
Simplifying Cloud Management with Cloudless Computing

Yiming Qiu, Patrick Tser Jern Kon, Jiarong Xing†, Yibo Huang, Hongyi Liu†

Xinyu Wang, Peng Huang, Mosharaf Chowdhury, Ang Chen

University of Michigan †Rice University

ABSTRACT

Cloud computing has transformed the IT industry, but man-

aging cloud infrastructures remains a difficult task. We make

a case for putting today’s management practices, known as

“Infrastructure-as-Code,” on a firmer ground via a principled

design. We call this end goal Cloudless Computing: it aims to

simplify cloud infrastructure management tasks by supporting

them “as-a-service,” analogous to serverless computing that

relieves users of the burden of managing server instances. By

assisting tenants with these tasks, cloud resources will be pre-

sented to their users more readily without the undue burden

of complex control. We describe the research problems by

examining the typical lifecycle of today’s cloud infrastructure

management, and identify places where a cloudless approach

will advance the state of the art.

CCS CONCEPTS

• Networks → Cloud computing; • Software and its engi-

neering → Orchestration languages;

KEYWORDS

Infrastructure as code, cloud management

1 INTRODUCTION

Cloud computing has transformed the IT infrastructure, with

94% enterprises relying on cloud services of some form [1,

28]. However, cloud resources remain difficult to configure

and manage [14]. Cloud infrastructure management is neces-

sary because cloud workloads and applications are diversify-

ing beyond a few broad categories of Software-as-a-Service

(SaaS) products [52]. Each workload on the long tail of di-

verse cloud applications requires different infrastructure sup-

port; therefore, their management tasks are also customized.

As a result, cloud tenants (e.g., enterprises) employ extensive

cloud/DevOps engineering teams, who traditionally worked

with cloud-specific APIs [65] to configure infrastructures or

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than the author(s) must be honored. Abstracting

with credit is permitted. To copy otherwise, or republish, to post on servers or

to redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

HotNets ’23, November 28–29, 2023, Cambridge, MA, USA

© 2023 Copyright held by the owner/author(s). Publication rights licensed to

the Association for Computing Machinery.

ACM ISBN 979-8-4007-0415-4/23/11. . . $15.00

https://doi.org/10.1145/3626111.3628206

manually constructed infrastructures through a “ClickOps”

approach using cloud portals [63].

Modern cloud automation frameworks arose as an attrac-

tive alternative to abstract away many of the complexities

of cloud management tasks. They follow the “Infrastructure-

as-Code” (IaC) paradigm [48] that enables users to define

their desired infrastructures (e.g., VMs, subnets, and VPN

gateways) by writing high-level IaC programs, while shield-

ing them from low-level details about how the underlying

resources are instantiated. Widely-used IaC frameworks in-

clude Terraform [32], OpenTofu [20], and Pulumi [24], all

of which work across cloud providers. Additionally, there

are cloud-specific counterparts such as Amazon CloudForma-

tion [4] and Azure Bicep [6]. Given an IaC program, these

frameworks reason about deployment plans and map them to

cloud-level APIs to create, modify, or destroy cloud resources.

However, today’s IaC frameworks lack a principled design

to fully unleash their benefits, and IaC-level abstractions of

cloud-level behaviors are often “leaky.” There exists a signifi-

cant gap between what cloud users perceive (i.e., the IaC-level

configuration) and what they actually receive (i.e., the cloud-

level infrastructure). We observe that many DevOps hours are

spent to address this gap, often in a manual, trial-and-error

fashion across the cloud infrastructure lifecycle. The industry

ideal of DevOps engineering, which promises to streamline

developer and operator teams, is severely hindered by these

complexities. Developers without cloud operation expertise

find it hard to manage infrastructure by themselves, while op-

erators with that knowledge have to spend significant amount

of time handling all types of bugs and failures, rather than

providing easy-to-use interfaces to developers.

In this position paper, we argue for a vision that we call

Cloudless Computing. Our view is that IaC-style manage-

ment is the right direction forward, but we must rethink its

constituent components, identify missing pieces from today’s

practices, and create a coherent roadmap. Like serverless

computing, which aims to reduce the burden of cloud users

in managing server VMs, cloudless computing aims to sup-

port cloud infrastructure management on behalf of users by

handling “cloudy” management tasks in a principled man-

ner. This will reduce the friction in managing cloud-based

infrastructures, so that developers and operators can work in

a concerted fashion for better control over their infrastructure.

We articulate design gaps and needed tools for overseeing the

entire lifecyle of cloud infrastructures, in order to meet the

constantly-evolving demands of tenant workloads.

