
Dealing with Acronyms, Abbreviations, and Typos
in Real-World Entity Matching

Joshua Wu
UC Berkeley

joshua.justin.wu@gmail.com

Dixin Tang
UT Austin†

dixin@utexas.edu

Nithin Chalapathi
UC Berkeley

nithinc@berkeley.edu

Tristan Chambers
UC Berkeley†

tristan.chambers@berkeley.edu

Julie Ciccolini
Techtivist†

julie@techtivist.com

Cheryl Phillips
Dept. of Communication,

Stanford University
cep3@stanford.edu

Lisa Picko!-White
Investigative Reporting
Program, UC Berkeley†

picko!white@berkeley.edu

Aditya Parameswaran
UC Berkeley

adityagp@berkeley.edu

ABSTRACT

String matching is at the core of data cleaning, record matching, and

information retrieval. String matching relies on a similarity mea-

sure that evaluates the similarity of two strings, regarding the two

as a match if their similarity is larger than a user-de"ned threshold.

In our collaboration with journalists and public defenders, we found

that real-world datasets, such as police rosters that journalists and

public defenders work with, often contain acronyms, abbreviations,

and typos, thanks to errors during manual entry, into, say, a spread-

sheet or a form. Unfortunately, traditional similarity measures lead

to low accuracy since they do not consider all three aspects to-

gether. Some recent work proposes leveraging synonym rules to

improve matching, but either requires these rules to be provided

upfront, or generated prior to matching, which leads to low accu-

racy in our setting and similar ones. To address these limitations,

we propose Smash, a simple yet e!ective measure to assess the sim-

ilarity of two strings with acronyms, abbreviations, and typos, all

without relying on synonym rules. We design a dynamic program-

ming algorithm to e#ciently compute this measure, along with two

optimizations that improve accuracy. We show that compared to

the best baselines, including one based on ChatGPT with GPT-4,

Smash improves the max and mean F-score by 23.5% and 110.8%,

respectively. We implement Smash in OpenRe"ne, a graphical data

cleaning tool, to facilitate its use by journalists, public defenders,

and other non-programmers for data cleaning.

PVLDB Reference Format:

Joshua Wu, Dixin Tang, Nithin Chalapathi, Tristan Chambers, Julie

Ciccolini, Cheryl Phillips, Lisa Picko!-White, and Aditya Parameswaran.

Dealing with Acronyms, Abbreviations, and Typos

in Real-World Entity Matching. PVLDB, 17(12): 4104 - 4116, 2024.

doi:10.14778/3685800.3685830

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at

https://github.com/dx-tang/smash.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 17, No. 12 ISSN 2150-8097.
doi:10.14778/3685800.3685830

1 INTRODUCTION

String matching is a process of identifying and matching similar

strings underlying a variety of applications, such as data cleaning

and integration, record linkage, and information retrieval [9, 14,

16, 29, 38]. For example, for data cleaning, string matching can

match strings from di!erent data sources that refer to the same

entity, improving data quality and reducing errors. String matching

typically evaluates the similarity of two strings using a similarity

function of some sort, e.g., Jaccard similarity [36], or distancemetric,

e.g., Levenshtein distance [4]. Two strings are deemed to be amatch

if their similarity score is higher than (or, equivalently, their distance

metric is smaller than) a given user-speci"ed threshold.

While string matching has a rich history, one unaddressed chal-

lenge is that real-world datasets include strings with various forms of

acronyms and abbreviations to represent the same entities, as well

as typos due to human mistakes in data entry.

Application 1 (Police Roster Cleaning). As part of a consor-

tium titled CLEAN (Community Law Enforcement Accountability

Network), we work with journalists and public defenders to clean,

organize, and analyze police data across various states in the US,

including rosters, information about police o!cers, typically orga-

nized as a CSV or spreadsheet. In one instance, we worked with public

defenders from the National Association of Criminal Defense Lawyers

(NACDL) to clean a dataset from a midwestern public defender of-

"ce that includes police o!cer titles as a column (referred to as the

Police Roster dataset henceforth). This dataset includes a number

of acronyms (e.g., “school resource o!cer” as “sro”), abbreviations

(e.g., “deputy marshall” as “dpty mrsl”), and typos (e.g., “sergeant”

as “sargeant”), as well as combinations thereof, because these o!-

cer titles are manually entered by police department personnel. The

public defender we worked with, who doesn’t know programming,

required two weeks to “clean” the police titles from over 700 to less

than 100, and still wasn’t entirely sure if the task was "nished. In-

tuitively, this process involved manually comparing all pairs of over

700 titles, explaining why it took them such a long time. They, and

other public defenders and data journalists, commonly use GUI-based

data cleaning tools, such as OpenRe"ne [5], but none of the built-in

similarity metrics in such tools su!ced for their purposes.

†This work was done when Dixin Tang was a#liated with UC Berkeley, Tristan
Chambers and Julie Ciccolini were working on the Full Disclosure Project at the
National Association of Criminal Defense Lawyers (NACDL) and Lisa Picko!-White
was a#liated with KQED and the California Reporting Project.

4104

https://www.acm.org/publications/policies/artifact-review-and-badging-current

Unfortunately, existing string similarity metrics, such as Lev-

enshtein distance [4], a#ne gap distance [11], and Jaccard simi-

larity [17, 36], fail to e!ectively perform string matching for such

datasets with acronyms, abbreviations, and typos—we discuss tra-

ditional string similarity metrics in Section 2 in detail. Some other

approaches [10, 25] tokenize the two input strings into two sets

of words, build a bipartite graph between the two sets, with the

similarity of two words computed using an existing metric (e.g.,

edit distance), and combine these similarities via bipartite match-

ing (referred to as Bipartite henceforth). Since bipartite matching

operates at the granularity of words, it cannot be directly applied

to the scenarios where one string includes acronyms (e.g., “sro”

for “school resource o#cer”) or is a single abbreviated word (e.g.,

“apmngr” for “assistant park manager”).

A recent line of research improves on the limitations of tradi-

tional measures by using domain-speci"c synonym rules for rewrit-

ing a short string to a long string (e.g., “sro”→ “school resource

o#cer”) [9, 18, 24, 26, 28, 30, 33, 39]. To evaluate the similarity of

two strings, synonym rules are used to rewrite the two strings

followed by using (a variant of) traditional measure to compute

similarity. Unfortunately, some of these papers rely on prede"ned

synonym rules [9, 18, 24, 26, 33, 39], which may not exist for many

datasets (such as ours). In addition, prede"ned synonym rules limit

the scope of abbreviations they support. That is, they only support

prede"ned ones (e.g., “deputy”→ “dpty”) but not arbitrary ones

(e.g., “deputy”→ “dpt”). Other papers instead propose automati-

cally generating synonym rules [28, 30], but their performance is

highly sensitive to the quality of the generated rules and they can-

not consistently generate high-quality rules for di!erent datasets;

additionally, typos (as in our context) lead to issues in generating

high-quality rules. Table 1 summarizes the limitations of existing

similarity measures.

To address the limitations of existing approaches, we propose

Smash1, a simple yet e!ectivemetric that considers typos, acronyms,

and abbreviations together, while not relying on synonym rules.

The key idea of Smash is that for every word in the long string,

some representation of it—the full word possibly with typos, its

abbreviation, or the "rst letter—should appear as a substring in the

short string in order, as visualized in Figure 1. One example is that

the three letters of “sro” appear as the "rst letters of the three words

of “school resource o#cer” in order, respectively, representing the

acronym case. Therefore, we partition the short string into! sub-

strings, where! equals the number of tokenized words in the long

string. The Smash measure is de"ned as the minimal sum of the

distances between each word in the long string and its corresponding

substring in the short string. The distance between a word and a

substring can be computed based on traditional measures, such as

the a#ne gap [11] and subsequence [7], allowing the approach to

$exibly adapt to user needs.

Unfortunately, e#ciently computing Smash is challenging. Given

the short string with " characters that is partitioned into! sub-

strings, there is a high degree polynomial number of possible parti-

tions (i.e.,
(!−1
"−1

)
because we choose! − 1 positions from the string

minus the "rst character). Therefore, we develop a simple novel

1With apologies to the Hulk, Smash is named as such because it is able to “smash”
together strings, taking into account typos, acronyms, and abbreviations.

Long String

m tokenized words

m substrings, n characters

Short String

Figure 1: The intuition for capturing acronyms, abbrevia-

tions, and typos between two strings

dynamic programming algorithm to compute Smash e#ciently and

include optimizations to further improve the accuracy of Smash

(e.g., selectively skipping stop words).

We perform extensive experiments on real-world datasets by

comparing Smash with all representative baselines that do not

require pre-de"ned synonym rules, including Levenshtein, a#ne

gap, two Jaccard similarity variants, Bipartite, and pkduck. Their

features and di!erences from Smash are summarized in Table 1.

Our results show that Smash signi"cantly outperforms existing

approaches. Speci"cally, compared to the best baselines, Smash im-

proves the max and mean F-score by 23.5% and 110.8%, respectively.

