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Abstract

We present PUTNAMBENCH, a new multilingual benchmark for evaluating the
ability of neural theorem-provers to solve competition mathematics problems.
PUTNAMBENCH consists of 1697 hand-constructed formalizations of 640 theo-
rems sourced from the William Lowell Putnam Mathematical Competition, the
premier undergraduate-level mathematics competition in North America. All the
theorems have formalizations in Lean 4 and Isabelle; a substantial subset also has
Coq formalizations. Proving the theorems requires significant problem-solving
ability and proficiency in a broad range of topics taught in undergraduate math-
ematics courses. We use PUTNAMBENCH to evaluate several established neural
and symbolic theorem-provers. These approaches can only solve a handful of the
PUTNAMBENCH problems, establishing the benchmark as a difficult open chal-
lenge for research on neural theorem-proving. PUTNAMBENCH is available at
https://github.com/trishullab/PutnamBench.

1 Introduction

Automating mathematical reasoning is a longstanding goal in artificial intelligence (Newell et al.,
1957). A prominent line of work on the problem (Li et al., 2024) uses neural models to di-
rect theorem-proving in formal frameworks like Lean 4 (Moura and Ullrich, 2021), Isabelle
(Wenzel et al., 2008), and Coq (Huet et al., 1997). These frameworks can “execute” proofs like
code and offer execution feedback, which simplifies the search for correct proofs.

The design of quality benchmarks is a key challenge in this research area. The two most prominent
benchmarks for neural theorem-proving are MINIF2F (Zheng et al., 2021) and FIMO (Liu et al.,
2023). The former formalizes a mix of problems from high-school level courses and mathematics
competitions such as AIME, AMC, and IMO; the latter consists of a collection of IMO problems.
Both benchmarks have limitations. For example, MINIF2F contains many problems that can be
immediately solved using an SMT solver, and FIMO only targets the Lean 3 framework, which is no
longer actively maintained.

More generally, as large language models (LLMs) grow in importance as a tool for neural theorem-
proving (Li et al., 2024), preventing leakage between pretraining sets and evaluation sets is more
important than ever. This makes the continued supply of new benchmarks an important goal.

In this paper, we respond to this challenge with PUTNAMBENCH, a new hand-curated, multilin-
gual benchmark for neural theorem-provers. PUTNAMBENCH includes 1697 formalizations of 640
problems from the William Lowell Putnam Mathematical Competition, the premier college-level
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mathematics competition in the United States.* All our problems have Lean 4 (Moura and Ullrich,
2021) and Isabelle (Wenzel et al., 2008) formalizations; a substantial fraction have formalizations
in Coq (Huet et al., 1997) as well. The formalizations are all manually constructed and have been
carefully debugged. The benchmark also includes the original English-language problem statements
with permission from the Mathematical Association of America, which organizes the Putnam com-
petition.

One key benefit of PUTNAMBENCH is that Putnam competition problems require a broad base of
mathematical knowledge and skills. Because they target undergraduate students, they cover topics
such as analysis and abstract algebra that do not appear in the International Mathematical Olympiad
(IMO). At the same time, success in the two competitions is correlated — top performers on the
Putnam competition are often former IMO medalists as well. Hence, PUTNAMBENCH is well-
aligned with the IMO Grand Challenge (Challenge, 2019) and the AI Mathematical Olympiad (Prize,
2023), the latter of which offers a $10M prize fund for developing a system that can win a gold medal
at the IMO.

Another advantage is that PUTNAMBENCH is multilingual. Lean 4, Coq, and Isabelle are currently
the three most popular formal proof languages. However, theorem-proving benchmarks typically
only contain problems in a strict subset of these languages — for example, MINIF2F (Zheng et al.,
2021) does not include Coq problems, and FIMO (Liu et al., 2023) only targets Lean. PUTNAM-
BENCH is the first mathematics-competition benchmark to include problems in all three languages.

We use PUTNAMBENCH to evaluate several neural and symbolic approaches: Draft-Sketch-Prove
(Jiang et al., 2022b), COPRA (Thakur et al., 2024), GPT-4, Sledgehammer (Paulson and Blanchette,
2015), and Coqhammer (Czajka and Kaliszyk, 2018). Collectively, these methods can only solve a
handful of the PUTNAMBENCH problems, establishing PUTNAMBENCH as a hard open challenge
for the neural theorem-proving community.

2 Background

theorem putnam_1988_b1 :
∀ a ≥ 2, ∀ b ≥ 2, ∃ x y z : Z,
x > 0 ∧ y > 0 ∧ z > 0 ∧
a * b = x * y + x * z + y * z + 1 := by

intro a ha b hb
use a - 1, b - 1, 1
constructor
linarith
constructor
linarith
constructor
linarith
ring

Figure 1: A formalization of Putnam 1988 B1 in
Lean 4, which asserts that for all integers a, b ≥ 2,
there are positive integers x, y, z such that ab =
xy + xz + yz + 1. The formal proof begins by
introducing all relevant variables and hypotheses
with intro, then indicating the choice of x, y, z
with use, and afterwards proving all goals using
the automated tactics linarith and ring. This
proof was discovered through a few-shot invoca-
tion of GPT-4.

Formal Theorem-Proving. Formal proof
frameworks like Lean 4 (Moura and Ullrich,
2021), Coq (Huet et al., 1997), and Isabelle
(Wenzel et al., 2008) allow users to write
machine-verifiable proofs of mathematical
theorems. To create such a proof, one first
uses a framework-specific language to formally
state the target theorem. The mathematical
objects referenced in the theorem can be
imported from an existing repository or defined
by the user. During the proof process, the proof
framework maintains a state that includes
information about the parts of the proof that
remain to be completed. One can change this
state by executing a proof step. The user’s goal
is to write a sequence of proof steps (in the
framework’s language) that changes the proof
state to a special state “QED” in which there
are no unmet proof obligations.

Figure 1 illustrates a theorem and proof in the
Lean 4 framework.

The Putnam Competition. The William
Lowell Putnam Mathematical (Competition,
2024), organized by the Mathematical Associ-
ation of America (MAA), is the premier collegiate mathematics competition in North America.
Thousands of undergraduate students from universities across the United States and Canada take
the exam each year. The competition comprises two 3-hour-long sessions of six problems each,

*PUTNAMBENCH is available at https://github.com/trishullab/PutnamBench.
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Benchmark # Natural Language Lean Isabelle Coq Factored Solution

MINIF2F 488 ! !† !

PROOFNET 371 ! !† N/A
FIMO 149 ! !†

PUTNAMBENCH 640 ! ! ! ! !

Table 1: Comparison of existing formal theorem proving evaluation benchmarks. PUTNAMBENCH

exceeds prior benchmarks by providing support for all of Lean 4, Isabelle, and Coq, on a set of
difficult competition problems using undergraduate-level mathematics. For problems requiring a
numerical solution in addition to a proof, we factor the solution out of the theorem statement.

presented in approximately ascending order of difficulty within each session. While some problems
require competitors to furnish a concrete solution (such as a number, a set, or the truth value of a
given statement), all problems require a natural-language proof of correctness. The contest draws
from a wide variety of topics in the undergraduate curriculum, often using instances of ideas from
research-level mathematics.

3 PUTNAMBENCH

Category Total Quantity
Algebra 253
Analysis 226
Number Theory 107
Geometry 68
Linear Algebra 51
Abstract Algebra 28
Combinatorics 26
Probability 9
Set Theory 8

Table 2: Quantity by domain of PUT-
NAMBENCH problems. Our formal-
izations generally reflect the variety
of Putnam problems, though we can
only formalize few geometry and
probability problems due to limited
support for these topics in the re-
spective mathematical libraries.

PUTNAMBENCH is a multilingual evaluation benchmark con-
sisting of formalized problems from the Putnam competition.
PUTNAMBENCH is a manually produced benchmark, includ-
ing 640 formalizations in Lean 4 and Isabelle, and 417 for-
malizations in Coq. In aggregate, PUTNAMBENCH contains
1697 formalizations of Putnam competition problems. We
also incorporate the informal statements and numerical solu-
tions where applicable.

Now we elaborate on the main features of PUTNAMBENCH.

Diversity and Breadth. Compared to MINIF2F
(Zheng et al., 2021) and FIMO (Liu et al., 2023), which
generally rely on high-school mathematics, PUTNAMBENCH

incorporates a wider variety of problems which require defini-
tions of the standard undergraduate mathematics curriculum.
The PROOFNET benchmark (Azerbayev et al., 2023) also
sources problems from the undergraduate curriculum, but
these problems are generally from standard textbooks as
opposed to mathematical competitions. Putnam problems
often require definitions from multiple fields, which standard
textbooks do not necessarily target. Formalizations in PUTNAMBENCH include concepts from a
wide range of mathematical fields, including: (i) Analysis: Limits, integrals, derivatives, continuity;
(ii) Linear Algebra: Matrices, determinants, fields; (iii) Abstract Algebra: Rings, groups, magmas,
permutations; (iv) Algebra: Polynomials, inequalities, algebraic expressions; (v) Number Theory:
Primes, irrationality, base representations, divisors, palindromes; (vi) Geometry: Polygons, point
sets, line intersections, Euclidean distance; (vii) Set Theory & Combinatorics: Countability, power
sets, discrete structures, counting.

