
EdgeRIC: Empowering Real-time Intelligent Optimization

and Control in NextG Cellular Networks

Woo-Hyun Ko⇤⇤1, Ushasi Ghosh⇤⇤2, Ujwal Dinesha1, Raini Wu2,
Srinivas Shakkottai1 and Dinesh Bharadia2

1 Texas A&M University, TX, USA, 2 UC San Diego, CA, USA

{whko, ujwald36, sshakkot}@tamu.edu {ughosh, rainiwu, dineshb}@ucsd.edu

Abstract

Radio Access Networks (RAN) are increasingly softwarized
and accessible via data-collection and control interfaces. RAN
intelligent control (RIC) is an approach to manage these in-
terfaces at different timescales. In this paper, we introduce
EdgeRIC, a real-time RIC co-located with the Distributed
Unit (DU). It is decoupled from the RAN stack, and oper-
ates at the RAN timescale. EdgeRIC serves as the seat of
real-time AI-in-the-loop for decision and control. It can ac-
cess RAN and application-level information to execute AI-
optimized and other policies in real-time (sub-millisecond).
We demonstrate that EdgeRIC operates as if embedded within
the RAN stack. We showcase RT applications called µApps
over EdgeRIC that significantly outperforms a cloud-based
near real-time RIC (> 15 ms latency) in terms of attained
system throughput. Further, our over-the-air experiments with
AI-based policies showcase their resilience to channel dynam-
ics. Remarkable, these AI policies outperform model-based
strategies by 5% to 25% in both system throughput and end
user application-level benchmarks across diverse mobile sce-
narios.

1 Introduction

As we move into the age of NextG applications, cellular net-
works need to be versatile and must cater to a wide array
of application-specific requirements concerning throughput,
latency, and reliability. The “one size fits all” cellular net-
work approach is fading, raising the need to be replaced by
an adaptive, application-specific model. Modern applications
can often furnish granular details about their operational con-
text to aid such adaptation. A streaming app can reveal buffer
status, AR/VR applications share viewing angles, robotic con-
trollers offer positional data, and industrial IoT devices in-
dicate data freshness. These capabilities can enable tailored
network responses. For instance, in a video streaming network

⇤These authors contributed equally to this work.
The source code for this project is available at https://github.com/
ushasigh/EdgeRIC-A-real-time-RIC.git

Centralized Unit
Control Plane

Near-RT

Distributed Unit
PHY-MAC-RLC

Real-time

Radio

Non-RT
(> 1 s)

(10 ms to 1 s)

(< 1 ms)

< 100 μs

> 10 ms

Cloud

Edge

Orchestration management,
Handoff decision, Sustainability

Load balancing, Network slicing,
 Traffic steering,

Spectrum allocation

Scheduling and MCS control,
 Beam and Interference

management

RU

RICsControl and Optimization

EdgeRIC
Changing policy or
application state

Figure 1: Timescales of RAN Intelligent Control for O-RAN.
We desire real-time control at a latency < 1 ms.

environment, rather than merely maximizing system through-
put, it might be paramount to prioritize users nearing buffer
exhaustion to prevent video playback halts. Different apps
have varied response time needs; while a video might handle
some delay, a VR game demands near-instant reactions.

While application awareness has become critical to the
decision-making process of network functions in both wired
and wireless (cellular) communications, the problem is far
more complex with rapidly changing wireless channels for cel-
lular communications. More specifically, the channel evolves
at the timescale of milliseconds. Such changes in the chan-
nel make the control and optimization of the link to meet
application requirements far more challenging.

The need for cellular networks to adapt to different applica-
tions, all while keeping up with the rapidly changing wireless
channel, is supported by the cellular industry’s pivot towards
the standardization of open interfaces for RANs, encapsulated
by the term O-RAN. By harnessing softwarization and dis-
aggregation at every layer, O-RAN provides the flexibility to
operate the RAN stack across diverse distributed computing
platforms and offers enhanced monitoring and control through
novel interfaces. Alongside this evolution, the RAN Intelli-
gent Control (RIC) concept has gained prominence. RICs,
distinct from the time-critical RAN stack, are designed to
seamlessly access both the application layer and RAN-level

https://github.com/ushasigh/EdgeRIC-A-real-time-RIC.git
https://github.com/ushasigh/EdgeRIC-A-real-time-RIC.git

data. This dual access facilitates cross-layer decision-making
and control, bolstered by AI/ML enhancements, to serve a
plethora of high-demand applications.

A defining attribute of the RIC is the time scales at which
it operates, necessitating control decisions and information
access at those time scales. Current RIC architectures, visual-
ized predominantly as centralized control microservices, are
placed in the cloud, as depicted in Figure 1. These can be clas-
sified into: (i) Near Real-time RIC (near-RT RIC): Provides a
feedback loop to the RAN stack in a range of 10ms to 1s. (ii)
Non Real-time RIC (non-RT RIC): Operates with a feedback
loop timescale exceeding 1s.

Unfortunately, both these RICs inspired by SDN con-
trollers, adopt a centralized, cloud-based control approach,
minimizing risk to the RAN stack’s essential operations
within each TTI. This approach prevents potential disrup-
tions, such as PHY-MAC task latency breaches leading to UE
detachment. However, the inherent delay in decision-making,
exceeding 10ms due to the wireless channel’s rapid variabil-
ity, creates bottlenecks. Such delays result in broad decision-
making strategies like resource slicing, where, for example,
a streaming app is allocated to a high-throughput RAN slice.
Yet, as network demands grow, this coarse strategy struggles
to maintain efficiency, given the fast-paced fluctuations in
wireless channels that require TTI-scale responsive decisions
for optimal performance.

While O-RAN has enabled unprecedented macro network
optimizations, a vast reservoir of potential remains untapped
in granular, real-time control. To that end, we propose a dis-
aggregated real-time RIC platform called EdgeRIC. EdgeRIC
is positioned on edge-compute close to the radio head, syn-
chronizes intelligence with the granularity of RAN functions,
but is decoupled with the RAN stack, which enables resilient
operation of the RAN stack. EdgeRIC’s careful design en-
ables it to synchronize with RAN events and provide decision-
control, while ensuring functioning of the tight-constrained
RAN stack, even if decisions are not received from EdgeRIC.
EdgeRIC facilitates control decisions and network teleme-
try at the TTI timescale (smallest unit of decision-making
available at RAN), which is faster than underlying channel
variations. The philosophy of EdgeRIC is to revolutionize the
algorithmic control of lower-layer RAN functionalities (PHY-
MAC-RLC), integrated with application awareness, thereby
realizing the true potential of an AI-driven air interface. To
provide an overview, Figure 1 showcases the myriad RAN
enhancements that can be made feasible through intelligent
control across diverse timescales.

Main Contributions

Our contributions are twofold: (i) EdgeRIC: a real-time RIC
module, which facilitates real-time RAN telemetry and con-
trol. EdgeRIC is driven by the basic observation that real-time
control for the cellular stack implies TTI-level sync with the
RAN stack—all events happen between TTIs. Our princi-

pal contribution is rooted in the architectural and engineer-
ing decisions that ensure real-time performance of telemetry
and AI-optimized control policies, without ever violating the
TTI boundaries. EdgeRIC is strategically situated on edge
compute, independent from the RAN stack, and interfaces
with it via an O-RAN-like standard. (ii) EdgeRIC emula-
tor: We further introduce the EdgeRIC training module, a
cloud-compute-based emulator. This module is instrumen-
tal in the design, offline training, and deployment phases of
AI-optimized algorithms. These features are enabled by pro-
viding a comprehensive full-stack, trace-driven (network and
channel) emulation environment that accommodates multiple
users and diverse applications.

Finally, we showcase potential benefits of real-time control
with an AI-optimized µApp to provide resource allocation
decisions at each TTI. We demonstrate (i) throughput in-
creases of 5-10% using RT resource scheduling over near-RT
approaches, (ii) up to 15% throughput increases through ro-
bust Reinforcement Learning (RL) based RT scheduling, and
(iii) up to 30% enhancement in Quality of Experience (QoE)
for video streaming via an application-aware RL-based RT
scheduling policy over application-agnostic approaches. We
also benchmark its performance against a near RT RIC. To the
best of our knowledge, no existing RIC platform has demon-
strated the benefits of real-time AI-in-the-loop-based RAN
control while leveraging cross-layer application information
in over-the-air experiments.

2 Motivation for Real-Time RIC

A fundamental value proposition of RIC is that it would enable
the RAN to adapt to support heterogeneous applications over
a variety of end devices ranging from smartphones, drones,
cars, headsets, to sensors. What timescale of monitoring and
control would enable application and environment responsive
intelligent configuration and control?

Wireless Environment: Our channel measurements at 2.5
GHz across various mobile environments—drones, cars, in-
door robots, and human movement—reveal that wireless chan-
nels fluctuate within milliseconds, highlighting the need for
real-time control in mobile scenarios, illustrated in Figure 2(a).
For instance, drone channels showed quality changes within
3-4 ms in over half the cases. Even in low-mobility scenarios,
like a robot moving indoors, we observed significant changes
within less than 10ms. This demonstrates the importance of
designing systems like ours to adapt quickly to the dynamic
nature of wireless channels. Additionally, even in stable chan-
nel conditions, real-time capabilities enhance RAN functions,
such as enabling more aggressive Modulation and Coding
Scheme (MCS) selections in the absence of packet drops. As
cellular networks evolve towards supporting highly mobile
applications with brief channel coherence times, achieving
RIC latencies that match the sub-millisecond TTI timescale
becomes crucial.

a) Channel qualities change as low
as every 3 to 4ms under mobility

b) Realtime scheduling can support a
higher system throughput

c) Near RT RL training yields lower
throughput with delayed states

0 50 100
Training Iteration

15

20

25

30

M
ea

n
Th

ro
ug

hp
ut

 [M
bp

s]

Near RT RIC

0 50 100
Training Iteration

15

20

25

30

M
ea

n
Th

ro
ug

hp
ut

 [M
bp

s]

EdgeRIC

Figure 2: NextG networks need real-time intelligence and control.

