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ABSTRACT
Due to the ubiquity ofmobile phones and location-detection devices,
location data is being generated in very large volumes. Queries and
operations that are performed on location data warrant the use of
database systems. Despite that, location data is being supported in
data systems as an afterthought. Typically, relational or NoSQL data
systems that are mostly designed with non-location data in mind
get extended with spatial or spatiotemporal indexes, some query op-
erators, and higher level syntactic sugar in order to support location
data. The ubiquity of location data and location data services call
for systems that are solely designed and optimized for the e!cient
support of location data. This paper envisions designing intelligent
location+X data systems, ILX for short, where location is treated as
a "rst-class citizen type. ILX is tailored with location data as the
main data type (location-"rst). Because location data is typically
augmented with other data types X, e.g., graphs, text data, click
streams, annotations, etc., ILX needs to be extensible to support
other data types X along with location. This paper envisions the
main features that ILX should support, and highlights research
challenges in realizing and supporting ILX.
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1 INTRODUCTION
Location data is ubiquitous due to the popularity of smart phones
and location-detection devices. Moreover, location data services
are getting into almost all aspects of life, and are getting very
sophisticated. This warrants designing data systems that are well-
optimized for handling and processing location data, and that treat
location data as a "rst-class citizen. Unfortunately, this is not the
case. Location data is almost always supported in data systems as an
afterthought. Typically, systems that are originally optimized with
other objectives in mind eventually get extended to support location
data as an afterthought. For example, consider the many extensions
of relational data systems to support location data. These systems
are designed and are optimized to e!ciently support relational
data with location data being an afterthought add-on feature. Other
examples include NoSQL and big data systems, e.g., Hadoop, Spark,
etc., that are designed with other objectives in mind, and with

location data either being entirely out of the picture, or is supported
as an add-on after the fact. Afterwards, researchers try to "t location
data into these systems, and possibly apply some tweaks with sub-
optimal extensions to support location data into these systems.
Contrast this with designing a system that is mainly optimized
from the beginning to support location data as "rst-class citizen. A
strong analogy would be when starting from a car and tweaking
its design to make it #y vs. designing an airplane from scratch,
or starting from a helicopter and extending its design to make it
function as a submarine in addition to being a helicopter. While
these extensions are possible given good engineering and resources,
they would not perform as e!cient as an airplane or a submarine
that are designed from scratch as such.

Not to pick on any other researchers, the "rst author lists only the
systems that his group has developed that follow that same pitfall
above, e.g., AQWA [17] that extends on Hadoop [101], Location-
Spark [108] that extends on Spark [122], Tornado/SWARM [34, 75]
that extends over Apache Storm [6], SP-GiST [20] that extends Post-
greSQL [105], and GRFusion [50, 51] that extends over VoltDB [106].
Clearly, Hadoop, Spark, Spark, PostgreSQL, and VoltDB have been
originally optimized for non-location data. Many other researchers
and industries follow the same paths with some notable successes,
e.g., Oracle Spatial [12], Spatial Hadoop [43], and GeoSpark [119].

In recent years, in two keynote talks, the "rst author of this
paper has been advocating for Location+X systems [18, 19] that
highlight several research challenges and potential solutions for
location-"rst systems that are to be augmented with other X data
types, e.g., graphs, text, and relational data. This paper extends
beyond the ideas in the two keynotes [18, 19], and presents the
vision for Intelligent Location+X systems, ILX, for short. The pa-
per highlights the main features of ILX, and identi"es important
research challenges in realizing it. Notice that there are already
existing research that supports ILX-like "location-"rst" vision in
some aspects. This paper helps identify and references these e$orts
whenever appropriate and as space permits.

2 HIGHLIGHTS OF ILX
ILX stands for Intelligent Location+X systems. In this section, we
highlight each of the components of ILX, mainly the Location-"rst,
Intelligence, and Extensibility components, and discuss the features
that ILX and its surrounding eco-system should support.

2.1 The "L" in ILX: Location
Location and Location + Time are "rst-class citizens in ILX. In
addition to being optimized for operating on location data, ILX
and its supporting eco-system will provide the following important
high-level location-based features.
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2.1.1 Protection, Privacy, and the Right to be Forgotten of
User’s Location Data. ILX should guarantee the privacy of user’s
location data, e.g., as in [52, 97, 123]. Users should be able to learn
and control what ILX knows about them.More generally, ILX should
support the General Data Protection Regulation (GDPR [8]). Pri-
vacy and protection of user data and the right to be forgotten should
be declaratively and intrinsically associated with location data in
ILX and should not be left to the applications to enforce. Lower-
level layers of ILX should be able to enforce these features, and the
user should be able to audit and verify how her/his data is being
used and the time it should expire from the system.