We additionally compare Smash with a state-of-the-art LLM-based

approach, ChatGPT with GPT-4.0, and "nd that LLMs are unable to

achieve the high recall necessary for string matching, nor are they

able to adapt to unfamiliar datasets.

To help public defenders, data journalists, and other non-pro-

grammers with similar data cleaning requirements use Smash, we

implement Smash in OpenRe"ne [5], an open-source data cleaning

tool, where end-users can choose Smash as the similarity measure

when matching strings across one or multiple datasets.

The contributions of this paper are summarized as follows:

• A novel yet simple similarity measure, Smash, that considers

acronyms, abbreviations, and typos at the same time while

not relying on brittle synonym rules (Section 3);

• A dynamic programming algorithm that e#ciently computes

Smash and two optimizations that improve the accuracy

of Smash, while also being parametrizable with respect to

various distance functions internally (Sections 4-5);

• An implementation in a popular GUI-based data cleaning

tool, OpenRe"ne, to empower non-programmers to more

e#ciently perform string matching (Section 6); and

• A set of extensive experiments that compare Smash with six

baseline approaches on four datasets that demonstrate the

value of Smash and the corresponding dynamic program-

ming approach in various real-world settings, including the

one described in Application 1 on police roster data cleaning

(Section 7).

2 RELATEDWORK

We now discuss work related to Smash, including similarity mea-

sures for string matching, ground truth-aided string matching, and

methods for reducing the execution time of string matching.

Similarity measures for string matching. Table 1 summarizes

the limitations of existing similarity measures for string matching.

Traditional similarity measures, such as Levenshtein distance [4]

and a#ne gap distance [11], only consider scenarios with typos

4105

Table 1: Summary of the Di!erences of Existing String Similarity Metrics and Smash

Supported Features

Acronyms
Pre-De"ned

Abbreviations

Arbitrary

Abbreviations
Typos Mixed

Require Pre-De"ned

Synonym Rules

Adopt Synonym

Rules Online

Levenshtein [4] No No No Yes No No No

A#ne Gap [11] Yes No No Yes No No No

Jaccard-Word [36] No No No No No No No

Jaccard-NG [17] No Yes Yes Yes No No No

Bipartite [10, 25] No Yes Yes Yes No No No

Smash (this paper) Yes Yes Yes Yes Yes No No

pkduck [30], Match-DP [28] Yes Yes Yes Yes Yes No Yes

Others [9, 18, 24, 26, 33, 39] Yes Yes No Yes Yes Yes No

or acronyms. Levenshtein distance, also known as edit distance,

measures the similarity of two strings by counting the minimal

number of insertions, deletions, or substitutions required to edit one

string to match the other. While this measure can identify typos,

it does not take into account acronyms or abbreviations. On the

other hand, a#ne gap [11] modi"es edit distance by assigning a

smaller penalty to a continuous sequence of insertions or deletions

compared to the initial insertion or deletion. This property makes

it better suited for capturing acronyms since the characters that

follow the "rst letters of each word in the longer string are treated

as “gaps” in the shortened string and are penalized at a discount.

But a#ne gap does not address the case of abbreviations.

Another line of papers focuses on set similarity search, which

focuses on tokenizing the two strings into two sets of words and

then computing their similarity [10, 25, 26, 36]. For example, Jaccard

similarity score [36] calculates the ratio between the number of

common words and the total number of distinct words of the two

strings (denoted as Jaccard-Word). Bipartite [10, 25] approaches, as

discussed earlier, build a bipartite graph between the two sets to

compute their similarity. But these approaches compute similarity

at the granularity of words and do not consider character-level

features. One method for addressing the limitation of set similarity

search is creating n-grams for the two input strings and computing

the Jaccard score over the two sets of n-grams [17] (denoted as

Jaccard-NG). While Jaccard-NG considers abbreviations and typos,

it does not consider acronyms. In addition, none of these methods

consider the mixed cases of acronyms, abbreviations, and typos

together.

There are many papers on leveraging synonym rules to improve

traditional measures [9, 18, 24, 26, 28, 30, 33, 39]. As discussed

before, most of these papers assume that the synonym rules are

known upfront or provided by the user [9, 18, 24, 26, 33, 39], but

these rules often do not exist, in domains such as the police data

setting. Smash is di!erent from these approaches since it does

not rely on synonyms. Some other papers propose automatically

generating synonym rules [28, 30], but our experiments in Section 7

show that the performance of these approaches is sensitive to the

quality of the generated rules and they cannot consistently generate

high-quality synonym rules for di!erent datasets.

Consider pkduck [30], the state-of-the-art in this vein, as an

example. pkduck generates candidate synonym rules based on the

longest common sequence of each pair of strings, which produces

many incorrect rules. Therefore, pkduck adopts manually devel-

oped re"nement rules to discard any synonym rules that may be

Useful rule: sro => school resource officer
Useful rule: dpty mrsl => deputy marshall
Useful rule: cor off => corrections officer
Harmful rule: cor off => community resource officer

Useful rule: sro => school resource officer
Useful rule: dpty mrsl => deputy marshall

Refine

A Subset of Candidate Synonym Rules

Figure 2: A subset of synonym rules generated by pkduck [30]

for the Police Roster dataset

potentially harmful. Figure 2 shows a subset of synonym rules be-

fore and after the re"nement for the Police Roster dataset. Initially,

we have four rules. However, the rule (“cor o!”→ “community

resource o#cer”) is harmful because the ground truth shows that

“cor o!” should only map to “corrections o#cer”. To improve the

quality of the synonym rules, one re"nement rule used by pkduck

involves discarding the rewriting rules if the ratio between the

number of consonants of the short and the long strings is smaller

than a prede"ned threshold (0.6 by default) based on the assump-

tion that an abbreviated short string should include a large fraction

of consonants from the long string. This re"nement rule, while

discarding many harmful rules, will also discard useful rules, such

as discarding “cor o!”→ “corrections o#cer” because the conso-

nant ratio is 4

11
= 0.37 and smaller than the threshold 0.6. In fact,

our experiments show that the re"nement process can degrade the

performance of pkduck for some datasets.

Ground truth-aided string matching. Some papers propose ask-

ing end-users to provide examples and automatically learn from

these examples for more accurate stringmatching [12, 27]. A few pa-

pers adopt machine learning models for string matching [8, 14, 23].

One paper proposes a novel machine-learning model for match-

ing the strings of healthcare data, trained on prede"ned ground

truth [14]. Another paper "ne-tunes pre-trained language models

for string matching [23]. Finally, the paper [8] leverages existing

similarity metrics to clean input data in order to improve the qual-

ity of transformer models. Smash is di!erent from these papers

because it does not require ground truth knowledge.

Reducing the execution time of string matching. There has

been a number of papers on reducing the execution time of string

matching [10, 13, 15, 19, 21, 22, 31, 32, 34, 35, 37, 38]. To avoid

computing similarity for all pairs of strings, many papers exploit a

4106

“"lter-and-re"ne” framework [15, 21, 22, 31, 32, 37, 38]. In the “"lter”

step, they generate signatures for each string and use the signatures

to generate candidate pairs of strings to evaluate. In the “re"ne”

step, they compute the similarity for the candidate pairs to generate

the "nal results. Some other papers implement string matching as

a primitive operator in databases and optimize the performance of

evaluating this operator [10, 13]. These papers are orthogonal to our

goal of designing a novel metric to capture acronyms, abbreviations,

and typos together, and our Smash distance can be used together

with their approaches to improve the accuracy of string matching.

3 OUR STRING SIMILARITY MEASURE

In this section, we introduce the intuition and examples that moti-

vate the design of Smash, and the formal de"nition of Smash.

Preliminaries.We de"ne a string to be a sequence of characters. A

subsequence of a string is a string that can be derived from the given

one by deleting zero or more characters without changing the order

of the remaining characters. We say a string is tokenized into an

array of words if this string is divided into its component words in

order based on prede"ned delimiters (e.g., a space character). The

string matching process takes two strings, computes their similarity,

and determines them to be a match if the similarity score is larger

than a threshold. We call the string whose length is no smaller than

the other string the long string, and the other string the short string.

If two strings have the same lengths, we arbitrarily choose one

string as the long one and the other string as the short one.

Intuition. Our key idea for capturing acronyms, abbreviations,

and typos is that for the long and the short string representing the

same entity, some form of representation of each tokenized word

for the long string will appear as a substring of the short string in

order, because we expect the long string as the canonical expanded

representation for an entity while the short string is the potentially

human-inputted, and therefore, error-prone version. We consider

each scenario in turn. First, for the pure acronym scenario (e.g.,

“school resource o#cer” vs. “sro” in Figure 3), the "rst character of

each word of the long string corresponds to each character in the

short string in order. For the abbreviation scenario, each word of the

long string will be a subsequence of the corresponding substring of

the short string or vice versa, with the "rst character of theword and

the substring being the same, which is based on our observation that

the "rst character of a word commonly appears as the "rst character

of its abbreviated version. One example is the Abbreviation-1 case in

Figure 3, where the substrings “dpty ” and “mrsl” of the short string

are subsequences of the words “deputy” and “marshall”, respectively.