RAN Control: We next verified the thesis that channel vari-
ations require real-time control by implementing a rule-based
scheduler that prioritizes users with the largest channel quality
index. We ran the experiment over a mix of channels gath-
ered from our mobile experiments and show the throughput
obtained in Figure 2(b). The latency experienced by near-real-
time RIC with a round-trip latency of 30ms, corresponding to
accessing cloud-based compute resources causes the through-
put to drop by a third as compared to real-time control using
the same scheduler located at edge compute accessed with a
round-trip latency of 1ms.

AI Training: Can the RIC can support data collection,
training and adaptation of AI/ML policies? Since many RAN
management tasks involve feedback control, we are specifi-
cally interested in whether reinforcement learning (RL) train-
ing and execution can be supported. We conducted exper-
iments on training an RL-based scheduler with a near-RT
round-trip delay between state-action-reward of 60ms, versus
one that has a round-trip delay of 1ms. As illustrated in Fig-
ure 2(c), the correlations between state-action-reward break
down at near-RT, leading to lower throughput.

The wireless community is focusing on data-driven ap-
proaches for the air interface, enabling intelligent decisions
at the TTI timescale. These encompass various tasks such as
beam-forming decisions [14] [13] [26], interference manage-
ment [18] [40], localization [17], channel estimation [21] [23],
Modulation and Coding Scheme (MCS) selection [44] [15],
power allocation [31], retransmissions and more. As illus-
trated above, none of these will be possible without real-time
RIC co-located with the RAN on edge compute.

3 Related Work

Recent advancements in the development of near real-time
(near-RT) RAN Intelligent Controller (RIC) frameworks and
xApps have gained significant attention. Scope [4] introduces
a containerized method for deploying network elements, sup-
porting real-world emulation, AI/ML data collection, and net-
work control APIs. [5] demonstrates the the integration of
deep RL agents for near-RT RIC-based control, built with
ColO-RAN [32], an AI/ML framework built upon the Colos-
seum network emulator [24]. These works focus on RAN

resource slicing using xApps and RAN-embedded schedulers
assigned to each slice. ORAN E2 [42] presents a software-
defined radio testbed featuring an open-source 5G system
that interacts with the O-RAN near-RT RIC through standard
interfaces, utilizing xApps for RAN slicing. FlexRAN [9]
offers a software-defined RAN platform where a master con-
troller communicates with agents embedded in the LTE stack.
However, FlexRAN lacks the ability to train or utilize AI-
optimized policies while maintaining real-time constraints.
FlexRIC [35] addresses this by providing a more modular
variant of FlexRAN. It simplifies the 5G near-RT RIC archi-
tecture, adhering to the agent-controller approach.

Closer to the TTI-timescale, ChARM [1] presents spec-
trum selection based on supervised learning over IQ samples
collected in real-time, but with control at near-RT RIC. For
even finer control, an architecture for integrating distributed
applications (dApps) into O-RAN has been proposed, with
simulation results on the possible benefits that might be real-
ized via network intelligence at real-time (<10 ms) [7].

Our initial work on EdgeRIC provided an architecture
and messaging scheme for enabling real-time RIC (<1 ms),
along with a feasibility study and demonstrations of the ap-
proach [8, 16]. More recently, an approach entitled Janus [10]
also recognizes the significance of real-time intelligence.
While both EdgeRIC and Janus aim at real-time measure-
ment and control of the RAN, their architectural choices are
fundamentally different. Janus is integrated directly with each
Distributed Unit (DU), making it vendor-specific. Thus, Janus
requires updates to its hooks and codelets within the RAN
software at each site or DU, contingent upon the purchase of
Janus by that specific DU. EdgeRIC avoids such tight cou-
pling by following O-RAN compliant messaging interfaces,
which decouples EdgeRIC from the RAN stack. EdgeRIC
then uses the open source Gym-class interface to connect with
an in-memory database and AI/ML algorithms. EdgeRIC’s
decoupled design allows for robustness by never interfering
with time-critical RAN tasks, ease of runtime data gathering,
standardized training and runtime updating of AI/ML models,
and support across different vendors’ equipment via com-
patibility with universally accepted O-RAN service models.
Finally, since EdgeRIC is implemented over the open source

Table 1: Comparison of RIC frameworks

Framework Connectivity Monitoring Application Adaptability to Full stack AI training Real World
to RAN stack and control awareness channel fluctuations support with real traces OTA evaluations

FlexRIC [35] Disaggregated 10ms-1s X ⇥ ⇥ ⇥
ColO-RAN [32] Disaggregated 10ms-1s X ⇥ ⇥ ⇥

dApps [7] Disaggregated 6-10ms ⇥ X ⇥ ⇥
Janus [10] Integrated <1ms ⇥ X ⇥ X
EdgeRIC Disaggregated <1ms X X X X

software srsRAN stack and uses open messaging standards
and interfaces, it is available for unfettered experimentation
by the research community.

In the applications domain, streaming media has received
much attention for AI-optimized control. For instance, AI/ML
for choosing video streaming rate selection is considered
in [12, 22, 30, 43, 45] from the server’s perspective. In con-
trast, [3] studies optimal policies when the network can be
controlled in the context of WiFi-based access. Here, recon-
figuration of WiFi flow priorities using AI-optimized policies
is shown to improve streaming performance.

In contrast to the above works, EdgeRIC is a simple,
lightweight, disaggregated approach towards ensuring that
TTI-level synchronized policies can be trained in non-RT and
executed in real-time. Specifically, we show that our approach
provides the ability to train robust cross-layer optimized
policies in non-RT and a guarantee of completing the full
feedback loop from sensing, AI-based policy execution and
control within each TTI, and are the first to verify our claims
while running full stack over-the-air experiments on mobile
nodes. Table 1 summarizes comparable frameworks.

4 EdgeRIC Concept Architecture

The EdgeRIC design is primarily driven by the objective of
infusing real-time intelligence into network functions and
decisions at the network’s edge. This approach is particularly
important for making informed decisions based on instan-
taneous channel conditions. By situating decision-making
processes closer to the RAN edge, we ensure that the channel
metrics utilized are as current and relevant as possible, as
opposed to being relayed from a distant cloud infrastructure.

EdgeRIC’s architecture extends beyond edge operations
to foster a cooperative relationship with cloud systems, en-
abling smooth data exchange and access to shared databases.
It adopts a dual strategy, utilizing real-time edge data along-
side cloud analytics to optimize decision-making. This ap-
proach aims to merge the promptness of edge processing with
the extensive insights of cloud computing, emphasizing the
synergy between cloud and edge to enhance cellular network
capabilities. This integration effectively combines local re-
sponsiveness with global intelligence.

Our architecture design is motivated by two fundamen-
tal considerations, namely (i) Disaggregated Programming
Model: O-RAN is driven by the desire to disaggregate the
cellular stack into functional components that can be created
by independent developers and instantiated on distributed
compute resources. Consequently, EdgeRIC must be modular
and decoupled from the RAN components. This will permit
simple models of application development, run-time updates,
robustness to errors, and bi-directional information sharing
with user-defined applications, and (ii) Real-time RAN Con-
nectivity and Control: While functionally decoupled from the
RAN stack, EdgeRIC must enable messaging with TTI-level
sync (< 1ms) with RAN events. This will enable real-time ob-
servability of RAN state, such as channel quality or backlog
buffers, and decision making and control of the RAN stack
each TTI to optimize performance. Consequently, EdgeRIC
must be slaved to the TTI clock at the RAN, and messaging
and decision making must be lightweight.

In order to realize these goals, EdgeRIC is composed of two
modules: (i) the EdgeRIC execution module, which is the seat
of µApps for real-time monitoring control of the RAN, as well
as information aggregation from user applications, and and
(ii) EdgeRIC emulation module, which is used as a full-stack
emulator used for training of AI-based and other algorithms
prior to instantiating them as µApps in the EdgeRIC execution
module. We discuss the architecture and workflow of these
modules below.