ILX should prevent snooping data by implementing an end-to-
end encryption technique. Also, ILX should not allow users to track
the locations of individuals. ILX should guarantee to only return
query answers that cannot be used to reveal the identity of any user
of her/his location. Moreover, an intelligent mechanism should be
implemented in ILX to detect and block users that are trying to
track other users or reveal their identity.

2.1.2 Discovery, Integration, and Pricing of Location Data.
ILX should be able to support location data lakes [110] and identify
relevant location datasets [38, 46] given user requests. ILX should
support location data integration of the discovered datasets. Query
issuers in ILX may not worry about which data set to use to answer
a certain query. Thus, ILX’s query language should have embedded
in it the dataset discovery process. However, what users should
be concerned with is the cost of answering their query. Location
data collection and preparation is costly. Thus, the query execu-
tion engine and query optimizer for ILX should have cost of data
and pricing as an optimization parameter while generating query
plans and while discovering and selecting the appropriate location
datasets needed to answer location-driven queries.

2.1.3 Location Data Cleaning and Support for Uncertainty.
Like all other data sources, location data contains many errors and
needs cleaning. The ILX eco-system should provide cleaning tools
for location data, especially the ones uniquely related to location
data, e.g., the faulty geographic colocation of two shopping stores
in the same location and in the same time duration.

In addition to cleaning location data from data entry mistakes,
location data is inherently uncertain, e.g., due to accuracy errors
in location-detection devices. ILX’s query language and execution
engine should deal with the uncertainty in location data and provide
query operators that reason given the uncertainty [102].

2.1.4 Location Data Transactional and Online Analytics
Support. ILX should o$er transactional support due to the heavy
update nature of location and related data, e.g., due to objects
continuously changing their locations and changing the associ-
ated data. Moreover, ILX should be able to perform online analyt-
ics [54, 85, 98, 116, 118], especially ones that are unique to location
data. Finally, because geospatial data is hierarchical in nature (both
in space and time), ILX should support hierarchical and multi-
resolution analytics both in the space and time dimensions.

2.1.5 Human-in-the-loop andCrowdsourcing. Many transac-
tions in ILX will involve human actions [44]. Thus, ILX should
natively support Human-in-the-loop, humans-as-query-operators

in location-based query evaluation pipelines, and humans as opera-
tors in long-standing transactions. ILX should protect the location
privacy of crowdsourcing workers and tasks, e.g,. as in [111].

2.1.6 Sampling, Predication, and Approximate Location-
data Processing. Given the massive sizes of location data and
demands from location-service for online responses, it may not
be feasible to process all location data made available for a given
task in a timely fashion. Location-data sampling and approximate
query processing techniques should be an integral component of
ILX’s query execution engine. Tradeo$s between the approxima-
tion quality and the runtime requirements of the location service
tasks should be well-studied in the context of ILX.

2.1.7 The Time Dimension, Data Streaming, and Continu-
ous Data Support. In ILX, the time line can be split into three
time zones: the past time, the current time (Time NOW), and the
future time. ILX should be able to support all three notions of time.

Past-time Data. Past-time data re#ects historical location data.
ILX should be able to store, update, and query historical location
data. Workloads in past-time location data are mainly analytical
queryworkloads. One good example of this category is the historical
location data that is in the form of moving object trajectories that
have taken place in the past. ILX should be able to handle these
historical location data natively.

Current-time Data. Current-time data is continuously arriving
data that re#ects what is happening in the time NOW. The workload
is heavy in updates to ingest all location data updates that re#ect
changes of objects’ locations over time. The workload of current-
time data is also heavy in reads in support of continuous queries
(that mainly continuously probe current-time data to check current
status). Thus, ILX should be able to handle current-time location
data workloads that are heavy in both updates and in continuous
and snapshot analytics.

Future Time. ILX should be able to support future prediction
type of location data. This is useful for what-if scenarios, decision
support, and prediction analytical workloads.