In describing this vision, we are faced with the fact that to-

day’s cloud management is a set of loose, under-documented

Steep learning curve

Insufficient validation

Apply

Orchestration Platforms

(a) State of the art (b) Cloudless Computing

Refresh Apply

Cloud providers

Refresh

Infra Mgr
Suboptimal deployment

Error-prone updates

Opaque failures

Ad-hoc policies

Cloudy

Infrastructure

Cloudless

Infrastructure

E
2
E
e
n
fo
rc
e
m
e
n
t Validating IaC

Deploying IaC

Updating IaC Debugging IaC

Developing IaCIaC Policy

Apply Telemetry RepairState

Figure 1: We call the end goal of an ideal management scheme “cloudless computing.” (a) Today’s practices, known as

“Infrastructure-as-code” (IaC) suffer from a range of limitations, which undercut the benefit they bring and make the

management process foreign and “cloudy.” (b) We believe that a principled design will result in a better framework for

cloud infrastructure management, providing a correct and streamlined process for the entire cloud lifecycle.

practices rather than an exact science. We anchor our discus-

sion by embedding the research problems into the typical

lifecyle of today’s cloud infrastructure, including develop-

ing the IaC configurations, validating configuration correct-

ness, scheduling the deployment steps, performing infras-

tructure updates and handling failures, as well as enforcing

user-defined policies on the cloud infrastructure throughout

all stages. Figure 1 is an overview of the full stack for cloud

infrastructure management, and we examine each component

in detail in this paper.

2 INFRASTRUCTURE AS CODE (IAC)

Infrastructure-as-Code (IaC) frameworks, such as Terraform,

OpenTofu, and Pulumi, have gained wide popularity.

2.1 Existing IaC frameworks

IaC frameworks allow cloud users to codify their desired

infrastructure as a high-level configuration file, removing

the need to understand the underlying provisioning steps to

achieve their desired end-state. This could be done with im-

perative or declarative designs. Some IaC frameworks are

developed outside the major cloud providers. In Pulumi, IaC

programs are written using existing imperative programming

languages (e.g., Pulumi’s Python SDK [21] package). In Ter-

raform/OpenTofu, IaC programs are written in a declarative

style using the HCL language [16], which is an expressive

language with many constructs for modularity. Other IaC

frameworks are supported by individual cloud providers di-

rectly, such as Azure Bicep and AWS CloudFormation, of-

fering analogous functionalities. They either have their own

languages [11] or use JSON/YAML as configuration formats.

Consider a simplified IaC program in HCL, as shown in

Figure 2. It first uses a Terraform data source to obtain the

current AWS region being used (line 2). Next, it declares a

variable (lines 4-7) describing a configuration value to be

defined later. Resource blocks are another important element

in HCL, and they declare instances of specific infrastructure

1 /* Simplified Terraform code snippet */

2 data "aws_region" "current" {}

3

4 variable "vmName"{

5 type = string

6 default = "cloudless"

7 }

8

9 resource "aws_network_interface" "n1"{

10 name = "example-nic"

11 location = data.aws_region.current.name

12 }

13

14 resource "aws_virtual_machine" "vm1"{

15 name = var.vmName

16 nic_ids = [aws_network_interface.n1.id]

17 }

Figure 2: A simplified Terraform IaC program.

objects, such as network interfaces (lines 9-12) and virtual ma-

chines (lines 14-17). Each such resource is further configured

with various attributes (e.g., name, location).

After the user describes the infrastructure in the IaC pro-

gram, the rest is handled by the IaC frameworks for deploy-

ment. As the first step, basic validation will be performed to

check for format and grammatical correctness [40]. Next, the

user-provided IaC program (i.e., the user’s desired cloud state)

will be automatically compared with the user’s current cloud

state (if any), resulting in a resource dependency graph where

some nodes are marked as to be added or deleted [26, 38].

In the case of Pulumi, IaC programs are embedded directly

in application code [23], so its language runtime observes

code execution to extract resource registrations (e.g., create

an AWS S3 bucket) in order to construct the graph. From

there, an execution plan [34] is created, which specifies what

resources need to be updated in what dependency order. Fi-

nally, resources are deployed or destroyed [33], by instruct-

ing the appropriate resource providers [27, 36] to construct

required contexts and execute appropriate cloud API calls.

However, mapping from the IaC-level code constructs to the

cloud-level APIs is quite involved [25, 36]. Mapping rules

are usually crafted by a collaboration between teams from

the IaC vendors and cloud providers, which is a manual and

labor-intensive process [3, 15]).

Besides cloud providers and IaC framework vendors, the

IaC ecosystem also includes another third-party community

consisting of IaC contributors, who create open-source IaC

modules [37] that can be composed in various deployment

scenarios by cloud users.

2.2 Limitations of today’s IaC management

While existing IaC frameworks lower the barrier of using

the cloud, they have notable limitations across all stages of

infrastructure management, presenting significant challenges.

Developing IaC infrastructure (§3.1). For enterprises that

have not adopted IaC, transitioning to IaC-style management

will be a steep learning curve. This not only involves learning

a new paradigm and ecosystem, but also migrating an existing

cloud deployment already in use to IaC programs.

Validating IaC infrastructure (§3.2). IaC-level programs

do not have visibility into cloud-level API behaviors. Thus,

a seemingly correct IaC program (i.e., one that compiles

successfully) may still cause deployment errors. We need

stronger mechanisms to validate IaC correctness.

