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ABSTRACT
HTAP systems are designed to handle transactional and analytical
workloads. Besides a mixed workload at any given time, the work-
load can also change over time. A popular kind of continuously
changing workload is one that oscillates between being write-heavy
and being read-heavy. These oscillating workloads can be observed
in many applications. Indexes, e.g., the B+-tree and the LSM-Tree
cannot perform equally well all the time. Conventional adaptive
indexing does not solve this issue either as it focuses on adapting
in one direction. This paper investigates how to support oscillating
workloads with adaptive indexes that adapt the underlying index
structures in both directions. With the observation that real-world
datasets are skewed, we focus on optimizing the indexes within
the hotspot regions. We encapsulate the adaptation techniques into
the Adaptive Hotspot-Aware Tree adaptive index. We compare the
indexes and discuss the insights of each adaptation technique. Our
investigation highlights the trade-o!s of AHA-tree as well as the
pros and cons of each design choice. AHA-tree can behave compet-
itively as compared to an LSM-tree for write-heavy transactional
workloads. Upon switching to a read-heavy analytical workload,
and after some transient adaptation period, AHA-tree can behave
as a B+-tree and can match the B+-tree’s read performance.

1 INTRODUCTION
Nowadays, database management systems are not just built for a
single purpose, rather they face various requirements from users.
Hybrid Transactional and Analytical Processing (HTAP) systems
are becoming more popular as they address a hybrid of require-
ments. The hybrid requirements include transactional processing
as well as analytical queries. However, HTAP systems usually face
a situation where workload changes over time. The HTAP system
benchmark [28] includes workloads that feature transactions "rst,
then analytical next. The change in workload is also observed as a
diurnal pattern in one of the Rocksdb use cases at Meta [8], and is
also observed in [11], where the number of tweets #uctuate across
the day. In C-store [25], Stonebraker et al. mention that data ware-
houses periodically perform a bulk load of new data followed by a
relatively long period of ad-hoc analytical queries.

One category of changing workloads is the oscillating workload
that is write-heavy at times and is read-heavy at other times. In so-
cial media applications, users post and comment actively during the
day, and browse content in the night or early in the morning. This
corresponds to the write-heavy (post and comment) and read-heavy
(browse) workloads that keep repeating every day. Similar examples
can be found in the context of tra$c incidents management. When
incidents happen, there can be a surge in the write operations while
at other times a read-heavy workload is the dominant one.

We focus on range search query as a representative analytical
querywith read operations. In contrast to a point query, one can con-
trol selectivity by changing the size of the range. Traditional non-
adaptive indexes, e.g., the B+-tree [5, 10] and the Log-Structured
Merge Tree (LSM-Tree) [21] that are optimized for only one opera-
tion cannot do well in the oscillating write-heavy and read-heavy
workloads all the time. Existing adaptive indexes [3, 9, 17, 19, 23, 29]
are not designed for this oscillating workload.

A natural thought to deal with the oscillatingworkload is tomake
the index write like an LSM-Tree in the write-heavy phase, while
read like a B+-tree in the read-heavy workload. We are inspired
by the structure of a bu!er tree [4], where it can be viewed as a
tree part (a B+-tree) plus the bu!er part (an LSM-Tree). However, a
bu!er tree may not solve the problem of oscillating workloads as it
is still a non-adaptive structure.

To make the bu!er tree adaptive, we let the index adapt itself in
either workload. During the read-heavy workload, the bu!ered data
is sent to the leaf nodes s.t. range searches probe the index like a B+-
tree. During the write-heavy workload, data is bu!ered in batches
to avoid I/Os caused by individual insertions. However, making the
bu!er tree adaptive introduces several challenges, and this adaptive
index can still be optimized for the oscillating workloads. First, the
original bu!er tree bu!ers the writes and the range searches [4].
This degrades the latency of individual range searches. As we are
dealing with oscillating workloads, batching range search queries
during the read-heavy phase may not be favored from latency
perspective. Second, the leaf level of the bu!er tree is the same as
the B+-tree, where data is stored in leaf pages. However, merging
data from the bu!ers of the tree with leaf pages is expensive and
can be blocking. Third, the bu!er is composed of several blocks
of "xed size. When emptying the bu!er, this requires expensive
merge-sort and disk I/Os. Lastly, straightforward adaptation of the
bu!er tree overlooks the fact that most real-world data is skewed,
meaning that the data sets have hotspots.

We enclose the above mentioned adapting techniques into a new
adaptive index termed Adaptive Hotspot-Aware Tree. We test its
adaptation under the oscillating write- and read-heavy workloads.
We use an LSM-Tree as the structure for the bu!er associated with
each node. To further improve the write throughput, we treat the
bu!er of the root node di!erently. Besides, to further improve the
write throughput, leaf nodes also contain LSM-Trees as bu!ers
instead of storing data items in pages. This greatly improves the
write throughput. And AHA-tree is hotspot-aware. This makes
the adaptation process con"ned to the hotspot region. Thus, the
adaptation process can get completed within a reasonable amount
of time.
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Figure 1: Index performance under oscillating write- and read-heavy workloads

We evaluate baseline indexes against AHA-tree for oscillating
workloads. AHA-tree adapts to have competitive performance sim-
ilar to that of the corresponding static (non-adaptive) index that
is optimal for that workload. Being adaptive, AHA-tree takes time
to adapt. The throughput during the adaptation phase can be low.
Thus, AHA-tree demonstrates the trade-o! between having a rela-
tively low performance during the adaptation phase at the bene"t
of having competitive performance once the adaptation is com-
pleted. This trade-o! between current and future performance is
exempli"ed in AHA-tree.

The contributions of this paper can be summarized as follows:
• We introduce the adaptive index, AHA-tree, that is devised

for workloads that oscillate between being read-heavy at
times and being write-heavy at other times. AHA-tree han-
dles concurrent read and write operations as well as adapts
to workload changes using concurrent background adapta-
tion threads.

• We conduct a thorough investigation of the performance of
the index under various scenarios of oscillating workloads,
hotspot awareness, and potential index optimizations. We
provide insights into the trade-o!s and e!ectiveness of
these optimizations and techniques that are introduced in
the context of adaptive hotspot-aware indexes.

• Based on the "ndings of this investigation, we provide a
section on the lessons learned and recommendations on
when to apply and when not to apply certain optimizations
in relation to adaptive hotspot-aware tree indexes.

The rest of this paper proceeds as follows. Section 2 introduces
the motivation and background for adaptive indexing. We present
the design of AHA-tree and its operations in Section 3. Section 4 de-
scribes the optimizations we propose for AHA-tree. Sections 5 and 6
discuss the adaptation process and the techniques used during the
adaptation phase. Section 7 presents the experimental results and in-
vestigates the performance of AHA-tree in contrast to existing read-
and write-optimized indexes. Section 8 lists the recommendations
on applying the certain optimizations to the adaptive hotspot-aware
tree indexes. Section 9 discusses the related work, and Section 10
concludes the paper.

