Downloaded 10/18/24 to 192.81.112.65 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

On Improving Fairness of AI Models with Synthetic Minority
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Abstract

Biased AI models result in unfair decisions. In response,
a number of algorithmic solutions have been engineered
to mitigate bias, among which the Synthetic Minority
Oversampling Technique (SMOTE) has been studied,
to an extent. Although the SMOTE technique and its
variants have great potentials to help improve fairness,
there is little theoretical justification for its success.
In addition, formal error and fairness bounds are not
clearly given. This paper attempts to address both
issues. We prove and demonstrate that synthetic data
generated by oversampling underrepresented groups can
mitigate algorithmic bias in AI models, while keeping
the predictive errors bounded. We further compare
this technique to the existing state-of-the-art fair Al
techniques on five datasets using a variety of fairness
metrics. We show that this approach can effectively
improve fairness even when there is a significant amount
of label and selection bias, regardless of the baseline Al
algorithm.

Keywords— Al fairness, sensitive feature, synthetic
data, SMOTE

1 Introduction

AT algorithms are being criticized for reflecting and poten-
tially exacerbating human biases in data. Biased Al models
perpetuate inequalities in job hiring, credit lending, health
care, predictive policing, and criminal sentencing [34]. In
response, many bias mitigation techniques have been devel-
oped to improve fairness (e.g., [14, 41, 6, 22, 30, 13, 42,
25, 26, 7, 24, 33, 20, 23, 28]), among which synthetic minor-
ity oversampling techniques (e.g. fair-SMOTE) have been
shown very effective [8, 19, 39, 29]. However, there lacks
theoretical justification for the successful use of SMOTE for
de-biasing, as well as clear error/fairness bounds. In this
paper, we attempt to address both issues.

SMOTE randomly fabricates a new sample along the
line segment between an instance x and one of its random
neighbor z® [9] in the feature space. SMOTE-based de-
biasing techniques directly address data bias, thus can be
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considered as pre-processing. Other types of pre-processing
based de-biasing techniques focus on transforming a given
input by editing its features and labels, assigning weights to
selected training samples, or learning a latent representation
excluding sensitive features to increase fairness of the trained
model. The consensus is that the cause of algorithmic bias
lies within the data, favoring the privileged group as deci-
sions are made. This interpretation of bias is imperfect, but
it simplifies and allows for the formalization of incorporat-
ing fairness into AI models from upstream in the machine
learning pipeline.

Despite its clear efficacy, there is a weak understand-
ing of how SMOTE helps improve fairness. Most SMOTE-
based de-biasing techniques are given credits for their empir-
ical success that relies on hunches such as a more balanced
subgroup and a more authentic representation of real data
distribution. The main question to investigate is whether
synthetic data in the SMOTE style can in fact bridge the
gap between the distributions of the (privileged and unpriv-
ileged) subgroups, and thus help in addressing label bias
(e.g. human errors, normally introduced into data as a re-
sult of human decisions made in a certain historical context)
and selection bias (e.g. linguistic data favoring English, an
unexpected correlation between demographic attributes and
decision output when data is sampled) associated with the
original data. Resolving bias at the data level frees us from
specific definition and mathematical notations of fairness.
Furthermore, with synthetic data, we do not count on data
surveillance to collect more data at the expense of risking
individual privacy.

The main contributions of this paper include: 1.) The-
oretical justification for the SMOTE-based de-biasing tech-
niques; 2.) Empirical evidence that synthetic data generated
in SMOTE fashion can address label bias and selection bias;
3.) Extensive empirical studies that compare the SMOTE-
based de-biasing technique with the existing pre-processing,
in-processing, and post-processing techniques using a variety
of fairness metrics.

The rest of the paper is organized as follows: Section 2
discusses existing related work. Section 3 presents the
problem and our theoretical results. Section 4 presents our
SMOTE-based de-biasing algorithm. Section 5 presents the
experimental results, and Section 6 concludes our work.
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2 Related Work

De-biasing techniques progress in three directions: pre-
processing, in-processing, and post-processing. Meanwhile,
many fairness metrics have been proposed [40, 17], implying
the interlocking complexity of the fair Al problem.