Deploying IaC infrastructure (§3.3). Existing IaC frame-

works suffer from inefficiencies when deploying cloud re-

sources. Some common reasons are the lack of scheduling

optimizations and dependency pruning.

Updating IaC infrastructure (§3.4). Once an IaC infrastruc-

ture is in deployment, it goes through myriad updates over

its lifecycle. In existing frameworks, concurrent updates are

subject to race conditions which could lead to inconsistency,

and their rollback processes are not sufficiently robust.

Diagnosing IaC infrastructure (§3.5). During the lifecycle

of the cloud infrastructure, many things can go wrong. Ac-

cidental drift from the desired state, or infrastructure bugs,

require additional support from an IaC-level cloud debugger.

Policing IaC infrastructure (§3.6). The cloud lifecycle re-

quires changes to IaC programs based on user intentions.

Various policies are often required to govern each IaC pro-

gram snapshot and how the infrastructure evolves. Existing

frameworks and policy languages do not adequately support

cloud user-level policies.

3 TOWARD CLOUDLESS COMPUTING

To achieve cloudless computing, we must systematically ad-

dress all of these issues in the lifecycle of IaC-style cloud

infrastructure management.

3.1 Developing IaC infrastructure

The cloud infrastructure lifecyle starts with the development

phase. Cloud users must configure their desired infrastruc-

ture correctly by providing an IaC program. This is not an

easy task, especially for IaC tools like Terraform [32] and

OpenTofu [20] that involve learning a new language. Fur-

thermore, for many enterprises that already have cloud-based

infrastructures, their current deployments are not created and

managed by IaC frameworks. We need better support for IaC

development.

Automated IaC synthesis. Recent developments in LLMs

(large language models) put us at an inflection point where

program synthesis is ever closer to practical use. Unfortu-

nately, existing LLM-based tools [22, 30, 31] frequently gen-

erate invalid IaC code, even for small-scale templates involv-

ing widely used resources (e.g., AWS EC2). Not only do

LLMs hallucinate basic syntax, but they are also liable to

introduce security vulnerabilities, representing a risk for pro-

duction environments. Thus, one research direction is to tailor

ML-assisted synthesis techniques [50, 58] specifically for

IaC program generation, with the goal of generating reliably

correct IaC programs that would improve the productivity of

existing IaC users, while simultaneously lowering the barrier

for new users to adopt IaC tools. A potential solution to this

open problem is to decompose the infrastructure into its com-

ponent elements to simplify synthesis, while jointly applying

formal and textual specifications (e.g., type-guided and ML-

based search) for multi-modal synthesis to improve reliability.

Yet another approach could consider injecting relevant por-

tions of the user’s existing infrastructure as additional context

in a retrieval augmented generation [60] fashion to guide the

LLM in generating personalized code or suggestions.

Porting non-IaC infrastructures to IaC. The ability to port

an existing, non-IaC cloud infrastructure to IaC frameworks

is essential to wider adoption. Today, many enterprises al-

ready construct their infrastructures directly using cloud-level

APIs or cloud portals outside IaC frameworks. Porting these

deployments to IaC requires high-fidelity translation of low-

level cloud infrastructure state to an equivalent IaC program,

which is a challenging task. Industry practitioners have recog-

nized this need, and tools like Aztfy [7] and Terraformer [41]

resort to porting with static, pre-defined templates. The result-

ing IaC programs usually lack clear structures and require the

DevOps engineers to manually analyze and refactor them.

We believe that porting from existing cloud infrastructures

to IaC must be assisted with a program optimizer that pro-

vides structural guidance. Further, the main objective is code

“quality” in terms of ease of understanding and maintenance

rather than just correctness or performance goals. This raises

two interesting research questions: (1) how should we for-

mally define and quantify these code metrics? and (2) how

should we devise automated refactoring techniques to achieve

these objectives? For instance, if the cloud-level state con-

tains many resources of the same type, the corresponding IaC

program should use compact structures such as count and

for_each in Terraform instead of a straight enumeration

of all resources one by one; as another example, nested mod-

ules in Terraform are another way to wrap sets of resources

with the same structure. For an individual resource, many of

its cloud-level attributes could be removed when porting to

the IaC level, because they will be automatically constructed

when lowering an IaC program to the cloud level.

3.2 Validating IaC infrastructure

Even a grammatically-correct IaC program could exhibit un-

desired behaviors—akin to “configuration errors” in other

systems where the problem does not stem from the IaC pro-

gram itself but rather the parameter values [67, 70]. For cloud

deployments, such errors are exacerbated by the fact that (1)

configuration correctness is eventually decided at the cloud

level, not the IaC level; (2) cloud providers have differing

expectations on correct behaviors; and (3) cloud behaviors

evolve over time due to feature changes. Thus, we believe

that cloudless computing requires a powerful IaC validation

phase to catch potential deployment issues as early as possi-

ble, preferably before deploying any resources into providers,

to reduce the amount of DevOps engineering effort and time.