Another example is the Abbreviation-2 case in Figure 3, where the

word “dpty” in the long string is a subsequence of “deputy ” and

the substring “mrsl” is a subsequence of “marshall” in the long

string. For the typo scenario, a tokenized word in the long string

can be modi"ed due to typos and correspond to a substring in

the short string, where the distance between the word and the

corresponding substring can be measured using a traditional metric

(e.g., Levenshtein distance). Finally, this intuition also covers the

case when two strings have abbreviations, acronyms, and typos at

the same time. For example, the Mixed-1 case in Figure 3 shows that

the short string (i.e., “ims”) is an abbreviation of the long string (i.e.,

“inspector”) with a typo (“m”→ “n”). The Mixed-2 case covers both

school resouce officer sro
Short StringLong String

Acronym
Abbreviation-1
Abbreviation-2

Typo
Mixed-1
Mixed-2

deputy marshall dpty mrsl
dpty marshall deputy mrsl

inspector imspector
inspector ims

assistant park manager apmngr

Figure 3: Examples that motivate Smash

W deputy marshall

d ptymrslS
Partition A

deputy marshall

dp tymrsl
Partition B

deputy marshall

dptymrs l
Partition G

Choose a partition that minimizes the distance between ''deputy marshall'' and '''dpty mrsl'

Figure 4: The example for computing ## ($, %)

the acronym and abbreviation scenarios, where the short string

“smashes” the long string into a single word. Smash is designed to

cover all of the aforementioned cases.

Smash De"nition. Motivated by this intuition, the distance be-

tween two strings is conceptually de"ned as the minimal sum of

distances between each word in the long string and its corresponding

substring in the short string. We now formalize the problem and

formally de"ne Smash.

Given two strings for which we need to compute the distance,

we "rst tokenize the long string into an array of words based on

prede"ned delimiters. We denote the array of words$. Consider

the example Abbreviation-1 in Figure 3. For “deputy marshall”, if

the delimiter is the space character, then$ is [“deputy”, “marshall”].

In addition, we represent the short string as an array of characters,

denoted % . Note that we remove the delimiters from the short string

as a preprocessing step. For example, “dpty mrsl” is represented

as an array of eight characters % = [“d”, “p”, “t”, “y”, “m”, “r”, “s”,

“l”], where spaces are removed. The length of$ and % are! and

", respectively. We de"ne a partition of the character array of the

short string % as & = {['0, '1], ['1, '2], . . . , ['"−1, '"]}, where the

number of partitions is the number of words ! such that each

partition of the character array % ['$: '$+1] corresponds to the

word$ [(]. Note '0 is 0, the "rst character of % , and '" is ", the

length of % , such that both the "rst and last partitions are non-

empty. Continuing our example, if the partition of [“d”, “p”, “t”, “y”,

“m”, “r”, “s”, “l”] is & = {[0, 4], [4, 8]}, the substring % [0, 4] is “dpty”,

which corresponds to$ [0] = “deputy” and the substring % [4, 8]

is “mrsl”, which corresponds to$ [1] = “marshall”. We use ## to

represent the Smash distance between$ and % , de"ned as:

($, %) = min
%={ [&0,&1],...,[&!−1,&!] }

∑"−1
$=0

#' ($ [(], % ['$: '$+1]) (1)

Here, #' ($ [(], % ['$: '$+1]) computes the distance between a

word and a substring (e.g., “dpty” v.s. “deputy” in the Abbreviation-

1 example). So, computing ## is equivalent to "nding the partition

& of the string % such that the sum of #' ($ [(], % ['$: '$+1]) is

minimized, which is visualized in Figure 4 using the Abbreviation-1

example. We see that there are seven di!erent ways to partition

the character array of “dptymsrl”, so to compute ## , we will "nd

the partition that minimizes the sum of #' ($ [(], % ['$: '$+1]).

4107

deputy marshall

dpty mrsl

Abbreviation-1 dpty marshall

deputy mrsl

Abbreviation-2

school resource

s r

Acronym officer

o

Typo inspector

imspector

inspector

ims

Mixed-1 assistant park

a p

Mixed-2 manager

mngr

Figure 5: Applications of Smash to the motivating examples

i n s p

i m s -

e c t o r

- - - - -
A Gap with length 6
Delete 6 characters

Short String

Long String

Substitute n with m

Figure 6: An example that shows the a#ne gap distance

#' is computed using traditional string distance measures and

is de"ned as:

#' ($ [(], % ['$: '$+1]) =






0, if$ [(] [0] = % ['$]

and$ [(] is a subsequence

of % ['$: '$+1] or vice versa

∞, if$ [(] [0] ≠ % ['$]

#(($ [(], % ['$: '$+1]), otherwise

(2)

We consider three cases. First, if the "rst characters of the word and

the substring are the same and the word is a subsequence of the

substring or vice versa, then we return 0, representing the case that

the word and the substring are in the abbreviation or the acronym

scenario.

The next two cases consider the typo scenario. If the typo hap-

pens in the "rst character we return∞, representing that they do

not match. Our observation on real datasets is that a typo is un-

likely to happen in the "rst character and a mismatch in the "rst

character typically represents a mismatch between the word and

the substring.

Finally, we use function #(($ [(], % ['$: '$+1]) to compute a

distance in the presence of typos. By default, we use the a#ne

gap distance [11], but we can swap in other distance metrics. This

distance metric extends Levenshtein distance by assigning di!erent

weights to di!erent operations (e.g., substitution vs. deletion) and

for consecutive insertions or deletions (called a gap), assigning a

smaller weight to insertions or deletions that are after the initial

one. We choose a#ne gap over Levenshtein because it more accu-

rately measures the case when an abbreviation has typos. Consider

the Mixed-1 example in Figure 3, where the abbreviation of “in-

spector” is “ins” but misspelled as “ims”. To measure the distance

between the two strings, a#ne gap considers one substitution and

six consecutive deletions as Levenshtein does, as shown in Figure 6.

However, a#ne gap assigns a smaller weight to deleting the gap

“pector” compared to Levenshtein, allowing it to more accurately

capture an abbreviation with typos.

Applications of Smash to the Motivating Examples.We now

show how Smash captures acronym, abbreviation, and typos in real

examples from Figure 3. Figure 5 shows the optimal partition for

each example.We see that for theAcronym example, the short string

“sro” is partitioned to substrings “s”, “r”, and “o”, which correspond

to the words “school”, “resource”, “o#cer”, respectively. Since the

"rst characters of each pair of substring and word are the same

and the substring is a subsequence of the corresponding word,

the distance for each pair of substring and word is 0 based on the

de"nition of #' in Equation 2. Therefore, the Smash metric ## is

also 0. Similarly, for the Abbreviation-1, Abbreviation-2, and Mixed-

2 examples, their distances are also 0. One thing to note is that the

distance for Abbreviation-2 is 0 because for each pair of substring

and word we check the subsequence condition in both directions as

shown in Equation 2. Finally, for the Typo and Mixed-1 examples,

we compute their distance using #(, which adopts a#ne gap to

compute their distances.

4 COMPUTING SMASH

In this section, we discuss how to e#ciently compute the Smash

distance between two strings. We demonstrate optimal substructure

for computing Smash, present a dynamic programming algorithm

based on the optimal substructure and an algorithm that constructs

the string matches for Smash, and analyze their complexity.

4.1 Optimal Substructure

Here, we show optimal substructure, which implies that the optimal

solution of a problem can be constructed from the optimal solu-

tions of its subproblems. Recall that the Smash distance ## ($, %)

determines the partition & of the string % such that the sum of

the distance between each word and each substring is minimized.

The intuition for optimal substructure of Smash is that the min-

imal distance between the word array $ [0 : !] and the string

% [0 : "] should be the minimal distance between a smaller word

array$ [0 :! − 1] and a substring % [0 :)], where) ≤ " (i.e., the

subproblem ## ($ [0 :! − 1], % [0 :)])), plus the distance between

the last word$ [! − 1] and the remaining substring % [) : "] (i.e.,

computed by #' ($ [! − 1], % [) : "]) in Equation 2). Therefore,

we enumerate the possible values of) to "nd the minimal sum

of the two distances. Figure 7 shows an example for computing

the minimal distance between [“assistant”, “park”, “manager”] and

the string “apmngr” given that the subproblems are solved. Speci"-

cally, we enumerate) ∈ [2, 6), where) splits the string into two

substrings. The "rst substring corresponds the word array minus

the last word (e.g., “ap” for [“assistant”, “park”] when) = 2) and

the second substring corresponds to the last word (e.g., “mngr” for

[“manager”] when) = 2). We compute the minimal distance for

4108

assistant park

ap

manager

mngr

assistant park

apm

manager

ngr

assistant park

apmng

manager

r

assistant park

apmn

manager

gr

Take the minimal value across of above four summations
Figure 7: The example for demonstrating the optimal substructure

Algorithm 1: Computing the Smash distance between a

word array$ and a string %

/* We use D[i][j] to store the minimal distance between

) [0 : & + 1] and * [0 : + + 1] and E to construct the partition

of * that yields the minimal distance */

1 D← a! × " 2D array with initial values as∞

2 E← a! × " 2D array

/* The base case */

3 for i = 0 to " − 1 do

4 D[0] ['] ← #' ($ [0], % [: ' + 1])

5 E[0] ['] ← 0

6 end

7 for i = 1 to! − 1 do

8 for j = 1 to " − 1 do

9 if * < ' then

10 continue // Skip if the length of the string is

smaller than the number of words

11 + ['] [*] ← min
,∈ [&, ++1)

+ [' − 1] [)] + #' ($ ['], % [) :

* + 1])

12 , ['] [*] ← argmin
,∈ [&, ++1)

+ [' − 1] [)] + #' ($ ['], % [) :

* + 1])

13 end

14 end

15 return + [! − 1] [" − 1], ,

each pair of substring and word array and return the minimal sum-

mation of the two distances. Note that index) starts at 2 (i.e.,!−1)

because we need to ensure the word array$ [0 :! − 1] has at least

! − 1 characters to match. Formally, we have:

($, %) =






#' ($ [0], %), if! = 1

min
,∈ ["−1,!)