Multilinguality. PUTNAMBENCH contains formalizations of Putnam problems in Lean 4, Isabelle,
and Coq. The formalizations also include concepts defined in each proof assistant’s mathematical
repositories — notably, Mathlib, the HOL standard library, and Coquelicot (among various Coq
repositories). To the best of our knowledge, PUTNAMBENCH is the first undergraduate-level com-
petition benchmark for each of these languages. Furthermore, we are the first to produce a human
mathematics competition-style evaluation benchmark for Coq.

We hope that this contribution can enable Coq practitioners access to the rapidly-growing field of
machine learning for mathematics.

3



Generally, the formalizations of the problems are aligned in their structure, including hypothesis
naming and framing. Differences may arise according to the underlying foundations of each lan-
guage. We also note that the pre-defined mathematical theory in each language differs, which can
sometimes lead to difficulties formalizing certain problems.

Compared to the prior benchmarks MINIF2F, FIMO, and PROOFNET, PUTNAMBENCH is the first
to support Lean 4 on initial release †.

Factored Solutions. Roughly 60% of Putnam problems, in their natural language form, require
exhibiting a (closed-form) solution along with a proof of its correctness. Such problems do not assert
propositions, and hence are not immediately formalizable as they are not directly the statement of a
theorem. Prior benchmarks such as MINIF2F (Zheng et al., 2021) sidestep this issue by rewording
the problem statement to ask for a proof that the solution satisfies the constraints of the problem.
However, this reduction diminishes the overall difficulty of the problem, as producing a solution
can constitute the majority of the difficulty. To address this issue, we factor out solutions of such
problems from the formalized theorem statement. We include an example in Figure 2. In this way,
we provide two tasks for neural theorem proving:

• Task 1: Given the theorem statement, first identify the (closed-form) solution, and then provide
a proof of correctness by rewriting the solution into the theorem statement.

• Task 2: Given the theorem statement and solution, produce a proof of its correctness. This task
aligns with the current benchmarks.

Putnam 2008 B5. Find all continuously differ-
entiable functions f : R → R such that for every
rational number q, the number f(q) is rational and
has the same denominator as q.

abbrev solution : Set (R → R) :=
{fun (x : R) => x + n | n : Z} ∪
{fun (x : R) => -x + n | n : Z}
theorem putnam_2008_b5
(fqsat : (R → R) → Q → Prop :=

fun f q => ContDiff R 1 f ∧
(∃ p : Q, p = f q ∧ p.den = q.den))

(fsat : (R → R) → Prop :=
fun f => ∀ q : Q, fqsat f q)

: ∀ f : (R → R),
fsat f ↔ f ∈ solution := sorry

Figure 2: A formalization of Putnam 2008 B5 in Lean
4. As the problem requires exhibiting the set of func-
tions f satisfying the specified conditions, it is not di-
rectly the statement of a theorem. We formalize the
problem by instantiating a variable “solution” outside
of the theorem statement. In this way, a model can
either provide its own candidate, or use the correct so-
lution we provide and attempt to produce a proof of
correctness. Benchmarks such as MINIF2F and FIMO

only include formalizations with the solution written
into the theorem statement.

We note that the process of producing the
numerical solution may be highly corre-
lated with the proof of its correctness. In
this way, our formalizations can reflect
the true difficulty of the informal problem
statement.

Formalization effort and challenges. We
hand-crafted our benchmark over the
course of several months as a team of grad-
uate and undergraduate students with expe-
rience in both university mathematics and
formal proof assistants. We found that the
average time-to-formalize a single prob-
lem in one language was roughly 25 min-
utes. Each formalization was verified by a
second person at least once, and we mea-
sured that the verification of a single for-
malization took between 10 minutes, on
average. We acknowledge that the time-
to-formalize we report is higher than that
of MINIF2F; we believe this is largely due
to the increased complexity of the Putnam
problems, which oftentimes require defini-
tions we must locate in each language’s re-
spective mathematical libraries.

We first produced formalizations in Lean
4, and then proceeded with our formaliza-
tion effort in Isabelle and then Coq. Due to
differences in the underlying foundations
of each language, we found that formaliza-
tions in one language sometimes do not di-
rectly transfer to another; for example, Isabelle does not have a subtyping mechanism, which we

†MINIF2F, FIMO, and PROOFNET were originally released using Lean 3, and MINIF2F and FIMO

have been updated to include Lean 4 formalizations following community efforts. (Azerbayev et al., 2023;
Vishwakarma et al., 2024). To the best of our knowledge, no open-sourced Lean 4 version of FIMO currently
exists.
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made extensive use of in Lean 4. Formalizations in Coq have an added difficulty: Coq lacks an
expansive unified library such as Mathlib and the HOL Library, which we make extensive use of
in Lean 4 and Isabelle respectively. Our Coq formalizations rely on eight mathematics reposito-
ries: Stdlib, Stdpp, MathComp, MathComp-Analysis, Coquelicot, GeoCoq, and Coqtail (Mathcomp,
2015; mathcomp-analysis; Coquelicot, 2015; GeoCoq, 2015; Coqtail, 2017).

Some problems are not naturally amenable to formalization — for example, we found that while
formalizing problems involving probabilities is possible, such formalizations often require heavy
probability theory.

(a) theorem putnam_2006_b2
(n : N)
(npos : n > 0)
(X : Finset R)
(hXcard : X.card = n)
: (∃ S ⊆ X, S ̸= ∅ ∧ ∃ m : Z,

|m + Σ s in S, s| ≤ 1 / (n + 1))

(b) theorem putnam_2006_b2:
fixes n :: nat
and X :: "real set"
assumes npos: "n > 0"
and hXcard: "finite X ∧ card X = n"
shows "∃ S ⊆ X. (S ̸= {}) ∧ (∃ m :: int.

¦m + (Σ s ∈ S. s)¦ ≤ 1 / (n + 1))"

(c) Theorem putnam_2006_b2
(n : nat)
(npos : gt n 0)
(X : list R)
(hXcard : length X = n)
: exists (presS: R -> Prop) (m: Z) (S: list
R),
(neq (length S) 0) /\ (forall (x: R),

In x S <-> (In x X /\ presS x))
/\ (Rabs (IZR m + (fold_left Rplus S 0))

<= 1 / INR (n + 1)).

Figure 3: Formalizations of Putnam 2006 B2 in (a) Lean 4,
(b) Isabelle, (c) Coq. Putnam 2006 B2 asserts that given a
finite subset X ⊆ R with |X | = n > 0, there is a nonempty
subset S ⊆ X and an m ∈ Z such that |m +

∑

s∈S s| ≤
1

n+1 .

Similarly, support for problems in-
volving Euclidean geometry varies
across languages; in particular, Lean
4 does not yet have a sufficiently ex-
tensive library to make most geome-
try problems formalizable. By con-
trast, Coq has an extensive geometry
repository called GeoCoq, which we
utilize for our Coq formalizations.

Dataset Contamination. Our bench-
mark is unique compared to in-
formal benchmarks such as MATH
(Hendrycks et al., 2021) and GSM8K
(Cobbe et al., 2021) in the sense that
the target output has never been pro-
duced, hence avoiding direct contami-
nation. To the best of our knowledge,
we are the first to provide formaliza-
tions of a large collection of Putnam
problems in any of Lean, Isabelle,
and Coq. Since writing a formal
proof requires the formal theorem
statement, it is highly unlikely any
possible formal proof has been writ-
ten for any of our problems. We per-
formed a thorough investigation of
formal mathematics repositories for
each language for confirmation, find-
ing no aligned theorems and proofs
from the Putnam Competition. We do
not include any of the formal proofs
in our benchmark.

Furthermore, any proofs found by au-
tomated methods in our evaluations
are not included and are only men-
tioned in this article. Indirect con-
tamination can occur through transfer
from training on the informal proofs,
though producing proofs in formal proof environments still presents a major difficulty for all current
neural methods, as we find in Section 4.