Semantic validation with stronger IaC types. Current IaC

languages are weakly typed. For instance, in Terraform, re-

source attributes are treated as generic “strings” although they

carry much richer semantic information—e.g., one “string”

may specifically represent a virtual machine and another

specifically a subnet. With today’s types, composing resources

into dependency graphs is error-prone. As a concrete example,

Azure requires that a virtual machine resource must reference

its network interface by the resource ID; however, at the IaC

level, this reference could be easily misused (e.g., by refer-

encing the ID of a different resource type).

Thus, one interesting research direction is to augment the

IaC frameworks with semantic types [57], to make resource

composition easier by design. This follows existing work [57]

that performs type discovery within a restricted vocabulary,

but IaC frameworks support a much larger set of cloud re-

sources, each with different attributes, which are further con-

stantly evolving due to cloud feature changes. To address

these additional challenges, one possible solution is to rely on

IaC usage examples, IaC documentations, as well as cloud-

level API specifications, to derive stronger validation checks

either using analytical or NLP-based methods. If we could

automatically extract a graph representation of resource types

and dependencies from online sources, then we can derive a

knowledge base about resource types and update it as cloud

features evolve at the IaC level.

Deeper, cloud-specific validation. Further validation is re-

quired beyond just typing, often in a cloud-specific manner.

Consider a concrete example: Azure requires that VMs and

their attached network interface cards (NICs) must be in the

same cloud region. If a configuration violates this rule, it will

error out during deployment. However, at the IaC level, a

program may specify VMs and their NICs to be in different

regions while still passing all IaC-level syntax check. As addi-

tional examples, Azure VMs could specify a password only if

another disable_password attribute is explicitly set to

false; Azure virtual networks cannot have overlapping address

spaces if they are connected with each other through peering

or gateway connection. These cloud-level constraints usually

involve interactions among multiple different resources and

their parameters, which are often under-specified at the IaC

level, because the IaC-level compiler is not fully aware of

the cloud-level expectations, which could further change over

time. Today, cloud users are also caught by surprise due to

deployment errors, and fixing these problems increases De-

vOps engineering cost and time. Instead of leaving this burden

to users at deployment time, we believe that these surprises

should be eliminated at compile time via stronger, cloud-

level validation. Our insight is that IaC-style management

offers an opportunity to transform cloud-level constraints

into IaC-level program checks, e.g., through domain-specific

customization to existing techniques such as specification

mining [54, 66, 70].

3.3 Deploying IaC infrastructure

After validation, IaC frameworks hand off the execution to

the cloud by invoking various cloud-level APIs to update

resources based on the dependency graph. Today’s IaC frame-

works, however, suffer from long deployment times due to

suboptimal planning and “best effort” graph walks, constrain-

ing the velocity of incorporating needed features.

Accelerating IaC deployment. Deploying an IaC program

to the cloud could take a long time, sometimes on the order of

hours or even days [56, 62]. Current IaC frameworks only per-

form basic dependency analysis on the resource dependency

graph [33], missing out potential acceleration opportunities

with optimized deployment plans. The resource dependency

graph is a DAG (directed acyclic graph), with multiple “par-

allel” subgraphs that can be deployed concurrently. Further,

resources on “non-critical paths” could make way for “crit-

ical paths” to expedite the completion of the deployment.

We believe that further analyses will not only lead to faster

deployment speeds, but also help to locate potential errors

quickly when debugging an IaC program. However, such

analyses would require taking into account domain-specific

constraints that dictate how IaC deployments can or cannot

be parallelized—e.g., cloud API rate limiting, estimated de-

ployment times for various cloud resources, retries in case of

resource hanging or failure—to achieve this goal.

Accelerating deployment updates. IaC deployment is not

a one-time effort; rather, deployment “deltas” are frequently

incorporated to a live cloud infrastructure. Today’s IaC frame-

works unfortunately treat them similarly as a deployment

from scratch—even a single resource update will trigger ex-

pensive queries on all cloud-level resource state and recompu-

tation of the deployment plan from the ground up [38]. This

results in high turnaround time. Cloudless computing should

provide optimizations that enable incremental updates to ac-

celerate cloud deployments. Our observation is that modifica-

tions to individual resources have a limited impact, affecting

only a small subset of successor and predecessor nodes in

the resource dependency graph. By identifying the “impact

scope” of a deployment change, we can confine the changes

to a significantly smaller resource subgraph, like in other con-

texts [55, 69]. This will reduce the overhead on resource state

queries and redeployment, and lead to cost savings.

3.4 Updating IaC infrastructure

IaC infrastructure updates raise a set of challenges that go

beyond accelerating deployment speeds.

Concurrent updates and mutual exclusion. For a large en-

terprise, multiple DevOps engineers or teams share the same

cloud infrastructure and may submit updates concurrently.