2.1.8 3D and 4D Data Support Beyond GeoLocation Data.
ILX will support spatial data beyond geolocation data. For example,
brain data atlases, connectivity networks, and brain simulations [47]
are non-geolocation data that fall perfectly within the scope of ILX.
Similarly, geolocation data contains 3D and 4D data, e.g., terrain
data and simulations of #ood over terrain data. ILX dimensionality
should extend to support these scenarios.

2.1.9 Visualization. ILX will provide a suite of visualization
tools that are tightly-integrated into ILX’s query processing and
sampling components, e.g., as in [40, 49, 109]. Visualization would
support 2D, 3D, and 4D data via animations over time.

2.2 The "X" in ILX: Extensibility
Typically, location data is associated with other data types X, e.g.,
graphs, road networks, points of interest, social network data, click
streams, text and tweets, documents, and relational data. The loca-
tion engine in ILX should be extensible to introduce new data types
X as needed by the driving location-service applications. Thus, ex-
tensibility for adding new data types X will be a "rst-class feature
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in ILX. Extensibility will be at all engine levels including storage,
indexing, query processing operators, and query optimization.

2.2.1 Extensibility in Multi-model Databases. Recently,
multi-model databases have been gaining signi"cant attention in
order to address the big varieties in data applications [74]. Example
multi-model databases include ArangoDB [7], OrientDB [13],
BigDAWG [42], and Oracle Converged Database [4].

Current multi-model databases either do not support location
data at all, or do not support it e!ciently, e.g., may support location
data as JSON documents, or have geometric data types without
indexing support. Notably, Oracle Converged Database [4] supports
location data with indexing support but is implemented on top of
relational tables, which is against the vision and premise of ILX.

Multi-model database systems support multiple "xed data types
within the same system. Having extensibility as a main feature in
multi-model databases can be one step in the correct direction.

2.2.2 Multi-model Data Stream Support. Current multi-model
data systems do not support data streaming. In addition to being
multi-model in nature, e.g., as in [7], the multi-model ILX should
also support both online streaming in addition to the o%ine pro-
cessing of location and location+time data.

2.3 The "I" in ILX: Intelligence
Adopting Machine learning (ML) techniques in systems is a very
promising direction given nowadays advances in hardware, GPUs,
neural networks, deep learning, and ML software stacks. Loca-
tion+X systems are no exception. Potential bene"ts for enabling
location-"rst ILX systems with ML techniques are multi-fold.

2.3.1 Enhancing over Existing Heuristics. Many location-
related problems involve heuristics that serve as approximations
for NP-Complete and NP-Hard problems. Replacing these heuris-
tic solutions with ML-based techniques is expected to produce
more e!cient and more accurate learning-based solutions, e.g., as
in [113]. Another example is handling the dynamic nature and the
change in distribution of location data and location queries over
time. Reinforcement learning can be used to adapt the underly-
ing organization and partitioning of location data to rebalance the
load. One important challenge for using ML in ILX is the need for
accurate yet real-time responses to location-based queries. The ben-
e"ts of augmenting ML into ILX in terms of scalability, adaptivity,
real-timeliness, and accuracy need to be investigated.

2.3.2 Support for Explainability. Explainability in AI is an im-
portant subject. For the same reasons, explainability is needed in
ILX to explain why the ML-based decisions in ILX are made, and
why other choices are excluded. In the broader sense, explainabil-
ity is needed in ILX when choices are made. For example, when a
well-known shortest path is not chosen, the user should be given
feedback as to why the well-known shortest path has not been
chosen, e.g., due to new construction, lane closure, accident, etc.

2.3.3 Recommendation Operators. ILX should support
location-driven recommendations and ranking in its query
language and execution engine. ILX’s query language should
have embedded in it personalized recommendation operators,
e.g., based on location-aware Collaborative Filtering, to rank the

query engine’s responses. More generally, recommendations in
ILX must be aware of the surrounding context that includes
not only the locations of objects but also the time of day, the
temperature, the dietary restrictions, etc. Means to automatically
collect these contexts and means to incorporate user contexts in
query processing and in recommendations need to be incorporated
into ILX to return the most relevant and diversi"ed results to the
query issuer, e.g., as in [37, 53, 57].

3 INFRASTRUCTURE HIGHLIGHTS OF ILX
The massive sizes of location data can #ood any location server
with data. Thus, one of the main goals in realizing ILX is scalabil-
ity. Scalability in ILX will be achieved by a multiplicity of means
including adaptivity, elasticity, and the adoption of new hardware
and memory platforms, e.g., main-memory and persistent memory
clusters, NUMA-awareness, vectorization, and GPU query process-
ing. ILX will adopt important query processing strategies including
federated query processing, query compilation, and approximate
query processing techniques, e.g., distance oracles and other es-
sential location-related query operators. In this section, we brie#y
highlight these approaches and their roles in ILX.