2 MOTIVATION AND BACKGROUND
Oscillating read- and write-heavy workload is a typical workload
for HTAP systems. Write-heavy operations involve fast ingestion
of data while read-heavy operations involve analysis of the newly
ingested data. This workload pattern can be challenging for the
non-adaptive indexes including the B+-tree and the LSM-Tree. We

load all the indexes with the same amount of data, then issue range
search queries over the hotspot area. The B+-tree shows the best
range search throughput overtime while the LSM-Tree performs
the worst in Figure 1(B). After this phase, each index is updated
with the same number of updates in a hotspot region. This time,
the average throughput of the LSM-Tree is the best (Figure 1(A)).
We again issue range search queries in the hotspot, the B+-tree
performs better than the LSM-Tree. It is almost impossible for an
index that is optimized for write (range search) to perform well for
range search (read).

In [15], Idreos et al. have proposed a design continuum among
indexes that indexes can be generalized under the same set of
parameters. The transition between B-tree and LSM-Tree can be
bridged by B𝐿-tree [6] and bLSM [24] as displayed in [15]’s Figure
5. Besides choosing an appropriate intermediate structure, we also
observe that real-world workloads usually include one or more
hotspots. These hotspot can be visited or inserted often thus it is
worthwhile to treat hotspots di!erently from cold spot.

AHA-tree is a tree-like structure similar to either bu!er tree [4]
or B𝐿-tree [6]. While being adaptive, AHA-tree focuses on the
hotspot. After initial index loading, AHA-tree adapts itself from
time 0 to 300 sec. During this period, its throughput is relatively
low (Figure 1(B)). After the adaptation "nishes, AHA-tree catches
up with B+-tree in the range search performance (Figure 1 middle
time 300 sec and above). While in the followed updates, AHA-tree
updates faster than B+-tree but slower than LSM-Tree (Figure 1(A)).
In the subsequent range search phase, as more data are added to the
hotspot, AHA-tree takes time to adapt and "nally reaches B+-tree
(Figure 1(B)).

3 BASIC DESIGN OF AHA-TREE
AHA-tree combines ideas from the LSM-Tree [21], the B+-tree [5,
10] and the bu!er tree [4]. Under a write-heavy workload, all write
operations are performed as if AHA-tree is an LSM-Tree. Under a
read-heavy workload within the hotspot, all range queries search as
if AHA-tree is a B+-tree. A key challenge is how to maintain a valid
index structure. We introduce a bu!er tree-like structure [4] as
the intermediate structure. Every node in AHA-tree has an associ-
ated bu!er that is an LSM-tree with a "xed size. Let rootLSM-tree
be the bu!er LSM-tree of the root node and nodeLSM-tree be a
bu!er tree that is associated with each of the other nodes in the
tree. In AHA-tree, the rootLSM-tree has both a memory compo-
nent and a disk component. In contrast, the nodeLSM-trees for all
the other nodes have only disk-components and are also of "xed
sizes. The rootLSM-tree accepts all the incoming writes. When
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Figure 2: Structure of AHA-tree

the rootLSM-tree over#ows, a level-emptying process is triggered
to dispatch data items to the proper nodeLSM-trees of the children.
When the workload becomes read-heavy, two major processes get
started: A hotspot emptying process and a leaf node transforma-
tion process. The hotspot emptying process is similar to the level
emptying process except that it gathers "les that overlap with the
hotspot range for #ushing. In contrast, the leaf node transformation
process transforms the leaf nodes with bu!ers into the B+-tree leaf
pages to speed up hotspot searches.

The rest of this section proceeds as follows. We present the index
structure in Section 3.1, the insertion and range search operations in
Sections 3.2 and 3.3, respectively. We describe the optimizations for
the AHA-tree index in Section 4, the adaptation process in Section 5,
and the adaptation techniques in Section 6.

3.1 Index Structure
Write operations are "rst batched in rootLSM-tree’s memory com-
ponent rootLSM-tree. MemTable. When rootLSM-tree.MemTable
becomes full, it is written into rootLSM-tree’s disk component and
becomes immutable, and a new empty rootLSM-tree.MemTable is
created. The memory component works in the same way as that
for an ordinary LSM-tree, e.g., LevelDB [1], or RocksDB [2].

Figure 2 shows the structure of AHA-tree. Each node is associated
with a nodeLSM-tree bu!er. This di!ers from bu!er tree where
only non-leaf nodes have an associated bu!er [4]. To facilitate
reads inside the hotspot region, in the AHA-tree, the nodeLSM-tree
bu!ers of the leaf pages that are inside the hotspot region gradually
evolve into regular B+-tree leaf nodes with pages and not LSM
levels. AHA-tree maintains the following invariant:

Data Freshness Invariant:

(1) Data in rootLSM-tree is fresher than data in any of the
nodeLSM-trees below it, and

(2) The closer an nodeLSM-tree to the root, the fresher the data.

This invariant is enforced at all times for correctness of execution
The structure in Figure 2 is hybrid at the leaf level. Within

a hotspot region starting from L4 to L9, the leaf nodes do not

have nodeLSM-trees, but rather all data is stored in regular B+-
tree leaf pages. In the non-leaf nodes above the leaf nodes in the
hotspot region, N2 has an empty nodeLSM-tree; N1 and N3 still
have non-empty nodeLSM-trees but these nodeLSM-trees do not
have hotspot data as this data is pushed all the way to the leaf node
pages. This helps in speeding up range queries and analytics over
the hotspot region. From the hotspot’s perspective, the nodes above
L4 to L9 do not have nodeLSM-trees to expedite the search, and
this portion of AHA-tree is completely a B+-tree.

Initially, during index construction, AHA-tree only has rootLSM-tree
without any tree structure. When rootLSM-tree reaches a certain
size (that is empirically-set size), a tree structure starts to form. Leaf
nodes are created with "les dispatched from rootLSM-tree and
the root node page is populated with new routing keys. The initial
tree construction can be expensive if the "les in rootLSM-tree
are re-compacted and are written to disks. We use a technique
for bottom-up bulk-loading of the LSM-tree (to be explained in
Section 4.1) that speeds up this process.

3.2 Insertion
First, we discuss how batch insert works given a write-heavy work-
load, especially how the level-emptying process proceeds. Then, we
discuss tree insert in the context of a completely adapted AHA-tree.

3.2.1 Batch Insert. Under a write-heavy workload, AHA-tree be-
haves as if it is an LSM-tree. Updates are "rst bu!ered into the
rootLSM-tree.MemTable. Once full, data items are written to the
disk component of rtl, e.g., as in the SSTables that are used in
LevelDB [1] and RocksDB [2]. SSTable is added to Level-0 of
rootLSM-tree. The levels of rootLSM-tree compact and #ush
the same way as in the ordinary LSM-tree. Since blocking of
rootLSM-tree may slow down data ingestion during write-heavy
workloads, rootLSM-tree is designed di!erently in contrast to
the other nodeLSM-trees. Section 4.2 discusses optimizations for
rootLSM-tree to address this issue.