This further requires IaC frameworks to detect and avoid op-

eration conflicts during infrastructure updates. Existing tools

simply lock the entire cloud infrastructure for modifications

at any scale [35], restricting the potential for parallel updates.

Partitioning the cloud infrastructure into smaller segments

managed by different DevOps engineers is not practical either,

since the infrastructure is fundamentally a shared resource.

Cloudless computing should provide granular locking mech-

anisms for concurrent updates while guaranteeing isolation.

For instance, if we provide per-resource locks, mutual exclu-

sion needs only arise when the same resource is being updated

by different DevOps teams. Furthermore, a per-resource lock

still allows them to execute updates on other resources with-

out having to wait for all concurrent updates to settle. In

general, we need a lock manager backed by an IaC database

that reflects the “golden state” of the cloud infrastructure, as

well as transaction mechanisms for atomic updates while guar-

anteeing isolation. Updates are scheduled based on the logical

state and locks in the database, and only later applied to the

physical infrastructure. Different lock scheduling strategies

can be developed for different update goals.

IaC rollbacks during updates. In reality, any update might

fail due to runtime errors, or the cloud users themselves may

request a rollback for other reasons. One might think this is

as simple as retrieving the previous state, analyzing the delta

from the current deployment, and modifying it back [39].

However, this is not sufficient, as resource modifications may

not be reversible in the same manner in which they are per-

formed. Simply applying a previous configuration doesn’t

always roll back the infrastructure to its intended previous

state. For instance, consider the case where a virtual machine

instance has been modified with custom network settings that

are not captured in the configuration files. Rolling back to

a previous version does not mean these modifications will

be automatically reversed simultaneously—as a matter of

fact, they are often ignored by IaC workflow. In such cases,

one viable solution is to identify resource modifications that

are not easily reversible, and then destroy them with a new

deployment from scratch. We want to minimize the amount

of resource redeployment in the rollback process, and also

guarantee a reliable identification of rollback plans before any

updates are performed. Similarly, better version control sys-

tems that track the mapping between past configurations and

their corresponding states—i.e., a “time machine”—would

be a significant help to checkpointing resource states and

generating precise rollback plans.

3.5 Diagnosing IaC infrastructure

An IaC debugger for cloud infrastructures is essential for

cloudless computing, as failures happen frequently and are

opaque to cloud users. The debugger should consist of an

observability component that monitors runtime failures, as

well as a repair component that reflect the cloud-level errors

to the IaC-level program and suggest possible fixes.

IaC drift detection and reconciliation. “Resource drift” is

a common class of runtime problems in IaC deployments. It

refers to cloud infrastructure changes that occur outside of

the control of cloud IaC [17]—e.g., when the infrastructure is

managed by IaC frameworks but also legacy cloud-level API

scripts. Without timely mitigation, the hybrid tooling could

produce conflicting operations and result in failures or other

vulnerabilities. Existing IaC frameworks cannot easily capture

drifts caused by operations outside their control. Industry

tools like driftctl [12] attempt to bypass the IaC frameworks

and directly use cloud-level API to scan the deployment state,

which incurs significant time overhead due to cloud API rate

limiting [46]. Frequent scanning is also expensive if API calls

have quotas or paywalls [45]. Cloudless computing should

support drift detection natively within its own stack, by an

observability component that relies on cloud activity logs [8,

13] to detect “drift events.” If any unexpected event is reported

in the log, the IaC frameworks should either regenerate the

IaC-level program to reflect the latest deployment, or notify

corresponding parties for further reconciliation.

IaC debugging and repair. Infrastructure deployments “er-

ror out” at the cloud level, but cloud users view their in-

frastructure at the IaC level. When a problem occurs, cloud

providers generate error messages at the API level, which

can make it difficult for users to understand the exact IaC

resources involved and how to resolve the error. For example,

an error message like “Linux virtual machine creation failed

because specified NIC is not found” lacks precise correlation

to the original IaC program itself—the above error message

gives people the impression that NIC does not exist, while

the root cause is that the NIC and VM were not configured in

the same region. To make things worse, such error messages

do not even pinpoint the specific “lines of code” as to which

parameter is causing the anomaly. We need debuggers that

correlate runtime cloud-level errors to the IaC program itself.

This could be an analytical process or equipped by LLMs to

translate natural language error messages into higher-level

root causes and suggest fixes [47, 61, 68].

3.6 Policing IaC infrastructure

An IaC program describes a snapshot of the cloud infrastruc-

ture, but across the cloud lifecycle, there are user-specific

policies that govern not only individual IaC programs but

also their evolution over time. For example, an enterprise may

require autoscaling policies while ensuring that their infras-

tructure does not exceed their budget; another may require

that some specific resource types must be used (e.g., AWS

database instances with the latest CPU features); infrastruc-

tures may also be subject to regulatory policies (e.g., GDPR,

FedRAMP) as well as myriad security and privacy guidelines

commonly practiced in their specific industry [19, 43, 44,

49, 53]. Thus, cloudless computing needs an “infrastructure

controller” that enforces IaC policies across the lifecycle.