3.1 Adaptivity, Elasticity, and Memory
Disaggregation

Due to the dynamic changes in location data distributions over
space and time, and the occurrence of hot spots, new servers will
need to be allocated online while ILX is running. Similarly, servers
will need to be dynamically deallocated from lightly loaded geospa-
tial regions. Moreover, ILX will use disaggregated architectures
(Compute servers vs. Memory servers) [114], where one can add or
remove compute or memory independent of each other.

3.2 Utilizing Modern Hardware
3.2.1 NUMA Awareness. Multi-socket systems with non-
uniform memory access architectures (NUMA) have been intro-
duced, where each socket is equipped with multiple cores along
with its own local memory, and is connected to other sockets, i.e., re-
mote memory with interconnect links. To fully utilize these modern
multi-core NUMA hardware, NUMA-aware algorithms [64, 67, 90]
are continuously being developed for data systems. ILX should be
designed while considering the characteristics of these multi-core
NUMA architectures.

3.2.2 Vectorization. Vectorizing a query execution engine [89]
or a standalone database operator, e.g., join [21, 24, 58], scan [115,
124], aggregation [33, 86, 117], sorting[31, 55, 56, 87, 95], Bloom
"lters [61] or compression [88] to utilize data parallelism has gained
popularity in recent times due to the introduction of complex SIMD
instructions in modern multi-core CPU platforms and the perfor-
mance gain while executing database queries. VectorWise [25],
DB2 BLU [92], columnar SQL Server [62], Quickstep [82] are exam-
ple data systems that implement vectorization. It is only natural
that ILX-based systems should bene"t from vectorization and its
potential can be investigated while designing vectorized location
database operators for ILX.
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3.2.3 Main-memory Techniques. There is a surge of interest
in main-memory databases [39, 45, 63, 83] because of the dropping
price and increasing capacity of main-memory. Thus, it is possi-
ble to keep large portions of location data in main-memory for
high performance. Many location data techniques need to be re-
visited for main-memory and the cache hierarchy, e.g., as in [112].
Caching that is aware of location proximity is called for. Optimizing
to minimize CPU cache misses while performing memory-based
location operations would be critical to high performance. The
main-memory location engine needs to be redesigned because of
the lack of need for a bu$er manager anymore. Thus, e!cient loca-
tion data layout in main-memory and cache-aware location-based
indexes are important factors for a highly performant ILX system.

3.2.4 Persistent Memory. Typically, location-based data sys-
tems have been optimized for the traditional memory hierarchy:
cache memory, main-memory, disk (or SSD). With the introduction
of Persistent and Non-Volatile Memories, e.g., Intel Optane Persis-
tent Memory [11], the traditional memory hierarchy has changed
signi"cantly. First, persistent memory is "persistent". Thus, there
is no need for disk-like storage. Second, the speed gap between
main-memory and persistent memory is much narrower than what
is between main-memory and disk. Thus, location data indexes
that have been optimized for disk-based memory hierarchies will
need a complete redesign to "t into a persistent-memory-based
memory hierarchy, e.g., as in [72, 73]. Another important factor is
that the read and write speeds for persistent memory are not sym-
metric. Writes are multiple of times slower than Reads. Location
data indexes over persistent memory need to be optimized for that.

3.2.5 GPUs. GPUs have a complex memory architecture with
various types of memories including texture memory, which is
a read-only o$-chip memory with caching enabled [14]. Texture
cache is specially optimized for 2D spatial locality that makes it
an optimal candidate for handling location data in ILX. Designing
GPU-friendly data model and algebra by capturing the geometric
properties of spatial data to answer spatial queries over large data
sets has been gaining popularity [41] and is in the right direction.
ILX needs GPU support to naturally make use of the GPU’s 2D
cache memory that is quite "t for location data. Moreover, GPUs
would help subsidize for the expensive geometric data operations,
e.g., polygon-polygon intersections, and spatial joins. However, the
issue of impedance mismatch between the GPU and CPU memory
spaces still need to be addressed to avoid copying data back and
forth between the two memory spaces.