(## ($ [0 :! − 1], % [0 :)])+

#' ($ [! − 1], % [) : "])), otherwise

(3)

First, if we only have one word, we directly compute the distance

between the word and the full string, i.e., #' ($ [0], %). Otherwise,

we compute ## ($, %) from its subproblems ## ($ [0 :! − 1], % [0 :

)]), where) varies from! − 1 until ".

4.2 Dynamic Programming Algorithm

Intuition. Based on Equation 3, we develop a dynamic program-

ming algorithm. We discuss the iterative version of this algorithm

to avoid recursion. The high-level idea is to compute a 2D array

+ from bottom up, where + ['] [*] stores the minimal distance be-

tween the word array$ [0 : ' + 1] and a string % [0 : * + 1], such

that + [! − 1] [" − 1] is the minimal distance between$ and % .

We store the auxiliary information in a 2D array , to construct the

optimal partition of % that yields the minimal distance. Speci"cally,

for the case where$ [0 : ' + 1] and % [0 : * + 1] have the optimal

string matching with respect to the Smash distance, , ['] [*] stores

the position of the "rst letter of the last substring of % [0 : * + 1]

that matches the last word of$ [0 : ' + 1], i.e.,$ [']. For example,

consider the case where$ [0 : 3]=[“assistant”, “park”, “manager”]

and % [0 : 6] =“apmngr” have the optimal string matching when

the last word “manager” matches the substring “mngr”. So , [2] [5]

stores 2, which is the index of “m” in “apmngr” such that it can be

used to locate the substring “mngr”, which matches the last word

“manager”.

Algorithm. The algorithm is listed in Algorithm 1. We "rst initial-

ize the 2D arrays, D and E. Then, we set the values of the "rst row

of D to the distances between the "rst word in$ and each pre"x

of % . The "rst row of E is set to all zeros since the "rst letter of the

"rst word’s matched substring is always the "rst letter of % .

Next, we "ll in the remaining cells of D and E. For each ' ∈

[1,! − 1] and * ∈ [0," − 1], the algorithm computes the minimum

distance between$ [0 : ' + 1] and % [0 : * + 1] by considering all

possible partitions of % [0 : *+1] at the position) ∈ [', *+1) based on

Equation 3. The value of) that yields the minimal distance is stored

in E['] [*]. Figure 8 shows a running example for computing Smash

between [“assistant”, “park”, “manager”] and “apmngr”. Speci"cally,

it shows the steps of computing the rows + [2] and , [2] given

their previous two rows are computed. For example, to compute

+ [2] [5], it enumerates the partition of “apmngr” and "nds the one

that yields the minimal distance based on Equation 3. Speci"cally,

it "nds that splitting “apmngr” into “ap” and “mngr” yields the

minimal distance. Here, “ap” corresponds to “assistant park”, their

minimal distance is + [1] [1] = 0 and the distance between “mngr”

and “manager” is 0 based on the Equation 2. So + [2] [5] = 0 and

, [2] [5] = 2, which is the index for the "rst letter of “mngr” in

“apmngr”.

Finally, the algorithm returns D[! − 1] [" − 1], which represents

the minimal distance between the entire$ and % , as well as E,

which is used to construct the optimal partition of % .

Complexity.We use two for loops to "ll in the cells of + and ,.

Computing the value for each cell of + and , requires executing

the function #' for - (") times. In total, we need to execute #' for

- (! × "2) times. Recall that #' computes the distance between a

word and a substring and is de"ned in Equation 2. Its complexity is

dominated by #(, which computes the distance that accounts for

typos. Assuming we choose a#ne gap, its complexity is - (.1 × .2),

4109

assistant park

ap

manager

N/A 0 1.1 1.1 1.1 1.2
N/AN/A 0

a p m n g r

assistant
park

manager

0 1 2 3 4 5
0
1
2

0 0 0 0
N/A 1 1 1 1 1
N/AN/A 2

a p m n g r

assistant
park

manager

0 1 2 3 4 5
0
1
2

m

Compute

assistant park

ap

manager

N/A 0 1.1 1.1 1.1 1.2
N/AN/A 0 0

a p m n g r

assistant
park

manager

0 1 2 3 4 5
0
1
2

0 0 0 0
N/A 1 1 1 1 1
N/AN/A 2 2

a p m n g r

assistant
park

manager

0 1 2 3 4 5
0
1
2

mn

Compute

assistant park

ap

manager

N/A 0 1.1 1.1 1.1 1.2
N/AN/A 0 0 0 0

a p m n g r

assistant
park

manager

0 1 2 3 4 5
0
1
2

0 0 0 0
N/A 1 1 1 1 1
N/AN/A 2 2 2 2

a p m n g r

assistant
park

manager

0 1 2 3 4 5
0
1
2

mngr

Compute

Figure 8: A running example that shows how our DP algorithm works

where .1 and .2 represent the number of characters of the word and

the substring, respectively. We further assume the max number of

characters of a word in the word array$ is . , so the complexity for

#' is- (.×"). Finally, the complexity of Algorithm 1 is- (!×"3×.).

We believe this is an acceptable complexity for two reasons. First, as

our experiments in Section 7.3 show, Smash has a similar execution

time compared to pkduck, is slower than Levenshtein, and is faster

than all other baselines while Smash performs string matching

more accurately compared to all baselines in most cases. Second,

Smash can be easily used together with blocking techniques to

further reduce the execution time if needed.

4.3 Constructing the Optimal Partition

Intuition. Recall that for the case where$ [0 : '+1] and % [0 : * +1]

have the minimal distance with respect to Smash, , ['] [*] stores

the position of the "rst letter of the last substring of % [0 : * + 1]

that matches the last word of$ [0 : ' + 1], i.e.,$ [']. Therefore,

we "nd the optimal partition for % [0 : "] by i) storing the position

of the "rst letter of the substring that matches the last word of

$ [0 : !] and ii) repeatedly storing this position for the optimal

solution for its subproblem, which is the minimal distance between

the word array that removes the last word (i.e.,$ [0 :!−1]) and the

string that removes the last substring that matches$ [! − 1] (i.e.,

% [0 : , [!−1] ["−1]]). For our running example in Figure 8, , [2] [5]

stores 2, which points to “m” in “apmngr” and represents that

“mngr” corresponds to the last word “manager”. Recursively, for the

subproblem “ap” and [“assistant”, “park”], we take the value stored

in , [1] [1], which is 1 and splits “ap” into “a” and “p”. Therefore,

the optimal partition is [“a”, “p”, “mngr”].

Algorithm. Algorithm 2 shows how we construct the optimal

partition. We use a list / to store the positions for the optimal

partition. Initially, / only includes ", which is the length of the

short string % and also the end position for the optimal partition.

Then, we repeatedly store the position of the "rst character of the

substring of % [0 :)] that matches the last word of the word array

$ [0 : ' + 1] (i.e., , ['] [) − 1]). Finally, we use / to construct the

optimal partition.

Algorithm 2: Use , to compute the optimal partition for %

that minimizes the distance between$ and %

1 Initialize L as a list that stores "

2 p← n

3 for i =! − 1 to 0 do

4) ← , ['] [) − 1]

5 Prepend p to /

6 end

7 return {[) [0],) [1]], · · · , [) [! − 1],) [!]]}

Complexity. We use one for loop to "nd the positions for the

optimal partition of % , which takes - (!) operations.

5 OPTIMIZATIONS AND APPLICABILITY

Optimizations. Our previous discussion assumes that some form

of representation of one word of the long string should appear in

the short string. But in a real dataset, this may not always be the

case for two reasons. First, some words in the long string have little

or no semantic value to distinguish one string from another and are

often referred to as stop words (e.g., “at”, “is”, and “n”). Therefore,

such words may be skipped in the short string. Second, we observe

that when creating a short form of the long string, people tend to

drop short words. For example, one short form of the long string

“Motor carrier inspector 3” is “mci”, where “3” is not included in the

short string.

However, we cannot simply preprocess a dataset by removing

these stop words or short words (e.g., a word that has 3 characters

or less) because these words may still have semantic values for

string matching. For example, the letter “n” in “state hwy n” is

useful when matching the string “state highway north”.

