
Published as a conference paper at ICLR 2024

NEURAL ACTIVE LEARNING BEYOND BANDITS

Yikun Ban1, Ishika Agarwal1, Ziwei Wu1, Yada Zhu2, Kommy Weldemariam2,
Hanghang Tong1, Jingrui He1
1University of Illinois Urbana-Champaign, 2IBM Research
1{yikunb2, ishikaa2, ziweiwu2, htong, jingrui}@illinois.edu
2{yzhu, kommy}@us.ibm.com

ABSTRACT

We study both stream-based and pool-based active learning with neural network
approximations. A recent line of works proposed bandit-based approaches that
transformed active learning into a bandit problem, achieving both theoretical and
empirical success. However, the performance and computational costs of these
methods may be susceptible to the number of classes, denoted as K, due to this
transformation. Therefore, this paper seeks to answer the question: "How can we
mitigate the adverse impacts of K while retaining the advantages of principled
exploration and provable performance guarantees in active learning?" To tackle this
challenge, we propose two algorithms based on the newly designed exploitation
and exploration neural networks for stream-based and pool-based active learning.
Subsequently, we provide theoretical performance guarantees for both algorithms
in a non-parametric setting, demonstrating a slower error-growth rate concerning
K for the proposed approaches. We use extensive experiments to evaluate the
proposed algorithms, which consistently outperform state-of-the-art baselines.

1 INTRODUCTION

Active learning is one of the primary areas in machine learning to investigate the learning technique
on a small subset of labeled data while acquiring good generalization performance compared to
passive learning [19]. There are mainly two settings of active learning: stream-based and pool-based
settings. For the stream-based setting, the learner is presented with an instance drawn from some
distribution in each round and is required to decide on-the-fly whether or not to query the label from
the oracle. For the pool-based setting, the learner aims to select one or multiple instances from the
unlabeled pool and hand them over to the oracle for labeling. It repeats this process until the label
budget is exhausted [51]. The essence of active learning is to exploit the knowledge extracted from
labeled instances and explore the unlabeled data to maximize information acquisition for long-term
benefits.

Using neural networks (NNs) to perform active learning has been explored extensively in recent
works [48; 52; 56; 6]. However, they often lack a provable performance guarantee despite strong
empirical performance. To address this issue, a recent line of works [58; 14] proposed the bandit-
based approaches to solve the active learning problem, which are equipped with principled exploration
and theoretical performance guarantee. In contextual bandits [38; 68], the learner is presented with
K arms (context vectors) and required to select one arm in each round. Then, the associated reward is
observed. [58; 14] transformed the online K-class classification into a bandit problem. Specifically,
in one round of stream-based active learning, a data instance xt ∈ Rd is transformed into K long
vectors corresponding to K arms, matching K classes: xt,1 = [x⊤

t ,0
⊤, · · · ,0⊤]⊤, . . . ,xt,K =

[0⊤, · · · ,0⊤,x⊤
t]

⊤, where xt,k ∈ RdK , k ∈ [K]. Then, the learner uses an NN model to calculate a
score for each arm and selects an arm based on these scores. The index of the selected arm represents
the index of the predicted class. This design enables researchers to utilize the exploration strategy
and analysis in contextual bandits to solve the active learning problem. Note [58; 14] can only handle
the stream-based setting of active learning.

However, bandit-based approaches bear the following two limitations. First, as the instance xt is
transformed into K arms, it is required to calculate a score for all K arms respectively, producing
a cost of K times forward-propagation computation of neural networks. This computation cost is
scaled by K. Second, the transformed long vector (arm) has (Kd) dimensions, in contrast to the

1

Published as a conference paper at ICLR 2024

Table 1: Test accuracy and running time compared to bandit-based methods in stream-based setting.

Adult MT Letter Covertype Shuttle Fashion
Number of classes 2 2 2 7 7 10

Accuracy
NeurAL-NTK [58] 80.3 ± 0.12 76.9 ± 0.15 79.3 ± 0.21 61.9 ± 0.08 95.3 ± 0.20 64.5 ± 0.16

I-NeurAL [14] 84.2 ± 0.22 79.4 ± 0.16 82.9 ± 0.06 65.2 ± 0.19 99.3 ±0.12 73.5 ± 0.28
NEURONAL-S 84.8 ± 0.51 83.7 ± 0.17 86.5 ± 0.16 74.4 ± 0.19 99.5 ± 0.09 83.2 ±0.38

Running Time
NeurAL-NTK [58] 163.2 ± 1.31 259.4 ± 2.48 134.0 ± 3.44 461.2 ± 1.26 384.7 ± 1.86 1819.4 ± 10.84

I-NeurAL [14] 102.4± 7.53 46.2± 5.58 232.2± 3.80 1051.7± 5.85 503.1 ± 9.66 1712.7± 12.8
NEURONAL-S 54.7± 3.21 10.5± 0.39 92.1± 3.4 166.4± 0.59 101.2± 2.32 116.3± 3.39

d dimensions of the original instance as the input of the NN model. This potentially amplifies the
effects of K on an active learning algorithm’s performance. We empirically evaluate [58; 14] as
shown in Table 1. The results indicate a noticeable degradation in both test accuracy and running
time as K increases.