3.3 Query Processing
In ILX, we will adopt several query processing strategies including
(a) Federated Query Processing due to the variety in the input loca-
tion data sources, (b) Multi-model Query Compilation Techniques
to allow location data services and continuous location queries
to execute as close to the bare bone of the underlying hardware
without multiple software layers that defeat the real-time nature in
performing location services, and (c) Query Operators and Services
unique to the ILX environment including Distance Oracles, Map
Matching operators, and Address Translation services. Below, we
present highlights of these query processing features in ILX.

User-Facing APIs & Visualization

Query Optimizer and Index Selection

Distributed Query-Execution

Heterogenous Data Sources

Distributed Cache

Distributed Spatial Indexing

Data Streams Non-Volatile
Shared Storage 

Data Lake

Federated Query Processing

Disaggreg-
ated Memory

Figure 1: ILX federated query processing architecture.

3.3.1 Federated Query Processing. Federated query processing
has been adopted by many recent systems to handle the diversity
in the sources of data and be able to process queries across the
multiplicity of sources. Example systems are F1 [100], Presto [96],
Flink [28], and Iceberg [5]. The envisioned ILX will have a layered
architecture that builds on federated query processing. Refer to
Figure 1. We brie#y explain the stack of layers that constitute ILX.

The user-facing layer o$ers several APIs for issuing the user
queries and receiving the query results. The user-facing layer also
o$ers several visualization tools for presenting the query results
using visual representation. For streaming applications, the query
results update the visualization in an online fashion. The query
processing layer consists of three components: a) an optimizer, b)
distributed execution, and c) caching. The optimizer is responsible
for "nding the best plan for the query, as well as "nding the best
spatial and relational indexes that speed up the execution of the
query. The execution units (i.e., operators) of ILX are distributed.
A key feature in ILX is that the data is spatially indexed and parti-
tioned according to the spatial features of the data (be it streamed or
static), and also according to the query workload distribution. This
partitioning would lead to e!cient distributed execution with high
throughput and low latency. Moreover, the caching layer boosts
the performance of repeating queries, i.e., these queries that focus
on hotspot locations, e.g., downtown areas, event locations, etc., or
continuous query evaluation, e.g., in support of data streaming.

ILX does not rely on a single data format for its data sources.
Thus, ILX is founded on a federated query processing platform,
where it supports extensible data readers and adapters that can read
heterogeneous data formats from di$erent storage and streaming
sources. Moreover, ILX can operate on multiple data sources with
a variety of formats. A single query can perform a join between a
streaming data source and an RDF "le from the data lake.

3.3.2 Multi-model Query Compilation. Query compilation
has proven to be quite e$ective in enhancing the performance
of database systems, e.g., [59, 77]. In contrast to producing a query
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evaluation pipeline that the query interpreter executes one-tuple-
at-a-time or a vector of tuples at a time, in case vectorization is
used, in query compilation, low level C code can be generated and
compiled to execute the query. Query compilation eliminates the
software interpretation layer, and results in executing the query as
close as possible to the bare metal of the hardware.

There has been good e$orts in compiling queries that involve spa-
tial predicates, e.g., [107]. However, given the multi-model nature in
ILX, query compilation needs to be extended to cover multi-model
queries that access , e.g., location, text/JSON, relations, and graph
traversal operations.

3.3.3 Query Operators and Services. At the core of ILX is a set
of unique location-related operators that cater to the unique fea-
tures of location query processing in ILX. These operators include
Distance Oracle operators, Map Matching operators, and Address
Translation services. We describe each one brie#y below. Notice
that some of these operators are o$ered by service providers, e.g.,
Google Maps GeoLocation APIs [9]. However, they are not open-
source, and are provided at a pay-as-you-go pricing model [10].

Distance Oracles. Distance oracles o$er a fast means for com-
puting shortest distance in road networks, e.g., [48, 93, 94]. Based
on the amount of storage allowed for preprocessing, they provide
a spectrum of approximate solutions with various error bounds
(including 0 error). Distance oracles are an integral component
for scalability in ILX’s query processor. However, current distance
oracle technology will need to be extended to allow for operating
on arbitrary subsets of the road network, e.g., when a subset of the
roads is dynamically selected, e.g., via querying, and then a shortest
path computation is required on the selected subset.