Therefore, we improve our dynamic programming algorithm by

considering whether to skip a given word if this word is in the stop

word list or is a short word and taking the minimal distance be-

tween the two cases. Speci"cally, Equation 3, which de"nes optimal

4110

substructure, is modi"ed as:

($, %) =

{
#' ($ [0], %), if! = 1

#!-' ($, %), otherwise
(4)

where #!-' ($, %) is de"ned as:

#!-' ($, %) = min






#' ($ [0 :! − 1], %)

min
,∈ ["−1,!)

(## ($ [0 :! − 1], % [0 :)])+

#' ($ [! − 1], % [) : "]))

(5)

Here,#!-' considers whether skipping the last word (i.e.,$ [!−1])

and takes the minimal distance between the two cases. Therefore,

Line 11 in Algorithm 1 is modi"ed accordingly to consider the two

cases when computing + ['] [*]. Finally, we also modify Line 12

in Algorithm 1 for computing , ['] [*]: if we choose to skip the

word$ ['], , ['] [*] is set to , [' − 1] [*]. Note that adding these

optimizations does not add additional complexity to our algorithm.

This is because we only need to compute each cell of + and the

complexity for computing + ['] [*] does not change given that the

optimizations only add an operation that takes the minimum value

of two cases, which takes - (1).

Applicability. Smash is applied to the cases where a string repre-

sentation is converted into another string in the form of acronyms,

abbreviations, and typos, which are common when manually in-

putting text, as is true for our public defender and journalism col-

laborators. Smash can therefore be adopted to match two strings

that are modi"ed from the same string but have di!erent abbrevia-

tions, acronyms, or typos. For example, Figure 3 shows that “deputy

marshall” has three di!erent forms of abbreviations: “dpty mrsl”,

“dpty marshall”, and “deputy mrsl”, all of which will be regarded as

matches to the entity “deputy marshall” based on Smash. Smash

can also deal with the cases when a word includes special charac-

ters or is misplaced if this word has the same "rst character as the

original word (e.g., “deputy” vs. “de-uty”). These cases fall into the

typo scenario, so their distance will be evaluated using the third

case of Equation 2 (i.e., #(($ [(], % ['$: '$+1])). In our implementa-

tion, #(adopts a#ne gap. In addition, Smash can handle the case

when typos happen in multiple places in a string, which will also be

handled by #(for each pair of word and substring. However, Smash

cannot be applied to the cases where two strings are syntactically

and structurally di!erent but have the same semantic meanings,

such as “The Big Apple” and “New York City”, or those that rely on

external domain knowledge. Our focus is more on syntactic cases,

which are rather common in practice with manual data entry.

6 IMPLEMENTATION

We implement Smash as a function in Python, which takes two

strings and returns the distance. Therefore, Smash can be adopted as

a drop-in replacement of a metric in many data-cleaning scenarios.

For example, it can be adopted to match strings for a full dataset

in a pair-wise fashion or a partition of a dataset after blocking. It

can also be adopted in various data cleaning algorithms, such as

clustering algorithms based on string similarity.

To help public defenders, data journalists, and other non-prog-

rammers with similar data cleaning requirements use Smash, we

integrate it in OpenRe"ne [5], a GUI-based open-source tool for

Figure 9: Integrating Smash in OpenRe"ne: a GUI-based data

cleaning tool for use by non-programmers

data cleaning. OpenRe"ne allows users to select a metric for mea-

suring the similarity between two strings and cluster the strings of

a dataset based on that metric. Figure 9 shows an example of using

Smash to clean the Police Roster dataset, discussed in Section 7.1.

At the top, the user selects Nearest Neighbor Search along with

Smash to cluster the data. The Radius in Figure 9 represents the dis-

tance threshold that determines whether two strings are regarded

as a match. It is set as 3.0 in this example. Block Chars refers to

the minimum number of contiguous characters two strings must

share to be considered for a match in OpenRe"ne. For the example

in Figure 9, it is set to 0 because the user does not want to rule

out any possible matches before they are presented to Smash. The

clustering algorithm will generate many clusters, where each one

represents a set of strings that refer to the same entity. For example,

Figure 9 shows four clusters, presented as four rows. The "rst three

"elds represent the number of distinct strings (e.g., 4 for the "rst

row), the number of strings, and distinct strings for this cluster.

The user can decide whether to accept this cluster using the check

box and if so, they will replace the strings for that cluster with a

string in the input text box (e.g., “Corporal” for the "rst row). This

process is repeated until the user is satis"ed with the results. For

our Police Roster dataset, the number of user iterations was 5,

which is a substantial reduction from the two weeks it took for our

public defenders to do the same task.

7 EXPERIMENTS

Our experiments address the following research questions:

• How much does Smash improve precision, recall, and F-

score for string matching, compared to existing approaches?

(Section 7.2)

• What is the execution time for string matching when using

Smash, as compared to existing approaches? (Section 7.3)

• Howmuch do the optimizations of considering the short and

skip words in our dynamic programming algorithm improve

precision, recall, and F-score? (Section 7.4)

While we compare Smash with six baselines, as discussed next, we

further dig deeper into one state-of-the-art synonym rules-based

approach, pkduck. In addition, we compare Smash with a large

language model (LLM)-based approach. Speci"cally, we further

address the two questions:

4111

(a) Large Disease (b) Small Disease

(c) Location (d) Police Roster

Figure 10: F-score under varied thresholds

• How do the re"nement rules for pkduck impact its perfor-

mance? (Section 7.5)

• How does ChatGPT with GPT-4.0 perform for string match-

ing? (Section 7.6)

7.1 Datasets, Baselines, and Con"gurations

Datasets. Our experiments include four datasets. Police Roster

contains 31,516 rows of police o#cer data. We test the “Title” col-

umn, which includes 154 distinct values. After manual inspection,

we "nd 99 of these distinct values are standard titles, and 55 of

them are modi"ed forms of standard titles; each standard title has

zero, one, or multiple modi"ed forms.

Large Disease [3] contains 405,543 rows of medical data relat-

ing to disease. Each row stores information about a medical term,

including a standard and a modi"ed form of this medical term and

additional metadata. This dataset includes many acronyms and

abbreviations, but not misspellings. We evaluate a sample of this

dataset since evaluating the full dataset is too time-consuming. The

sampled dataset includes 30,000 rows (approx. 7.5%). We compare

the pairs of standard and modi"ed forms for the medical terms.

Small Disease contains a subset of Large Disease and includes

634 disease names. Like the Large Disease dataset, we evaluate

the pairs of standard and modi"ed disease names.

Location is a dataset that includes location names (e.g., street

names, city names, etc.) [30]. This dataset includes a ground truth

dataset that contains 116 pairs of standard and modi"ed location

names referring to the same location.

For all datasets, we conduct pair-wise comparisons without

blocking for Smash and all baselines when evaluating their perfor-

mance because our contribution is on the novel metric, Smash, and

Smash can be used together with existing blocking techniques [20].

Baselines.We compare Smash with the following baselines: Lev-

enshtein distance [4], a#ne gap distance [11], Jaccard-Word [36],

Jaccard-NG [17], pkduck [30], and Bipartite, a set similarity ap-

proach using a bipartite graph [10, 25]. Recall that Jaccard-Word

tokenizes two strings into two sets of words and computes the

Jaccard score across them, while Jaccard-NG creates n-grams for

the two input strings and computes the Jaccard score over the two

sets of n-grams. We use 3-grams in the experiments. For Bipartite,

we tokenize two strings into two sets of words and compute the

similarity by building a bipartite graph on the two sets. Speci"cally,

each edge of the bipartite graph is assigned a value, representing

the similarity of a pair of words of the two sets, and is evaluated

using Jaccard-NG. The goal of Bipartite is to "nd the bipartite graph

matching with a minimal sum across edges. Finally, the similarity of

Bipartite is the minimal sum divided by the number of edges, which

is between 0 and 1. We use the SciPy library to "nd the bipartite

graph matching that yields the minimal sum [1].