4.1 Disaggregated EdgeRIC Architecture

The real-time EdgeRIC execution module is illustrated in
Figure 3, where we have shown it within the O-RAN architec-
ture. O-RAN consists of a radio unit along with disaggregated
microservices that perform the RAN functions. These mi-
croservices are divided across edge compute (near the radio)
and cloud compute resources, based on the required latency
targets. The components of the O-RAN stack are as follows:
(i) RF Frontend: Open Radio Unit (O-RU), (ii) Edge Com-
pute: Real-time components at the Open Distributed Unit
(O-DU) supporting High-PHY, MAC and radio link control,
and (iii) Cloud Compute: Open Centralized Unit (O-CU) with
control and management functions. The final element is (iv)
Cloud Compute: 5G Core, supporting management, billing

Core

User
Application

Realtime EdgeRIC

O
-R

AN

Non-RealtimeNear-Realtime

rAppsxApps

C
lo

ud
Ed

ge

O-DU

realtime data/control

near-realtime data/control

application data path

RLC

MAC

High PHY

O-CU

O-RU

Application
Server

Cloud Data Center

O
pe

n
AI

 G
ym

 W
ra

pp
er Redis Database

μApps μApps μApps

Realtime Metrics Monitoring Platform

EdgeRIC Emulator module

Cloud Ran Intelligent Controllers

UE

Policy execution for RAN control

Figure 3: EdgeRIC concept architecture, showing its integra-
tion into O-RAN.

and Internet gateway functions.
O-RAN also provides specifications for two cloud-hosted

microservices for (i) near-RT RIC, which supports xApps
for policy adaptation at near-RT (10ms - 1s), and (ii) non-
RT RIC, which supports rApps providing large timescale
microservices management and data analytics. The standard
provides protocols for the near-RT and the non-RT RIC to
communicate with the O-RAN stack and with each other.
In particular, the E2 Application Protocol (E2AP) operates
over SCTP and provides pub-sub and on-demand messaging
between RAN and near-RT RIC at near-RT latency.

EdgeRIC is designed as a microservice for the O-DU,
closely integrated with the O-RAN architecture to enhance
PHY-MAC level RAN functionalities through real-time. It
utilizes µApps for executing real-time policies (with TTI la-
tency), allowing for immediate RAN state adjustments and
control. Connection to the O-RAN stack is achieved through
a specialized real-time-E2 protocol (RT-E2), aligned with the
TTI clock and leveraging IPC for microservice communi-
cation, ensuring a latency around 100 µs to meet stringent
real-time requirements.

EdgeRIC operates in real-time, running on separate CPU
cores at the edge compute cluster to ensure low latency with-
out interfering with the O-RAN PHY-MAC microservices. It
allows µApps to dynamically use RAN and application data
for decision-making. Supporting integration with protocols
like OpenFlow and ROS, EdgeRIC enables cross-layer poli-
cies for PHY-MAC control, enhancing system performance
without disruption.

4.2 EdgeRIC Functional Components

The EdgeRIC real-time execution module, depicted in Fig-
ure 3, features interfaces for real-time communication with

the RAN stack and near-real-time interaction with cloud mod-
ules. These interfaces connect to an Open AI Gym Wrapper,
which abstracts them into a Gym-compatible environment,
allowing components to interact with the RAN using Gym
methods. This design enables µApp developers to employ
either custom or AI/ML-based strategies, benefiting from the
compatibility with standardized reinforcement learning frame-
works. Consequently, µApps can seamlessly integrate these
standardized codeblocks, facilitating efficient development
and deployment within the EdgeRIC ecosystem.

The EdgeRIC execution module incorporates an in-
memory Redis database for managing real-time RAN metrics
and application data. This data supports µApps directly or
through cloud processing, enabling cloud-hosted xApps to
refine policies or ML models based on the data. These en-
hancements are fed back to the Redis database for µApps
integration, allowing them to start with basic policies and im-
prove them over time with cloud-derived insights, optimizing
their performance dynamically.

4.3 EdgeRIC Emulator Module

The EdgeRIC execution module directly enables support for
optimization based approaches to modulation, coding and
queuing that are designed around well studied, substantiated,
and tractable models. For instance, we can immediately in-
stantiate approaches such as proportionally fair [37] or max-
weight [41] scheduling across UEs on a per TTI basis with
execution in RT, as if embedded within the RAN stack.

Our architecture also supports AI/ML approaches such
as Reinforcement Learning (RL), a branch of ML that is
explicitly tailored towards learning feedback-control policies.
Training such policies is often hard in a real-world system,
where user satisfaction is paramount at all times. Hence,
we endow EdgeRIC with a full-stack emulator module for
training, which can support user applications over trace-based
or synthetic channels. The RL workflow is well aligned with
the modality of a emulator based non-RT training of a base
policy using data collected offline or via an emulator. Such
polices can then undergo near-RT adaptation to the current
environment, culminating in RT policy execution. Simulta-
neously, data is gathered at the edge, which is shared with
the non and near-RT RIC for accurate training and adaptation.
This three-timescale workflow is illustrated in Figure 4.

5 EdgeRIC Implementation

We now describe the implementation of EdgeRIC to satisfy
the goals of our concept architecture. The experimental results
that we present in this section were collected on two servers:
Intel Xeon Gold 5218R CPU @ 2.10GHz, 20 cores and Intel
i9 CPU @ 2.4GHz, 12 cores, without using GPUs. We chose
the open source Software Radio Systems srsRAN stack [39]
as the experimental RAN system for EdgeRIC integration
due to its simple, modular codebase, its stability and compati-
bility with various core networks, 4G and 5G versions, and

Data Logger

μApp: Policy
Execution

Real-time EdgeRIC

Near Real-time
Policy Adaptation
using data traces

Environment

RT

RAN Stack

User
Application

Action

RAN State

All State,
App Reward

App State

Adapted Policy

Training @
EdgeRIC Emulator

Base Policy

Non Real-time

non-RTnear-RT application data

Figure 4: Non-RT policy training on EdgeRIC Emulator, Near-
RT policy adaptation and RT policy execution.

the availability of the srsUE codebase. srsRAN runs on the
general-purpose Ubuntu OS, which does not provide real-time
guarantees.

5.1 EdgeRIC Execution Module

5.1.1 Real-time Connectivity to RAN and messaging

O-RAN specifications provide the E2 interface between the
near-RT RIC and the O-DU or O-CU. Specifically, the E2 ap-
plication protocol (E2AP) operates over SCTP and provides
near-RT services for RAN monitoring and control. E2 does
not support a real-time connectivity service, i.e., it is not syn-
chronized with the TTI clock at the RAN. Hence, we extend
the specification to create a real-time, RAN-synchronized
variant that we call RT-E2. RT-E2 supports the following to
connect EdgeRIC with the PHY-MAC stack at the O-DU.

RT-E2 TTI-Sync: Our system is synchronized to the TTI-
level clock tick from the RAN stack, ensuring that EdgeRIC
and the RAN maintain TTI-by-TTI alignment for accurate
real-time control actions and reward feedback. The RAN
stack uses a TTI counter, referred to as RANtime, included
in all RT-E2 messages to EdgeRIC. Correspondingly, RT-E2
messages from EdgeRIC to RAN specify the TTI for pol-
icy application, ideally set to RANtime+1, to ensure actions
match the current RAN state. To prevent asynchrony caused
by EdgeRIC’s compute time exceeding one TTI, termed "Lazy
RIC," EdgeRIC’s RAN subscriber only retains the most re-
cent RAN message, tagging policy messages with the latest
RANtime+ 1. The RAN disregards any EdgeRIC message
not matching the current RANtime. Additionally, the RAN is
equipped with a default mechanism to manage any potential
Lazy RIC scenarios, ensuring stability despite possible invalid
inputs from EdgeRIC.

RT-E2 Report: This is a periodic pub-sub procedure under
which a module at the O-DU, such as radio link control may

publish information at a given rate. Our default periodicity
is one TTI, i.e., information may be generated in real-time.
µApps at EdgeRIC may subscribe to the RT-E2 Report service
and utilize it for inference and control. Subscription may
be blocking in that the µApp will proceed only when new
information is available from the RAN.

RT-E2 Policy: This is an event-driven pub-sub procedure
under which a µApp at EdgeRIC may publish information
to one of the O-DU modules such as UE priorities for re-
source allocation at the MAC layer. This information is used
directly for real-time control at the O-DU. Subscription is
non-blocking in that the O-DU subscriber will move on if
no new information is available on this procedure, without
breaking the tight TTI deadlines required by PHY-MAC.

RT-E2 API Support: RT-E2, synchronized with the RAN,
supports messaging over TCP/UDP/SCTP or IPC, adapting
to EdgeRIC’s hosting environment. It necessitates both block-
ing and non-blocking pub-sub capabilities and must manage
diverse messages, including sync, state, action, reward fields,
and UE identities. Opting against modifying the O-RAN E2’s
limited SCTP-based messaging, we use ZMQ for RT-E2 due
to its low latency, minimal overhead, versatile pub-sub modes,
and compatibility with IPC or TCP, accommodating our re-
quired message formats.

TTI-Level Events: The sequence of events, occurring every
TTI is shown in Figure 5, where we see (i) state measurement
and transmission from RAN, (ii) reception, processing and
response at EdgeRIC, and (iii) final resource allocation at
RAN. Note that srsRAN receives each EdgeRIC message well
before the TTI boundary, but only reads it in a non-blocking
manner at the beginning of each TTI.

Ed
ge
RI
C

RA
N

TTI[k]

0 1

2 3 4

5 6
5 6

0 1

2 3 4

Time

TTI[k+1]

0: RAN measures state
1: RAN transmits state

5: RAN receives action
6: RAN implements action

2: EdgeRIC receives state
3: EdgeRIC computes action
4: EdgeRIC transmits action

Figure 5: TTI-level events for EdgeRIC to RAN loop.