De-biasing through pre-processing typically transforms
training data by reducing the influence of demographic
changes on the positive base rate. Feldman et al. [14] pro-
pose to alter the unprotected attributes to remove disparate
impact. Zemel et al. [41] encode the input with a latent
representation that obfuscates sensitive attributes. Opti-
mized preprocessing [6] learns a probabilistic transformation
for the input to improve group fairness while limiting in-
dividual data distortion. Reweighing [22] assigns different
weights to selected samples to ensure fairer predictions by
trained classifiers. In-processing de-biasing is done at the
algorithmic level where learning algorithms are tweaked to
ensure fairness. Some de-biasing techniques coupled with
adversarial objectives consider learning fair representation
under the constraint of different adversarial objectives for
group fairness [30, 13]. De-biasing with adversarial learn-
ing [42] aims to maximize predictive accuracy while min-
imizing adversary’s ability to predict sensitive attributes.
Other in-processing de-biasing techniques focus on fairness
constraints on structured subgroups [25, 26], training an
optimized classifier with respect to a given fairness met-
ric [7], training a classifier with data augmentations that
deliberately manipulate subgroup features [18], or adding
a regularization term to the objective against discrimina-
tion [24]. Post-processing techniques modify output labels
to meet different fairness objectives. Some calibrates classi-
fier outputs to ensure equalized odds [33, 20], some makes fa-
vorable predictions for unprivileged groups and unfavorable
predictions for privileged groups in the vicinity of decision
boundaries [23], and in the case where only black-box ac-
cess is granted, a classifier satisfying multi-accuracy fairness
conditions can be learned to improve fairness and subgroup
accuracy [28].

Accuracy-fairness trade-off optimization is a popular
algorithmic treatment for bias in current de-biasing tech-
niques [10, 15]. In addition, there is an active line of work
on optimizing Pareto fairness of the problem [31, 2]. Breugel
et al. [36] recently proposed a GAN structure with causal
knowledge to generate fair synthetic data from unfair data.
Features are generated sequentially according to the given
causal structure while biased edges are removed to achieve
fairness. The technique is not applicable to fairness defini-
tions established directly on downstream models. Causal
fairness-aware GAN (CFGAN) [37] also attempts to cre-
ate fair synthetic data from given causal knowledge. The
technique is designed for a single protected attribute. Fair-
GAN [38] generates synthetic data following the distribu-
tion of the real data while ensuring there is no correlation
between synthetic data and the protected attribute. Fair-
GAN improves fairness, however, it may lead to significant
accuracy loss [36].

SMOTE is one of the most widely used approaches
to oversampling the minority class, and has recently been

reported to synthesize new samples with excellent utility
and good privacy compared to other synthetic data genera-
tors [32]. SMOTE-based oversampling has also been shown
an effective technique for bias mitigation [8, 19, 39, 29].
The Fair-SMOTE algorithm balances subgroup data distri-
butions so that the privileged and the unprivileged groups
have an equal number of positive and negative instances [8].
This method has been demonstrated to be effective at re-
ducing bias and achieve higher classification performance
than the state-of-the-art fairness algorithms. The param-
eterised data sampling method has been shown to produce
fairness-optimal predictions with a small loss in predictive
power [19]. A K-Means SMOTE-based algorithm has also
been proposed to enhance model fairness and prediction ac-
curacy [39]. Although existing SMOTE-based fairness algo-
rithms have demonstrated promising fairness outcome, little
is known about its working principle in theory. Further-
more, existing literature lacks an extensive study compar-
ing SMOTE-based approaches to the state-of-the-art pre-
processing, in-processing, and post-processing fairness algo-
rithms using a wide range of fairness metrics. This paper
aims to fill such gaps. We provide theoretical support for
synthetic oversampling that helps bridge the gap between
the distributions of subgroups in data. We also provide ex-
tensive and comparative empirical study on its effectiveness.

3 Problem Statement and Theoretical Results

We now formally define the problem and provide theoretical
justification for SMOTE-based fairness algorithms.