We enforce a limit in size for all node-associated bu!ers. When
rootLSM-tree or nodeLSM-tree of non-leaf nodes fail to write "les
to a new level due to exceeding the size limit, the level-emptying
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process is triggered. If the nodeLSM-tree of a leaf node reaches
its size limit, it is split into new leaf nodes; each with one new
nodeLSM-tree. New routing keys are added to the parent of this
leaf node, and this may be propagated up until the root node.
The Level-Emptying Process. This process is triggered by an
over#owing nodeLSM-tree of a non-leaf node. A new level in
nodeLSM-tree needs to be created to hold "les, but this is dis-
allowed when nodeLSM-tree’s size limit is reached. In Figure 2,
the root node dispatches "les in the bottom level of rootLSM-tree
to its children nodes N1, N2 and N3. Notice that the bottom levels
of rootLSM-tree are the ones migrating to the children nodes to
maintain the freshness invariant of AHA-tree stated in Section 3.1.
During compaction, the routing keys in the root are used as one
more input s.t. the boundary of the resulting "les align with the
routing keys. This compaction is termed guarded compaction [22].
This idea was "rst discussed by PebblesDB in the context of the
LSM-Tree with randomly picked guards [22].
Split. Splits in AHA-tree di!er in the cases of leaf vs. non-leaf
node splits. Initially, leaf nodes in AHA-tree hold data in their
corresponding nodeLSM-trees. When a leaf node’s nodeLSM-tree
over#ows, the leaf node splits. The entire nodeLSM-tree is read
and is compacted, then new "les are assigned to the new leaf nodes
with new routing keys added to the parent node. One leaf node can
be split to more than two nodes. We allow this so that each resulting
leaf node may have smaller sized "les. Also, in this case, leaf node
splits can happen less frequently to reduce write ampli"cation.

Figure 3: Internal node split

For or non-leaf nodes, two situations may occur. Either that the
node page itself over#ows or that a node’s associated nodeLSM-tree
over#ows. The latter case is handled via the Level-Emptying Pro-
cess discussed above. In the former case, a non-leaf page over-
#ows. We need to articulate what happens to its corresponding
nodeLSM-tree. A non-leaf node page, say 𝑀𝑁 , holds the underlying
tree’s routing keys. 𝑀𝑁 may over#ow when new routing keys need
to be inserted into 𝑀𝑁 , e.g., when one of 𝑀𝑁 ’s child nodes splits and
a new routing key needs to be inserted into 𝑀𝑁 that is already full.
In this case, 𝑀𝑁 is split into two new nodes. Unlike in the case of
the bu!er tree [4], where it guarantees an empty bu!er for the
splitting internal nodes, AHA-tree does not hold this guarantee as
only parts of a node’s nodeLSM-tree is sent to children nodes dur-
ing the Level-Emptying Process. In contrast, when the over#owed
node page 𝑀𝑁 splits, pivots are assigned evenly to two new pages,
e.g., in Figure 3, a page with 10, 21 and 45, and another page with
the remaining routing keys. 𝑀𝑁 ’s original nodeLSM-tree is split in
the same way, i.e., two resulting nodeLSM-trees with one contain-
ing only the data items smaller than 47 and the other containing
the remaining data items (that are greater than or equal to 47). A
new routing key 47 is added to 𝑀𝑁 ’s parent node page as shown in
Figure 3.

Since node split requires compaction of nodeLSM-tree, which
is expensive and blocking, we use double bu!ering (Section 4.4) and
apply guarded compaction (Section 4.3) to reduce the overhead.

3.2.2 Tree Insert. In contrast to bulk inserting into the LSM-tree
bu!ers of AHA-tree during the write-heavy workload, we may
elect to perform a full tree insert for items, e.g., in the hotspot
region. Refer to Figure 2. Tree insert can only happen in the hotspot
region in Figure 2. When the hotspot region is completely adapted
(adaptation to hotspot regions will be explained in Sections 5 and 6),
no hotspot data items exists in any of the nodeLSM-trees of nodes
above L4 to L9. Now, a new data item, e.g., Key 55, can be inserted
into L6 (not shown in the "gure) bypassing all the nodeLSM-trees
in the path. Since all nodeLSM-trees are already free of data items
belonging to the hotspot region, AHA-tree’s freshness invariant
still holds because, for the hotspot, the freshest data items are in
the leaf pages, and there are none of them in the nodeLSM-trees.

3.3 Range Search
Recall that, in this investigation paper that tests the adaptation of
indexes in oscillating workloads, for simplicity of presentation, we
simulate the analytics read-heavy workload phase using simple
range searches, and we control the amount being retrieved and
used in the analytics operation by adjusting the search ranges.

To improve the latency of the analytics operations, range search
queries are not batched as is the case in the original bu!er tree [4]
because we want to minimize the latency of the individual ana-
lytics queries. Initially when AHA-tree has not been adapted, the
requested data items may reside in all nodeLSM-trees so we rely
on a merged iterator to produce the sorted results. After AHA-tree
has been completely adapted, only the leaf pages that have an over-
lapping range with the query need to be searched and we do not
need to search any of the nodeLSM-trees in this case.

To protect reads from reading inconsistent results, we use read
and wrte locks to protect each node and its nodeLSM-tree. Dur-
ing reading, the entire subtree that overlaps the queried range is
read-locked. This forbids the BGFlushThread from modifying any
nodeLSM-trees in that subtree. In the meantime, other readers can
proceed as usual. This lock prevents all the readers from observing
an inconsistent index until the read is completed.

4 OPTIMIZATIONS
In this section, we explain the optimizations for AHA-tree that
address:

(1) How the initial tree structure in constructed (Section 4.1),
(2) Theway tomakewrite operations non-blocking (Section 4.2),
(3) Reducing the number of unnecessary and repeated "le com-

paction operations (Section 4.3),
(4) Allowing for higher concurrency (Section 4.4), and
(5) Reducing the adaptation time (Section 4.5).

These optimizations are highlighted below.

4.1 Bottom-up Bulk-loading
Recall from Section 3.1 that we need to gradually push data in
batches from the initial write-optimized rootLSM-tree at the root
of AHA-tree down the tree. We rely on the idea that data in the
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levels of the LSM-tree is sorted except for data in Level-0 (unless a
memory-based skiplist is used for theMemTable portion of the LSM-
tree). Since we empirically set rootLSM-tree level limit to be more
than one level, we use the sorted bottom levels of rootLSM-tree to
push down and build the tree portion of AHA-tree. Data pushdown
is triggered when the size limit of rootLSM-tree is reached. During
the pushdown process, each "le in the bottom level is assigned to
one new leaf node. The boundaries of the "les are used as routing
keys for the new nodes. The idea is similar to that in [18] but the
technical details are tailored for the AHA-tree as we explain below.