Real-time operation evaluations: We aim to demonstrate
the effectiveness of our synchronization and messaging tech-
niques between the RAN and RT-RIC, crucial for feedback
control and RL training success. Through tests with the
srsRAN stack and RT-RIC on a server, operating at 10 MHz
downlink load and achieving about 37.5 Mbps throughput,
we found our system maintains a median round trip latency
of just 100 µs. This performance is satisfactory for managing

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.2

0.4

0.6

0.8

1
10 UEs
30 UEs
50 UEs
70 UEs
100 UEs

(a) ZeroMQ RTT for varying no. of users
RTT (ms)

C
D

F

20 40 60 80 100
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

(b) Median RTT for varying no. of users
Number of Users

M
ed

ia
n

R
TT

 (m
s)

0.5 1 1.5 2 2.5

0

0.2

0.4

0.6

0.8

1

In-Stack
EdgeRIC

(c) Spectral Efficiency: In-stack vs EdgeRIC
Spectral Efficiency (bits/Hz)

C
D

F

0.05 0.1 0.15 0.2
0

0.2

0.4

0.6

0.8

1

(d) EdgeRIC Policy Computation Time
Time (ms)

C
D

F

Figure 6: EdgeRIC Feedback latency, spectral efficiency and
AI-policy execution times.

information dissemination and control commands for approx-
imately a hundred UEs, showcasing ZeroMQ’s suitability for
real-time operations as illustrated in Figure 6(a) and (b).

In our study on MAC layer resource block (RB) allocation,
the RAN stack communicates UE state information, including
RNTIs, CQIs, buffer states, and previous downlink bitrates, to
the RT-RIC, which then decides on downlink RB allocations
per UE. Figure 6(c) shows that the spectral efficiency achieved
by implementing policies through EdgeRIC is on par with
integrating them directly into the RAN stack, indicating that
our modular approach maintains efficiency while ensuring
RAN stack stability. This underscores the effectiveness of our
decoupled architecture in balancing policy enforcement with
architectural integrity.

5.1.2 Cross-Layer Connectivity and Logging

Our choice of ZMQ for inter-process communication
between RAN and EdgeRIC is also extendable to cross-layer
application awareness, shown in Figure 4. Since ZMQ can
operate over TCP or UDP on an IP network, applications
can simply use ZMQ to publish their state information to
EdgeRIC. Apart from being lightweight and having APIs
in most programming languages, ZMQ also permits client
authentication and encryption via CurveZMQ [6] for security.

We also enable EdgeRIC with an in-memory Redis
database for data logging and sharing, shown in Figure 4.
Redis is a fast, lightweight, key-value store, in which we log
data digests, as well as trained models for sharing across the
elements of EdgeRIC. An added advantage of Redis is that we
can save all traces to drive at experiment conclusion, which
allows for post processing and performance analysis.

5.1.3 Integration with OpenAIGym

OpenAIGym is an open source python library that provides
a framework for developing an interface to interact with and

query the environment by any given algorithm. While it is
typically used for developing and comparing RL algorithms, it
can be used as a standard approach for realtime policy execu-
tion, regardless of whether the policy in question is based on
RL. This openness motivates us to develop an OpenAIGym
interface connecting the RAN stack, EdgeRIC and the con-
trol algorithms in the form of µApps that it hosts. Our Ope-
nAIGym interface allows for swift policy development and
freedom of execution of algorithms as desired. Figure 6(d)
shows the time taken by EdgeRIC to execute a forward pass
of a trained policy network using only CPU, while running a
fully loaded RAN. The mean value is less than 100 µs, which
implies that TTI-scale execution is straightforward.

5.2 EdgeRIC Emulator Module

4G/5G Core

ZMQ Gym μApp

App
Realtime EdgeRIC

Application Server

Namespace 4

srsRAN

realtime data/control near-realtime data/control

TCP/ UDP/
HTTP DASH

ZMQ
snk/srcUE 1

UE 2App ZMQ
snk/src

ZMQ
src/snk

ch
an

ne
l

ch
an

ne
l

Namespace 3

Namespace 1

Namespace 2

G
nu

 R
ad

io
 B

lo
ck

Figure 7: EdgeRIC emulation environment

To bridge the "sim-to-real" gap in RL-optimized control,
we’ve developed the EdgeRIC training module, which forgoes
the need for a complex Python simulator for simulating RAN,
RIC, and application dynamics. This module leverages actual
RAN and RIC codebases with virtual radios and channel sim-
ulation techniques, using ZeroMQ for virtual radio interfaces
in srsRAN, enabling accurate real-world emulation. It routes
complex-valued samples, typical for software-defined radios,
through ZeroMQ sockets, incorporating simulated channel
effects. A GNU Radio flowgraph with ZMQ Source and Sink
blocks allows distribution of these samples to multiple sr-
sUEs, simulating real user equipment. Furthermore, separate
IP namespaces for UEs and application servers facilitate run-
ning real-world TCP or UDP based applications end-to-end,
closely mimicking actual deployment scenarios as shown in
Figure 7. This setup ensures minimal sim-to-real disparity,
making the EdgeRIC emulator highly effective for real-world
applicable policy training and testing.

6 Case Study: An RL based scheduling µApp

In this paper, our illustrative use-case is on realtime down-
link resource block allocation (scheduling), which utilizes
(i) channel quality information (wireless state), (ii) downlink
backlog buffers (RAN state) and (iii) media buffer length for
video streaming (application state). We develop an RL-trained
realtime scheduling application operating on EdgeRIC, which
we refer to as a µApp. We study performance, both from the

perspective of throughout maximization under a variety of
channel conditions, as well as stall minimization in a video
streaming application case. We present the results of real-
world over-the-air experiments to validate our approach. In
this section, we establish the performance gains achievable
with real time RAN control on simulated channel traces.

We use a downlink resource block (RB) scheduling µApp
to illustrate an EdgeRIC application, since (i) scheduling has
to be done each TTI in realtime, (ii) it requires channel quality
information from the wireless link, downlink backlog buffer
on a per-UE basis from the RAN, and can utilize application-
level information such as the media buffer length in a video
streaming for prioritization, and (iii) being such a fundamental
problem, has a variety of baseline approaches to compare
against RL-based scheduling algorithms. We now describe
the design and training of a scheduling µApp.

Weight Based Abstraction of Control: Optimal queueing
and wireless resource management often employ structures
like threshold [11, 25], index [29, 33, 34], and linear poli-
cies [2, 19] for their simplicity and learnability, with some
showing properties like monotonicity or concavity [2]. Sys-
tems such as [27] develop weights to prioritize flows, ensuring
max-min fairness among them. All these structured policies
can effectively be represented by assigning relative priorities
to the different connected UEs. For example, the so-called
Whittle index is a scalar parameter corresponding to the value
of resources allocated to a given UE, which can quickly be
learned independently of other UEs [28]. Resource allocation
may also be done with a fairness metric in mind, such as pro-
portional fairness, where RBs are assigned to a UE based on
the ratio of its current as compared to its average channel qual-
ity, or max-min fairness [38]. Motivated by these ideas, our
general approach for downlink RB allocation is for EdgeRIC
to provide values wi for each connected UE i over realtime
information exchange at each TTI. The 5G MAC will then
allocate an number of RBs in a manner proportional to wi
over the next TTI. Such an abstraction provides simplicity of
actions for the resource allocation policy, while maintaining
its ability to attain near-optimal allocations in realtime.

6.1 Training RL on emulator

We utilize the model-free RL algorithm, Proximal Policy Op-
timization (PPO) [36], for training an agent on optimal re-
source allocation due to its straightforward implementation
and efficiency. Training involves collecting 5,000 samples
per iteration, updating the agent’s policy neural network via
backpropagation, and then using the updated agent to col-
lect another 5,000 samples to evaluate performance and track
progress. Each sample corresponds to a transmission time in-
terval (TTI) and includes the environment’s current state, the
agent’s action, and the resulting reward and next state. The RL
policies, trainable on the emulator, can focus on RAN-specific
scenarios or incorporate application-level data for broader op-
timizations. We specifically explore downlink throughput en-

hancement (Section 7.3) and video streaming stall reduction
(Section 7.4) as two key use cases.

Table 2: RL Specifications: Throughput Maximization

State (s[t]) Bi[t],CQIi[t] 8i

Action (a[t]) wi[t] 8i

Reward (r[t]) total throughput

For the throughput-maximization goal, we utilize RAN-
level CQI and UE backlog buffer lengths as state information,
with action being the allocation weights for UEs and the re-
ward as total throughput. Training typically reaches reward
saturation after 100 iterations, equivalent to 500,000 TTI sam-
ples. The RL setup, detailed in Table 2, includes CQI (CQIi[t])
and backlog data (Bi[t]) per UE i and the allocation weight for
UE i (wi[t]) as actions. Factoring in data collection/transfer
to the RL agent and time for actor-critic policy updates, total
training completes in about ten minutes.

6.2 Evaluations on emulator

We conducted emulations using synthetic channel traces to as-
sess the potential gains achievable by a real-time agent for pol-
icy computation and control. Two metrics we use throughout
our study is the downlink system throughput and the down-
link backlog buffer lengths at the RAN. We desire to evaluate
two basic questions, (i) How much does performance improve
with realtime control as opposed to near real time control and
(ii) How does RL-based control policy perform compared to
basic algorithms?