Enforcing policies with a controller. Analogous to an SDN

controller, IaC policing tools could be viewed as the con-

troller for the cloud infrastructure lifecycle, allowing users

to enforce different policies as needed. Existing tools (e.g.,

Terrascan [42], Checkov [10]) either rely on an Open Policy

Agent (OPA) [19] language (e.g., Rego [18]), or framework-

specific languages (e.g., Sentinel [29] for Terraform), but

these policy languages are hard to master. For instance, Rego

is akin to Datalog, significantly different from languages that

DevOps engineers are familiar with. We believe that a better

controller would expose higher-level abstractions for author-

ing policies. Another angle is to support automated policy

generation, e.g., inferring user-specific policies from their

existing IaC programs. For instance, by adapting template ex-

traction techniques [59], instead of writing exact policies, we

can turn the problem into “outlier detection,” which compares

new IaC programs with templates extracted from existing

repositories to detect deviations from common practices.

Policies as observations and actions. We believe that a better

abstraction would clearly separate two aspects of the policy:

the observations, and the actions. Consider autoscaling poli-

cies as a concrete example. Today, cloud autoscaling [64]

targets certain services (e.g., for VMs [9] and Kubernetes [2])

and scale in/out events (e.g., CPU/memory utilization). How-

ever, users cannot easily define policies that are not explicitly

supported by cloud providers, such as “scale out the number

of VPN gateways and attached tunnels if traffic throughput

is close to their capacity,” or “scale out the number of VMs

if their attached network interfaces are highly loaded.” This

is because the current IaC frameworks do not explicitly cap-

ture and expose enough metrics and events as “observations,”

while existing policy languages do not expose sufficiently rich

“actions” to evolve the IaC program based on the observations.

Allowing for a wider range of observations and actions would

better support a broader variety of user policies.

Moreover, policies take effect at different phases of the

infrastructure lifecycle. At each stage, different “observations”

and “actions” would apply. For example, a policy that governs

failure handling could take resource drifts as observations, but

another policy that governs IaC updates may use autoscaling

metrics for decision making. Thus, the policy language should

be flexible enough to capture the evolving set of observations

and actions throughout the cloud infrastructure lifecycle.

4 MANAGEMENT: THE FINAL FRONTIER

Much of cloud research has been directed to better designs

for its software/hardware stacks and myriad use cases. Cloud

infrastructure management as of today, although foundational

to cloud usage, is defined by the set of tools and best practices

rather than principled studies. To better enable innovation, we

believe now is the time to focus on management issues as a

top-level objective in cloud computing research.

We do view two lines of work as sharing similar goals

with us, improving the manageability of cloud infrastructures,

even if stated implicitly at times and to varying degree.

Serverless computing [5] aims to simplify cloud usage by

allowing tenants to focus on their key business logic, without

getting bogged down with the details of server management.

This reduces management overhead compared to serverful

computation. Sky computing [51] aims to simplify the use of

multi-cloud resources, by resource scheduling via an inter-

cloud broker. This reduces cross-cloud management burdens

for cloud users. Cloudless computing, on the other hand, calls

out cloud manageability as the center of attention, whether for

serverless/serverful, single-cloud/sky infrastructures, through-

out their deployment lifecycle.

ACKNOWLEDGMENTS

Many cloud architects, cloud engineers, and DevOps engi-

neers have taken time to share their practices with us, espe-

cially Mark Tinderholt at Microsoft, for which we are grate-

ful. We also thank the anonymous reviewers for their helpful

feedback. This work was partially supported by NSF grants

CNS-1942219, CNS-2106751, CNS-2107147, CCF-2123654,

CNS-2214272, CNS-2317751, CNS-2317698, a Google PhD

Fellowship, and a VMware Early Career Faculty Grant.

REFERENCES
[1] 26 cloud computing statistics, facts & trends for 2023. https://www.cl

oudwards.net/cloud-computing-statistics/#Sources.

[2] AKS Autoscaler. https://learn.microsoft.com/en-us/azure/aks/cluster-a

utoscaler#about-the-cluster-autoscaler.

[3] AWS Cloud Control API. https://aws.amazon.com/cloudcontrolapi/.

[4] AWS CloudFormation. https://aws.amazon.com/cloudformation/.

[5] AWS Lambda. https://aws.amazon.com/lambda/.

[6] Azure Bicep. https://learn.microsoft.com/en-us/azure/azure-resourc

e-manager/bicep/.

[7] Azure Export for Terraform. https://github.com/Azure/aztfexport.

[8] Azure Monitor Activity Log. https://learn.microsoft.com/en-us/azure/

azure-monitor/essentials/activity-log.

[9] Azure VM Scale Set. https://learn.microsoft.com/en-us/azure/virtua

l-machine-scale-sets/overview.

[10] Checkov: ship code that’s secure by default. https://bridgecrew.io/chec

kov/.