Licensing and Rules of Engagement. PUTNAMBENCH is available under an Apache 2.0 license
for Lean 4 and Isabelle, and under an MIT license for Coq. We align the licenses with those of the
repositories we use for each language. With permission from the MAA, we include the informal
statements as sourced from the competition (Alexanderson et al., 1985; Kedlaya et al., 2002, 2020).
We host a public leaderboard at https://trishullab.github.io/PutnamBench/ and will readily accept
evaluation results from future works.
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PUTNAMBENCH: Lean

Method Success Rate

GPT-4 1/640
COPRA 1/640
ReProver (+r) 0/640
ReProver (−r) 0/640

PUTNAMBENCH: Isabelle

Method Success Rate

GPT-4 1/640
DSP 4/640
Sledgehammer 3/640

PUTNAMBENCH: Coq

Method Success Rate

GPT-4 1/417
COPRA 1/417
Tactician 0/417
CoqHammer 0/417

Table 3: Results of evaluations on PUTNAMBENCH in each language. We find that all tested method-
ologies perform poorly, solving at most a handful of problems. Notably, the only problem solved in
both Lean and Coq is Putnam 1988 B1, which is not solved by any method in Isabelle. ReProver,
our finetuned baseline for Lean, is unable to solve any problems with or without retrieval. Symbolic
automation proves to be powerful in Isabelle, with Sledgehammer solving the most problems than
GPT4 alone. DSP generates four successful proofs, two of which cannot be generated by Sledge-
hammer alone.

4 Experimental Evaluation

To understand the challenges that PUTNAMBENCH poses for state-of-the-art theorem-proving ap-
proaches, we attempt to solve its problems using a suite of such approaches. Given the relative
lack of tailored systems for multilingual theorem-proving, we run evaluations for each language
separately. Any method that is evaluated on multiple languages is based on off-the-shelf foundation
models.

Metrics. Our evaluation is based on the pass@n (Lample et al., 2022) metric. This metric measures
a prover’s ability to produce a successful proof, as determined by the formal proof environment,
given a budget of n proof attempts. In search-based methods (Thakur et al., 2024), each proof
attempt involves a distinct search that can query a neural model multiple times.

Models. For each of the languages, we perform evaluations using GPT-4 (OpenAI, 2023) ‡, a
highly capable foundation model. We run evaluations using in-context learning, appending several
examples of successful proofs of simple theorems in each language. For evaluations with Lean 4
approaches, we note that many approaches have targeted Lean 3, which is not backward-compatible
and no longer actively maintained. We evaluate COPRA (Thakur et al., 2024) on PUTNAMBENCH,
modifying the prompt examples of COPRA to enable search in Lean 4. Furthermore, we run eval-
uations LeanDojo’s retrieval-augmented prover REPROVER, a finetuned model designed to utilize
incorporate retrieved lemmas as part of the proof search. We also include evaluate with the retrieval
component held out.

For our Isabelle experiments, we run evaluations of Draft, Sketch, and Prove (DSP) (Jiang et al.,
2022b) using GPT-4 as the underlying foundation model, noting that many further works for
theorem-proving in Isabelle have extended on the DSP pipeline as we mention in Section 5. We
also run evaluations using stand-alone invocations to Sledgehammer, a powerful symbolic automa-
tion tool in Isabelle that relies on calls to external SMT solvers.

As for our Coq experiments, prior neural approaches for Coq have mostly targeted software verifi-
cation tasks, as opposed to competition mathematics. As a result, our Coq experiments use COPRA,
which also supports theorem-proving in Coq. We evaluate using the Tactician (Blaauwbroek et al.,
2020) platform with the locality sensitive hashing model configuration. We also run evaluations
using CoqHammer (Czajka and Kaliszyk, 2018), a tool similar to Isabelle’s Sledgehammer, which
makes calls to external constraint solvers.

4.1 Results

Lean 4. We prompt GPT-4 in a pass@10, setting temperature T = 0.7 and using several examples
of simple theorems and proofs, to generate a proof for each problem. The result of this experiment
yields a single successful proof across all 640 Lean formalizations. The problem (Putnam 1988 B1)
and the generated proof are given in Figure 1. In particular, Putnam 1988 B1 is solved on the first of
10 attempts. An example of a failure mode of GPT-4 is given in Figure 18.

‡We use GPT-4o for all our evaluations
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We also run evaluations with COPRA, using their default hyperparameters for search, performing
a pass@1, and allowing 60 queries to GPT-4. However, since COPRA was originally designed for
interaction with Lean 3, we make a small modification to its system prompt to enable search in Lean
4. The result of the step-wise proof search over all Lean 4 formalizations yields a correct proof
to one problem (1988 B1). We find that backtracking in the search was not required for this proof,
which was 10 lines long and was found at the 10th query. It is possible that affording COPRA further
queries to GPT-4 can yield more successful proofs, though it is not yet feasible to perform such an
experiment due to the cost of queries to GPT-4.

We found that, by default, GPT-4 produces proofs using Lean 3 syntax, which is not compatible with
Lean 4. Even when directed to produce outputs in Lean 4, GPT-4 typically continues to produce
outputs in Lean 3. Our prompt, which we include in Figure 16, elucidates some design differences
in Lean 4 to better enforce compliance with the Lean 4 syntax. However, we noticed many examples
where GPT-4 continues to output terms in Lean 3 syntax. One such example is given in Figure 17.

We run REPROVER using the standard search parameters used in LeanDojo (Yang et al., 2023). Our
evaluation yields no successfully proven problems, with and without the inclusion of the retrieval
module. We believe that Putnam 1988 B1, which the other methods solve, is not solved by RE-
PROVER as it requires an understanding that the choice of x, y, z = 1, a− 1, b − 1 will eventually
satisfy the conditions of the goal after simplification. Smaller models, like the one driving RE-
PROVER’s search, may not be as readily capable of such understanding.

Isabelle. We run GPT-4 using the same configuration, with modified prompts for Isabelle, on our
Isabelle formalizations. We find that GPT-4 can produce a single successful proof to Putnam 1986
B1, a geometric problem stated algebraically. We include the statement and its proof as generated
by GPT-4 in Figure 19.

Putnam 2001 A1. Consider a set S and a binary op-
eration ⋆, i.e., for each a, b ∈ S, a ⋆ b ∈ S. Assume
(a⋆b)⋆a = b for all a, b ∈ S. Prove that a⋆(b⋆a) = b
for all a, b ∈ S.

theorem putnam_2001_a1:
fixes op :: "'a ⇒ 'a ⇒ 'a"
assumes hop : "∀a b :: 'a.

op (op a b) a = b"
shows "∀a b :: 'a. op a (op b a) = b"

proof -
{

fix a b :: 'a
have "op (op a (op b a)) a = op b a" using
hop by simp
then have "op a (op b a) = b" using hop by
metis

}
then show ?thesis by simp

qed

Figure 4: A formalization of Putnam 2001 A1 in Isabelle
and the corresponding proof discovered by our evaluation
with DSP. Sledgehammer alone can also produce a success-
ful proof to this theorem.

DSP represents a neurosymbolic
methodology which has seen signifi-
cant application for theorem-proving
in MINIF2F. We run DSP with
pass@10, using temperature T =
0.1 and GPT-4 as the underlying lan-
guage model. Our evaluation yields
four successful proofs: of Putnam
2001 A1 and 1971 B1, two problems
involving magmas (sets with a binary
operation), one of Putnam 1995 A1,
a problem involving a closed-under-
multiplication subset of the reals, and
Putnam 1986 B1. In particular, Put-
nam 1995 A1 and 1986 B1 cannot be
solved by Sledgehammer alone. The
generated proof of Putnam 1995 A1
is included in Figure 4.

We run a baseline using Sledgeham-
mer, a powerful automation tool in
Isabelle which makes calls to exter-
nal SMT solvers to prove a given
goal. With a set timeout of t = 120
seconds, we run Sledgehammer on
each Isabelle formalization. The re-
sult of this evaluation is 3 success-
fully proven problems: Putnam 1971
B1, 2001 A1, and 2012 A2. Notably, all of these problems are statements about sets with binary
operations. We include the statements of 1971 B1 and 2012 A2 in Figure 22.

Coq. We run GPT-4 with a Coq-based prompt on our Coq formalizations using the same config-
uration as in Lean and Isabelle. The result of the experiment is 1 solved problem, namely Putnam
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1988 B1, which was also solved in Lean 4. The proof, which we include in Figure 14, generally
follows the same structure as the proof in Lean.

An evaluation with COPRA, in a pass@1-with-60-queries and T = 0.0 also yields a successful
proof only for Putnam 1988 B1 which we include in Figure 14. In this case, backtracking was
crucial for proof search on this problem. The crucial step in 1988 B1 is the choice of x, y, z once a
and b have been introduced. Initially, COPRA predicts the erroneous choice x, y, z = 1, 1, ab − 1
and eventually reverts this choice using backtracking. Afterwards, COPRA predicts a correct choice
x, y, z = 1, a− 1, b− 1 and proceeds with the proof.