We consider three basic algorithms for weight-based re-
source allocation. In all the below approaches, each UE is
assigned a weight wi[t] at TTI t. The weights are then normal-
ized over all UEs as w̃i[t] = wi[t]/Â j w j[t]. The RAN receives
the normalized weights w̃i[t] from the RIC, and performs an
allocation of resource block groups (RBGs) in proportion to
the weights, i.e., Ri[t] = w̃i[t]Rtotal [t], where Ri[t] is the assign-
ment to UE i, and Rtotal [t] is the number of RBGs available
in TTI t. While some approaches call for an absolute prioriti-
zation of UEs that have a maximum weight [41], we find in
practice that a proportional division based on weight leads to
better overall performances.
CQI-Fair Allocation: Here, the weight of UE is equal to
its realized CQI. Hence, wi[t] =CQIi[t], where CQIi[t] is the
realized CQI of UE i at time t. This approach effectively tries
to obtain a large total throughput by prioritizing these UEs
that have a large CQI in the current timeslot.
Proportionally-Fair Allocation: The allocation weight for
each UE is determined by the ratio of its current CQI to its av-
erage CQI, aiming to prioritize UEs with better-than-average
channel conditions. The average CQI for UE i, represented
as AvgCQIi[t], is computed using an exponentially weighted
moving average up to time t. Therefore, the weight wi[t] is
calculated as CQIi[t]/AvgCQIi[t].

Max-weight Allocation: Here, the weight of a UE is the
product of its current CQI and the backlogged bytes in the
downlink queue corresponding to that UE. The max-weight
policy is known to be throughput optimal [41], in that it can
achieve the capacity region of the system. Thus, we have,
wi[t] =CQIi[t]Bi[t], where Bi[t] is the number of backlogged
bytes in the downlink queue of UE i.

Our first question, the performance comparison between
downlink RB allocation algorithms as µApps on EdgeRIC
versus as xApps on a cloud-based RIC focuses on the impact
of latency. µApps on EdgeRIC benefit from low round-trip
latencies of mere tens of microseconds for state information
reception and action generation from the RAN. In contrast,
xApps in the cloud suffer from significant forward and reverse
network latencies, leading to round-trip times in the tens of
milliseconds. To illustrate cloud latency effects, we simulate
appropriate delays within EdgeRIC.

Our experiment with synthetic channel traces shows that us-
ing the CQI-Fair allocation algorithm as a µApp on EdgeRIC,
compared to a cloud-based RIC with 30ms latency, results in a
50% throughput increase with stable backlog buffers (Figure
2(c)). This is further detailed in Table 3. The throughput
improvement is also demonstrated in a 4-user scenario, Figure
14 and Table 7 in appendix, thus underscoring the benefits
of real-time control in enhancing performance metrics.

Table 3: Load: 35Mbps, Channel: 2 UE synthetic channel

EdgeRIC 15ms 30ms
Max CQI Avg. Thrpt. 32.6 24.2 18.0

BL[MB] 0.61 0.64 0.57

Prop. Fair. Avg. Thrpt. 30.7 25.7 21.9
BL[MB] 0.65 0.67 0.68

Max Weight Avg. Thrpt. 30.0 23.3 20.9
BL[MB] 0.60 0.62 0.65

To answer our second question, we demonstrate the
training and evaluation of an RL algorithm. Scenario 1
is based on a 2UE environment. both connected users
have uniform variation in CQI values over time, ranging
from 1 to 15. In scenario 2, one user experiences good
channel conditions (CQI values between 8 and 15), while
the other user experiences poor channel conditions (CQI
values between 1 and 7). In Scenario 3, the CQI values are
randomly generated. Figure 8 shows training and evaluation
on Scenario 2 and Table 8 (appendix) summarizes the
performance of RL algorithms on synthetic channel traces.

We show the CDF of end-to-end latency of the entire event
chain from RAN to EdgeRIC and back (including policy exe-
cution via a forward pass on the policy network), culminating
in resource allocation at each TTI in Figure 9. We observe
that the end-to-end latency is always less than 1 ms, i.e., the
RT-E2 procedures (Section 5.1.1) successfully meet the target
of event completion within each TTI.

Training Curve

0 20 40 60 80 100
Training Iteration

26.5

27

27.5

28

28.5

29

M
ea

n
R

ew
ar

d
- T

hr
ou

gh
pu

t [
M

bp
s]

PPO

Max
 W

eig
ht

Max
 CQI

0

5

10

15

20

25

30

35

Av
er

ag
e

Th
ro

ug
hp

ut
 [M

bp
s]

Throughput Evaluation

Figure 8: RL training and evaluation on emulator

0.94 0.96 0.98 1
Time [ms]

0

0.2

0.4

0.6

0.8

1

F(
x)

CDF plot for RAN and RIC RTT

0 20 40 60 80 100 120
Time [s]

50

100

150

200

C
PU

 %

Computational Overhead with EdgeRIC
Without EdgeRIC
With EdgeRIC

Figure 9: CDF of End-to-end RTT between RAN and
EdgeRIC, showing that TTI timings are always met.

Finally, we measure the computational overhead of running
EdgeRIC, as compared to running the vanilla srsRAN stack
under a full traffic load. We see that the difference in CPU
utilization is only about 20%, which means that EdgeRIC is
fairly lightweight and does not need execessive additional
compute resources. Hence, co-locating EdgeRIC at the O-DU
level seems quite feasible.

6.3 Scalability Study

0 200 400 600 800
Time [us]

0

0.2

0.4

0.6

0.8

1

F(
x)

CDF of Policy computation time

5 UEs
10 UEs
20 UEs

0 200 400 600 800 1000 1200
Time [us]

0

0.2

0.4

0.6

0.8

1

F(
x)

CDF plot for Feedback loop RTT

5 UEs
10 UEs
20 UEs

Figure 10: EdgeRIC is able to handle a large number of UEs

We show that our system is stable and is feasible to operate
as we scale the number of UEs. For the scheduling µapp con-
sidered in this case study, we introduce additional, simulated
UEs (which have the same states and application behavior as
the real UEs) into the system in order to capture the system
performance under an increased number of users. Figure 10
shows that the feedback loop RTT remains well below 1ms
and the ML model inference time is under 400µs.

Laptop
 (UE)

B210
B210

Laptop (UE)

B210
NUC
(UE)

Battery

Laptop
 (UE)B210

(a) Turntable (b) Car (c) Drone (d) Mobile Robot (e) CQI-evolution

Figure 11: Experimental setups for collecting CQI data of various mobility and evolution of their CQI traces

7 EdgeRIC Evaluation

In this section, we evaluate EdgeRIC by addressing three
fundamental questions. These questions are: (i) Does real-
time RAN control through µApps on EdgeRIC outperform
near-real-time control through a cloud-based RIC? (ii) Is it
feasible to implement real-world AI optimization (RL training
and feedback) for resource allocation over EdgeRIC ? and
(iii) Does application state feedback to EdgeRIC provide sig-
nificant improvement to the end-user Quality of Experience
(QoE)? All results presented in this section are based on real
world channel traces and over the air experiments.

7.1 Experimental Setup

EdgeRIC extends the srsRAN codebase, supporting both
software-defined radios and commercial UEs. Built on
srsRAN version 21.10, our setup includes USRP B210 SDRs,
an edge DU, and an embedded 20ms delay in the CU stack for
realism. The srsRAN station features channel trace logging
and operates in the 2.5 GHz EBS band under an experimental
FCC license to prevent interference with local networks. Ex-
periments utilized a 10 MHz bandwidth, involving a stationary
base station and mobile users.

7.1.1 User Devices and Channel Traces

We use a static base-station with different UE types to collect
channel traces as shown in Fig. 11. We considered various
mobility models, both within the laboratory and in outdoor
environments. We extract the channel quality indicator (CQI)
values sampled at each transmission time interval (TTI) for
each user at the srsRAN for runs of approximately 8 minutes
each. Next, we summarize the UEs considered in this study.

TurnTable UE: Figure 11(a) shows the setup of a UE
on a movable turntable, similar to a user sitting on a chair
and rotating. The base station equipped with a B210 is on a
static table, while a UE node with a B210 is mounted on the
turntable. The UE node is moved away from or towards the
base station at about 1 m/s and rotated to produce significant
variations in its CQI values. The distance between the UE
node and the base station ranges from 0.5 meter to 4 meter.

Car UE: Figure 11(b) shows a UE setup in a car, using a
USRP B210 and laptop powered by the car. CQI data was
collected while driving along three paths: 1) a 6-meter-radius
circle with a maximum speed of 4.5 m/s, 2) a 30 meter x 3
meter rectangle with a maximum speed of 5.4 m/s, and 3) a
50-meter straight line with a maximum speed of 9 m/s.

Drone UE: We used a drone experiment to demonstrate
performance with faster channel variations in 3D space. Fig-
ure 11(c) shows a B210 and a NUC (a small and portable
computer) mounted on a Big-Hexy hexa-copter drone, while
the base station, equipped with another B210, was placed on
the ground. The drone was flown over the base station along
two paths: 1) a 10-meter straight line at a height of 15 meters
and with a speed of 2.2 m/s, and 2) a 15-meter straight line at
a height of 20 meters and with a speed of 3 m/s.

Indoor robotic UE: Mobile robots were used to for indoor
mobility experiments. In Figure 11(d), a B210 and laptop
were mounted on a Jackal robot, while the base station with
an X310 was placed on a table. The robot moved along a 1.6
m x 1.6 m square path and rotated at each corner, causing CQI
values to drop due to signal blockage. The working area was
limited to 4 m from the base station, similar to robot control
or industrial IoT with Private 5G.