[11] Comparing JSON and Bicep templates. https://learn.microsoft.com/en

-us/azure/azure-resource-manager/bicep/compare-template-syntax.

[12] Driftctl. https://driftctl.com/.

[13] GCP Cloud Audit Logs. https://cloud.google.com/logging/docs/audit.

[14] Hashicorp State-of-the-Cloud Survey. https://www.hashicorp.com/stat

e-of-the-cloud.

[15] HashiCorp Terraform on Azure. https://azure.microsoft.com/en-us/so

lutions/devops/terraform/.

[16] HCL: the HashiCorp configuration language. https://github.com/hashi

corp/hcl.

[17] Infrastructure Drift and Drift Detection Explained. https://snyk.io/blog

/infrastructure-drift-detection-mitigation/.

[18] Opa’s native query language rego. https://www.openpolicyagent.org/

docs/latest/policy-language/.

[19] Open Policy Agent. https://www.openpolicyagent.org/.

[20] OpenTofu: The open source infrastructure as code tool. https://opento

fu.org/.

[21] Pulumi & Python. https://www.pulumi.com/docs/languages-sdks/pyth

on/.

[22] [Pulumi] AI. https://www.pulumi.com/ai/.

[23] [Pulumi] Automation API. https://www.pulumi.com/docs/using-pulum

i/automation-api/.

[24] Pulumi: Infrastructure as code in any programming language. https:

//www.pulumi.com/.

[25] [Pulumi] Packages. https://www.pulumi.com/registry/.

[26] [Pulumi] pulumi stack graph. https://www.pulumi.com/docs/cli/comm

ands/pulumi_stack_graph/.

[27] [Pulumi] Resource Providers. https://www.pulumi.com/docs/concepts

/resources/providers/.

[28] RightScale 2019 State of the Cloud Report from Flexera. https://resour

ces.flexera.com/web/media/documents/rightscale-2019-state-of-the

-cloud-report-from-flexera.pdf.

[29] Sentinel integration with terraform. https://docs.hashicorp.com/sentine

l/terraform.

[30] STRUCTURA’s AI Assistant. https://www.structura.io/resources/build

-terraform-code-using-structuras-ai-assistant.

[31] [styra] AI-Generated Infrastructure-as-Code: The Good, the Bad and

the Ugly. https://www.styra.com/blog/ai-generated-infrastructure-as-c

ode-the-good-the-bad-and-the-ugly/.

[32] Terraform by Hashicorp. https://www.terraform.io/.

[33] [Terraform] Command: apply. https://developer.hashicorp.com/terrafor

m/cli/commands/apply.

[34] [Terraform] Command: plan. https://developer.hashicorp.com/terrafor

m/cli/commands/plan.

[35] Terraform Locking. https://developer.hashicorp.com/terraform/langua

ge/state/locking.

[36] [Terraform] Providers. https://registry.terraform.io/search/providers?n

amespace=hashicorp.

[37] Terraform Registry Modules. https://registry.terraform.io/browse/mod

ules.

[38] Terraform: Resource Graph. https://developer.hashicorp.com/terrafor

m/internals/graph.

[39] Terraform Rollback. https://developers.cloudflare.com/terraform/tutor

ial/revert-configuration/.

[40] Terraform validation. https://developer.hashicorp.com/terraform/cli/co

mmands/validate.

[41] Terraformer: CLI tool to generate terraform files from existing infras-

tructure. https://github.com/GoogleCloudPlatform/terraformer.

[42] Terrascan: Detect compliance and security violations across Infrastruc-

ture as Code to mitigate risk before provisioning cloud native infras-

tructure. https://runterrascan.io/.

[43] TFLint: A Pluggable Terraform Linter. https://github.com/terraform-l

inters/tflint.

[44] TFSec: Security Scanner for Your Terraform Code. https://github.com

/aquasecurity/tfsec.

[45] Throttling Resource Manager requests. https://learn.microsoft.com/en

-us/azure/azure-resource-manager/management/request-limits-and-t

hrottling.

[46] Tools for Infrastructure Drift Detection. https://snyk.io/blog/tools-infra

structure-drift-detection/.

[47] T. Ahmed, S. Ghosh, C. Bansal, T. Zimmermann, X. Zhang, and S. Ra-

jmohan. Recommending root-cause and mitigation steps for cloud

incidents using large language models. In ICSE, 2023.

[48] M. Artac, T. Borovssak, E. Di Nitto, M. Guerriero, and D. A. Tamburri.

Devops: introducing infrastructure-as-code. In ICSE-C, 2017.

[49] C. Barrett, C. L. Conway, M. Deters, L. Hadarean, D. Jovanović,

T. King, A. Reynolds, and C. Tinelli. CVC4. In CAV, 2011.

[50] B. Berabi, J. He, V. Raychev, and M. Vechev. Tfix: Learning to fix

coding errors with a text-to-text transformer. In ICML, 2021.

[51] S. Chasins, A. Cheung, N. Crooks, A. Ghodsi, K. Goldberg, J. E.