4.2 Non-blocking Writes in AHA-tree
In contrast to the other nodeLSM-trees in AHA-tree, rootLSM-tree
has both a memory component and a disk component. Incom-
ing writes are "rst added to rootLSM-tree so it is crucial that
rootLSM-tree can "nish its "le compaction fast. A background
thread, termed BGCompactThread, is responsible for compacting
"les in rootLSM-tree. When the size limit of rootLSM-tree is
reached, the second background thread BGFlushThread is signaled
to #ush "les downwards the tree. In order to further reduce the pos-
sible blocking of rootLSM-tree, a soft size limit is enforced to allow
rootLSM-tree to exceed the limit temporarily so that the incoming
write operations are not blocked in case the size is exceeded.

4.3 Guarded Compaction
Compaction can happen frequently both within nodeLSM-trees
and in between nodeLSM-trees of parents and children. To
reduce compaction costs, we apply guarded compaction to
all inner-nodeLSM-tree compactions of non-leaf nodes. When
nodeLSM-tree needs to compact its levels, the node page is used as
one more input, and the resulting "les can align with the routing
keys. Later, during a Level-Emptying Process, if the node page has
not been modi"ed since, the bottom level of this nodeLSM-tree can
be dispatched to children nodes without re-compaction. Dispatch-
ing "les from a parent nodeLSM-tree to a child nodeLSM-tree
is facilitated as we restrict that all the nodeLSM-trees except for
rootLSM-tree do not have memory-based MemTable components.
This way, in most cases, "les can be migrated and rerouted directly
from the bottom level of a parent node’s nodeLSM-tree to the top
level of a child node’s nodeLSM-tree by pointer shu%ing without
reading the "le into memory.

4.4 Double Bu!ering in AHA-tree
One main bottleneck for AHA-tree is the compaction operation
as it requires sorting and rewriting "les, and it blocks all concur-
rent reads on the same "les. To resolve this issue, nodeLSM-tree
compaction is delegated to a concurrent BGFlushThread thread.
However, performing in-place compaction locks the node exclu-
sively. We use double bu!ering to let BGFlushThread work in the
background without write-locking any node. In double bu!ering,
new writes are directed to a new nodeLSM-tree while reads take
place in the original nodeLSM-tree. Onlywhen compaction "nishes
does the BGFlushThread check the locking status, and atomically
apply the compacted results. If there is any reader reading the
nodeLSM-tree, BGFlushThread waits until the read is completed.
BGFlushThread is "rst signaled by BGCompactThread when the

size limit of rootLSM-tree is reached. Then, BGFlushThread com-
pacts the over#owing nodeLSM-trees level by level adding the
to-be-compacted nodes in a queue. During the Level-Emptying Pro-
cess, "les are "rst added to children nodes without any compaction.
If some children nodes require an inner-nodeLSM-tree compaction,
BGFlushThread compacts one of them in the background at one
time. If later their nodeLSM-tree over#ows, the Level-Emptying
Process is invoked recursively and a minimal number of nodes are
write-locked at any given time.

4.5 Hotspot-Emptying Process
Refer to Figure 2. In the "gure, N1’s nodeLSM-tree does not have
hotspot data items. This is achieved by a hotspot-emptying process
during the adaptation process (To be explained in the next section -
Section 5). Automatic identi"cation of hotspots is orthogonal to our
study. In this paper, we assume that hotspots are detected online
and are known in advance. There are researches that identify hot
data from cold data, including [3, 12, 19, 29]. Within this hotspot
range, only data that belongs to the hotspot can reach the leaf pages
eventually to address read performance during the read-heavy
phase of the workload. This alleviates the overhead of compacting
the entire level of an nodeLSM-tree.

5 THE ADAPTATION PROCESS
As the workload shifts from being write-heavy to being read-heavy,
AHA-tree needs to adapt accordingly to mostly behave as a B+-tree.
Automatic detection of when the workload changes is out of the
scope of this work. However, once detected, we describe how the
adaptation process takes place. This section addresses this issue.

The adaptation process is conducted by an independent back-
ground thread, termed BGFlushThread. For read-heavy workloads,
the goal is to have all hotspot data items be stored in the leaf pages of
AHA-tree. This helps avoid searching for data inside rootLSM-tree
or inside any of the nodes’ nodeLSM-trees, which is very time con-
suming. The whole process involves a Hotspot-Emptying Process
and a Leaf-Nodes Transformation Process.

To migrate hotspot data from rootLSM-tree and the nodes’
nodeLSM-trees, all the AHA-tree nodes from root to leaf having
overlapping ranges with the hotspot range need to be checked. In or-
der to avoid unnecessary adaptation, we only empty the nodeLSM-trees
if these nodes are queried by some range search. During range
search, if the tree traversal discovers a non-hotspot-free nodeLSM-tree,
the node is recorded in a queue. BGFlushThread iterates over this
queue, and "nds that node in the tree. All the data items that belong
to the hotspot are compacted, and then are sent down the tree to
the children level. In Figure 4, "les that are selected are compacted,
and are sent to the destination children nodes. We do not force the
data items to go directly into the leaf levels as there may be more
levels in-between and until the leaf level, and this would invalidate
the AHA-tree freshness invariant, and hence is avoided. Instead,
hotspot data items are pushed one level at a time, and this can also
help remove obsolete data items in the child level. This process is
almost identical to the Bu!er-Emptying Process except that the
way to gather the "les is di!erent.

Leaf nodes with nodeLSM-trees are transformed di!erently. The
goal is to rewrite this nodeLSM-tree into leaf pages. We have two
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Figure 4: The adapting process

techniques to achieve that: down-split and side-split. Both tech-
niques will be explained in Section 6.1. Once the leaf nodes are
transformed into leaf pages, the new routing keys are added into
the parent node, which may cause further split of the parent node.

In the experimental study, we start the adaptation process
when there is a range search query. Nodes that need to be pro-
cessed are recorded in a shared work queue that can be visited by
BGFlushThread.

6 ADAPTATION-RELATED OPTIMIZATIONS
During the adaptation process, we can choose to adapt the leaf
nodes in one of two ways. We compare them in Section 6.1. Also,
we observe a phenomenon called waves of misery [13, 26] when
merging the "les with the tree pages. This is explained in Section 6.2.

6.1 Down-Split VS. Side-Split
We devise two ways to split a leaf node with nodeLSM-tree. One
is termrd down-split, where the bottom level of nodeLSM-tree is
extracted, and each "le is assigned to a new node. The original
leaf node becomes a non-leaf node with the remaining "les in its
nodeLSM-tree. This makes the tree unbalanced (See Figure 5a)
as it adds one more level in the middle but does not require any
compaction during split.

(a) Down-Split VS. Side-Split

(b) Even-split VS. Sound remedy-split

Side-split keeps AHA-tree in balance. It recompacts its nodeLSM-tree
and obtains sorted "les. Each one "le is assigned to a leaf node and

the routing keys are added in the parent. In Figure 5a, the connec-
tions between the parent node and the new nodes are in dashed
lines because the parent node may need to split.

In both strategies, we take one more step to transform a leaf
node with nodeLSM-tree to a leaf page. First, we transform it to
a leaf node with only one "le in its nodeLSM-tree. The reason for
breaking down the steps is that a "le size is typically larger than a
tree page. Rewriting many "les into tree pages may cause a bloating
of routing keys. This causes AHA-tree to undergo severe structural
modi"cation that may cause unnecessary recompaction and delays.

