Unbre[ViD)] —EL(Usbre VDI + X2 sup [brollrow, oo,
brt€EHW, QHy, brtEHW, ®Hy,

How, @Hy, — E[U(Us, br[V2])] | (124)

We then apply Lemma A.5 to provide sup,,, , e,y o7y, IE (U, br4[Vi])] — E[l(Us, br,:[Vi])] | an upper bound. In
particular, we let dz n, be the critical radius (See Definition D.26) of the function class Hyy, ® Hy, for bg ¢, depending on
the stage 2 sample size No. To see the function [(Uy, br ¢[V;]) is Lipschitz continuous with respect to bg ¢, we do a direct
calculation in the following.

(U, br¢[Vi]) — LUz, b [VA])]
=[(Us,br[Vi])? = (U, g o [V2])?]
=[br,t[Vi]* = b [Vi]* + 2UtbRr ¢ [Vi] — 2U;, b, [Vi]|

2 / (125)
<|or[Vi]" = U [Vi"| + 21U ][R, [Ve] — O o [VE]]
=[brt[Vi] + b [Vill[bRa[VE] = Ug o[Vi]| + 2|0t bRt [Vi] — b, [VE]]
S(br.e[Vill + [Vr o[Vl + 20U DIbr.o[Vi] — Vg 1 [Vi]]
By  Assumption  D.16, we  have  |br.[Vi]] = | w1 x, ©@ ¢ (Y7) ’bR’t>7'lwt®Hyt | <

w1 7w, 16 (V) N2y, [10R 20, @3y, < w*. In addition, by Assumption D.16, we have |U;| < m. There-
fore, [ is Lipschitz continuous with respect to the function bg ; with a Lipschitz constant 262 + 2m.

By applying Lemma A.5 and that supy,, , ¢4, @2y, [0R,tl#w, 7y, < 1, with probability at least 1 —cs exp (csN2d% v, ),

we have

sup L8 (bre) — LY (br)]
brt€HW, QHy,

< swp [BU(ULbrd VD] — EQ(ULbr VD [+ X2 sup [[br.llrw, omy,
brt€HW, @Hy, brt€EHW, ®Hy, (126)
<36(k* + m)dr,N, ( sup oR.tll, + 5R>N2> + Az
br,t€HwW, @Hy,

<36(k* + m)dp N, (Mg + 0r,N,) + A2

where the final inequality is from Assumption D.16 with Mg being the uniform upper bound on the function space
Hyw, @ Hy, under the || - || perspective.
The following lemma provides an upper bound on the critical radius dr n, of the RKHS Hy, ® Hy),.

Lemma D.27 (Corollary 14.5 of Wainwright (2019)). Let F = {f € H | || f|lz < 1} be the unit ball of an RKHS with
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eigenvalues (1 ; )(;i

1+ Then the localized population Rademacher complexity (see Definition D.26) is upper bounded as

In this work, we are focusing on the eigenvalues of the covariance operator T, which are denoted as (I)xen. The
eigenvalues of T can also be viewed as the eigenvalues of our kernel in the considered RKHS. See more discussions on this
relationship in Definition 1 and Remark 2 of Caponnetto & De Vito (2007).

According to Assumption D.16, the eigenvalues decay as of the order I;, ~ k2 for some by > 1. Such decay-rate is usually
named as polynomial eigen-decay rate. We note that the polynomial eigen-decay rate for RKHSs is commonly considered in
practice (e.g. ba/2-order Sobolev space). In particular, larger b, means faster decay of the eigenvalues of the covariance
operator 75, and smaller effective input dimension.

Following the calculation in Example 13.20 of Wainwright (2019), it can be seen that
__b2
5R,N2 = N2 2bat2 .
Consequently, with probability at least 1 — ¢5 exp (cg N20% , ), We have
sup | L (br.e) = L (bro)
brt€HW, @Hy,
§36(l€2 +m)5R7N2 (MR+5R,N2) + Ao (127)
__ba2

S(K% +m)MpN, 2™ 4+ X

Upper bound term /7.

Next, we analyze the term E[Ig (brt) — L[Ig (br,t). Assumptions in Lemma D.5 can be applied here.

By definition, we have
LY (brs) — L3 (bR )
:EX,,N]P’Wb,YtNUnif(y) (<ﬁWt\Xt ®¢ (Y1), bR,t>HWt®Hyt i Xt)>2
Byt vt (B ® 6(06) Dredy, oo — 2 (Y| X))
= ((fiw,px, © 6 (5) 5R ) oy, — PO | X0)+ (g, © 0 () bma) sy oy — 2 (V| X))

<<ﬁwt\xt DS (V1) bRt ), oy, — P Ve | Xe) = (pwx, @ (V1) 0Ra)sy i, +P (Ve | Xt))
=E [A(Xe, Y1) B(X¢, V3)]

(128)

X ~P° Y, ~Unif ()

where we use the notations as follows:

AXe Ya) = (lw, x, @6 (V) DR )y, gy, — DV I Xo) + (i, @ 0 (V) 0mt) gy, gay, —P (Ve | X2) (129)

B(X:, V) = <ﬁWt|Xt ® ¢ (V2) ’bR’t>7'lwt®Hyt -p(Ys | X¢) — </~Lwt\xt ® qb(Yt),meHWt%yt +p (Ve | Xy).