3.1 Preliminaries
Target Error: Given the underlying data distribution D,
the target error ep(h) is:

ep(h) = Eznp(|h(z) — f(2)[],

The error measures the expected difference between the
output of the hypothesis h and the target function f for
a given instance x.

Favorable Class: Given a privileged group X, and an
unprivileged group X,,, the favorable class ¢ is the category
in which X, has a disproportionately larger probability:

Pr(ct|X c X,) > Pr(c"|X C X.).

Two-sample Test Statistic: Schilling developed a test
statistic for a measure of the discrepancy between two distri-
butions [35]. The general multivariate two-sample problem
is based on the k nearest-neighbor-type coincidences:

n k
Tiw =2 > S L)

=1 r=1

given independent random samples in R? {z1,...,2n, } and
{Zn,+1,...,zn} from unknown distributions F'(z) and G(z),
where I;(r) is the indicator function that measures to 1 if the
r nearest-neighbor is in the same sample as x;. Large values
of the test statistics give evidence against the hypothesis of
F(x) = G(x).
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‘H-Divergence: Ben-David et al. [5] proposed the H-
divergence to make feasible measuring divergence between
two distributions D and D’ over domain X’:

dn(D,D') =2 SEE[PTD [(h)] = Prp/[I(h)]]

> 2|Prplh(xz) = 1] — Prp/[h(z) = 1]|

where H is a hypothesis class of finite VC dimension on a
domain X, I(h) is the set such that x € I(h) < h(x) = 1.

3.2 Problem Statement Given a domain X ~ D and
a target function f : X — [0, 1], let D, and D, be the distri-
butions over the privileged and the unprivileged subgroups
in X, and D, be the distribution of the oversampled un-
privileged group. We formalize de-biasing as bounding the
discrepancy of the predictive errors over D, and Du:

Ae(h) = ep,(h) —€p,, ()

where ep(h) is the target error for z ~ D, and the
discrepancy of fairness over D, and Dy:

Ae(h(z) = 1) = |Prp,[h(z) = 1] — Prp, [h(z) =1]|

This formalization is inspired by the concept of transfer
learning: if two populations only differ in demographic and
socioeconomic background, models trained on one popula-
tion (e.g. white defendants) should be readily applicable to
the other (e.g. black defendants), with bounded predictive
errors and positive base rate difference. Thus, the de-biasing
technique is designed to oversample the (un)privileged group
so that the divergence of the two distributions D, and Dy, is
bounded, and consequentially the discrepancies of predictive
errors and fairness measures are bounded.

3.3 Theoretical Results We present two theoretical
results: 1.) SMOTE-based oversampling can bridge the gap
between the distributions of the privileged and the unpriv-
ileged subgroups (Theorem 3.1); and 2.) the discrepancies
of predictive errors and fairness measures over D, and ﬁu
are bounded (Theorem 3.2). The intuition behind Theo-
rem 3.1 is when the entire population in the favorable (un-
favorable) class is treated fairly, both the privileged and the
unprivileged groups should follow a well-mixed distribution.
When there is bias, generating synthetic data from existing
“unprivileged favorable” or “privileged unfavorable” samples
can reduce the Schilling statistic that measures the gap of
the distributions between the privileged and the unprivileged
groups. With the guarantee of a smaller two-sample distri-
butional divergence through oversampling by Theorem 3.1,
Theorem 3.2 provides an error bound given the distribu-
tional divergence between the two groups.

THEOREM 3.1. Given input X ~ D, let X, ~ D, denote the
privileged subset X, C X following the distribution Dy, and
similarly, X, ~ D, be the unprivileged subset following D.,.
X, as a result of oversampling X., in the favorable class ¢*,

reduces the Schilling test statistic:

Tk,n(Xp7Xu) < Tk,’ﬂ(Xanu)-

Proof. Given the unprivileged subgroup X,, SMOTE sam-
ples an instance z,, € X, that belongs to the favorable class
¢T. Instances in X, that are the nearest neighbors of the
selected sample x,, are used to generate the synthetic data to
improve the underrepresented populations in the favorable
class. Suppose m synthetic samples are generated such way
and added to X,. Without loss of generality, among these
m samples, let M, = {x1,...,2m,} be the ones to which
the privileged samples in X, are nearer neighbors, as the
red dot shown in Figure 1, and My, = {Zm,+1,...,%m} has
nearer neighbors from the unprivileged in X,,, as the black
dot shown in Figure 1.