We show the drone trace in Figure 11(e), and the overall
CDF was earlier shown in Figure 2(a). We see that several
scenarios yield CQI changes in the sub 10 ms range, with the
drone trace showing this effect for almost 90% of samples.

7.1.2 Evaluation Scenarios

To generate realistic scenarios, we collected channel traces
from various environments and utilized them in our emulation
setup. This setup includes the same core, radio access network
(RAN), and user equipment (UE) modules as our over-the-
air experiments that generated the CQI traces. By replaying
the CQI traces with a desired number of UEs, algorithmic
methods can be compared while maintaining the same end-
to-end applications and channel conditions. For end-to-end
over-the-air experiments, we used a X310 as a base station and
two B210s as UEs. One of the UEs had lower channel quality
than the other by placing them at different distances from the
base station. Table 4 summarizes the scenarios considered.

a) Is real-time needed? b) Is RL useful? c) Is RL generalizable? d) Does EdgeRIC work in
real world?

Real World EvaluationThroughput EvaluationThroughput EvaluationThroughput Evaluation

Figure 12: Snapshot of EdgeRIC performance for throughput maximization

Table 4: Summary of all scenarios

Scenario Channel Description
Channel Traces from Experiments
Scenario 1 2 Drone UEs
Scenario 2 2 Turntable UEs
Scenario 3 2 Car UEs and 2 Drone UEs
Scenario 4 2 Car UEs and 2 Indoor Robotic UEs
Scenario 5 2 Random Walk UEs and 2 Turntable UEs
Complete Over-the-Air Experiments
Scenario 6 2 UEs on indoor mobile robots
Scenario 7 2 UEs on indoor stationary robots

7.2 Micro-benchmarks: Edge vs. Cloud

We use iPerf for measuring throughput and generate mi-
crobenchmarks. We test our scenarios on different UEs, each
with varying traffic loads, and report the throughput and back-
logs observed with different scheduling algorithms presented
in Section 6.2. The validity of our results presented in Section
5.4 is confirmed using realistic channel traces (4 Turntable
UEs), shown in Table 5 and Figure 12(a). This provides evi-
dence in support of the hypothesis that real-time control can
significantly improve the system throughput.

Table 5: Load: 35Mbps, Channel Trace: 4 Turntable UEs

EdgeRIC 50ms 100ms
Max CQI Avg. Thrpt. 33.4 21.2 29.5

BL[MB] 1.34 0.84 1.12
Prop. Fair. Avg. Thrpt. 28.6 26.6 23.5

BL[MB] 1.20 1.29 0.93

Max Weight Avg. Thrpt. 33.2 28.8 31.0
BL[MB] 1.14 1.30 1.12

7.3 Impact of RL on Micro-benchmarks

We present compelling evidence for the feasibility, impact,
and robustness of RL in executing real-time control policies.

We begin by addressing the question of RL training in an
emulation environment, which is answered by the set of curves
in Figure 16 (appendix). These curves demonstrate that RL
training with realistic channel traces is highly efficient, with
an agent typically converging in just 20 to 40 iterations. The
potential of RL is evident from a series of figures that answer
important questions about its application.

Figure 12(b) shows us that RL can achieve higher through-
put than traditional algorithms, bringing us to answer: is RL
truly useful? This is further summarized in Table 6, which
displays the total system throughput and the mean of the total
backlog buffer for various scenarios, offering a snapshot of
the RL performance in real-time. The values displayed in the
table represent the throughput in Mbps (left) and the backlog
buffer in MBytes (right).

Reinforcement learning (RL) schemes can surpass tradi-
tional algorithms under specific conditions, such as varying
UE application loads where the max CQI strategy falls short.
Our RL algorithm, particularly PPO, adapts to mirror the max-
weight algorithm yet excels in scenarios like round-robin al-
locations, serving one UE per TTI. This approach contrasts
with max-weight’s fractional resource distribution across all
UEs, which, while based on a weight-control scheme, may
not always yield optimal results in environments with diverse
load demands.

Table 6: Throughput and Backlog Buffer Evaluation

PPO Max Weight Max CQI
Realistic Channel Traces
Scenario 1 29.1/0.38 26.1/0.53 14.9/0.39
Scenario 2 30.5/0.38 31.9/0.43 14.42/0.39
Scenario 3 25.3/1.5 22.9/1.3 18.67/0.97

Scenario 4 25.9/1.5 23.9/1.21 20.3/1.05

Scenario 5 28.5/0.96 26.3/1.46 23.3/1.01
Over the Air Experiments
Scenario 6 14.6/0.19 6.4/0.45 5.7/0.44
Scenario 7 19.33/0.05 10.71/0.34 9.06/0.35

a) Is real-time needed? b) Is RL useful? c) Does EdgeRIC
work in real world?

Table 7: RL specifications: Video Streaming

Figure 13: Snapshot of EdgeRIC performance for video streaming application

Figure 12(c) illustrates the transferability of RL models,
showing that a model trained in one scenario can adapt to
others with similar user numbers, highlighting its generaliz-
ability. Specifically, a model from a random walk scenario
was applied to both a 2 Drone UEs setup (Scenario 1) and
a combination of 2 Car UEs and 2 Turntable UEs (Scenario
2). The crucial question of RL’s real-world efficacy in re-
altime wireless control is affirmatively addressed in Figure
12(d). Real-world tests with EdgeRIC revealed that traditional
algorithms struggled with channel variability, impacting per-
formance. In contrast, the RL policy maintained system stabil-
ity and achieved consistent throughput, demonstrating RL’s
potential for performance gains in realtime scenarios.

7.4 Cross-Layer Optimization: Case Study

In this case study on enhancing video streaming performance
through cross-layer optimization, we set up a heterogeneous
environment with four users: two streaming high-quality
video from an HTTP server and two generating background
traffic with iPerf. We use the GPAC [20] library for DASH-
style video segments and define a stall event when the media
buffer drops below 2 seconds. The media buffer size, updated
every 40 milliseconds to match a 24fps video, is communi-
cated to EdgeRIC, along with network states at each TTI. To
simulate realistic conditions, we introduce a 20ms delay rep-
resenting uplink latency on srsRAN. An RL agent, trained
with EdgeRIC, aims to optimize video playout and resource
allocation, responding to both network and application states
to minimize video stalls.

The RL framework specifications for this setup are pre-
sented in Table 7. Here, apart from downlink backlog Bi[t],
and channel quality CQIi[t] of UE i, we augment the state
with the length of the media buffer (in seconds) of the video
streaming application of UE i, denoted MBi[t]. The reward
now depends on the stall performance of the applications,
with smooth playout receiving a positive reward, and a stall
receiving a large negative reward. We next conduct real-world
experiments on video streaming. Comparing the performance
of UE1 and UE2 controlled by the RL policy and the stan-
dard RAN scheduling algorithms in real-time, the RL policy
outperformed the standard algorithms by incorporating “ap-

plication awareness”, demonstrating its potential to provide a
quality of experience (QoE)-optimized solution with proper
training. Figure 13(b) summarizes this statement showing the
metrics observed by playing a video for 120s. Figure 13(c)
presents the results of our experiment, which evaluated the
stall performance of the video streaming application over the
air in a static environment with a one-streamer and one-loader
scenario for 30 s videos. We see that the RL trained policy
only has about a third of the stalls experienced by the other
approaches. Further, to answer the question if a cloud based
RIC can support a video streaming application under a highly
fluctuating channel condition, we implemented a variant of
the max weight scheduling algorithm (infused with the ap-
plication state, wi[t] =CQIi[t]Bi[t]/MBi[t]) and benchmarked
the stall performance for a 30s video. The result is depicted in
Figure 13(a) which clearly indicates that an application aware
real-time control outperforms a near-RT control approach.

8 Limitations and Future Work

We presented a platform EdgeRIC and its full stack emulator.
When combined together, we can train and deploy cross-layer
AI-optimization algorithms that can provide decision and
control at a TTI-timescale. Future directions of this work are:
Scale to 100s of users: Our demonstrations are with four
users, primarily due to the instability with our setup of
srsRAN for a larger number of UEs. However, we have shown
that EdgeRIC platform can send the messages for 100 UEs,
with a RAN to EdgeRIC latency of about 100µs (Figure 6).
That said, we have not tested over-the-air with support for
many more simultaneous UEs, which is key future work.
Mutliple base-stations: Our work has demonstrated perfor-
mance improvements for a single base-station. We anticipate
with multiple base-stations, we would have an EdgeRIC at-
tached to each base-station/DU, with Near-RT RIC coordi-
nating all the EdgeRIC instantiations. This would involve
problems in federated learning that we will explore.
Ethical concerns: Does not raise any ethical issues.
Acknowledgement: This work was funded in part by NSF
Grants CNS 2312978, CNS 1955696, ECCS 2030245, CNS
2312979 and ARO grant W911NF- 19-1-0367. All opinions
and findings are of the authors.

References

[1] Luca Baldesi, Francesco Restuccia, and Tommaso
Melodia. ChARM: NextG spectrum sharing
through data-driven real-time O-RAN dynamic control.
arXiv:2201.06326, 2022.

[2] Dimitri P Bertsekas. Dynamic programming and op-
timal control, volume 1,2. Athena scientific Belmont,
MA, 2017.

[3] Rajarshi Bhattacharyya, Archana Bura, Desik Rengara-
jan, Mason Rumuly, Bainan Xia, Srinivas Shakkottai,
Dileep Kalathil, Ricky KP Mok, and Amogh Dhamd-
here. QFlow: A learning approach to high qoe video
streaming at the wireless edge. IEEE/ACM Transactions
on Networking, 30(1):32–46, 2021.