6.2 Waves of Misery (WoM)
After a leaf node is transformed into a smaller leaf node with only
one "le in its nodeLSM-tree, this single "le needs to be written
into tree pages. The most straightforward way is to distribute the
data items evenly into multiple pages. We refer to this strategy
by even-split. However, this strategy may face an issue of waves-
of-misery [13, 26] with future write operations. We can view data
in uniform distribution if they are inside a small range. And the
evenly distributed pages are of the same page utilization. When
data are added in batches, these pages may over#ow at the same
time which doubles or triples the number of pages. These resulting
pages may be of a low page utilization depending on the amount
of added data. In turn, this degrades the range search performance.
Thus, we follow the sound remedy introduced in [13, 26] to allocate
data items into each page as shown in Figure 5b. Each page is not of
a "xed utilization, and the goal is to split pages sequentially rather
than all at the same time.

7 EXPERIMENTS AND EVALUATION
In this section, we evaluate AHA-tree against other indexes under
oscillating write-heavy and read-heavy workloads and analyze the
performance.

7.1 Experiment Setup
We use a 152-core machine having Intel(R) Xeon(R) Platinum 8368
CPU @ 2.40GHz with 197 GB installed Ubuntu 22.04.2 LTS of two
NUMA nodes. We pin all our experiments in one NUMA node to
eliminate NUMA-related performance issues.

We use synthetic data in our experiments. Two data distributions
are used: Uniform and Zip"an distributions. The key for one data
item is a 20-byte string, and the value is a 128-byte string. We load
the indexes with 500 million key-value pairs and the compared
indexes are executed for the same amount of time or the same
amount of operations. This is described in detail in each experiment.

7.2 Indexes Under Comparison
AHA-tree uses LevelDB [1] as its rootLSM-tree and nodeLSM-tree.
Thus, we compare AHA-tree with LevelDB in the experiments.
However, since the implementation of the bu!er LSM-Trees is a
pluggable component for AHA-tree, other LSM-Trees can "t as well.
We choose LevelDB for its conciseness. We implement an in-house
disk-based B+-tree for the experiments. During the experiments,
user threads send requests, including write operations and range
search queries, to the index. AHA-tree uses two background threads
during index modi"cation and LevelDB uses one thread. For a fair
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(a) Average throughput underUniformandZip"an
data distributions

(b) Range search throughput after index loading
overtime

(c) Change of ratios of hotspot operations

Figure 6: The performance after index loading

comparison with the B+-tree, we allow the same number of threads
running for each index at any given time. Only after the background
thread(s) "nish their work can the user thread(s) be awakened to
send requests.

7.3 Range Search After Index Construction
First, we evaluate the range search performance after the indexes
are constructed. We load each index with 500 million key-value
pairs in the Uniform and Zip"an distribution cases. For the Uniform
distribution, we choose a hotspot range of size 1% of the entire key-
space. The hotspot start point is located randomly. For the case of
the Zip"an distribution, we choose a smaller hotspot range of size
0.01% and anchor the hotspot at the beginning of the key-space
that coincides with the highly ranked data items. The length of
the range search query is 1000 for the Uniform distribution and
100 for the Zip"an distribution. A smaller length in the case of the
Zip"an distribution is to have a similar size of the returned results
in contrast with the Uniform distribution case.
Hotspot-100% Range Search. We show the results of index con-
struction as well as the range search after index construction in
Figure 6. All three indexes (AHA-tree, the B+-tree, and the LSM-
tree) are "rst loaded with the same amount of data. Their average
throughput during loading is displayed in Figure 6a-(1) with Uni-
form data and the Zip"an data in Figure 6a-(2). AHA-tree has the
highest average throughput as it has two background threads that
can compact "les concurrently. LevelDB is slower but is still faster
than the B+-tree. This is consistent for both the Uniform and the
Zip"an data.

Starting at Time 0, the workload transitions to range search, we
show the throughput overtime in Figure 6b and Figure 1 middle
panel. The points in the "gure are the results of a running aver-
age of Window Size 10 over a logarithmic scale of Base 10 of the
recorded throughput. Figure 1 middle gives the results for Uniform
data while Figure 6b gives the results for the Zip"an data. In both
"gures, AHA-tree can adapt to the hotspot. It takes about 300 to 400
seconds to adapt. During adaptation, AHA-tree shows a relatively
low throughput. However, by the end of the adaptation process,
the throughput of AHA-tree catches with that of the B+-tree.

We compute the average throughput of the fully adapted AHA-
tree and AHA-tree undergoing adaptation and plot them in Fig-
ure 6a. AHA-tree (unstable) denotes when adaptation is in progress
and the throughput is low as the background thread is occupied
to adapt the hotspot region into a B+-tree. In both the Uniform
and Zip"an data distributions, a fully adapted AHA-tree shows a
throughput close to B+-tree.

In either data distribution, AHA-tree is the "rst to "nish loading
the same amount of data with the same number of threads. In the
following range query phase, the stable AHA-tree is slightly lower
than the B+-tree in throughput but is better than LevelDB.

Since we do not observe a di!erent behavior between Uniform
and Zip"an data except for the duration of the adapting process,
we use Uniform data in the experiments to follow.
Hotspot-𝑂% Range Search. Figure 6c compares the indexes when
some range searches query cold spots while the majority of the
queries query the hotspot. We show the comparison for 90%, 95%
and 99% range search queries on hotspot. In the Figure 6c, when
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Figure 7: Comparison of seek-triggered compaction with adaptation

(a) Behavior after loading
(b) Average throughput of updates and the fol-
lowed range search

(c) Range search throughput after updates overtime

Figure 8: Comparison between down-split and side-split

there are fewer operations on the hotspot, e.g., 90% and 95%, the dis-
crepancy between AHA-tree and B+-tree is larger. That is because
cold spot range search need to search through the nodeLSM-trees
for the cold data that qualify the search. In terms of the time taken
to adapt the hotspot, all ratios do not exhibit signi"cant di!erences.

7.4 AHA-tree VS. LSM-Tree
In LevelDB [1], the "le compaction optimization can be triggered
by excessive "le reads. It helps compact frequently-read "les to
reduce I/O. A "le is allowed to be seeked 100 times by default.
If this number is exceeded, compaction is triggered to compact

all the "les of the overlapping range, and produce new "lex. We
observe the e!ect of this optimization in Figure 6b as the range
search throughput gradually improves overtime, and stays stable
afterwards. This suggests that the number of I/Os has decreased
as there are fewer "les to read. We compare this behavior with
the adaptivity of AHA-tree. In Figure 7, we vary the length of the
range search query in the "rst row. LevelDB shows an increase
from 30k ops/sec to 78k-80k ops/sec, respectively, and stays stable.
In the second row of Figure 7, we change the size of the hotspot
from 0.5% of the entire key-space to 10%. AHA-tree takes longer
time to adapt with a larger hotspot and LevelDB also reaches the
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stable point slower. If there are many queries con"ned in a range,
seek-triggered compaction shows more obvious e!ect. However,
AHA-tree still performs better than LevelDB after LevelDB’s seek-
triggered compaction has "nished.