We run Tactician using the locality sensitive hashing model with a timeout of t = 600s per problem.
Our evaluation yields no successfully proven problems. While showing favorable performance on
theorems drawn from Coq’s standard library (Zhang et al., 2021), such methodologies do not as of
yet scale to challenging olympiad-style problems.

We run CoqHammer with 8 parallel threads using an ATP timeout of 100 seconds, proof reconstruc-
tion timeout of 15 seconds, and sauto timeout of 5 seconds, for a total of 120 seconds allocated for
each formalization. The evaluation yields no successful proofs — indicating that symbolic tools in
Coq are not yet capable of handling PUTNAMBENCH problems. It is not surprising that CoqHam-
mer does not match the performance of Sledgehammer even though they rely on the same external
solvers. The underlying logical system of Coq is more complex than that of Isabelle and is hence
less amenable to automation.

4.2 General Analysis

Aggregating over all experiments performed in all languages, we find that a total of 6 problems in
PUTNAMBENCH are successfully proven. A majority of these come from evaluations in Isabelle,
particularly with strong contributions from Sledgehammer. Sledgehammer can solve all three prob-
lems involving magmas which appear in our benchmark but fails to produce successful proofs for
any other formalization. DSP solves an additional two problems and relies heavily on Sledgeham-
mer to fill in the proofs of intermediate steps. The single problem solved in Lean and Coq also
makes use of automated tactics like linarith and lia, and requires only a single crucial step.

Hence, we find that a few PUTNAMBENCH problems are not entirely intractable using current meth-
ods. However, anecdotally, these problems are among the easiest ever included in the Putnam compe-
tition. All admit a very short natural language proof and do not require reasoning about particularly
complicated objects. We believe that significant advancements in automated mathematical reasoning
are required to make progress on PUTNAMBENCH.

5 Related Work

Formal Benchmarks. Several evaluation benchmarks for formal mathematics have been developed
in recent years. MINIF2F (Zheng et al., 2021) is a formal-to-formal benchmark of competition
problems, sourced from high school competitions such as the AMC, AIME, and IMO. MINIF2F
is a multilingual benchmark, comprising of 488 problems each formalized in Lean 3, Metamath,
Isabelle and HOL Light. We chose not to include formalizations in Metamath and HOL Light as
they have not been the focus of attention for neural theorem-proving. A similar competition-style
benchmark is FIMO (Liu et al., 2023), which contains 149 Lean 3 formalizations of IMO shortlist
problems produced using a back-translation procedure with GPT-4. The automatically-generated
formalizations are then manually verified. Both benchmarks are designed to measure certifying the
solution to the informal problem statement when one exists. Compfiles (2024) is a collection of
171 Lean 4 formalizations of competition problems, predominantly from the IMO and USAMO,
often accompanied by a formal proof, which has not seen use in benchmarking automated theorem-
provers. ProofNet (Azerbayev et al., 2023) introduced a benchmark of 371 exercises, formalized
in Lean 3, from standard textbooks in the undergraduate mathematics curriculum. While largely
not competition-based, problems in ProofNet draw from a broader library of concepts than miniF2F
and FIMO, which rely only on high-school mathematics. LeanDojo (Yang et al., 2023) introduces a
dataset of formal mathematics and proofs derived from Lean’s mathlib library (mathlib Community,
2020), and trains a retrieval-augmented model towards generating proofs on their held-out test set.
ProverBot9001 (Sanchez-Stern et al., 2020) introduced a dataset for theorems and proofs written in
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Coq derived from CompCert (Leroy, 2009), a formally verified C compiler. PISA (Jiang et al., 2021)
is a dataset derived from Isabelle’s Archive of Formal Proofs (AFP), which contains theorems and
proofs from general mathematics as opposed to specifically competition problems.

Informal Benchmarks. There are also several popular benchmarks for informal (natural-language)
mathematical reasoning. MATH (Hendrycks et al., 2021) is a collection of 12,500 mathematics
problems, in natural language only, sourced from various high school competitions additionally sup-
plied with step-by-step informal proofs. GSM8K (Cobbe et al., 2021) is a collection of 8,500 grade
school mathematics problems, intended to benchmark natural language reasoning for mathematics-
style problems. While benefiting from the abundance of natural language data, these benchmarks
fall short, since in natural language, there is no automatic mechanism for certifiable verification of
the reasoning path which yielded the numerical answer. For this reason, metrics for success on these
benchmarks usually rely on exact-answer match, because verifying reasoning paths is imprecise and
is best done by human experts. By contrast, theorem proving in formal proof assistants comes with
a high-confidence signal for correctness of the reasoning path, or proof, of a theorem.

Methods for Formal Theorem-Proving. Significant effort has been spent on developing automatic
theorem-provers for formal mathematics (Li et al., 2024). Most recent efforts train a neural module
to perform proof-step prediction, which is then wrapped in a search mechanism to locate a valid
proof. GPT-f (Polu and Sutskever, 2020) trains a transformer-based architecture on data derived
from the Metamath library (Megill and Wheeler, 2019) for proof synthesis. PACT expands on GPT-
f by incorporating auxiliary training tasks for the neural module towards theorem-proving in Lean
3. FMSCL (Polu et al., 2022) alternates proof-search and training to finetune their neural model
based on proofs found during search. HTPS (Lample et al., 2022) uses a transformer-based neural
module in an online, MCTS-inspired proof search in Lean 3 and Metamath. COPRA (Thakur et al.,
2024) uses GPT-4 supplied with error feedback from the environment and lemmas from a retrieval
mechanism for an agentic proof-search in Lean 3 and Coq. LLEMMA (Azerbayev et al., 2024)
continues pretraining of Code Llama on a mathematics-based corpus dubbed Proof-Pile-2, and uses
their learned model for formal proof search in Lean 4. DeepSeek-Prover Xin et al. (2024) produces
synthetic Lean data en-masse for training their prover model. AlphaGeometry (Trinh et al., 2024)
targets IMO problems in a geometry-specific proof assistant language using an interleaving search,
where a neural module synthesizes auxiliary constructions and a symbolic engine produces deduc-
tive closures.

The Isabelle proof assistant (Paulson, 1994), given its declarative nature and powerful symbolic
automation, has too been the focus of much attention for neural theorem proving. Isabelle features
Sledgehammer (Paulson and Blanchette, 2015), an automated reasoning tool which calls external
automated theorem provers (ATPs) for proof synthesis. Draft, Sketch, Prove (DSP) (Jiang et al.,
2022b) uses a high-caliber LLM to generate natural language proofs and converts them into formal
sketches in Isabelle, whose gaps are then filled using Sledgehammer. Zhao et al. (2023) employed a
diffusion model to predict an optimal ordering of the few-shot examples provided to the LLM in the
DSP pipeline. Lyra (Zheng et al., 2023) utilized error-feedback from Isabelle’s execution to modify
holes in the sketch which were too difficult for the symbolic prover. POETRY (Wang et al., 2024)
leverages recursion for theorem-proving and trains a neural module to produce proof sketches, as
opposed to using in-context learning with an LLM. LEGO-Prover (Wang et al., 2023) extends the
pipeline by incorporating a skill library which grows throughout the proof search task. Separate from
approaches utilizing natural language proofs, Thor (Jiang et al., 2022a) trains a transformer-based
architecture to predict successful invocations of Sledgehammer, along with the usual proof-step
objective. Baldur (First et al., 2023) explored repairing erroneous proofs in Isabelle through the use
of LLMs.

The Coq interactive theorem prover has seen use in both software verification and general math-
ematics. Famously, mechanized proofs of the Four Colour Theorem (Robertson et al., 1997) and
the Feit-Thompson theorem (Gonthier et al., 2013a) were produced in Coq. Similarly, numerous
software verification projects have been undertaken in Coq, such as CompCert (a formally veri-
fied C compiler) and Verdi (Gonthier et al., 2013b) (a framework for verifying distributed systems
protocols). ASTactic (Yang and Deng, 2019) trained a neural module involving recurrent networks
and attention on data collected from various Coq repositories. Proverbot9001 (Sanchez-Stern et al.,
2020) targeted proof synthesis on a set of held-out theorems from the CompCert project. COPRA
(Thakur et al., 2024) also evaluates on this CompCert-based task using their multilingual approach.
Tactician (Blaauwbroek et al., 2020) develops a platform for proof automation for the Coq practi-
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tioner, with support for experimenting with new machine learning techniques for tactic prediction
and proof search. Zhang et al. (2021) explores several online learning techniques inside Tactician,
including an approximate k-nearest neighbors method via locality sensitive hashing which we use
for our evaluation. Graph2Tac (Blaauwbroek et al., 2024) uses graph neural networks for learning
online hierarchical representations of new theorems and definitions, and is used for proof search
within Tactician.