Con"gurations.We use a list of generic stop words (e.g., “at”, “in”,

and “is”) [6] and regard words with no more than 4 characters as

short words. We convert a distance (i.e., for Smash, Levenshtein,

and a#ne gap) into a similarity score such that we can compare

them with similarity-based approaches (e.g., Jaccard-Word). Recall

that a similarity score sits between 0 and 1, and a larger distance

leads to a smaller similarity score. Our observation is that if the

distance between two strings is larger than 10, they are unlikely to

4112

Table 2: The maximum and mean F-scores

Large Disease Small Disease Location Police Roster

Max Mean Max Mean Max Mean Max Mean

Smash 0.55 0.40 0.89 0.75 0.86 0.78 0.84 0.64

Bipartite N/A N/A 0.08 0.03 0.72 0.32 0.60 0.58

Levenshtein 0.13 0.04 0.02 0.01 0.13 0.04 0.68 0.50

A#ne Gap 0.48 0.08 0.14 0.03 0.48 0.08 0.61 0.19

Jaccard-Word 0.42 0.12 0.06 0.01 0.78 0.37 0.57 0.36

Jaccard-NG 0.50 0.25 0.51 0.11 0.50 0.25 0.63 0.43

pkduck 0.12 0.11 0.83 0.55 0.64 0.24 0.56 0.36

Table 3: The precision, recall, and F-score for the four datasets

.=0.7 .=0.8 .=0.9

P R F P R F P R F

Smash 0.27 0.74 0.4 0.35 0.7 0.47 0.47 0.66 0.55

Bipartite N/A N/A N/A N/A N/A N/A N/A N/A N/A

Levenshtein 1 0.01 0.01 1 0 0 1 0 0

A#ne Gap 0.11 0.89 0.2 0.61 0.4 0.48 0.99 0.01 0.03

Jaccard-Word 1 0 0 1 0 0 1 0 0

Jaccard-NG 0.96 0.05 0.1 0.99 0.02 0.04 1 0.01 0.01

pkduck 0.12 0.15 0.13 0.16 0.12 0.14 0.19 0.1 0.13

(a) Large Disease

.=0.7 .=0.8 .=0.9

P R F P R F P R F

Smash 0.64 0.89 0.74 0.74 0.89 0.81 0.89 0.88 0.89

Bipartite 1 0 0 1 0 0 1 0 0

Levenshtein 1 0 0.01 1 0 0.01 1 0 0

A#ne Gap 0.01 0.99 0.03 0.07 0.94 0.14 1 0.01 0.02

Jaccard-Word 1 0 0 1 0 0 1 0 0

Jaccard-NG 0.99 0.02 0.04 1 0 0 1 0 0

pkduck 0.88 0.74 0.81 0.97 0.72 0.83 0.99 0.72 0.83

(b) Small Disease

.=0.7 .=0.8 .=0.9

P R F P R F P R F

Smash 0.84 0.83 0.83 0.92 0.8 0.86 0.95 0.79 0.86

Bipartite 1 0.04 0.08 1 0 0 1 0 0

Levenshtein 1 0.38 0.55 1 0.06 0.11 1 0 0

A#ne Gap 0.21 0.97 0.35 0.82 0.81 0.81 1 0.22 0.37

Jaccard-Word 0.99 0.22 0.35 0.99 0.22 0.35 1 0.01 0.02

Jaccard-NG 0.7 0.86 0.77 0.92 0.72 0.8 0.99 0.41 0.58

pkduck 0.76 0.55 0.64 0.94 0.28 0.44 0.97 0.26 0.41

(c) Location

.=0.7 .=0.8 .=0.9

P R F P R F P R F

Smash 0.69 0.85 0.76 0.86 0.83 0.84 0.94 0.8 0.86

Bipartite 0.9 0.45 0.6 0.91 0.43 0.59 0.93 0.42 0.57

Levenshtein 0.99 0.44 0.61 1 0.07 0.13 1 0 0

A#ne Gap 0.11 0.97 0.19 0.63 0.61 0.62 0.95 0.42 0.59

Jaccard-Word 0.98 0.12 0.21 0.98 0.03 0.06 0.98 0.03 0.06

Jaccard-NG 0.86 0.4 0.55 0.89 0.28 0.43 0.98 0.23 0.38

pkduck 0.83 0.33 0.48 0.83 0.25 0.38 1 0.25 0.4

(d) Police Roster

Table 4: E!ectiveness of our optimizations that consider skipping stop words and short words

0=0.7 0=0.8 0=0.9

P R F P R F P R F

NoOpt 0.32 0.7 0.44 0.39 0.66 0.49 0.51 0.63 0.56

StopOpt 0.31 0.7 0.43 0.39 0.66 0.49 0.51 0.63 0.56

ShortOpt 0.27 0.74 0.4 0.35 0.7 0.47 0.47 0.66 0.55

BothOpt 0.27 0.74 0.4 0.35 0.7 0.47 0.47 0.66 0.55

(a) Large Disease

0=0.7 0=0.8 0=0.9

P R F P R F P R F

NoOpt 0.66 0.86 0.75 0.75 0.86 0.8 0.9 0.85 0.88

StopOpt 0.66 0.86 0.75 0.75 0.86 0.8 0.9 0.85 0.88

ShortOpt 0.64 0.89 0.74 0.74 0.89 0.81 0.89 0.88 0.89

BothOpt 0.64 0.89 0.74 0.74 0.89 0.81 0.89 0.88 0.89

(b) Small Disease

0=0.7 0=0.8 0=0.9

P R F P R F P R F

NoOpt 0.96 0.62 0.75 0.97 0.6 0.74 0.97 0.59 0.74

StopOpt 0.95 0.65 0.77 0.97 0.63 0.76 0.97 0.62 0.76

ShortOpt 0.84 0.83 0.83 0.92 0.8 0.86 0.95 0.79 0.86

BothOpt 0.84 0.83 0.83 0.92 0.8 0.86 0.95 0.79 0.86

(c) Location

0=0.7 0=0.8 0=0.9

P R F P R F P R F

NoOpt 0.74 0.71 0.73 0.89 0.58 0.7 0.95 0.51 0.66

StopOpt 0.74 0.75 0.74 0.88 0.61 0.72 0.95 0.54 0.69

ShortOpt 0.69 0.85 0.76 0.86 0.83 0.84 0.94 0.8 0.86

BothOpt 0.69 0.85 0.76 0.86 0.83 0.84 0.94 0.8 0.86

(d) Police Roster

be a match, so we set their similarity to 0 in this case. Otherwise,

we normalize the distance # by dividing it by 10 and subtracting

this value from one to give the similarity.

7.2 Precision, Recall, and F-Score

In this subsection, we compare precision, recall, and F-score (PRF

scores for short) of Smash and the baselines on the four datasets.

Recall that these datasets include standard and modi"ed forms

4113

Table 5: Performance impact of re"nement rules for pkduck

0=0.7 0=0.8 0=0.9

P R F P R F P R F

Re"ner on 0.12 0.15 0.13 0.16 0.12 0.14 0.19 0.1 0.13

Re"ner o! 0.08 0.24 0.12 0.09 0.19 0.12 0.09 0.15 0.11

Smash 0.27 0.74 0.4 0.35 0.7 0.47 0.47 0.66 0.55

(a) Large Disease

0=0.7 0=0.8 0=0.9

P R F P R F P R F

Re"ner on 0.88 0.74 0.81 0.97 0.72 0.83 0.99 0.72 0.83

Re"ner o! 0.71 0.88 0.78 0.77 0.86 0.81 0.79 0.85 0.82

Smash 0.64 0.89 0.74 0.74 0.89 0.81 0.92 0.8 0.86

(b) Small Disease

0=0.7 0=0.8 0=0.9

P R F P R F P R F

Re"ner on 0.76 0.55 0.64 0.94 0.28 0.44 0.97 0.26 0.41

Re"ner o! 0.44 0.63 0.52 0.72 0.34 0.46 0.80 0.28 0.42

Smash 0.84 0.83 0.83 0.92 0.8 0.86 0.95 0.79 0.86

(c) Location

0=0.7 0=0.8 0=0.9

P R F P R F P R F

Re"ner on 0.83 0.33 0.48 0.83 0.25 0.38 1 0.25 0.4

Re"ner o! 0.73 0.49 0.59 0.72 0.43 0.54 0.79 0.43 0.55

Smash 0.69 0.85 0.76 0.86 0.83 0.84 0.94 0.8 0.86

(d) Police Roster

Figure 11: The execution time of string matching for a varied

number of sampled rows from the Large Disease dataset

of strings. To compute the PRF scores, we compute the similarity

scores between each standard form and each modi"ed form (i.e., the

cross-product of the two lists of strings). If the metric is higher than

a threshold 0 , we regard the two strings as a match. Otherwise, they

do not match. Finally, we compare these results with the ground

truth to compute the PRF scores. We "rst report F-scores using a

wide range of thresholds (i.e., from 0.1 to 0.9) and then dig into

the PRF scores for three thresholds, 0.7, 0.8, and 0.9, as in prior

work [30].

First, we vary the thresholds from 0.1 to 0.9 with an interval

of 0.1 and report the F-scores in Figure 10. Note that the results

for the Large Disease dataset (i.e., Figure 10(a)) do not include

Bipartite because it does not "nish within 1 hour for this dataset.

The reason is that building bipartite graphs is expensive and this

dataset has many rows (i.e., 30,000). We see that Smash outperforms

the baselines in most cases and has the highest F-score across all

thresholds for each dataset. In addition, Smash has the highest

mean F-scores over all thresholds compared to the baselines, as

summarized in Table 2. Speci"cally, Smash improves the max and

mean F-score compared to the best baselines by up to 23.5% (i.e.,

Levenshtein on Police Roster) and 110.8% (i.e., Jaccard-Word on

Location), respectively. These results show that Smash can achieve

the best performance across varied thresholds and is robust to

the threshold parameter compared to the baseline approaches for

di!erent datasets.