7.5 Performance Comparison of
Post-Adaptation Indexes For Write-Heavy
Workloads

Next, we show the performance of write operations on a fully
adapted AHA-tree. After AHA-tree has been range queried for some
time, the hotspot region has been completely transformed into B+-
tree. Then, the workload is oscillated back to be write-heavy by
issuing only write operations on the hotspot only. Here, we focus on
the hotspot writes only to stress AHA-tree. If writes are distributed
in the cold and hot spots, it is expected that the average throughput
would be close to the loading phase. All indexes are given the same
number of write operations, followed by range search operations
in the hotspot region. Figure 1(A) gives the average throughput
during the updates-only phase. AHA-tree writes faster than the
B+-tree but slower than LevelDB. This is expected as all bu!ered
writes undergo a level-emptying process. The reason is that the
hotspot data needs to be merged with the existing hotspot pages.
This merge is more expensive than appending bu!ers in the cold
spot. During the adaptation phase, AHA-tree has a short period of
low-throughput then the throughput recovers and catches up with
the performance of the B+-tree (Figure 1(B)).

Observe that all indexes exhibit lower range search throughput
after the write operations compared to before the updates. This is
reasonable as more data has been added into the hotspot region,
and thus more data is to be reported, and hence the more time.
Also, observe that AHA-tree shows a 36% degradation while the
B+-tree is only 30% worse. This is a phenomenon due to the Waves
of Misery (WoM) described in Section 6.2 that we address in the
next section.

7.6 E!ect of Adaptation Optimizations
We study the e!ect on performance of the two adaptation optimiza-
tions presented in Section 6.
E!ect of Leaf-Node Splitting Strategies. We compare the e!ect
of the leaf-node down-split and side-split strategies on performance.
The results of this comparison are given in Figure 8. In Figure 8a-(1),
we show the e!ect of adapting AHA-tree after index construction.
The average throughput of both stable down-split and stable side-
split do not show much di!erence in the range search adaptation,
and neither are their unstable throughputs (Figure 8a-(1)). Also, the
time needed to adapt does not di!er much as shown in Figure 8a-(2).

Next, we compare how future write operations over the adapted
index perform under either split strategy. We use three di!erent
update sizes: 1→, 2→ and 3→ of the hotspot size. With the increase
in the update size, the average throughput of AHA-tree drops espe-
cially when the leaf node is side-split. AHA-tree with down-split
updates faster than the side-split one (Figure 8b). As the updated
data are later merged with the adapted leaf pages, this is more costly
than the Level-Emptying Process between the internal nodes. With
down-split, a new layer of nodes is created that allows for more
room to bu!er the incoming data. Thus, it is faster and quicker to

absorb new updates in the case of a down-split than in the case of
a side-split. Figure 8c compares the range search throughput after
updates over time. Down-split is faster in adapting than side-split
as it does not involve compaction. The eventual throughput does
not show much di!erence between side- and down-splits.
E!ect of Leaf Allocation.We compare the performance of two dif-
ferent leaf allocation strategies: even-allocation and sound-remedy-
allocation. First, we compare their average throughput for range
search when leaf nodes are side-split (See Figure 9a). There is
no obvious di!erence in the average throughput between even-
allocation and sound-remedy-allocation in Figure 9a-(1). However,
sound-remedy-allocation takes more time to fully adapt as shown
in Figure 9a-(2). The reason is that sound-remedy-allocation needs
to compute the capacity of each page, and may need to allocate
more pages than even-allocation.

After the indexes are completely adapted in the range search,
update operations are applied to the indexes. We can insert data in
two ways: batch-insert or tree-insert. We compare both in Figure 9b.
Tree-insert is the slowest as data is inserted one item at a time. Upon
page over#ow, internal nodes with bu!ers are split, which makes
this technique even slower than the B+-tree updates. Bu!er-insert
can insert faster but is still slower than LevelDB.

Then, we compare the two allocation techniques when leaf nodes
are down-split (Figure 9c and Figure 9d). The overall trend is similar
to what is observed for the side-split case.

The range search throughput over time shows that tree-update
does not require an adapting period and the performance is nearly
as good as the B+-tree (Figures 9e and 9f). There is a trade-o!
between current write throughput and future read throughput, i.e.,
we can sacri"ce current write performance in return for no needed
adaptation for the future read-heavy workload.

Observe that the throughput of the di!erent allocations varies.
The variation is due to di!erences in the leaf page utilization. If
all leaf pages are packed full, all relevant range queries touch the
smallest number of pages. We then plot the leaf page utilization
distribution in Figure 10. The page distribution of the B+-tree is
displayed in Figure 10g. This distribution matches the ideal result of
sound remedy in [13, 26] which guarantees page distributions are
spread and are not clustered. Thus, the B+-tree will not su!er from
Waves of Misery (WoM). If AHA-tree leaf pages are allocated by
sound remedy and later inserted by tree-insert, the resulting distri-
bution of leaf page utilization is in Figure 10e and 10f demonstrating
that WoM does not occur. Since they do not su!er from WoM, their
performance is almost as good as the B+-tree. If the pages are allo-
cated by even distribution (in contrast to sound remedy), there will
be a utilization ratio that the majority of the pages belong to. This
majority utilization ratio depends on the number of writes applied
on AHA-tree. For example, when there are 1→ updates, this peak
utilization ratio is 100% suggesting that the majority of the pages
are full. Thus, the range search time is low. For 2→ updates, the page
utilization distribution is more uniform within 78% to 100%. Thus,
the range search may touch more pages, and the needed search
time is higher (Figures 10a and 10b).
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(a) Behavior after index loading (side-split of leaf)
(b) Average throughput of updates and the fol-
lowed range search (side-split of leaf)

(c) Behavior after index loading (down-split of leaf)
(d) Average throughput of updates and the fol-
lowed range search (down-split of leaf)

(e) Range search throughput after updates overtime (side-split of leaf)

(f) Range search throughput after updates overtime (side-split of leaf)

Figure 9: Comparison of leaf allocation techniques

7.7 Mixed Read-Write Operations
Since write-heavy (read-heavy) workloads may still include read
(write) operations, we evaluate the indexes under mixed workloads.
All mixed workloads start after the indexes have been constructed.

Workload A starts with 90% range search plus 10% updates, then
10% range search plus 90% updates, followed by 90% range search
plus 10% updates, then 10% range search plus 90% updates. Each
phase takes 300 seconds. AHA-tree adapts itself only under 90%
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(a) Down-split with even-allocation then bu!er-updates (b) Side-split with even-allocation then bu!er-updates

(c) Down-split with even-allocation then tree-updates (d) Side-split with even-allocation then tree-updates

(e) Down-split with sound remedy then tree-updates (f) Side-split with sound remedy then tree-updates

(g) Leaf page distribution of B+-tree

Figure 10: Leaf page distribution of AHA-tree

(a) Throughput of workload A (b) Throughput of workload B
(c) Throughput of workload B if updates are
inserted by tree-update

Figure 11: Performance under a mixed oscillating read-write workloads

range search. The result in Figure 11a shows that AHA-tree does
not perform well if adapting and writing happen at the same time
(0-300 sec and 600-900 sec). AHA-tree can have a relatively good
throughput under 90% updates (300-600 sec and 900-1200 sec).