6 Conclusion

We presented PUTNAMBENCH, a benchmark for neural theorem-proving consisting of formaliza-
tions of Putnam competition problems. A distinctive feature of PUTNAMBENCH is that it spans a
broad range of undergraduate-level mathematical topics, including algebra, analysis, and number
theory. Another unique benefit is that it includes problems in Lean 4, Isabelle, and Coq, the three
most popular formal proof frameworks.

As our experiments show, PUTNAMBENCH is a challenging benchmark: all current theorem-proving
approaches fail to solve more than a handful of its problems. We believe that these failures include
two root causes: (i) While current theorem-provers can effectively stitch together standard proof
steps well-represented in the training corpus, they often fail at synthesizing new lemmas and or-
chestrating these lemmas into intricate proofs. (ii) Current methods often fail to leverage the deep
knowledge available in mathematics repositories. Developing a new generation of neural theorem-
provers in which these weaknesses are at least partly addressed is an exciting direction of future
research.
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Miłoś, Yuhuai Wu, and Mateja Jamnik. Thor: Wielding hammers to integrate language models
and automated theorem provers, 2022a.

Albert Q Jiang, Sean Welleck, Jin Peng Zhou, Wenda Li, Jiacheng Liu, Mateja Jamnik, Timothée
Lacroix, Yuhuai Wu, and Guillaume Lample. Draft, sketch, and prove: Guiding formal theorem
provers with informal proofs. arXiv preprint arXiv:2210.12283, 2022b.

Albert Qiaochu Jiang, Wenda Li, Jesse Michael Han, and Yuhuai Wu. Lisa: Language models of
isabelle proofs, 2021.

K.S. Kedlaya, B. Poonen, R. Vakil, and Mathematical Association of America. The William Lowell
Putnam Mathematical Competition 1985-2000: Problems, Solutions and Commentary. MAA
Problem Book Series. Mathematical Association of America, 2002. ISBN 9780883858073. URL
https://books.google.com/books?id=AA-lOA1nPDcC.

K.S. Kedlaya, D.M. Kane, J.M. Kane, and E.M. O’Dorney. The William Lowell Put-
nam Mathematical Competition 2001–2016: Problems, Solutions, and Commentary. Prob-
lem Books. American Mathematical Society, 2020. ISBN 9781470454272. URL
https://books.google.com/books?id=QwGWzQEACAAJ.

11

https://maa.org/putnam-2/
https://github.com/dwrensha/compfiles
https://github.com/whonore/Coqtail
https://github.com/thery/coquelicot
https://github.com/GeoCoq/GeoCoq
https://books.google.com/books?id=AA-lOA1nPDcC
https://books.google.com/books?id=QwGWzQEACAAJ


Guillaume Lample, Timothee Lacroix, Marie-Anne Lachaux, Aurelien Rodriguez, Amaury Hayat,
Thibaut Lavril, Gabriel Ebner, and Xavier Martinet. Hypertree proof search for neural theorem
proving. Advances in Neural Information Processing Systems, 35:26337–26349, 2022.

Xavier Leroy. Formal verification of a realistic compiler. Commun. ACM, 52(7):
107–115, jul 2009. ISSN 0001-0782. doi: 10.1145/1538788.1538814. URL
https://doi.org/10.1145/1538788.1538814.

Zhaoyu Li, Jialiang Sun, Logan Murphy, Qidong Su, Zenan Li, Xian Zhang, Kaiyu Yang, and Xujie
Si. A survey on deep learning for theorem proving, 2024.

Chengwu Liu, Jianhao Shen, Huajian Xin, Zhengying Liu, Ye Yuan, Haiming Wang, Wei Ju,
Chuanyang Zheng, Yichun Yin, Lin Li, Ming Zhang, and Qun Liu. Fimo: A challenge formal
dataset for automated theorem proving, 2023.

Mathcomp. GitHub - math-comp/math-comp: Mathematical Components — github.com.
https://github.com/math-comp/math-comp, 2015. [Accessed 01-06-2024].

mathcomp-analysis. GitHub - math-comp/analysis: Mathematical Components compliant Analysis
Library — github.com. https://github.com/math-comp/analysis, 2017. [Accessed 05-06-
2024].

The mathlib Community. The lean mathematical library. In Proceedings of the 9th ACM SIGPLAN
International Conference on Certified Programs and Proofs, POPL ’20. ACM, January 2020. doi:
10.1145/3372885.3373824. URL http://dx.doi.org/10.1145/3372885.3373824.

Norman D. Megill and David A. Wheeler. Metamath: A Computer Language for
Pure Mathematics, 2019. URL http://us.metamath.org/downloads/metamath.pdf.
http://us.metamath.org/downloads/metamath.pdf.

Leonardo de Moura and Sebastian Ullrich. The lean 4 theorem prover and programming language.
In Automated Deduction–CADE 28: 28th International Conference on Automated Deduction,
Virtual Event, July 12–15, 2021, Proceedings 28, pages 625–635. Springer, 2021.

Allen Newell, John Clifford Shaw, and Herbert A Simon. Empirical explorations of the logic theory
machine: a case study in heuristic. In Papers presented at the February 26-28, 1957, western
joint computer conference: Techniques for reliability, pages 218–230, 1957.

OpenAI. Gpt-4 technical report, 2023.

Lawrence Paulson and Jasmin Blanchette. Three years of experience with sledgehammer, a practical
link between automatic and interactive theorem provers, 02 2015.

Lawrence C Paulson. Isabelle: A generic theorem prover. Springer, 1994.

Stanislas Polu and Ilya Sutskever. Generative language modeling for automated theorem proving.
arXiv preprint arXiv:2009.03393, 2020.

Stanislas Polu, Jesse Michael Han, Kunhao Zheng, Mantas Baksys, Igor Babuschkin, and Ilya
Sutskever. Formal mathematics statement curriculum learning, 2022.

Prize. AIMO Prize — aimoprize.com. https://aimoprize.com/, 2023. [Accessed 01-06-2024].

Neil Robertson, Daniel Sanders, Paul Seymour, and Robin Thomas. The four-
colour theorem. Journal of Combinatorial Theory, Series B, 70(1):2–44,
1997. ISSN 0095-8956. doi: https://doi.org/10.1006/jctb.1997.1750. URL
https://www.sciencedirect.com/science/article/pii/S0095895697917500.

Alex Sanchez-Stern, Yousef Alhessi, Lawrence Saul, and Sorin Lerner. Generating correctness
proofs with neural networks. In Proceedings of the 4th ACM SIGPLAN International Workshop
on Machine Learning and Programming Languages, pages 1–10, 2020.

Amitayush Thakur, George Tsoukalas, Yeming Wen, Jimmy Xin, and Swarat Chaudhuri. An In-
Context Learning Agent for Formal Theorem-Proving, 2024.

12

https://doi.org/10.1145/1538788.1538814
https://github.com/math-comp/math-comp
https://github.com/math-comp/analysis
http://dx.doi.org/10.1145/3372885.3373824
http://us.metamath.org/downloads/metamath.pdf
https://aimoprize.com/
https://www.sciencedirect.com/science/article/pii/S0095895697917500


Trieu H Trinh, Yuhuai Wu, Quoc V Le, He He, and Thang Luong. Solving olympiad geometry
without human demonstrations. Nature, 625(7995):476–482, 2024.

Rahul Vishwakarma, Pietro Monticone, and Abhijit Niser. GitHub -
rahul3613/ProofNet-lean4: ProofNet dataset ported into Lean 4 — github.com.
https://github.com/rahul3613/ProofNet-lean4, 2024. [Accessed 01-06-2024].

Haiming Wang, Huajian Xin, Chuanyang Zheng, Lin Li, Zhengying Liu, Qingxing Cao, Yinya
Huang, Jing Xiong, Han Shi, Enze Xie, Jian Yin, Zhenguo Li, Heng Liao, and Xiaodan Liang.
Lego-prover: Neural theorem proving with growing libraries, 2023.

Haiming Wang, Huajian Xin, Zhengying Liu, Wenda Li, Yinya Huang, Jianqiao Lu, Zhicheng Yang,
Jing Tang, Jian Yin, Zhenguo Li, and Xiaodan Liang. Proving theorems recursively, 2024.

Makarius Wenzel, Lawrence C Paulson, and Tobias Nipkow. The isabelle framework. In Theo-
rem Proving in Higher Order Logics: 21st International Conference, TPHOLs 2008, Montreal,
Canada, August 18-21, 2008. Proceedings 21, pages 33–38. Springer, 2008.

Huajian Xin, Daya Guo, Zhihong Shao, Zhizhou Ren, Qihao Zhu, Bo Liu, Chong Ruan, Wenda Li,
and Xiaodan Liang. Deepseek-prover: Advancing theorem proving in llms through large-scale
synthetic data, 2024.

Kaiyu Yang and Jia Deng. Learning to prove theorems via interacting with proof assistants. In
International Conference on Machine Learning, pages 6984–6994. PMLR, 2019.