(130)

We then have
By pe v, oUnit() [A(X¢, Y3)B(Xy, Y1) < EXtNIP’Wb,YtNUnif(y)HA(Xt?K)HB<X“Y;5)|]' (131)
For  |A(X:, Y, we  notice that |A(X:,Y:)] < | (B, 1x, ® ¢ (V) ’bR’t>'Hwt o, |+

| {w,1x, ® ¢ (V) ’bR7t>7-LW 3y, | T 2m by Assumption D.16. In addition, we have
| <//ZWf,\Xf, ® q5 (YE) ’ bR’t>Hwt®Hyt | < ||ﬁWt|Xt HHWt ||¢ (th) ||7'lyt ||bR7t||HWt XHy, < "{2

40



Model-based Reinforcement Learning for Confounded POMDPs

and similarly | (pw,|x, ® ¢ (7)), bR’t>’HW ®Hy | < k2. Therefore, we have |A(X;, Y;)| < 2k? + 2m. Consequently, the
following inequality holds.

EXtN]pﬂb’}/tNUnif(y) [A(Xta Kt)B(Xta Yt)] < (2/@2 + QW)Extwpwb’YtNUnif(y) HB(Xtv Y;f)H

Furthermore, with probability at least 1 — 26, we have

EXWW,YWUnif(y) [1B(X:, Y1)]]
:EXtNW,)QNUmf(y) [l <ﬁWt\Xt ®¢ (Y1), bRﬁt>HWt QHy,
PV | Xe) — (pwyx, ® ¢ (Ye) ’bR’t>7'th®7'lyt +p (Y | Xy)|]
<Ey, pe* v, ~tmit )| {pw,1x, ® ¢ (7)), bR’t>HWt®Hyt — (fw,|x, ® ¢ (Y2) ’bR’t>Hwt®”Hyt I

+ EXtNP"b,YtNUnif(y)Hﬁ(Y;f | Xe) = p(Ye | X))

—~ 1 N (132)
SHIEXtNIP’”b HNWdXt - :qu\Xt”HWt + MEXtNIPWb TV(p( | Xt)7p(’ ‘ Xt))

<k*ra(8,Ny, 1) + Ey, peo TV(D(- | Xt), (- | X4))

1
VOl(yt)

<H2ﬁ(01 +1) [ 4 (KJ +K HCW\XHHF) In(2/6) n N In(|M|/d)

Pzeas VN7 (e = 1) VA

where the last two inequalities come from the estimation error from stage 1 (Theorem D.12 and Lemma D.22).

Therefore, with probability at least 1 — 24, we have

sup LR (bre) — L9 (bRy)]
brt€EHW, QHy,

% (133)
< (942 SV (e +1) (4R (K+'€HCW‘XHHP)IH(2/5) 2 In(iMi/0)
<S(25° + 2m)k T + (27 2m) .
== VN (e - 1) Vi
Combining 7 and /1.

By combining the upper bounds on [ and /1, with probability at least 1 — 26 — c5 exp (cGNg(S]Q%_’ N2), we have

sup LY (bry) — LY (bR
brt€EHW, QHy,

<I+1I
S8+ m) M, ™ .
4 C In(2/6 o
, LT (e 1) H(/H-KH W|XHHF) n(2/9) ) In(|M|/5)
+ (K + m)x : + (K +m)
= VN (e = 1) v

c1+1 y(ea+1)
According to a direct computation with the sample splitting procedure Ny = Ny~ 72" we note that the first term is the
o

dominating term, which is of the order NQ_ *7*2 by setting 7y as by. Furthermore, by repeating the above argument 7' times

for supy, . , ey, @3y, |£AE§ (brt) — E%] (br,t)| and T' — 1 times for supy, , c3,, @2, |£A[1t)](bD7t) - E[g (bp,¢)l, it can be
seen that

—~ __
max  sup L (bry) — L (brs)| = Op(Mglog(T/6)Ny ©7%)
t=1T pp ,cHw, @Hy,
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and

PN 0
max sup 1L bpy) — LB (bpy)| = Op(Mplog(T/§)N, 777).
t=1.T— 1op +tE€EHW, QH =,

The proof is done.

D.9. Proof of Lemma D.23
Proof. We have

||§2 - 92HHW®H3;

Ny No
1 _
=7 S iwie, ® 6 (v1,)] Byt Z fiw iz, @ ¢ (Y1) (Y | 27)
2 n=1 n=1 HwHy
1 No No
n=1 n=1 HwRHy
1 X 1 X
g 2 [Awier, © 0 W) P L 20) = 52 3 [iwiar, © 6 ()] P | 22)
n=1 n=1 Hw@Hy
=I+1I
Then,
I
1 1
n=1 n=1 HwRHy
Z 1w ar, @ & (uEn)] Bn | ) = P L 20Dl 00,
1 " _
No
N Z ytn n p(ytn |‘T )‘
(136)
Py, | 2h) — plyy w’)|—#E » TV (ﬁMLE( | z), P*(- |x))
tn t,n n VOl(y) x~PT )
D *
AN
1 & .
=K <N2 Zl P | 20) = PWin | 20)] = Ex pnt v ity [PV | X) = (Y| X)I)
+R— g TV (ﬁMLE(- | 2), P*(- | x))
vol(Y) =BT ’
10g(IMI/ 0) 4 2, [loslMI/O) o probability at least 1 — 26,
NNy N

where we apply a Bernstein inequality for the first term, and the convergence rate of the standard MLE (Lemma D.22) for

the second term.
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11
1 RS ,
n=1 2 n=1 Hw@Hy
N2
<y 2wy i) 6 ()]l 1) (137)
]\/'2 = L, ,n ,n n Hw®Hy
No

ZH Awey, = iwle ) g, 116 ()] e, (i L 20)]

<mr*rc (8, N1, c1) with probability at least 1 — 4,

where we apply the finite sample rate for stage 1 estimation (Lemma D.12) and Assumption D.16 in the final inequality.

Then, we have ||ga — gQH?{W(@H)} < 2(1)2+2(I11)% < m2k*re (6, Ny, ¢1) + K4 logl\(flf\;l\l/é) +K 41°g(|M|/6) with probability
at least 1 — 34. O
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