[4] Leonardo Bonati, Salvatore D’Oro, Stefano Basagni,
and Tommaso Melodia. SCOPE: An open and soft-
warized prototyping platform for NextG systems. In
Proceedings of the 19th Annual International Confer-
ence on Mobile Systems, Applications, and Services,
pages 415–426, 2021.

[5] Leonardo Bonati, Salvatore D’Oro, Michele Polese, Ste-
fano Basagni, and Tommaso Melodia. Intelligence and
learning in O-RAN for data-driven NextG cellular net-
works. IEEE Communications Magazine, 59(10):21–27,
2021.

[6] CurveZMQ. http://curvezmq.org/, 2023.

[7] Salvatore D’Oro, Michele Polese, Leonardo Bonati, Hai
Cheng, and Tommaso Melodia. dapps: Distributed ap-
plications for real-time inference and control in o-ran.
IEEE Communications Magazine, 60(11):52–58, 2022.

[8] Harish Kumar Dureppagari, Ujwal Dinesha, Raini Wu,
Santosh Ganji, Woo-Hyun Ko, Srinivas Shakkottai, and
Dinesh Bharadia. Realtime intelligent control for NextG
cellular radio access networks. In Proceedings of the
20th Annual International Conference on Mobile Sys-
tems, Applications and Services, pages 567–568, 2022.

[9] Xenofon Foukas, Navid Nikaein, Mohamed M. Kassem,
Mahesh K. Marina, and Kimon Kontovasilis. FlexRAN:
A flexible and programmable platform for software-
defined radio access networks. In Proceedings of the
12th International on Conference on Emerging Network-
ing EXperiments and Technologies, CoNEXT ’16, page
427–441, New York, NY, USA, 2016. Association for
Computing Machinery.

[10] Xenofon Foukas, Bozidar Radunovic, Matthew Balk-
will, and Zhihua Lai. Taking 5g ran analytics and con-
trol to a new level. In Proceedings of the 29th Annual

International Conference on Mobile Computing and
Networking, pages 1–16, 2023.

[11] Yu-Pin Hsu, Navid Abedini, Natarajan Gautam, Alex
Sprintson, and Srinivas Shakkottai. Opportunities for
network coding: To wait or not to wait. IEEE/ACM
Transactions on Networking, 23(6):1876–1889, 2014.

[12] Tianchi Huang, Rui-Xiao Zhang, Chao Zhou, and Lifeng
Sun. QARC: video quality aware rate control for real-
time video streaming based on deep reinforcement learn-
ing. In Proceedings of the 26th ACM international con-
ference on Multimedia, pages 1208–1216, 2018.

[13] Ish Kumar Jain, Raghav Subbaraman, and Dinesh Bhara-
dia. Two beams are better than one: Towards reliable
and high throughput mmwave links. In Proceedings
of the 2021 ACM SIGCOMM 2021 Conference, SIG-
COMM ’21, page 488–502, New York, NY, USA, 2021.
Association for Computing Machinery.

[14] Ish Kumar Jain, Rohith Reddy Vennam, Raghav Sub-
baraman, and Dinesh Bharadia. mmFlexible: flexi-
ble directional frequency multiplexing for multi-user
mmWave networks. arXiv preprint arXiv:2301.10950,
2023.

[15] Petteri Kela, Thomas Höhne, Teemu Veijalainen, and
Hussein Abdulrahman. Reinforcement learning for de-
lay sensitive uplink outer-loop link adaptation. In 2022
Joint European Conference on Networks and Communi-
cations 6G Summit (EuCNC/6G Summit), pages 59–64,
2022.

[16] Woo-Hyun Ko, Ushasi Ghosh, Ujwal Dinesha, Raini Wu,
Srinivas Shakkottai, and Dinesh Bharadia. EdgeRIC:
Delivering realtime RAN intelligence. In Proceedings
of the ACM SIGCOMM 2023 Conference, pages 1162–
1164, 2023.

[17] Manikanta Kotaru, Kiran Joshi, Dinesh Bharadia, and
Sachin Katti. SpotFi: Decimeter level localization using
WiFi. In Proceedings of the 2015 ACM Conference on
Special Interest Group on Data Communication, SIG-
COMM ’15, page 269–282, New York, NY, USA, 2015.
Association for Computing Machinery.

[18] Merima Kulin, Tarik Kazaz, Ingrid Moerman, and Eli
De Poorter. End-to-end learning from spectrum data:
A deep learning approach for wireless signal identifica-
tion in spectrum monitoring applications. IEEE Access,
6:18484–18501, 2018.

[19] Panqanamala Ramana Kumar and Pravin Varaiya.
Stochastic systems: Estimation, identification, and adap-
tive control, volume 75. SIAM, 2015.

http://curvezmq.org/

[20] Jean Le Feuvre, Cyril Concolato, and Jean-Claude
Moissinac. GPAC: open source multimedia framework.
In Proceedings of the 15th ACM International Confer-
ence on Multimedia, MM ’07, page 1009–1012, New
York, NY, USA, 2007. Association for Computing Ma-
chinery.

[21] Changqing Luo, Jinlong Ji, Qianlong Wang, Xuhui
Chen, and Pan Li. Channel state information predic-
tion for 5g wireless communications: A deep learning
approach. IEEE Transactions on Network Science and
Engineering, 7(1):227–236, 2020.

[22] Hongzi Mao, Ravi Netravali, and Mohammad Alizadeh.
Neural adaptive video streaming with pensieve. In Pro-
ceedings of the Conference of the ACM Special Interest
Group on Data Communication, pages 197–210. ACM,
2017.

[23] Mehrtash Mehrabi, Mostafa Mohammadkarimi, Masoud
Ardakani, and Yindi Jing. Decision directed channel
estimation based on deep neural network k -step predic-
tor for mimo communications in 5G. IEEE Journal on
Selected Areas in Communications, 37(11):2443–2456,
2019.

[24] Tommaso Melodia, Stefano Basagni, Kaushik R.
Chowdhury, Abhimanyu Gosain, Michele Polese, Pe-
dram Johari, and Leonardo Bonati. Colosseum, the
world’s largest wireless network emulator. In Proceed-
ings of the 27th Annual International Conference on Mo-
bile Computing and Networking, MobiCom ’21, page
860–861, New York, NY, USA, 2021. Association for
Computing Machinery.

[25] Arupa Mohapatra, Natarajan Gautam, Srinivas Shakkot-
tai, and Alex Sprintson. Network coding decisions for
wireless transmissions with delay consideration. IEEE
Transactions on Communications, 62(8):2965–2976,
2014.

[26] Mustafa Mohsin, Jordi Mongay Batalla, Evangelos Pal-
lis, George Mastorakis, Evangelos K. Markakis, and
Constandinos X. Mavromoustakis. On analyzing beam-
forming implementation in O-RAN 5G. Electronics,
2021.

[27] Kanthi Nagaraj, Dinesh Bharadia, Hongzi Mao, Sandeep
Chinchali, Mohammad Alizadeh, and Sachin Katti.
Numfabric: Fast and flexible bandwidth allocation in dat-
acenters. In Proceedings of the 2016 ACM SIGCOMM
Conference, SIGCOMM ’16, page 188–201, New York,
NY, USA, 2016. Association for Computing Machinery.

[28] Khaled Nakhleh, Santosh Ganji, Ping-Chun Hsieh, I-
Hong Hou, and Srinivas Shakkottai. NeurWIN: Neural
Whittle index network for restless bandits via deep RL.

In Thirty-Fifth Conference on Neural Information Pro-
cessing Systems, 2021.

[29] Ali ParandehGheibi, Muriel Médard, Asuman Ozdaglar,
and Srinivas Shakkottai. Access-network association
policies for media streaming in heterogeneous environ-
ments. In 49th IEEE Conference on Decision and Con-
trol (CDC), pages 960–965. IEEE, 2010.

[30] Jounsup Park, Philip A. Chou, and Jenq-Neng Hwang.
Rate-utility optimized streaming of volumetric media
for augmented reality. IEEE Journal on Emerging and
Selected Topics in Circuits and Systems, 9(1):149–162,
2019.

[31] Ali Parsa, Neda Moghim, and Pouyan Salavati. Joint
power allocation and mcs selection for energy-efficient
link adaptation: A deep reinforcement learning approach.
Comput. Netw., 218(C), dec 2022.

[32] Michele Polese, Leonardo Bonati, Salvatore D’Oro, Ste-
fano Basagni, and Tommaso Melodia. ColO-RAN: De-
veloping Machine Learning-based xApps for Open RAN
Closed-loop Control on Programmable Experimental
Platforms. IEEE Transactions on Mobile Computing,
pages 1–14, July 2022.

[33] Vivek Raghunathan, Vivek Borkar, Min Cao, and
P Roshan Kumar. Index policies for real-time multi-
cast scheduling for wireless broadcast systems. In IEEE
INFOCOM 2008-The 27th Conference on Computer
Communications, pages 1570–1578. IEEE, 2008.

[34] Javad Razavilar, KJ Ray Liu, and Steven I Marcus.
Jointly optimized bit-rate/delay control policy for wire-
less packet networks with fading channels. IEEE Trans-
actions on Communications, 50(3):484–494, 2002.