Kaiyu Yang, Aidan M Swope, Alex Gu, Rahul Chalamala, Peiyang Song, Shixing Yu, Saad Godil,
Ryan Prenger, and Anima Anandkumar. Leandojo: Theorem proving with retrieval-augmented
language models. arXiv preprint arXiv:2306.15626, 2023.

Liao Zhang, Lasse Blaauwbroek, Bartosz Piotrowski, Prokop Černý, Cezary Kaliszyk, and
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Section putnam_2009_b1.
Require Import List QArith Znumtheory Reals.
Open Scope Q.
Theorem putnam_2009_b1:

let fix factl (l : list nat) : list nat :=
match l with
| nil => nil
| h :: t => fact h :: t end in

forall (q: Q), q > 0 ->
exists (n d: list nat), (forall x, (In x n \/ In x d)-> prime (Z.of_nat x)) /\
inject_Z (Z.of_nat (fold_left Nat.mul (factl n) 1%nat)) / inject_Z (Z.of_nat (
fold_left Nat.mul (factl d) 1%nat)) = q.

Proof. Admitted.
End putnam_2009_b1.

Figure 5: A formalization of Putnam 2009 B1 in Coq. The conversion operators present cast between
the rationals, integers, reals, and natural numbers.

A Appendix

A.1 Formalization difficulties in Coq

In the Coq Standard Library, operations and definitions for numbers are split across modules. The
classical reals are defined in Coq.Reals.Raxioms, the integers are defined in Coq.ZArith.BinInt, and
the natural numbers are defined in Coq.Init.Datatypes and Coq.Numbers.BinNums. The last two
modules are distinct to reflect the two different constructions of natural numbers, one in base 10 and
one in binary. The rational numbers are defined in Coq.QArith.QArith_base and the Positive type is
defined in Coq.Numbers.BinNums. Unlike the previous binary number definition, the Positive type
excludes the number zero.

Formalizing a problem may require switching between these various types using an inbuilt set of
conversions, as seen in Figure 5. For example, comparing an integer with a real number may take
the form of r = IZR i, where r is a real number and i is an integer, with the comparison being
done in the Reals scope. These additional casting operations can introduce additional complexity in
our formalizations. Figure 24 illustrates the usage of various casting operations.

Mathcomp and GeoCoq are extension libraries for the Coq proof assistant. Mathcomp is a theory-
based library in that it contains high-level structures for algebra and data structures. In order to
extend its functionality, the developers have created a refinement library called CoqEAL, which
contains a framework compatible with other representations like the numerical types found in the
Coq Standard Library. While there has been substantial work on these refinements, to the best of
our knowledge, it is currently not possible to instantiate matrices or groups of real type.

GeoCoq is a library built for geometry that operates off Tarski’s Axioms. Many problems have been
formalized using the vast amount of theorems based off these axioms. However, GeoCoq’s inbuilt
numbers (a field F) lacks compatibility with the numerical representation of Coq Reals. As such,
numerical expressions and computations using concrete numbers like 16 and 97 are not natively ac-
commodated within GeoCoq’s framework. This limitation impacts our ability to represent numbers
in Coq formalizations.
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Putnam 2001 B4. Let S denote the set of rational numbers different from {−1, 0, 1}. Define
f : S → S by f(x) = x− 1/x. Prove or disprove that

∞
⋂

n=1

f (n)(S) = ∅,

where f (n) denotes f composed with itself n times.

abbrev putnam_2001_b4_solution : Prop := True
theorem putnam_2001_b4

(S : Set Q)
(hS : S = univ \ {-1, 0, 1})
(f : S → S)
(hf : ∀ x : S, f x = x - 1 / (x : Q))
: ∩ n ∈ Ici 1, f^[n] '' univ = ∅ ↔ putnam_2001_b4_solution
:= sorry

Figure 6: A formalization of Putnam 2001 B4 in Lean 4. As the problem requires deciding whether
the infinite intersection is empty, it is not directly the statement of a theorem. We consider the
associated “solution” of this problem to be a boolean value, and factor it out from the theorem
statement. sorry is the placeholder keyword for Lean.

Putnam 2020 A3. Let a0 = π/2, and let an = sin(an−1) for n ≥ 1. Determine whether

∞
∑

n=1

a2n

converges.

abbrev solution : Prop := False
theorem putnam_2020_a3

(a : N → R)
(ha0 : a 0 = Real.pi / 2)
(ha : ∀ n : N, n ≥ 1 → a n = Real.sin (a (n - 1)))
: (∃ L : R, Tendsto (fun m : N => Σ n : Icc 1 m, (a n)^2) atTop (N L))

↔ putnam_2020_a3_solution
:= sorry

Figure 7: A formalization of Putnam 2020 A3 in Lean 4. As the problem requires deciding whether
the series converges, it is not directly the statement of a theorem. We consider the associated “solu-
tion” of this problem to be a boolean value, and factor it out from the theorem statement.
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Putnam 1997 A4. Let G be a group with identity e and φ : G → G a function such that

φ(g1)φ(g2)φ(g3) = φ(h1)φ(h2)φ(h3)

whenever g1g2g3 = e = h1h2h3. Prove that there exists an element a ∈ G such that ψ(x) =
aφ(x) is a homomorphism.

theorem putnam_1997_a4
(G : Type*)
[Group G]
(ϕ : G → G)
(hϕ : ∀ g1 g2 g3 h1 h2 h3 : G, (g1 * g2 * g3 = 1 ∧ h1 * h2 * h3 = 1)
→ ϕ g1 * ϕ g2 * ϕ g3 = ϕ h1 * ϕ h2 * ϕ h3)
: ∃ a : G, let ψ := fun g => a * ϕ g; ∀ x y : G, ψ (x * y) = ψ x * ψ y
:= sorry

Figure 8: A formalization of Putnam 1997 A4, which requires knowledge of group theory, in Lean
4. The informal statement is slightly underspecified - g1, g2, g3, h1, h2, h3 are not explicitly defined
to be in G. To produce the formalization, we must be specific about the type of gi, hi.

Putnam 2018 B1. Let P be the set of vectors defined by

P =

{(

a
b

)
∣

∣

∣

∣

0 ≤ a ≤ 2, 0 ≤ b ≤ 100, and a, b ∈ Z

}

Find all v ∈ P such that the set P\{v} obtained by omitting vectorv fromP can be partitioned
into two sets of equal size and equal sum.

abbrev putnam_2018_b1_solution : Set (Vector Z 2) :=
{v : Vector Z 2 | ∃ b : Z, 0 ≤ b ∧ b ≤ 100 ∧ Even b ∧ v.toList = [1, b]}

theorem putnam_2018_b1
(P : Finset (Vector Z 2))
(v : Vector Z 2)
(vinP : Prop)
(Pvdiff : Finset (Vector Z 2))
(Pvpart : Prop)
(hP : P =

{v' : Vector Z 2 | 0 ≤ v'[0] ∧ v'[0] ≤ 2 ∧ 0 ≤ v'[1] ∧ v'[1] ≤ 100})
(hvinP : vinP = (v ∈ P))
(hPvdiff : Pvdiff = P \ ({v} : Finset (Vector Z 2)))
(hPvpart : Pvpart = (∃ Q R : Finset (Vector Z 2),

(Q ∪ R = Pvdiff) ∧ (Q ∩ R = ∅) ∧ (Q.card = R.card) ∧
(Σ q in Q, q[0] = Σ r in R, r[0]) ∧ (Σ q in Q, q[1] = Σ r in R, r[1])))

: (vinP ∧ Pvpart) ↔ v ∈ putnam_2018_b1_solution := sorry

Figure 9: A formalization of Putnam 2018 B1, which requires the Vector class from mathlib4.
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Putnam 1992 B6. Let M be a set of real n× n matrices such that

1. I ∈ M, where I is the n× n identity matrix;

2. if A ∈ M and B ∈ M, then exactly one of AB ∈ M and −AB ∈ M holds;

3. if A ∈ M and B ∈ M, then either AB = BA or AB = −BA;

4. if A ∈ M and A ̸= I , there is at least one B ∈ M such that AB = −BA.

Prove that M contains at most n2 matrices.

theorem putnam_1992_b6:
fixes n :: nat
and M :: "(real^'n^'n) set"

assumes npos: "n > 0"
and pncard: "CARD('n) = n"
and h1: "mat 1 ∈ M"
and h2: "∀A∈M. ∀B∈M. (A**B ∈ M) ̸= (-A**B ∈ M)"
and h3: "∀A∈M. ∀B∈M. (A**B = B**A) ∨ (A**B = -B**A)"
and h4: "∀A∈M. (A ̸= mat 1 → (∃B∈M. A**B = -B**A))"

shows "card M ≤ n^2"
sorry

Figure 10: An Isabelle formalization of Putnam 1992 B6.