Next, we report the PRF scores for thresholds 0.7, 0.8, and 0.9

in Table 3. We see that Smash has a higher F-score than baselines

in most tests. For the Small Disease dataset, Smash has a smaller

F-score than pkduck when 0 is 0.7 or 0.8. However, Smash sig-

ni"cantly outperforms pkduck in many other cases. Speci"cally,

compared to pkduck, Smash improves the F-score by 58% on aver-

age and 323% in the best case (i.e., Large Disease, 0 = 0.9). Smash

has a smaller F-score than a#ne gap when we test the Large Dis-

ease dataset and 0 is 0.8. But Smash demonstrates a much higher

F-score in other cases. We have also observed cases where the pre-

cision is 1 but the recall is 0 (e.g., Levenshtein, 0 = 0.9) because the

metric does not "nd any matching pairs. If no matches are returned,

the precision is trivially 1 because there are no false positives. There

are also some cases when & = 1 and 1 = 0, but 2 > 0. This discrep-

ancy is solely due to rounding imprecision when displaying the

results. Overall, this experiment demonstrates that Smash signi"-

cantly improves the F-score for string matching over many existing

approaches under a wide range of datasets.

7.3 Execution Time of String Matching

Our next experiment evaluates the execution time of string match-

ing using di!erent similarity metrics. We sample a varied number

of rows from the Large Disease, which has 30K rows and is our

largest dataset, and report the time for string matching for the sam-

pled data in Figure 11. We see that Smash has a similar execution

time to pkduck although Smash has higher F-scores than pkduck in

most test cases. While Smash has a higher execution time compared

to the Levenshtein metric, it has much higher F-scores in most test

cases. Finally, Smash has a smaller execution time than the other

baselines. Note that the results for Bipartite are not reported be-

cause Bipartite only "nishes within one hour when the number of

sampled rows is no larger than 1,000.

7.4 E!ectiveness of Considering Skipping Stop
Words and Short Words

We now evaluate the optimizations that consider skipping stop

words and short words.We test four variants of Smash: i) NoOpt: no

optimizations, ii) StopOpt: only considering skipping stop words, iii)

ShortOpt: only considering skipping short words, and iv) BothOpt:

applying both optimizations.

Table 4 shows the results for each dataset. Each row represents

the PRF scores of each variant of Smash for the three thresholds,

0.7, 0.8, and 0.9. Table 4 includes the results for all four datasets.

4114

Table 6: Comparing Smash with ChatGPT (GPT-4.0)

P R F

Smash (0 = 0.7) 0.84 0.83 0.83

Smash (0 = 0.8) 0.92 0.8 0.86

Smash (0 = 0.9) 0.95 0.79 0.86

ChatGPT (Prompt 1) 1.0 0.27 0.43

ChatGPT (Prompt 2) 0.99 0.36 0.52

ChatGPT (Prompt 3) 0.96 0.39 0.56

We see that BothOpt signi"cantly improves the F-score compared

to NoOpt in all cases for the Location and Police Roster datasets.

The improvement is up to 30% (i.e., Police Roster, 0 = 0.9). For the

Large Disease and Small Disease datasets, there are four cases

where BothOpt slightly degrades performance. The reason is that

these two datasets contain many stop words and short words that

have semanticmeanings, and skipping thosewordsmay lead to false

matches. For example, the Large Disease dataset has a standard

form “BCG vaccine”, where “BCG” are the initials of the people

who invented this vaccine. If we apply the optimization of skipping

the short words, we may skip “BCG” and then we will match the

remaining string “vaccine” with "vax", which is an abbreviation for

the general term "vaccine". However, “BCG vaccine” and “vax” refer

to di!erent entities in this dataset. For StopOpt, it improves the

performance over NoOpt for the Location dataset. ShortOpt has

higher F-scores compared to StopOpt for the Location and Police

Roster datasets because most stop words are short (i.e., no larger

than 4 characters) and are also considered by ShortOpt.

7.5 Performance Impact of Re"nement Rules
for pkduck

Recall that pkduck automatically generates synonym rules for per-

forming string matching. It initially generates a set of candidate

synonym rules based on the longest common sequence of each pair

of strings and re"nes these rules by applying manually-developed

re"nement rules. We now evaluate the e!ectiveness of pkduck’s

re"nement rules by testing two variants of pkduck that turn on and

o! the re"nement, respectively.

Table 5 shows the PRF scores for the thresholds 0.7, 0.8, and 0.9

under the four datasets. We see that the re"nement rules do not

always improve F-scores. Speci"cally, the re"nement rules improve

the performance for the LargeDisease and SmallDisease datasets

while they degrade the performance of pkduck for the other two

datasets in most cases. The only exception is for the Location

dataset when 0 is 0.7. Smash, on the other hand, does not rely on

synonym rules and has much higher F-scores than the two variants

of pkduck in most cases.

7.6 Performance of ChatGPT

LLMs have demonstrated promise in understanding and generating

text. Here, we test if a state-of-the-art LLM can provide performance

comparable to Smash out of the box. Speci"cally, we asked the state-

of-the-art LLM, ChatGPT Pro with GPT-4.0 [2] to perform string

matching and evaluate the quality of the results. Our experiments

are on the Police Roster.

We used three prompts. The "rst one is “Here are the police

titles. They include acronyms, abbreviations, and typos. I want to

"nd the pair of strings that represent the same entity. Please do the
pair-wise comparison and give me the answer. Give me the pairs

without using Python code using the format of "String A, String

B": [Police Roster dataset]”. The second one is similar, with the

only di!erence being that we stress the importance of returning all

pairs: “... Ensure the completeness of all pairs and give me the

pairs...”. Since we "nd the second prompt has a low recall (i.e., only

returning 36 pairs), we tried the third and "nal prompt, explicitly

asking ChatGPT to return 100 pairs: “... Give me at least 100 pairs

without using Python code...”. However, ChatGPT only returns 48

pairs, saying that it cannot "nd more pairs that represent the same

police title.

The "rst prompt returns 26 pairs, whose precision is 1.0 as shown

in Table 6. However, it has a low recall because it only returns a

limited number of pairs. The second prompt, instead, returns 36

pairs, which has a higher recall compared to the "rst one, but a

slightly lower precision. The third prompt returns 48 pairs but still

has a low recall. The F-score for the three prompts is much smaller

than the one Smash achieves. Speci"cally, the max F-score for

ChatGPT is 0.56 while themax F-score for Smash is 0.86. Overall, we

believe today’s LLMs are not quite able to perform string matching

tasks e!ectively, especially for datasets that include domain-speci"c

acronyms, abbreviations, and typos (e.g., the PoliceRoster dataset).

Despite our best attempts at prompt engineering, LLMs only return

results they are truly con"dent about, thereby resulting in very

low recall—something we were unable to "x even by explicitly

requesting a certain number of results.

8 CONCLUSION

In this paper, we presented Smash, a string similarity measure

that captures acronyms, abbreviations, and typos as is typical in

real-world settings, without relying on brittle synonym rules. We

identi"ed an optimal substructure for Smash, developed a dynamic

programming algorithm to e#ciently compute Smash, and pro-

posed two optimizations to further improve the accuracy of Smash.

We implemented Smash in OpenRe"ne to help non-programmers,

such as journalists and public defenders, more accurately perform

string matching. Finally, we performed extensive experiments that

demonstrate Smash signi"cantly improves F-score over six existing

approaches. Compared to the best baselines, Smash improves the

max and mean F-score by 23.5% and 110.8%, respectively.

ACKNOWLEDGMENTS

We acknowledge support from grants DGE-2243822, IIS-2129008,

IIS-1940759, and IIS-1940757 awarded by the National Science Foun-

dation, funds from the State of California, an NDSEG Fellowship,

funds from the Alfred P. Sloan Foundation, as well as EPIC lab spon-

sors: G-Research, Adobe, Microsoft, Google, and Sigma Computing.

4115

REFERENCES
[1] Bipartite matching. https://docs.scipy.org/doc/scipy/reference/generated/

scipy.sparse.csgraph.maximum_bipartite_matching.html [Online; accessed 17-
Novembor-2023].

[2] Chatgpt. https://chat.openai.com/ [Online; accessed 12-Mar-2024].
[3] Disease dataset. https://zenodo.org/record/4266963 [Online; accessed 27-

February-2023].
[4] Levenshtein distance. https://en.wikipedia.org/wiki/Levenshtein_distance [On-

line; accessed 27-February-2023].
[5] Openre"ne. https://github.com/OpenRe"ne/OpenRe"ne [Online; accessed 27-

February-2023].
[6] Stopwords. https://www.ranks.nl/stopwords [Online; accessed 27-February-

2023].
[7] Subsequence. https://en.wikipedia.org/wiki/Subsequence [Oneline; accessed

17-Novembor-2023].
[8] M. Almagro, E. J. Almazán, D. Ortego, and D. Jiménez. LEA: improving sentence

similarity robustness to typos using lexical attention bias. In A. K. Singh, Y. Sun,
L. Akoglu, D. Gunopulos, X. Yan, R. Kumar, F. Ozcan, and J. Ye, editors, Proceedings
of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining,
KDD 2023, Long Beach, CA, USA, August 6-10, 2023, pages 36–46. ACM, 2023.