Gonzalez, J. M. Hellerstein, M. I. Jordan, A. D. Joseph, M. W. Ma-

honey, A. Parameswaran, D. Patterson, R. A. Popa, K. Sen, S. Shenker,

D. Song, and I. Stoica. The sky above the clouds, 2022.

[52] M. Cusumano. Cloud computing and SaaS as new computing platforms.

Communications of the ACM, 53(4):27–29, 2010.

[53] L. De Moura and N. Bjørner. Z3: An efficient smt solver. In TACAS,

2008.

[54] J. Eberhardt, S. Steffen, V. Raychev, and M. Vechev. Unsupervised

learning of api aliasing specifications. In PLDI, 2019.

[55] W. Fan, C. Hu, and C. Tian. Incremental graph computations: Doable

and undoable. In SIGMOD, 2017.

[56] B. Grubic, Y. Wang, T. Petrochko, R. Yaniv, B. Jones, D. Callies,

M. Clarke-Lauer, D. Kelley, S. Demetriou, K. Yu, and C. Tang. Con-

veyor: One-tool-fits-all continuous software deployment at Meta. In

OSDI, 2023.

[57] Z. Guo, D. Cao, D. Tjong, J. Yang, C. Schlesinger, and N. Polikarpova.

Type-directed program synthesis for restful apis. In PLDI, 2022.

[58] J. He, C.-C. Lee, V. Raychev, and M. Vechev. Learning to find naming

issues with big code and small supervision. In PLDI, 2021.

[59] S. K. R. Kakarla, A. Tang, R. Beckett, K. Jayaraman, T. Millstein,

Y. Tamir, and G. Varghese. Finding network misconfigurations by

automatic template inference. In NSDI, 2020.

[60] P. Lewis, E. Perez, A. Piktus, F. Petroni, V. Karpukhin, N. Goyal, H. Küt-

tler, M. Lewis, W.-t. Yih, T. Rocktäschel, et al. Retrieval-augmented

generation for knowledge-intensive nlp tasks. Advances in Neural

Information Processing Systems, 33:9459–9474, 2020.

[61] J. Li, B. Hui, G. Qu, B. Li, J. Yang, B. Li, B. Wang, B. Qin, R. Cao,

R. Geng, et al. Can llm already serve as a database interface? a big

bench for large-scale database grounded text-to-sqls. arXiv preprint,

2023.

[62] Z. Li, Q. Cheng, K. Hsieh, Y. Dang, P. Huang, P. Singh, X. Yang,

Q. Lin, Y. Wu, S. Levy, and M. Chintalapati. Gandalf: An intelligent,

end-to-end analytics service for safe deployment in large-scale cloud

infrastructure. In NSDI, 2020.

[63] J. Lloyd. Cloud foundations and landing zones. In Infrastructure

Leader’s Guide to Google Cloud: Lead Your Organization’s Google

Cloud Adoption, Migration and Modernization Journey, pages 239–244.

Springer, 2022.

[64] T. Lorido-Botran, J. Miguel-Alonso, and J. A. Lozano. A review of

auto-scaling techniques for elastic applications in cloud environments.

Journal of grid computing, 12:559–592, 2014.

[65] F. Petrillo, P. Merle, N. Moha, and Y.-G. Guéhéneuc. Are rest apis

for cloud computing well-designed? an exploratory study. In ICSOC,

2016.

[66] M. Santolucito, E. Zhai, R. Dhodapkar, A. Shim, and R. Piskac. Syn-

thesizing configuration file specifications with association rule learning.

In OOPSLA, 2017.

[67] Z. Yin, X. Ma, J. Zheng, Y. Zhou, L. N. Bairavasundaram, and S. Pasu-

pathy. An empirical study on configuration errors in commercial and

open source systems. In SOSP, 2011.

[68] T. Yu, Z. Li, Z. Zhang, R. Zhang, and D. Radev. Typesql: Knowledge-

based type-aware neural text-to-sql generation. In NAACL, 2018.

[69] E. Zhai, A. Chen, R. Piskac, M. Balakrishnan, B. Tian, B. Song, and

H. Zhang. Check before you change: Preventing correlated failures in

service updates. In NSDI, 2020.

[70] J. Zhang, L. Renganarayana, X. Zhang, N. Ge, V. Bala, T. Xu, and

Y. Zhou. Encore: Exploiting system environment and correlation infor-

mation for misconfiguration detection. In ASPLOS, 2014.

	Abstract
	1 Introduction
	2 Infrastructure as Code (IaC)
	2.1 Existing IaC frameworks
	2.2 Limitations of today's IaC management

	3 Toward Cloudless Computing
	3.1 Developing IaC infrastructure
	3.2 Validating IaC infrastructure
	3.3 Deploying IaC infrastructure
	3.4 Updating IaC infrastructure
	3.5 Diagnosing IaC infrastructure
	3.6 Policing IaC infrastructure

	4 Management: The Final Frontier
	References