Putnam 2012 A3. Let f : [−1, 1] → R be a continuous function such that

1. f(x) = 2−x2

2 f( x2

2−x2 ) for every x in [−1, 1],

2. f(0) = 1, and

3. limx→1−
f(x)
√
1−x

exists and is finite.

Prove that f is unique, and express f(x) in closed form.

definition putnam_2012_a3_solution :: "real ⇒ real" where
"putnam_2012_a3_solution ≡ (λx::real. sqrt (1 - x^2))"

theorem putnam_2012_a3:
fixes S :: "real set"
and hf :: "(real ⇒ real) ⇒ bool"
defines "S ≡ {-1..1}"
and "hf ≡ (λf::real⇒real. continuous_on S f ∧
(∀x∈S. f x = ((2 - x^2)/2)*f (x^2/(2 - x^2))) ∧ f 0 = 1 ∧
(∃y::real. filterlim (λx::real. (f x)/sqrt (1 - x)) (nhds y) (at_left 1)))"

shows "hf putnam_2012_a3_solution ∧
(∀f::real⇒real. hf f → (∀x∈S. f x = putnam_2012_a3_solution x))"

sorry

Figure 11: An Isabelle formalization of Putnam 2012 A3. The mechanism for factoring the solution
out of the theorem statement is similar to that of Lean.
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Putnam 1980 A5. Let P (t) be a nonconstant polynomial with real coefficients. Prove that the
system of simultaneous equations

0 =

∫ x

0
P (t) sin tdt =

∫ x

0
P (t) cos tdt

has only finitely many real solutions x.

Theorem putnam_1980_a5
(n : nat)
(npos : gt n 0)
(coeff : nat -> R)
(hcoeff : coeff n <> 0)
(p : R -> R := fun x => sum_n (fun i => coeff i * x ^ i) (S n))
(h1 : nat -> Prop := fun a => RInt (fun x => p x * sin x) 0 (INR a) = 0)
(h2 : nat -> Prop := fun a => RInt (fun x => p x * cos x) 0 (INR a) = 0)
: exists (m: nat), forall (b: nat), h1 b /\ h2 b -> lt b m.

Proof. Admitted.

Figure 12: A Coq formalization of Putnam 1980 A5. This formalization is done using Coquelicot, a
Coq repository outside of the standard library. The Coq equivalent of sorry is Admitted.

Putnam 2017 B2. Suppose that a positive integer N can be expressed as the sum of k consec-
utive positive integers

N = a+ (a+ 1) + (a+ 2) + · · ·+ (a+ k − 1)

for k = 2017 but for no other values of k > 1. Considering all positive integers N with this
property, what is the smallest positive integer a that occurs in any of these expressions?

Definition putnam_2017_b2_solution := 16.
Theorem putnam_2017_b2

(mina : nat)
(posMin : mina > 0)
(A : nat -> nat -> nat := fun a k => Z.to_nat (floor (sum_n (fun i => Raxioms.
INR (a + (i + 1))) k)))
(p : nat -> nat -> Prop := fun N k => exists (a: nat), a > 0 /\ A a k = N)
(q : nat -> Prop := fun N => p N 2017 /\ forall (k: nat), k > 1 -> k <> 2017 ->
~ p N k)

(hmina : q (A mina 2017))
(hminalb : (forall (a: nat), a > 0 /\ q (A a 2017) -> mina <= a))
: mina = putnam_2017_b2_solution.

Proof. Admitted.

Figure 13: A Coq formalization of Putnam 2017 B2. As the problem requires a numerical witness,
we factor that out using Coq’s syntax for making definitions.
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Putnam 1988 B1. A composite is a product ab with a and b not necessarily distinct integers
{2, 3, 4, . . .}. Show that every composite is expressible as xy+xz+yz+1with x, y, z positive
integers.

Require Import ZArith Znumtheory Lia.
Open Scope Z.
Theorem putnam_1988_b1:

forall (a : Z), a >= 2 ->
forall (b : Z), b >= 2 ->
exists (x y z: Z), x > 0 /\ y > 0 /\ z > 0 /\
a * b = x * y + y * z + z * x + 1.

Proof.
intros a Ha b Hb.
exists 1, (a - 1), (b - 1).
split.
- lia.
- split.
+ lia.
+ split.
* lia.

Qed.

Figure 14: A Coq proof of Putnam 1988 B1 generated through a few-shot invocation of GPT-4. The
proof is similar to that of the Lean version, also discovered by GPT-4. The main difficulty of the
problem is to choose the values of x, y, z given a, b. Once correctly supplied, the remainder of the
proof is routine and can be done with automated methods like lia which handles linear arithmetic.

theorem mathd_numbertheory_85 :
1 * 3^3 + 2 * 3^2 + 2*3 + 2 = 53
:= sorry

theorem mathd_algebra_107
(x y : R)
(h0 : x^2 + 8 * x + y^2 - 6 * y = 0)
: (x + 4)^2 + (y-3)^2 = 5^2 := sorry

Figure 15: Examples of formalizations of easy problems in MINIF2F. While useful for benchmark-
ing straightforward mathematical reasoning in a formal setting, these problems are quite simple
compared to the competition problems present in PUTNAMBENCH. We note that MINIF2F does
include some formalizations of problems sourced directly from high school competitions, but these
are fewer in number.
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You are proficient at formal theorem-proving in Lean 4. Given a theorem
statement in Lean 4, generate the proof in Lean 4. You can assume that
you have access to Lean's mathlib library.

↪→

↪→

The theorem is described in the following format:
1. The theorem statement using the `[THEOREM]` keyword.
3. The theorem description ends with the keyword `[END]`.

Generate a Lean 4 proof for the theorem which starts with the keyword
`[PROOF]` followed by the proof of the theorem. The syntax for Lean 4
is different than that of Lean 3 - premises like "Nat.dvd_mul" and
"Finset.singleton_injective" exist in Lean 4, the equivalent in Lean 3
is "nat.dvd_mul" and "finset.singleton_injective" which DO NOT WORK in
Lean 4. Additionally, you cannot chain tactics into one step using ',' -
this will NOT work - you can use ';' instead but try to avoid such usage
where not necessary! When doing rewrites you MUST wrap the premise in
brackets: "rw [h]". If you want to do multiple rewrites at once you can
do something like "rw [step1, step2, step3]". Always predict one tactic
at a time, though you can predict the "have" tactic and may supply a
proof for it with tactics split by ";". You can provide witnesses to
consecutive existential quantifiers all at once, for example 'use 1, 2,
3' but NOT as a list 'use [1, 2, 3]' - these are not the same things!
You can introduce with "intro" everything you think you can introduce at
once. In Lean 4, you can split apart conjunctions with "constructor" NOT
"split". You should use the "ring" tactic to handle goals that follow
from ring axioms, especially instead of doing a long series of rewrites
or calculations. Similarly, "linarith" can be useful for solving goals
involving linear arithmetic. Do NOT indent tactics, every new line
should not have spaces to start! PLEASE use Lean 4 syntax only! The
proof ends with the keyword `[END]`. Also please DO NOT write `sorry`
in the proof. You can assume that the theorem is provable.

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

Figure 16: Parts of the “system prompt” used by GPT-4 for Lean 4 evaluations. Due to GPT-4’s
tendency towards producing outputs in Lean 3 syntax, our prompt places special attention towards
preventing such syntactic mistakes. A similar modification is made to COPRA’s system prompt for
Lean 3.

20



Goals to prove:
[GOALS]
[GOAL] 1
DifferentiableAt R (fun x => g x / hg0 x) 0 → DifferentiableAt R g 0
[HYPOTHESES] 1
[HYPOTHESIS] case mpr
[HYPOTHESIS] f : True
[HYPOTHESIS] g hg0 : R → R
[HYPOTHESIS] hcg : hg0 0 ̸= 0
[HYPOTHESIS] hfg : ContinuousAt hg0 0
[HYPOTHESIS] hfg_div : DifferentiableAt R (fun x => g x * hg0 x) 0

[STEPS]
[STEP] constructor
[STEP] intro h
[STEP] trivial
[STEP] intros f g hg0 hcg hfg hfg_div

[INCORRECT STEPS]
[STEP] apply differentiable_at_of_mul

[LAST STEP]
apply differentiable_at.div

[ERROR MESSAGE]
error: unknown identifier 'differentiable_at.div'
[END]

Figure 17: An example of a failed tactic prediction during proof search for Putnam 2011 B2 using
COPRA in Lean 4. GPT-4 predicts a tactic involving the premise “differentiable_at.div,” which
exists in Lean 3, but not Lean 4. Even with the system prompt asserting outputs should involve Lean
4 syntax alone, GPT-4 is not always capable of making the distinction.