R
(@)
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Figure 1: Synthetic samples that are nearer neighbors
to the privileged and unprivileged, respectively.

Hence, M = M, U M, essentially follows a mixture of
D,, and D,, such that

fu(z)dz

M

Plx e M) =ap /M fo(z)de + (1 — ap)

where «, is the probability «, € M follows the privileged
distribution, f, and f, are the density functions of the two
distributions D, and D,. Let X, = X, U M, U M,, then

n k n+m k
o5 = gt [ m + 3 3 o)

i=1r=1 i=n+1r=1

in which the second term 7™ S°F

o1 e Li(r) are associated
with samples in M. The more biased the source data, the
higher the probability «, that a synthetic sample x; € M
is drawn from the privileged distribution since P(NN;(r) €
XpleT) > P(NNi(r) € Xu|cT), where NN;(r) is the r*"
nearest neighbor of x;. Therefore, x; € Xu is more likely
from the well-mixed distributions of D, and D,, and the

average number of neighbors of x; coming from D,, is smaller:

n+m k

n k
> L) < TN L),

i=n+1r=1 i=1r=1
thus, A
Tk,n(Xpy Xu) < Tk,n (Xp7 Xu)~
]

This process of oversampling X, from nearest neighbors is
essentially searching for a reasonable set of X. to bridge the
gap between D, and D, so that the k nearest neighbors of
z e X,U X, is equally likely from either D, or D,, that is,

lim Ty, (X,p, Xu) = 0.5

n—o00
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In other words, X, and X, are more likely from the same
well-mixed distribution. In an ideal case where X, and X,
become identically distributed under D, then:

E(ylf(Xp) = h,z) = E(ylf(Xu) = I, 2)
for x € X, U X, assuming X, and X, are sufficiently large.

THEOREM 3.2. Given a hypothesis h trained on data X, the

differences of predictive errors and fairness measures on data
Xp C X from Dy and Xy C X from Dy by h are bounded.

Proof. Let d(Dy, D,) be the discrepancy of the two distri-
butions D, and D,, then [3]:

d(Dy, D) = / |27 — 2*||dDy ® D (2", )
1
~ 5 [ llef = atlldD, @ Dy (af.af)
1 u u u u
- 5/”501 —952||dDu®Du(1317$2) >0

where ||-|| denotes the Euclidean norm of R? and the equality
holds if and only if D, = D,. a” and z" are two samples
from D, and D, respectively, z} and zf are two samples
from D,, and z{ and z% are two samples from D,. Synthetic
oversampling asymptotically reduces d(D,, D.,) according to
Theorem 3.1. Given a hypothesis h trained on data X ~ D,
the difference of predictive errors on data from D, and D,
by h is bounded with respect to the divergence between D,
and D, [5]:

e, (h) — en, (h) < d(Dy, Du) + A

where X = argmin,y[ep,(h) + €ep,(h)], which is the
combined error of the ideal joint hypothesis.

The divergence d(D,,D,) cannot be accurately esti-
mated from limited samples [16]. However, the discrepancy
between favorable predictions by h on data from D, and D,,
is bounded by the H-divergence between D, and D,:

1
|Prp,[h(z) = 1] = Prp, [h(z) = 1]| < Sdn(Dp, Du).
Kifer et al. [27] provide a theoretical bound for the true

‘H-divergence given any § € (0,1) with probability at least
1-46[5]:

dlog(2m) + log(2)
m

dn(D, D) < dw(U,U") +4\/

where U and U’ are samples of size m from D and D’.
As the sample size increases, the empirical H-divergence
asymptotically approaches the true H-divergence.