Since adaptation and writes compete against each other, we use a
fully adapted AHA-tree. Workload B includes 300 sec of 100% range

search s.t. AHA-tree can be adapted completely. This is followed
by 300 sec of 10% range search plus 90% updates. In Figure 11b,
AHA-tree adapts itself during the 100% range search phase and its
overall throughput remains high until the workload becomes 90%
range search plus 10% updates at Time 600 sec. AHA-tree writes
and adapts during this phase, and its throughput becomes lowest
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among all. Since tree-insert can avoid the problem of writing and
adapting at the same time, we conduct a similar experiment in
Figure 11c using tree-insert. From time 500 sec to 800 sec where
the workload is 10% range search plus 90% updates, AHA-tree is
unstable during this phase. In the next 90% range search plus 10%
updates phase, AHA-tree has the highest throughput. When the
ratio of updates increases, the throughputs of both AHA-tree and
LevelDB #uctuate.

8 LESSONS LEARNED
We summarize the lessons learned and recommendations from the
experiments as follows:

• If the workload oscillates between read-heavy and write-
heavy rapidly, non-adaptive indexes like the B+-tree and
LSM-tree will be a good choice as AHA-tree takes time to
adapt.

• If the relatively low throughput is not desired during the
adapting period, non-adaptive index is a better choice.

• If the read-heavy workload requires a relatively high work-
load and the adapting period can be tolerated, AHA-tree
is a good choice as its eventual throughput can be as high
as the B+-tree but AHA-tree’s load and update throughput
are higher.

• If the duration of the write-heavy workload is short, us-
ing tree-insert is favored in AHA-tree as it maintains the
hotspot structure, and does not require further adaptation.

• If the duration of the write-heavy workload is long, using
batched-insert in AHA-tree can improve write throughput.

9 RELATEDWORK
Numerous studies have been conducted for improving the write
performance of tree-like structures. In order to minimize individual
I/O, the bu!er tree [4] batches multiple operations (insertion, dele-
tions and range searches) into one segment in the memory. Later
this in-memory block is added to the bu!er of the root and may
trigger bu!er emptying process with new data "nally lands into
the leaf page. Graefe has proposed write-optimized B-tree on top
of traditional B-trees in [14]. This design makes page migration
inexpensive in log-structured systems, and supports both in-place
updates and large append-only write operations at the same time.
This does not need an indirection layer to locate a B-tree on disk.
B𝐿-tree [6] is a tree structure where some space of the tree node is
allocated to a bu!er. The bu!er stores updates that are eventually
applied to the leaf nodes. 𝐿 decides the amount of space for pivots
and the remaining amount for bu!er. [27] presents a Nested B-tree
where each B-tree node contains a B+-tree.

Since the LSM-tree sacri"ces read performance in exchange of
better write performance, researches have been conducted research
to improve the LSM-tree’s read performance. The Bloom "lter [7]
can greatly improve point reads of LSM-tree by "ltering and re-
ducing unnecessary I/Os. However, the Bloom "lter cannot "lter
range searches. Rosetta [20] uses a hierarchically-stacked Bloom
"lters, and each range query is converted into multiple probes into
the Bloom "lters. REMIX [30] improves range searches by adding a
sorted view across multiple "les in the LSM-tree s.t. range search

can "nd the target key using binary search and retrieve following
keys in order without comparison.

Database Cracking [17]reorganizes data entries with incoming
queries. This technique is based on an observation that only when
data is queried should it be necessary to sort (reorganize) data. The
initial database cracking is introduced in a column-store but can
also be applied to row-stores [17]. In order to support dynamic
databases in database cracking, [16] proposes several algorithms to
update a cracked database.

There are other adaptive indexes that adapt to the changes in
workload [9, 23], or in the data distribution [3, 19, 29]. Adaptive
Hybrid Indexes [3] are proposed to address data hotspots s.t. cold
data can be more compressed to make room for the less compressed
hot data. This technique has been shown e!ective both in the
B+-tree and in the trie [3]. VIP-hashing [19] deals with the data
hotness issue but in the context of the hash table. Data distribution
is learned and compared as more queries come. Then, the access
path of hot data can be reduced on the #y. SA-LSM [29] can adapt
itself to long-tailed data, that data popularity decreases overtime.
SA-LSM uses survival analysis to train a model to predict the next
access time of the data item, and moves cold data into slow storage
during LSM-tree compaction. A real-time LSM-tree termed LASER
is developed [23]. The observation is that recent data is stored in
row-store for OLTP while older data is stored in a column-store for
OLAP. LASER allows di!erent data layouts in di!erent levels of the
LSM-tree. B𝐿𝑀𝑁𝑂 -hash [9] solves the issue of inserting monotonically
increasing keys by using a hash table as a leaf node in the tree. Later,
the hash table is adapted to a leaf page upon queries.

10 CONCLUSION
In this paper, we present a kind of workload that oscillates be-
tween write-heavy and read-heavy. This workload is observed in
many real-world applications. Traditional non-adaptive indexing
and adaptive indexing cannot "t into this workload well as they
are either non-adaptive or adapt in only one direction. With the
observation that real data sets are skewed, we focus only on the
hotspot. We encapsulate the adapting techniques in the index AHA-
tree to make it adaptive in both directions. In our investigation, we
evaluate AHA-tree against traditional indexes, and present the pros
and cons for each adaptation strategy that is helpful to deal with
the oscillating workload.



Investigation of Adaptive Hotspot-Aware Indexes for Oscillating Write-Heavy and Read-Heavy Workloads - An Experimental Study

REFERENCES
[1] [n. d.]. LevelDB. https://github.com/google/leveldb
[2] [n. d.]. RocksDB. https://github.com/facebook/rocksdb
[3] Christoph Anneser, Andreas Kipf, Huanchen Zhang, Thomas Neumann, and

Alfons Kemper. 2022. Adaptive hybrid indexes. In Proceedings of the 2022 Inter-
national Conference on Management of Data. 1626–1639.

[4] Lars Arge. 2003. The bu!er tree: A technique for designing batched external
data structures. Algorithmica 37 (2003), 1–24.

[5] Rudolf Bayer and Edward McCreight. 1970. Organization and maintenance of
large ordered indices. In Proceedings of the 1970 ACM SIGFIDET (Now SIGMOD)
Workshop on Data Description, Access and Control. 107–141.

[6] Michael A Bender, Martin Farach-Colton, William Jannen, Rob Johnson,
Bradley C Kuszmaul, Donald E Porter, Jun Yuan, and Yang Zhan. 2015. An
introduction to B-trees and write-optimization. login; magazine 40, 5 (2015).