Map Matching Operators. A core operator in ILX is the map-
matching operator. It maps the physical location of an object to a
logical location on the map. Given a road network, say 𝐿𝑀 , and the
physical location of an object 𝑁 , e.g., 𝑁 ’s longitude, latitude from a
GPS reading, say 𝑂𝐿 (𝑃𝑄𝑅𝑆, 𝑃𝑇𝑈), the map matching operator returns
from 𝐿𝑀 , the logical location of the object on the map, e.g., the
identi"er of the road (edge), the intersection (vertex), or the textual
address that 𝑁 most likely lies in. Notice that there is the possibil-
ity of transient errors in the map matching operator due to the
inaccuracy in the GPS measurement devices and the misalignment
and misregistration of the underlying maps into physical space.
Also, the errors depend on whether the map matching operation
is performed online or o%ine. In the case of o%ine map matching,
the entire trajectory of the object is present, and hence it should
be more accurate to predict the location of an object at any given
point in time. In contrast, in the case of online map matching, only
the current and past locations of the object are available for the
map matching operator to decide on the logical location on the
map of an object at current time. Hence, in the online case, the
map matching operator is prone to more errors. The map matching
operator is commonly used in GPS devices to display the location
of the object on the logical map and to help with the vehicle nav-
igation process using the logical map as a guide. It is anticipated
that ILX will also make heavy use of this operator at both the query
processing and optimization levels. Many useful map matching
operators exist that we plan to utilize and build on from within ILX,
e.g., [26, 71, 78, 80, 121].

Address Translation Operators. Another important and use-
ful building block for query processing and optimization in ILX is
the address translation operator. This operator is the inverse of the
map matching operator. Given a textual address input, this operator
returns the address’s corresponding longitude and latitude.

The distance oracle, map matching, and address translation op-
erations will be used extensively in query processing within ILX.

3.4 Location-based Access Methods
3.4.1 Clustered Location Data Indexes. Access methods and
indexes for location data are essential components in ILX. However,
with the location data type being a "rst-class citizen in ILX, location
data indexes need to become the primary storage methods and
clustered indexes that host all the other types of data in addition
to the location data. For example, if ILX has a quad-tree index to
store the coordinates for a point data set, the same quad-tree could
serve as a clustered index that also stores the entire description of
the point data objects, e.g., the city names, the city population, etc.,
inside the index. Additional indexing methods will be based on the
types X associated with the location data. However, clustering of
data will be location-driven.

3.4.2 Update-Intensive Indexing Techniques. The continu-
ous move and change in location of objects in space over time
results in an update-intensive workload. Thus, an important fea-
ture in location access methods is the support for update-intensive
indexing. Techniques exist for handling frequent updates in lo-
cation indexes, e.g., [103]. However, they need to be extended to
support (1) memory-based location indexes, (2) become cache- and
NUMA-aware, and (3) be optimized for disaggregated memory. Dis-
aggregation has become feasible and practical due to the successful
use of high-speed remote direct memory access (RDMA) over the
network [114]. Location data indexes need to be adapted to support
the disaggregated architecture over RDMA.

3.4.3 LSM-based Location Indexes. LSM indexes [79] are opti-
mized for write-intensive key-value workloads. Because location
serves as a secondary key, to be e$ective, LSM indexes need to be
adapted in support of update-intensive secondary-key location-data
workloads [99].

3.4.4 Location-based Learned Indexes. Machine Learning
(ML) techniques have been applied successfully to build various
types of learned indexes [60]. It has been extended to the multi-
dimensional case, e.g., [15, 16]. Learned indexes have shown poten-
tial in terms of smaller index size and faster performance in contrast
to traditional indexes. Learned indexes work well for static data
sets as training of the learned models take place in a preprocessing
phase. Realizing learned indexes for dynamic data sets has been a
challenge due to the need to continuously retrain the models. There
are some very successful attempts to deal with dynamic data in the
multidimensional case. Of mention are LISA [66] and RSMI [91].
ILX needs to adopt similar ideas, and extend these learned indexes
to accommodate the time dimension to be able to handle real-time
trajectory data.
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3.5 Concurrency Control, Integrity, and Fault
Tolerance

Concurrency control plays a critical role in ILX to coordinate con-
current read and write operations for scalability. Many existing
concurrency control protocols in spatial databases are based on
locking data objects (e.g., [29, 30, 36, 104]). Two possible approaches
can be explored in ILX. First, in contrast to locking data objects,
ILX can consider locking the underlying physical space or speci"c
locations in space under the premise that no two objects can share
the underlying physical space at the same time. In contrast to data-
driven locking, locking physical locations can resemble space-driven
locking in location data indexes that have disjoint space-driven par-
titioning of the underlying space. Two issues remain to be addressed
for this approach to be credible: (1) Handle consistently the issue of
multi-granularity locking in the physical space and (2) Handle the
issue of location uncertainty. If the location of an object is uncer-
tain or is not measured precisely, then locking of physical locations
may not have one-to-one correspondence with the locations of the
objects as stored within ILX or within ILX’s location data indexes.
This may introduce overlaps in potential locations of where objects
might be in space. More research is needed to address the issue of
uncertainty in conjunction with physical location locking and the
location overlaps it introduces.