With the concept of H-divergence, we can bound the
difference of predictive errors and the discrepancy of favor-
able predictions on data U, and U, of size m from D, and
D, as follows:

(3.1)

dlog(2m) + log(2)
m

Ae(h(z) =1) <

N | =

da(Up, Uu) + 2\/

(3.2) Ac(h) < %dH(U,,,Uu) A

. N 2\/dlog(2m) + log(2)
m

where Ae(h) = ep,(h) — ep,(h), Ae(h(z) = 1) =
|Prp,[h(z) = 1] — Prp,[h(x) = 1]|, and X is the combined
error of the ideal joint hypothesis as defined earlier. O

As (3.1) and (3.2) suggest, we can limit both the discrep-
ancy of favorable predictions and the difference in predictive
errors by making the distributions of the two groups D, and
D,, diverge less, especially when one group is underrepre-
sented in terms of favorable prediction.

4 De-biasing with Synthetic Data

Given a demographic attribute A = {ai,a2} in a dataset
X, the majority group defined on A is Xa—q+ C X if
Pr(A = a"|X) > Pr(A # a*|X) where a* € {a1,a2}. The
privileged group defined on A is Xa—s C X if, historically,
Pr(y =1|Xa=a) > Pr(y = 1| Xaxa) where @ € {a1,a2}, y €
{0,1} and y = 1 is favored. For example, in the COMPAS
dataset, the black race is the majority and the white race is
privileged. We investigate the following scenarios:

1.) When the majority is privileged, we oversample the
unprivileged group with favorable labels (Figures 2a).
We can also oversample the privileged group with
unfavorable labels, but it tends to distort the prior
distribution easily, hence is not recommend.

2.) When the minority is privileged, we oversample the
privileged group with unfavorable labels (Figure 2b).

(a) Oversample the unpriv- (b) Oversample the privi-
ileged favorable samples in leged unfavorable samples in
the majority group. the minority group.

Figure 2: Oversampling strategies when the major-
ity /minority of the population is privileged.

The idea of this de-biasing approach is to generate syn-
thetic data to reduce the difference in the positive base rate
between the privileged and the unprivileged populations.
When more underrepresented data is generated, the diver-
gence between D, and D, is reduced, and consequently we
bridge the gap between the two groups with fairer favorable
predictions. Method 1 and Method 2 generate synthetic data
in the minority group for greater efficiency (smaller amount
needed) and less corruption on the original data distribu-
tion. This sampling strategy may not be ideal. A more
rigorous (expensive) way is to run a permutation test to
identify where D, and D,, differ most.
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5 Experimental Results

In our experiment, synthetic (non-existing) data is generated
from one group using a SMOTE [9] adaptive variant [21]
(favoring low density region) until the other group is not
disproportionately (dis)advantaged in the training set. The
technique is naturally applicable to multi-class problems.
Each experiment was run 10 times on Intel Xeon 2.30 GHz
CPU with 256 GB memory, and we report the averaged
results. Source code is available on Github®.

Data Set We test our de-biasing technique on five data
sets: Adult, Compas, German Credit, Medical Expanse, and
Bank data [12]. These datasets represent the two general
cases where the majority is privileged and the minority is
privileged. Although the Adult dataset has been criticized
for inadequate pre-processing [11], it presents a good exam-
ple where model predictions are strongly correlated with the
sensitive attributes in the data (the accuracy drops from 74%
to 66% without the sensitive attributes). Each dataset was
split into independent training (70%) and test (30%) sets.

Baseline Learning Algorithms We use Logistic Regres-
sion (LR), Random Forest (RF), Support Vector Machine
(SVM), and Neural Network (NN) as the baseline learning
algorithms. All hyper-parameters for baseline algorithms
were tuned using grid search with cross validation.

De-biasing Algorithms We compare the oversampling
technique (syn) to the vanilla baseline (orig) and a
variety of mitigation algorithms, featuring sample re-
weighing, feature editing, and regularization. These al-
gorithms include Disparate Impact Remover (dir, pre-
processing) [14], Reweighing (rew, pre-processing) [22],
Prejudice Remover (pr, in-processing) [24], FEzponenti-
ated Gradient Reduction (egr, in-processing) [1], Calibrated
EqOdds (cpp, post-processing) [33], and Reject Option (ro,
post-processing) [23]. We do not choose the adversarial de-
biasing technique [42] since it either fails to de-bias or suf-
fers significant accuracy drop. De-biasing algorithms used
for comparison are implemented in the IBM AT Fairness 360
library, licensed under the Apache License 2.0 [4].
Fairness Metrics We measure fairness using a number
of individual and group fairness metrics, including average
odds difference, disparate impact, statistical parity difference,
equal opportunity difference, and Theil index [4].