[35] Robert Schmidt, Mikel Irazabal, and Navid Nikaein.
Flexric: An SDK for next-generation sd-rans. In
Proceedings of the 17th International Conference on
Emerging Networking EXperiments and Technologies,
CoNEXT ’21, page 411–425, New York, NY, USA,
2021. Association for Computing Machinery.

[36] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec
Radford, and Oleg Klimov. Proximal policy optimiza-
tion algorithms, 2017.

[37] Stefania Sesia, Issam Toufik, and Matthew Baker. LTE-
the UMTS long term evolution: from theory to practice.
John Wiley & Sons, 2011.

[38] S. Shakkottai and R. Srikant. Network optimization
and control. Foundations and Trends in Networking,
2(3):271–379, 2007.

[39] srsRAN, Inc. https://www.srslte.com/, 2023.

https://www.srslte.com/

[40] Raghav Subbaraman, Yeswanth Guntupalli, Shruti Jain,
Rohit Kumar, Krishna Chintalapudi, and Dinesh Bhara-
dia. BSMA: Scalable LoRa networks using full duplex
gateways. In Proceedings of the 28th Annual Interna-
tional Conference on Mobile Computing And Network-
ing, MobiCom ’22, page 676–689, New York, NY, USA,
2022. Association for Computing Machinery.

[41] Leandros Tassiulas and Anthony Ephremides. Stability
properties of constrained queueing systems and schedul-
ing policies for maximum throughput in multihop radio
networks. In 29th IEEE Conference on Decision and
Control, pages 2130–2132. IEEE, 1990.

[42] Pratheek S. Upadhyaya, Aly S. Abdalla, Vuk Marojevic,
Jeffrey H. Reed, and Vijay K. Shah. Prototyping next-
generation O-RAN research testbeds with SDRs, 2022.

[43] Gongwei Xiao, Muhong Wu, Qian Shi, Zhi Zhou, and
Xu Chen. DeepVR: deep reinforcement learning for
predictive panoramic video streaming. IEEE Transac-
tions on Cognitive Communications and Networking,
5(4):1167–1177, 2019.

[44] Lin Zhang, Junjie Tan, Ying-Chang Liang, Gang Feng,
and Dusit Niyato. Deep reinforcement learning-based
modulation and coding scheme selection in cognitive
heterogeneous networks. IEEE Transactions on Wireless
Communications, 18(6):3281–3294, 2019.

[45] Yuanxing Zhang, Pengyu Zhao, Kaigui Bian, Yunxin
Liu, Lingyang Song, and Xiaoming Li. DRL360: 360-
degree video streaming with deep reinforcement learn-
ing. In IEEE INFOCOM 2019-IEEE Conference on
Computer Communications, pages 1252–1260. IEEE,
2019.

A Appendix

In the appendix, we provide additional results for different sce-
narios, which are not critical to the performance but provide
visibility into the system.

0 50 100 150 200 250 300
Timescale [TTI]

0

5

10

15

20

25

30

35

40

Av
er

ag
e

Th
ro

ug
hp

ut
[M

bp
s]

Proportional Fair Scheduling

0 50 100 150 200 250 300
Time Scale (TTI)

0

5

10

15

20

25

30

35

40

Av
er

ag
e

Th
ro

ug
hp

ut
 [M

bp
s]

Max Weight Scheduling
EdgeRIC
Near RT RIC

Figure 14: EdgeRIC Performance in a 4UE synthetic channel
scenario.

Figure 14 shows that EdgeRIC outperforms Near Real-
time RIC for implementation of microbenchmarks. This is
the scenario with 4UEs on a synthetic channel trace. We
implemented Proportional Fair Scheduling and Max Weight
Scheduling as a µApp in EdgeRIC which exchanges state
information and actions with RAN Stack over ZeroMQ-based
communication. In order for performance comparison, we im-
plemented Near RT RIC by imposing delays in message deliv-
eries between RIC and RAN. We used synthetic CQI traces for
4 UEs and evaluated each algorithm’s performance by compar-
ing their average throughput. The graph on the left side shows
average throughput of Proportional Fair Scheduling and the
graph on the right side shows one of Max Weight Scheduling.
A blue line in the graphs are for EdgeRIC while a red line for
Near RT RIC. As Near RT RIC showed low average through-
put due to the delay, EdgeRIC successfully supported those
microbenchmarks to achieve their best throughput.

Table 7: Load: 30Mbps, Channel: 4UE synthetic channel

EdgeRIC 15ms 30ms
Max CQI Avg. Thrpt. 26.3 16.4 15.9

BL[MB] 1.22 1.25 1.27
Prop. Fair. Avg. Thrpt. 24.27 22.72 20.15

BL[MB] 1.37 1.08 1.27
Max Weight Avg. Thrpt. 25.4 19.8 19.1

BL[MB] 1.33 1.05 0.99

Table 8: Throughput and Backlog Buffer evaluation of syn-
thetic traces

PPO Max Weight Max CQI
Synthetic Channel Traces
Scenario 1 27.8/0.38 25.6/0.38 19.0/0.38
Scenario 2 27.5/0.33 24.7/0.51 18.9/0.38
Scenario 3 26.8/0.38 25.2/0.51 25.2/0.76

Figure 15 shows the real-time CQI traces we collected to
characterize various CQI mobility in different environments.
An x-axis is time in TTI unit and a y-axis is CQI showing real-
time channel quality. The report period of CQI values was 2
TTI period which is approximately 2 mili-seconds. While a
mobile robot has some drops in its CQI traces due to the radio
block by the lid of the laptop mounted on the mobile robot
when rotating, drone’s swift motions caused radical ups and
downs in its CQI traces. In car’s CQI traces, its variation has
a characteristic of a long period and smooth curves because
of its slow acceleration and deceleration. For a turntable, we
was able to generate fast angular acceleration which caused
drastic and kind of periodic changes in its CQI traces by fast
rotation.

0 1000 2000
Time [TTI]

5

10

15

C
Q

I
Mobile Robots

0 1000 2000
Time [TTI]

5

10

15

C
Q

I

Drone

0 1000 2000
Time [TTI]

5

10

15

C
Q

I

Car

0 1000 2000
Time [TTI]

5

10

15
C

Q
I

Turntable

Figure 15: CQI Trace for different UEs

Figure 16 shows the training curves of RL PPO policy
model and its throughput evaluations on DigitalTwin. The
graphs in the first column illustrate the training curve for each
scenario. We trained the policy network of RL for Scenario 1,
3 and 5 which are 2 Drone UEs, 2 Car UEs and 2 Drone UEs,
and 2 Random Walk UEs and 2 Turntable UEs cases. We
used specific CQI trace data to emulate channel conditions
for individual scenarios. To train an RL agent using PPO, we
designed a reward function to maximize throughput for gen-
eral scenarios. Each iteration, we sampled 5000 data samples
including previous state, previous action and current state at
each iteration and updated policy network until the reward
saturates. Most transient periods for training were less than 40
iterations and the training curves converged for all scenarios.
The graphs in the second column describe the throughput
evaluation of the trained policy model. In each graph, we
compared the throughput of PPO to the ones of Max Weight
and max CQI. In each algorithm, a red bar means the mean
of its throughputs and a blue box their range. PPO obviously
outperformed Max CQI, and even achieved almost the same
throughput performance as Max Weight, which is usually con-
sidered as an optimum policy, with somehow higher ranges
than Max Weight.

Scenario 1

0 20 40 60 80 100
Training Iteration

10

15

20

25

30

35

R
ew

ar
d

- T
hr

ou
gh

pu
t [

M
bp

s]

PPO

Max
 W

eig
ht

Max
 CQI

0

10

20

30

Av
er

ag
e

Th
ro

ug
hp

ut
 [M

bp
s] Throughput Evaluation

Scenario 3

0 20 40 60 80 100
Training Iteration

15

20

25

30
R

ew
ar

d
- T

hr
ou

gh
pu

t [
M

bp
s]

PPO

Max
 W

eig
ht

Max
 CQI

0

10

20

30

Av
er

ag
e

Th
ro

ug
hp

ut
 [M

bp
s] Throughput Evaluation

Scenario 5

0 20 40 60 80 100
Training Iteration

24

25

26

27

28

29

30

R
ew

ar
d

- T
hr

ou
gh

pu
t [

M
bp

s]

PPO

Max
 W

eig
ht

Max
 CQI

0

10

20

30
Av

er
ag

e
Th

ro
ug

hp
ut

 [M
bp

s] Throughput Evaluation

Figure 16: Can RL train and evaluate on EdgeRIC emulator?

	Introduction
	Motivation for Real-Time RIC
	Related Work
	EdgeRIC Concept Architecture
	Disaggregated EdgeRIC Architecture
	EdgeRIC Functional Components
	EdgeRIC Emulator Module

	EdgeRIC Implementation
	EdgeRIC Execution Module
	Real-time Connectivity to RAN and messaging
	Cross-Layer Connectivity and Logging
	Integration with OpenAIGym

	EdgeRIC Emulator Module

	Case Study: An RL based scheduling App
	Training RL on emulator
	Evaluations on emulator
	Scalability Study

	EdgeRIC Evaluation
	Experimental Setup
	User Devices and Channel Traces
	Evaluation Scenarios

	Micro-benchmarks: Edge vs. Cloud
	Impact of RL on Micro-benchmarks
	Cross-Layer Optimization: Case Study

	Limitations and Future Work
	Appendix