The second approach that needs to be explored in ILX is to adopt
concurrency control techniques that can scale to hundreds and
thousands of cores [22, 120]. It is important to design lock-free
concurrency control for spatial access methods along the same
lines as the lock-free B-tree (the Bw-tree [65]).

Finally, the new infrastructure that ILX will be deployed in poses
additional challenges for concurrency control. For example, in the
RDMA-enabled disaggregated memory architecture [27, 114], it is
non-trivial to lock the remote objects using RDMA primitives, and
hence existing concurrency control protocols need to be revisited.

ILX should be able to tolerate faults, e.g., via replication. ILX
should be able to recover its indexes if they get partially or com-
pletely lost or damaged due upon faulting. Recovering from faults
are to be performed online without system shutdown and while
guaranteeing correctness of the system operation e.g., during on-
line repartitioning of data, ILX should guarantee that no data gets
lost and no data is reported twice as part of an answer to a query.

3.6 Location Data Compression
Data compression is an important technique especially for spatial
databases due to the huge amount of location data. It not only can
save memory but also can improve query time due to the smaller
data sizes being retrieved. Compression is highly under-studied in
spatial databases [32, 69]. It requires a systematic study of compres-
sion techniques for both location data and location data indexes.
Although there are some compression algorithms for #oating-point
data [68, 84], it is not clear how they perform on location data
because these algorithms usually work well on speci"c data dis-
tributions. For location indexes, e.g., the R-tree, it is important to
compress the structural information, similar to B-tree structural
compression [23, 70]. Another important design consideration is to
support query processing on compressed data and indexes, which

will improve the performance. More research is needed to evaluate
the impact to compression ratio.

3.7 Semantics and RDF-based Location Data
Many geospatial datasets are part of the Web of Data. Several
geospatial extensions to the SPARQL query language have been
introduced to query and reason over geospatial semantic data. ILX
should be able to natively store and reason over geospatial RDF
data. It is important for ILX to handle the slight geo-semantic inac-
curacies, e.g., the predicate "north-of" can roughly describe objects
that are slightly towards the northeast direction. ILX should be
able to reason over location data given these semantic ambiguities.
Moreover, ILX should be able to make use of the interlinked topo-
logical relations in the Linked Open Data cloud (LOD), and help
produce new geospatial interlinks progressively in LOD as a side
e$ect, e.g., as in [81].

3.8 Security and Resilience to Attacks
ILX should be resilient to malicious activities, e.g., attacks to stop
the system, alter, or snoop data. Systems that use dynamic load
balancingmechanisms are vulnerable to malicious attacks [35]. This
type of attack a$ects system availability. Attackers can make the
system in continuous state of rebalancing. Other types of attacks
that can a$ect ILX need to be investigated, e.g., faking the location
of data, hiding the detection of important location data by #ooding
the system with irrelevant data in the same location. ILX should be
resilient to these attacks by having intelligence to detect and block
malicious users. It should analyze user behavior as individuals and
as groups to detect and prevent any malicious activities.

3.9 Useful EcoSystem Tools
Various geometrical and spatiotemporal toolkits and libraries exist,
e.g., [1–3], that can be partly useful for the ILX ecosystem. Also,
location data generators, e.g., [76], would be an integral part of the
ILX ecosystem.

4 SUMMARY
This paper highlights the main features and challenges in realizing
ILX-like systems. Several existing research works follow some as-
pects of the ILX vision, and hence are in the right direction. Due
to space limitation, not all of these research works are cited in this
paper. However, this paper helps identify such works.

Benchmarks for testing and tuning the performance of all of
ILX’s features will be an integral part of ILX’s ecosystem. Many
such benchmarks already exist in the literature. However, once ILX
is realized, targeted micro-benchmarks for speci"c features of ILX
will need to be developed.
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