5.1 Experiment without Injection of Label and
Selection Bias In this experiment, we do not inject either
label or selection bias to the data.

Figure 3 illustrates the results (with error bars) on
the Adult dataset in which the privileged (also majority)
group is Male and the favorable class is >50K’. The pos-
itive base rate difference is around 23%. The baseline al-
gorithms shown are LR, RF, and NN (from top to bot-
tom: balanced accuracy, average odds difference, disparate
impact, statistical parity difference, equal opportunity differ-
ence, Theil index). The SVM baseline has poor accuracy
with very little bias on the Adult data, hence not shown.

Thttps://github.com/ut-dallas-dspl-lab/ Al-Fairness

Our mitigator (syn, 2" col.) has the least bias overall while
preserving the accuracy, followed by Reweighing (rew, 4"
col., pre-processing) and Reject Option (ro, last col., post-
processing). Prejudice Remover (pr, 6" col., in-processing)
is specific to LR, hence not shown in the RF and NN plots.

Bias Mitigator for Classifier LR
0.0
0.001 — = = =
-0.25 - . - .
1
. . . l disp_imp
0
0.00
-0.25 . . . . stat_par
0.00 = = = -
%m . ]

0.
0.

avg_odds

eq_opp

1 Theil
0 orig syn dir rew egr pr cpp ro

Bias Mitigator for Classifier RF
0.0
0.00 2 — = -
el T [ ]
1
. . . disp_imp
0
0.00
~0.25 ! . . - stat_par

avg_odds

LI e e
-0.5
0.1 Theil

0 " .
orig syn dir rew egr cpp ro

Bias Mitigator for Classifier NN
0.75 . . . . - - . bal_acc
0.50
0.0
. . - avg_odds
-0.5
1
. . . disp_imp
. . . L stat_par
- . . eq_opp

Theil

N ol oo

o o0 oo o

o . *
orig syn dir rew egr cpp ro

Figure 3: Fairness measures on Adult data.

In the Compas dataset, the minority is privileged. The
number of examples in the favorable class (no recidivism)
is approximately 10% higher than the unfavorable class,
and the gap is approximately 22% between the privileged
Caucasian group and the unprivileged African-American
group. Since the minority is privileged, we invoke Method
2—generating synthetic privileged unfavorable samples in
the Caucasian group. Figure 4 illustrates the fairness
measures on the Compas dataset. Our mitigator (2"¢ col.)
is the overall winner under various combinations of baseline
algorithms and fairness metrics. Reject Option (7" col.)
is competitive, however, its accuracy dropped significantly
when the baseline was SVM (approximately 15% drop) or
NN (approximately 5% drop).

In the German Credit dataset, the protected attribute
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orig syn dir rew egr pr cpp ro

(a) Fairness with LR.

orig syn dir rew egr pcc ro

(b) Fairness with RF.

orig syn dir rew egr pr cpp ro

(a) Fairness with LR.

orig syn dir rew egr cpp ro

(b) Fairness with RF.

orig syn dir rew egr pcc ro

(¢) Fairness with SVM.

orig syn dir rew egr pcc ro

(d) Fairness with NN.

Figure 4: Fairness measures on Compas data. Rows: 1)
bal_acc, 2) avg_odds, 3) disp_imp, 4) stat_par, 5) eq_opp,
6) Theil.

is “Age”, with “old” and “young” being the privileged
(also majority) and unprivileged groups, respectively. The
privileged group has approximately 12% higher base rate
than the unprivileged group. As can be observed in Figure 5,
EGR. (5" col.) achieved significant bias reduction at the
price of heavy accuracy loss. The best performers on
German Credit include the synthetic-data mitigator (2"¢
col.), Reweighing (4" col.), and Reject Option mitigators
(last col.). The pre-processing technique Disparate Impact
Remover (dir, 3"% col.) showed sensitivity to the type of
AT algorithm, performing reasonably well when the baseline
algorithm is RF or NN.