[7] Burton H Bloom. 1970. Space/time trade-o!s in hash coding with allowable
errors. Commun. ACM 13, 7 (1970), 422–426.

[8] Zhichao Cao, Siying Dong, Sagar Vemuri, and David HCDu. 2020. Characterizing,
modeling, and benchmarking {RocksDB}{Key-Value} workloads at facebook.
In 18th USENIX Conference on File and Storage Technologies (FAST 20). 209–223.

[9] Hokeun Cha, Xiangpeng Hao, TianzhengWang, Huanchen Zhang, Aditya Akella,
and Xiangyao Yu. 2023. Blink-hash: An adaptive hybrid index for in-memory
time-series databases. Proceedings of the VLDB Endowment 16, 6 (2023), 1235–
1248.

[10] Douglas Comer. 1979. Ubiquitous B-tree. ACM Computing Surveys (CSUR) 11, 2
(1979), 121–137.

[11] Anas Daghistani, Walid G Aref, Arif Ghafoor, and Ahmed R Mahmood. 2021.
Swarm: Adaptive load balancing in distributed streaming systems for big spatial
data. ACM Transactions on Spatial Algorithms and Systems 7, 3 (2021), 1–43.

[12] Jiake Ge, Huanchen Zhang, Boyu Shi, Yuanhui Luo, Yunda Guo, Yunpeng Chai,
Yuxing Chen, and Anqun Pan. 2023. SALI: A Scalable Adaptive Learned Index
Framework based on Probability Models. Proceedings of the ACM on Management
of Data 1, 4 (2023), 1–25.

[13] Nikolaus Glombiewski, Bernhard Seeger, and Goetz Graefe. 2019. Waves of
misery after index creation. (2019).

[14] Goetz Graefe. 2004. Write-optimized B-trees. In Proceedings of the Thirtieth
international conference on Very large data bases-Volume 30. 672–683.

[15] Stratos Idreos, Niv Dayan, Wilson Qin, Mali Akmanalp, Sophie Hilgard, Andrew
Ross, James Lennon, Varun Jain, Harshita Gupta, David Li, et al. 2019. Design
Continuums and the Path Toward Self-Designing Key-Value Stores that Know
and Learn.. In CIDR.

[16] Stratos Idreos, Martin L Kersten, and Stefan Manegold. 2007. Updating a cracked
database. In Proceedings of the 2007 ACM SIGMOD international conference on
Management of data. 413–424.

[17] Stratos Idreos, Martin L Kersten, StefanManegold, et al. 2007. Database Cracking..
In CIDR, Vol. 7. 68–78.

[18] Varun Jain, James Lennon, and Harshita Gupta. 2019. Lsm-trees and b-trees:
The best of both worlds. In Proceedings of the 2019 International Conference on
Management of Data. 1829–1831.

[19] Aarati Kakaraparthy, Jignesh M Patel, Brian P Kroth, and Kwanghyun Park. 2022.
VIP hashing: adapting to skew in popularity of data on the #y. Proceedings of the
VLDB Endowment 15, 10 (2022), 1978–1990.

[20] Siqiang Luo, Subarna Chatterjee, Rafael Ketsetsidis, Niv Dayan, Wilson Qin, and
Stratos Idreos. 2020. Rosetta: A robust space-time optimized range "lter for key-
value stores. In Proceedings of the 2020 ACM SIGMOD International Conference on
Management of Data. 2071–2086.

[21] Patrick O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth O’Neil. 1996. The
log-structured merge-tree (LSM-tree). Acta Informatica 33 (1996), 351–385.

[22] Pandian Raju, Rohan Kadekodi, Vijay Chidambaram, and Ittai Abraham. 2017.
Pebblesdb: Building key-value stores using fragmented log-structured merge
trees. In Proceedings of the 26th Symposium on Operating Systems Principles.
497–514.

[23] Hemant Saxena, Lukasz Golab, Stratos Idreos, and Ihab F Ilyas. 2023. Real-time
LSM-trees for HTAP workloads. In 2023 IEEE 39th International Conference on
Data Engineering (ICDE). IEEE, 1208–1220.

[24] Russell Sears and Raghu Ramakrishnan. 2012. bLSM: a general purpose log
structured merge tree. In Proceedings of the 2012 ACM SIGMOD International
Conference on Management of Data. 217–228.

[25] Mike Stonebraker, Daniel J. Abadi, Adam Batkin, Xuedong Chen, Mitch Cherni-
ack, Miguel Ferreira, Edmond Lau, Amerson Lin, Sam Madden, Elizabeth O’Neil,
Pat O’Neil, Alex Rasin, Nga Tran, and Stan Zdonik. 2005. C-store: a column-
oriented DBMS. Proceedings of the VLDB Endowment (2005), 553–564.

[26] Lu Xing, Eric Lee, Tong An, Bo-Cheng Chu, Ahmed Mahmood, Ahmed M Aly,
Jianguo Wang, and Walid G Aref. 2021. An experimental evaluation and investi-
gation of waves of misery in r-trees. arXiv preprint arXiv:2112.13174 (2021).

[27] Sepanta Zeighami. 2019. Nested b-tree: e"cient indexing method for fast insertions
with asymptotically optimal query time. Ph. D. Dissertation.

[28] Chao Zhang, Guoliang Li, and Tao Lv. [n. d.]. HyBench: A New Benchmark for
HTAP Databases. ([n. d.]).

[29] Teng Zhang, Jian Tan, Xin Cai, Jianying Wang, Feifei Li, and Jianling Sun. 2022.
SA-LSM: optimize data layout for LSM-tree based storage using survival analysis.
Proceedings of the VLDB Endowment 15, 10 (2022), 2161–2174.

[30] Wenshao Zhong, Chen Chen, Xingbo Wu, and Song Jiang. 2021. {REMIX}:
E$cient Range Query for {LSM-trees}. In 19th USENIX Conference on File and
Storage Technologies (FAST 21). 51–64.

https://github.com/google/leveldb
https://github.com/facebook/rocksdb

	Abstract
	1 Introduction
	2 Motivation and Background
	3 Basic Design of AHA-tree
	3.1 Index Structure
	3.2 Insertion
	3.3 Range Search

	4 Optimizations
	4.1 Bottom-up Bulk-loading 
	4.2 Non-blocking Writes in AHA-tree
	4.3 Guarded Compaction
	4.4 Double Buffering in AHA-tree
	4.5 Hotspot-Emptying Process

	5 The Adaptation Process
	6 Adaptation-related Optimizations
	6.1 Down-Split VS. Side-Split
	6.2 Waves of Misery (WoM)

	7 Experiments and Evaluation
	7.1 Experiment Setup
	7.2 Indexes Under Comparison
	7.3 Range Search After Index Construction
	7.4 AHA-tree VS. LSM-Tree
	7.5 Performance Comparison of Post-Adaptation Indexes For Write-Heavy Workloads 
	7.6 Effect of Adaptation Optimizations
	7.7 Mixed Read-Write Operations

	8 Lessons Learned
	9 Related Work
	10 Conclusion
	References