[9] A. Arasu, S. Chaudhuri, and R. Kaushik. Transformation-based framework
for record matching. In G. Alonso, J. A. Blakeley, and A. L. P. Chen, editors,
Proceedings of the 24th International Conference on Data Engineering, ICDE 2008,
April 7-12, 2008, Cancún, Mexico, pages 40–49. IEEE Computer Society, 2008.

[10] A. Arasu, V. Ganti, and R. Kaushik. E#cient exact set-similarity joins. In U. Dayal,
K. Whang, D. B. Lomet, G. Alonso, G. M. Lohman, M. L. Kersten, S. K. Cha, and
Y. Kim, editors, Proceedings of the 32nd International Conference on Very Large
Data Bases, Seoul, Korea, September 12-15, 2006, pages 918–929. ACM, 2006.

[11] M. Bilenko and R. J. Mooney. Employing trainable string similarity metrics for
information integration. In IIWeb, pages 67–72, 2003.

[12] P. S. G. C., A. Ardalan, A. Doan, and A. Akella. Smurf: Self-service string matching
using random forests. Proc. VLDB Endow., 12(3):278–291, 2018.

[13] S. Chaudhuri, V. Ganti, and R. Kaushik. A primitive operator for similarity joins
in data cleaning. In L. Liu, A. Reuter, K. Whang, and J. Zhang, editors, Proceedings
of the 22nd International Conference on Data Engineering, ICDE 2006, 3-8 April
2006, Atlanta, GA, USA, page 5. IEEE Computer Society, 2006.

[14] J. Dai, M. Zhang, G. Chen, J. Fan, K. Y. Ngiam, and B. C. Ooi. Fine-grained
concept linking using neural networks in healthcare. In G. Das, C. M. Jermaine,
and P. A. Bernstein, editors, Proceedings of the 2018 International Conference on
Management of Data, SIGMOD Conference 2018, Houston, TX, USA, June 10-15,
2018, pages 51–66. ACM, 2018.

[15] D. Deng, A. Kim, S. Madden, and M. Stonebraker. Silkmoth: An e#cient method
for "nding related sets with maximum matching constraints. Proc. VLDB Endow.,
10(10):1082–1093, 2017.

[16] A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios. Duplicate record detection:
A survey. IEEE Trans. Knowl. Data Eng., 19(1):1–16, 2007.

[17] O. Hassanzadeh, M. Sadoghi, and R. J. Miller. Accuracy of approximate string
joins using grams. In V. Ganti and F. Naumann, editors, Proceedings of the Fifth
International Workshop on Quality in Databases, QDB 2007, at the VLDB 2007
conference, Vienna, Austria, September 23, 2007, pages 11–18, 2007.

[18] Y. He, K. Ganjam, and X. Chu. SEMA-JOIN: joining semantically-related tables
using big table corpora. Proc. VLDB Endow., 8(12):1358–1369, 2015.

[19] Y. Jiang, G. Li, J. Feng, and W. Li. String similarity joins: An experimental
evaluation. Proc. VLDB Endow., 7(8):625–636, 2014.

[20] B. Li, Y. Liu, A. Zhang, W. Wang, and S. Wan. A survey on blocking technology
of entity resolution. J. Comput. Sci. Technol., 35(4):769–793, 2020.

[21] C. Li, J. Lu, and Y. Lu. E#cient merging and "ltering algorithms for approximate
string searches. In G. Alonso, J. A. Blakeley, and A. L. P. Chen, editors, Proceedings

of the 24th International Conference on Data Engineering, ICDE 2008, April 7-12,
2008, Cancún, Mexico, pages 257–266. IEEE Computer Society, 2008.

[22] G. Li, D. Deng, J. Wang, and J. Feng. PASS-JOIN: A partition-based method for
similarity joins. Proc. VLDB Endow., 5(3):253–264, 2011.

[23] Y. Li, J. Li, Y. Suhara, A. Doan, andW. Tan. Deep entity matching with pre-trained
language models. Proc. VLDB Endow., 14(1):50–60, 2020.

[24] J. Lu, C. Lin, W. Wang, C. Li, and H. Wang. String similarity measures and joins
with synonyms. In K. A. Ross, D. Srivastava, and D. Papadias, editors, Proceedings
of the ACM SIGMOD International Conference on Management of Data, SIGMOD
2013, New York, NY, USA, June 22-27, 2013, pages 373–384. ACM, 2013.

[25] W. Mann, N. Augsten, and P. Bouros. An empirical evaluation of set similarity
join techniques. Proc. VLDB Endow., 9(9):636–647, 2016.

[26] P. Mundra, J. Zhang, F. Nargesian, and N. Augsten. Koios: Top-k semantic overlap
set search. In 39th IEEE International Conference on Data Engineering, ICDE 2023,
Anaheim, CA, USA, April 3-7, 2023, pages 1531–1543. IEEE, 2023.

[27] R. Singh and S. Gulwani. Learning semantic string transformations from examples.
Proc. VLDB Endow., 5(8):740–751, 2012.

[28] G. Song, H. Lee, K. Shim, Y. Park, and W. Kim. String joins with synonyms.
In Y. Nah, B. Cui, S. Lee, J. X. Yu, Y. Moon, and S. E. Whang, editors, Database
Systems for Advanced Applications - 25th International Conference, DASFAA 2020,
Jeju, South Korea, September 24-27, 2020, Proceedings, Part III, volume 12114 of
Lecture Notes in Computer Science, pages 389–405. Springer, 2020.

[29] G. Song, K. Shim, and H. Lee. Substring similarity search with synonyms. In 37th
IEEE International Conference on Data Engineering, ICDE 2021, Chania, Greece,
April 19-22, 2021, pages 2003–2008. IEEE, 2021.

[30] W. Tao, D. Deng, andM. Stonebraker. Approximate string joinswith abbreviations.
In Proceedings of the VLDB Endowment Volume 11, Issue 1, pages 53–65. ACM,
2017.

[31] J. Wang, G. Li, and J. Feng. Trie-join: E#cient trie-based string similarity joins
with edit-distance constraints. Proc. VLDB Endow., 3(1):1219–1230, 2010.

[32] J. Wang, G. Li, and J. Feng. Can we beat the pre"x "ltering?: an adaptive frame-
work for similarity join and search. In K. S. Candan, Y. Chen, R. T. Snodgrass,
L. Gravano, and A. Fuxman, editors, Proceedings of the ACM SIGMOD Interna-
tional Conference on Management of Data, SIGMOD 2012, Scottsdale, AZ, USA,
May 20-24, 2012, pages 85–96. ACM, 2012.

[33] J. Wang, C. Lin, M. Li, and C. Zaniolo. An e#cient sliding window approach for
approximate entity extraction with synonyms. In M. Herschel, H. Galhardas,
B. Reinwald, I. Fundulaki, C. Binnig, and Z. Kaoudi, editors, Advances in Database
Technology - 22nd International Conference on Extending Database Technology,
EDBT 2019, Lisbon, Portugal, March 26-29, 2019, pages 109–120. OpenProceed-
ings.org, 2019.

[34] W. Wang, J. Qin, C. Xiao, X. Lin, and H. T. Shen. Vchunkjoin: An e#cient
algorithm for edit similarity joins. IEEE Trans. Knowl. Data Eng., 25(8):1916–1929,
2013.

[35] Z. Wen, D. Deng, R. Zhang, and R. Kotagiri. 2ed: An e#cient entity extraction
algorithm using two-level edit-distance. In 35th IEEE International Conference
on Data Engineering, ICDE 2019, Macao, China, April 8-11, 2019, pages 998–1009.
IEEE, 2019.

[36] Wikipedia contributors. Jaccard index, 2023. [Online; accessed 27-February-2023].
[37] C. Xiao, W. Wang, and X. Lin. Ed-join: an e#cient algorithm for similarity joins

with edit distance constraints. Proc. VLDB Endow., 1(1):933–944, 2008.
[38] C. Xiao, W. Wang, X. Lin, and J. X. Yu. E#cient similarity joins for near duplicate

detection. In J. Huai, R. Chen, H. Hon, Y. Liu, W. Ma, A. Tomkins, and X. Zhang,
editors, Proceedings of the 17th International Conference on World Wide Web,
WWW 2008, Beijing, China, April 21-25, 2008, pages 131–140. ACM, 2008.

[39] P. Xu and J. Lu. Towards a uni"ed framework for string similarity joins. Proc.
VLDB Endow., 12(11):1289–1302, 2019.

4116

	Abstract
	1 Introduction
	2 Related Work
	3 Our String Similarity Measure
	4 Computing Smash
	4.1 Optimal Substructure
	4.2 Dynamic Programming Algorithm
	4.3 Constructing the Optimal Partition

	5 Optimizations and Applicability
	6 Implementation
	7 Experiments
	7.1 Datasets, Baselines, and Configurations
	7.2 Precision, Recall, and F-Score
	7.3 Execution Time of String Matching
	7.4 Effectiveness of Considering Skipping Stop Words and Short Words
	7.5 Performance Impact of Refinement Rules for pkduck
	7.6 Performance of ChatGPT

	8 Conclusion
	Acknowledgments
	References