The Medical Expense Price dataset consists of approxi-
mately 97 million samples. A large amount of synthetic data
would have to be generated, which appeared to be problem-
atic for some baseline algorithms. The favorable class is
> 10 Visits” and the privileged (also majority) group is the
White race. The base rate difference between the two groups
is approximately 13%. When the baseline algorithm is LR
or NN, our mitigator (2"d col.) is comparable to the post-
processing Reject Option technique (last col.). When the
baseline is SVM, the generated synthetic data caused seri-
ous side effects that led to a significant drop in accuracy and
serious individual bias (Theil index). The resulted classifier
was nearly blindly assigning unfavorable labels to both the
privileged group and the unprivileged group. The Reject
Option was most effective, successfully improving both ac-
curacy and fairness in nearly all cases. Detailed results are
shown in Figure 6.

The privileged population in the Bank data accounts for
97.2% of the entire population, overwhelmingly dominant in
this dataset. The favorable class is subscribe deposit and
the privileged group is ‘age > 25°. Favorable instances only

caNNNAN EANNNNN s alaanl =

b 20 . 0.0l= 2 o.oL::”;-_._Li_-_-J
02) LI .3;2"2’1 - e T So‘z’gi:"“} T+ = m 7]
028 L o Y BT R T T Y
-gjgl [ o5 ™ .- $%m T m TN T T T m |
RS Ea N LN S T m m iR T T T o]
0-2 -— 0-2 - d 1 - 0-5 - theil ind
0. 0.00 0 0.0

orig syn dir rew egr cpp ro

(c) Fairness with SVM.

orig syn dir rew egr pcc ro

(d) Fairness with NN.

Figure 5: Fairness measures on German Credit data.
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Figure 6: Fairness measures on Medical Expense Price.

account for approximately 12% of the total. When the
baseline is SVM or NN, all de-biasing techniques failed in
the sense that they made little to no improvement without
significantly losing accuracy, hence not shown in Figure 7.
When the baseline is LR, our de-biasing technique (2™ col.)
was able to improve disparate impact and statistical parity
difference while Reweighing (4'" col.) was able to improve
equal opportunity difference, without significant accuracy
loss. Little was achieved when RF was the baseline, unless
accuracy was allowed to be traded for fairness. Rejection
Option (last col.) suffered significant accuracy loss in both
cases. Details are shown in Figure 7.
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Figure 7: Mitigation results on Bank data.

5.2 Influence of Label Bias and Selection Bias
In practice often we are not provided with the ground truth
of fairness in the dataset. In this experiment, we assume the
given data is unbiased, then we manually introduce a certain
percentage of label/selection bias to the training data.

To introduce label bias, we randomly selected p% of
unprivileged favorable instances and flipped their labels,
with p = 10, 30, 50 respectively. In general, as the percentage
of label bias increases, fairness on the test data deteriorates
without the help of bias mitigators. Figure 8 shows the
output of the baseline LR/RF/SVM/NN on the Adult
data with our mitigator (syn) and six other mitigators,
two from each of the Pre-/In-/Post-processing categories

(dir,rew/egr,pr/cpp,ro).

when the baseline is SVM, it aggressively traded accuracy for
fairness. Exponentiated Gradient Reduction (in-processing)
tends to have a bad record of individual fairness (Theil
index) except when the baseline is NN.

Our mitigator works best with the SVM baseline, while
Reject Option works best when the baseline is NN, improv-
ing fairness significantly. However, Reject Option became
very aggressive with SVM and 10-30% label bias, trading
as much as 13% of accuracy for significant bias reduction.
Our synthetic-data mitigator never experienced more than
2% accuracy loss in all cases. In addition, our mitigator
works very well with all baselines even when there is a large
percentage of label bias. Table 1 presents the fairness met-
rics of the original LR, Synthetic Oversampling, and Reject
Option. Other combinations of different baseline algorithms
and the amount of label bias draw similar conclusions.