theorem putnam_2001_a1
(S : Type*)
[Mul S]
(hS : ∀ a b : S, (a * b) * a = b)
: ∀ a b : S, a * (b * a) = b := by
intro a b
have h1 : (a * (b * a)) * a = b * a := by
rw ←[mul_assoc]
rw [hS]
rw [hS]
apply h1

Figure 18: A failed proof generated by few-shot invocation of GPT-4. GPT-4 misunderstands that
the hypothesis [Mul S], which gives an operation ⋆ and asserts it is a binary operation on S, also
asserts associativity of the operation. The tactic rw [←mul_assoc], which performs a rewrite using
the associativity of ⋆, is hence not applicable in this setting.
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Putnam 1986 B1. Inscribe a rectangle of base b and height h in a circle of radius one, and
inscribe an isosceles triangle in the region of the circle cut off by one base of the rectangle. For
what values of h do the rectangle and triangle have the same area?

theorem putnam_1986_b1:
fixes b h :: "real"
assumes hbh : "b > 0 ∧ h > 0 ∧ b^2 + h^2 = 2^2"
and areaeq : "b*h = 0.5 * b * (1 - h/2)"
shows "h = ( 2 / 5 )"
proof -
from assms have eq1: "b^2 + h^2 = 4" by simp

from areaeq have eq2: "b * h = 0.5 * b * (1 - h/2)" by simp
then have eq3: "b * h = 0.5 * b - 0.25 * b * h" by algebra
then have eq4: "1.25 * b * h = 0.5 * b" by algebra
then have eq5: "h = 0.5 / 1.25" using assms(1) by simp
then show ?thesis by simp

qed

Figure 19: A successful proof in Isabelle discovered using GPT-4. While the theorem statement
differs from the formalization, which is algebraic, we note that the official solution is also algebraic
and is similar to the generated Isabelle proof.

22



Putnam 1995 A1. Let S be a set of real numbers which is closed under multiplication (that is,
if a and b are in S, then so is ab. Let T and U be disjoint subsets of S whose union is S. Given
that the product of any three (not necessarily distinct) elements of T is in T and the product of
any three elements of U is in U , show that at least one of the two subsets T, U is closed under
multiplication.

theorem putnam_1995_a1:
fixes S :: "real set"
and T U :: "real set"

assumes hS: "∀a∈S. ∀b∈S. a * b ∈ S"
and hsub: "T ⊆ S ∧ U ⊆ S"
and hunion: "(T ∪ U) = S"
and hdisj: "(T ∩ U) = {}"
and hT3: "∀a∈T. ∀b∈T. ∀c∈T. a * b * c ∈ T"
and hU3: "∀a∈U. ∀b∈U. ∀c∈U. a * b * c ∈ U"

shows "(∀a∈T. ∀b∈T. a * b ∈ T) ∨ (∀a∈U. ∀b∈U. a * b ∈ U)"
proof (rule ccontr)

assume "¬ ((∀a∈T. ∀b∈T. a * b ∈ T) ∨ (∀a∈U. ∀b∈U. a * b ∈ U))"
then have "∃t1∈T. ∃t2∈T. t1 * t2 /∈ T" "∃u1∈U. ∃u2∈U. u1 * u2 /∈ U" by auto
then obtain t1 t2 where t1t2: "t1 ∈ T" "t2 ∈ T" "t1 * t2 ∈ U"
using hS hunion by blast

then obtain u1 u2 where u1u2: "u1 ∈ U" "u2 ∈ U" "u1 * u2 ∈ T"
using ‹¬ ((∀a∈T. ∀b∈T. a * b ∈ T) ∨ (∀a∈U. ∀b∈U. a * b ∈ U))› hS hunion
by blast

have "t1 * t2 * t3 ∈ T" if "t3 ∈ T" for t3 using hT3 t1t2(1) t1t2(2) that
by auto

then have "t1 * t2 * t3 ∈ U" if "t3 ∈ T" for t3 using t1t2(3) hS that
by (metis disjoint_iff hU3 hdisj mult.commute u1u2(1) u1u2(2) u1u2(3))

then have False using hdisj t1t2(1) t1t2(2)
by (meson disjoint_iff_not_equal hT3)

then show False by blast
qed

Figure 20: A successful proof in Isabelle discovered using DSP. In particular, this proof is not found
using a single invocation of sledgehammer, so the sketching mechanism of DSP is crucial for this
problem. We note that the DSP pipeline involves using an LLM (GPT-4) to synthesize an informal
proof which is translated into a sketch in Isabelle - this can potentially be a source of indirect dataset
contamination, as we cannot ensure the informal proofs are not present in GPT-4’s training data.
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theorem putnam_1971_b1:
fixes Smul :: "'S ⇒ 'S ⇒ 'S" (infixl "*" 70)
assumes hself: "∀x::'S. x * x = x"
and h2: "∀x y z::'S. (x * y) * z = (y * z) * x"

shows "∀x y z::'S. (x * y) * z = x * (y * z) ∧ x * y = y * x"
proof -

have comm: "∀x y::'S. x * y = y * x"
proof
fix x y :: 'S
have "(x * y) * x = (y * x) * x" using h2 by blast (* sledgehammer *)
also have "... = y * x" using hself by (metis h2) (* sledgehammer *)
finally have "(x * y) * x = y * x" by simp (* sledgehammer *)
then have "x * y = y * x" using hself by (metis h2) (* sledgehammer *)
thus "x * y = y * x" by simp

qed
have assoc: "∀x y z::'S. (x * y) * z = x * (y * z)"
proof
fix x y z :: 'S
have "(x * y) * z = (y * z) * x" using h2 sledgehammer
also have "... = x * (y * z)" using comm sledgehammer
finally show "(x * y) * z = x * (y * z)" by simp

qed
show "∀x y z::'S. (x * y) * z = x * (y * z) ∧ x * y = y * x"
using assoc comm by simp

qed

Figure 21: An erroneous generation produced by DSP for Putnam 1971 B1. While a single invoca-
tion of Sledgehammer can prove this problem, the formal sketch generated in the pipeline is much
more complex and is erroneous, leading to a failed proof attempt.

theorem putnam_1971_b1:
fixes Smul :: "'S ⇒ 'S ⇒ 'S" (infixl "*" 70)
assumes hself: "∀x::'S. x * x = x"
and h2: "∀x y z::'S. (x * y) * z = (y * z) * x"
shows "∀x y z::'S. (x * y) * z = x * (y * z) ∧ x * y = y * x"

theorem putnam_2012_a2:
fixes Smul :: "'S ⇒'S ⇒ 'S" (infixl "*" 70)
and a b c :: 'S
assumes Smulasg: "abel_semigroup Smul"
and hS: "∀x y::'S. ∃z::'S. x * z = y"
and habc: "a * c = b * c"

shows "a = b"

Figure 22: The other two Isabelle formalizations solved with invocations of Sledgehammer. We note
that the problems Sledgehammer was capable of solving are all problems involving binary operations
on sets. It is not surprising that SMT solvers are capable of solving such problems, which do not
require reasoning about complicated objects.
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Goals to prove:
[GOALS]
[GOAL] 1
1 > 0 /\
1 > 0 /\
a * b - 1 > 0 /\ a * b = 1 * 1 + 1 * (a * b - 1) + (a * b - 1) * 1 + 1
[HYPOTHESES] 1
[HYPOTHESIS] a : Z
[HYPOTHESIS] Ha : a >= 2
[HYPOTHESIS] b : Z
[HYPOTHESIS] Hb : b >= 2

[STEPS]
[STEP] intros a Ha b Hb.

[LAST STEP]
exists 1, 1, (a * b - 1).

[SUCCESS]
[END]
...
Goals to prove: # Step 32 of Search
[GOALS]
[GOAL] 1
a - 1 > 0 /\
1 > 0 /\
b - 1 > 0 /\ a * b = (a - 1) * 1 + 1 * (b - 1) + (b - 1) * (a - 1) + 1
[HYPOTHESES] 1
[HYPOTHESIS] a : Z
[HYPOTHESIS] Ha : a >= 2
[HYPOTHESIS] b : Z
[HYPOTHESIS] Hb : b >= 2

[STEPS]
[STEP] intros a Ha b Hb.

[LAST STEP]
exists (a - 1), 1, (b - 1).

[SUCCESS]
[END]

Figure 23: Early in COPRA’s attempt on Putnam 1988 B1, an incorrect prediction of x, y, z given
a, b is made, which dooms that path of search as the most crucial step is the correct choice. Later,
at step 32 of search, COPRA backtracks and then successfully predicts a correct choice for x, y, z.
Once this step is generated, the remainder of the proof is straightforward.
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Z Q

N R

P

inject_Z

Z.of_nat Z.to_nat
IZR

Q2R

INR

floor

Pos.of_nat

nat_of_P

Figure 24: A diagram of conversion methods for the Coq Standard Library.
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