Selection bias was introduced by deleting (10, 30, 50)%
favorable unprivileged instances in the training data. We
observed similar patterns on the Adult data (Figure 9) with
50% of unprivileged favorable training data. Experimental
results for 30% and 10% selection bias are similar.

|
|

-0.

E
|

|

Nl ol oo ki

orig syn dir rew egr pr cpp ro "~ orig syn dir rew egr cpp ro
(a) LR, 50% select. bias. (b) RF, 50% select. bias.

0.75}. . 0.75}. . . . .
0.50 0.50
. 0.

" orig syn dir rew egr pr cpp ro “" orig syn dir rew egr cpp ro

(a) LR, 50% label bias. (b) RF, 50% label bias.

0.75}. . i 0.75}. - . - .
0.50 .

(=]
Il
=)

|

o o
wu =3
o o

|

1 1
° oo oo o
NGO oun
1
© o0 90 o o ¢
NGO oun oo =0 (-]

o

orig syn dir rew egr cpp ro "~ orig syn dir rew egr cpp ro

(¢) SVM, 50% label bias. (d) NN, 50% label bias.

Figure 8: Fairness measures on Adult with 50% label
bias. Rows: 1) bal.acc, 2) avg_odds, 3) disp_imp, 4)
stat_par, 5) eq-opp, 6) Theil.

Our synthetic-data mitigator and Reject Option have
the best overall performance compared to the rest of the
mitigators. Reweighing works very well in general; however,
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(c) SVM, 50% select. bias.  (d) NN, 50% select. bias.

Figure 9: Fairness of 50% selection bias in Adult data.

Oversampling-based de-biasing remains one of the best
on other datasets too.

6 Conclusions

In this paper, we demonstrate, both theoretically and em-
pirically, that SMOTE-based oversampling can deliver a
promising outcome for mitigating bias in Al models. We
focus on expanding the training data in the area where pos-
itive base rate difference is originated, without significantly
violating the class priors. Compared to other mitigation
techniques, synthetic oversampling produces better overall
fairness without a significant loss of accuracy.
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Table 1: Fairness metrics of the original LR, Synthetic Oversampling, and Reject Option with p label bias.

Bal Avg Odds Disp Stat Par Eq-opp Theil
Acc Diff Imp Diff Diff Ind
p = 50%
LR_orig | 0.737 £ 0.005 | -0.535 &+ 0.040 | 0.919 £ 0.032 | -0.526 4+ 0.042 | -0.672 + 0.057 | 0.115 4+ 0.008
LRsyn | 0.724 £+ 0.003 | -0.026 4+ 0.019 | 0.240 £ 0.047 | -0.108 £ 0.019 | -0.029 £ 0.022 | 0.108 £ 0.009
LRro | 0.714 £ 0.004 | 0.039 + 0.011 | 0.094 + 0.017 | -0.041 £ 0.010 | 0.032 £+ 0.019 | 0.118 + 0.010
p = 30%
LR_orig | 0.739 £+ 0.004 | -0.470 + 0.009 | 0.830 £ 0.036 | -0.485 4+ 0.041 | -0.533 + 0.058 | 0.105 4+ 0.011
LRsyn | 0.720 £+ 0.005 | -0.016 4 0.030 | 0.194 £ 0.060 | -0.093 £ 0.029 | -0.022 £+ 0.035 | 0.109 £ 0.001
LRro | 0.712 £ 0.005 | 0.035 & 0.013 | 0.090 £ 0.010 | -0.039 £ 0.007 | 0.023 £+ 0.022 | 0.118 + 0.010
p = 10%
LR_orig | 0.747 4+ 0.003 | -0.337 &+ 0.014 | 0.735 4+ 0.011 | -0.387 4+ 0.010 | -0.392 + 0.023 | 0.107 4+ 0.002
LRsyn | 0.729 £+ 0.002 | -0.009 4 0.009 | 0.200 £ 0.019 | -0.091 £ 0.006 | -0.012 4 0.020 | 0.107 £ 0.008
LRro | 0.715 £ 0.002 | 0.038 4+ 0.022 | 0.088 £ 0.028 | -0.040 £ 0.018 | 0.031 £+ 0.030 | 0.115 %+ 0.008
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