In response, in this paper, we aim to mitigate the adverse effects of K on the bandit-based approach in
active learning. Our methods are built upon and beyond [14]. [14] adopted the idea of [13] to employ
two neural networks, one for exploitation and another for exploration. As previously mentioned,
these two neural networks take the transformed Kd-dimension arm as input. Moreover, in each round,
[14] decomposed the label vector yt ∈ {0, 1}K into K rewards (scalars), necessitating the training
of two neural networks K times for each arm. Next, we summarize our key ideas and contributions
to reduce the input dimension back to d and the number of forward propagations to 1 in each round
while preserving the essence of exploitation and exploration of neural networks.

Methodology. (1) We extend the loss function in active learning from 0-1 loss to Bounded loss,
which is more flexible and general. Instead, [58; 14] restricted the loss to be 0-1 loss, because
they had to define the reward of each class (arm) due to their bandit-based methodology. (2) We
re-designed the input and output exploitation and exploration neural networks to directly take the
d-dimension instance as input and output the predicted probabilities for K classes synchronously,
mitigating the curse of K. The connection between exploitation and exploration neural networks is
also reconstructed beyond the standard bandit setting. In other words, we avoid the transformation of
active learning to the standard bandit setting. This is the first main contribution of this paper. (3) To
facilitate efficient and effective exploration, we introduce the end-to-end embedding (Definition 4.1)
as the input of the exploration neural network, which removes the dependence of the input dimension
while preserving the essential information. (4) In addition to our proposed stream-based algorithm,
referred to NEURONAL-S, we also propose a pool-based active learning algorithm, NEURONAL-P.
We bring the redesigned exploitation and exploration network into pool-based setting and propose
a novel gap-inverse-based selection strategy tailored for pool-based active learning. This is our
second main contribution. Note that the stream-based algorithms cannot be directly converted into
the pool-based setting, as discussed in Appendix B.

Theoretical analysis. We provide the regret upper bounds for the proposed stream-based algorithm
under low-noise conditions on the data distribution. Our results indicate the cumulative regret of
NEURONAL-S grows slower than that of [58] concerning K by a multiplicative factor at least
O(
√
T log(1 + λ0)) and up to Õ(

√
md), where λ0 is the smallest eigenvalue of Neural Tangent

Kernel (NTK) and m is the width of the neural network. This finding helps explain why our algorithms
outperform the bandit-based algorithms, particularly when K is large, as shown in Table 1. In the
binary classification task, our regret bounds directly remove the dependence of effective dimension d̃,
which measures the actual underlying dimension in the RKHS space spanned by NTK, discussed
in Sec. 5. We also provide a performance analysis for the proposed pool-based algorithm in the
non-parametric setting, tailored for neural network models. In contrast, previous works focus on
the regime either in parametric settings that require a finite VC dimension [31] or a linear mapping
function assumption [8; 64; 28]. The above theoretical results are our third main contribution. In
addition,

Empirical evaluation. In the end, we perform extensive experiments to evaluate the proposed
algorithms for both stream-based and pool-based algorithms compared to state-of-the-art baselines.
Our evaluation encompasses various metrics, including test accuracy and running time, and we have
carried out ablation studies to investigate the impact of hyper-parameters and label budgets. This is
our fourth main contribution.

2

Published as a conference paper at ICLR 2024

2 RELATED WORK

Active learning has been studied for decades and adapted to many real-world applications [53].
There are several strategies in active learning to smartly query labels, such as diversity sampling
[23; 67], and uncertainty sampling [69; 62; 41]. Neural networks have been widely used in various
scenarios[40; 39; 26; 27; 59; 60]. The Contextual bandit is a powerful tool for decision-making
[13; 10; 9; 11; 49; 50] and has been used for active learning. Works that use neural networks to
perform active learning, according to the model structure, can be classified into online-learning-based
[45; 6] and bandit-based [58; 14] methods. For most of the methods, their neural models take the
instance as input and calculate the predicted scores for each class synchronously. For example,
[45; 6; 17; 35; 54; 56; 66; 5] exploit the neural networks for active learning to improve the empirical
performance. As mentioned before, this type of related work often lacks the principled exploration
and provable guarantee in a non-parametric setting.

The primary focus of theoretical research in active learning is to determine the convergence rate of
the population loss (regret) of the hypothesis produced by the algorithm in relation to the number
of queried labels N . In the parametric setting, the convergence rates of the regret are of the form
νN1/2 + e−

√
N , where ν is the population loss of the best function in the class with finite VC-

dimension, e.g., [29; 20; 47; 63; 7; 65]. With the realizable assumption (i.e., when the Bayes
optimal classifier lies in the function class), minimax active learning rates of the form N−α+1

2 are
shown in [30; 36] to hold for adaptive algorithms that do not know beforehand the noise exponent
α (Defined in Sec. 5). In non-parametric settings, [44; 42; 70] worked under smoothness (Holder
continuity/smoothness) assumptions, implying more restrictive assumptions on the marginal data
distribution. [42; 70] achieved the minimax active learning rate N− β(α+1)

2β+d for β-Holder classes,
where exponent β plays the role of the complexity of the class of functions to learn. [8; 64; 28]
focused on the pool-based setting and achieve the (d

N)α+1/α+2 minimax rate, but their analysis
are built on the linear mapping function. [37] investigated active learning with nearest-neighbor
classifiers and provided a data-dependent minimax rate based on the noisy-margin properties of the
random sample. [32] introduce the expected variance with Gaussian processes criterion for neural
active learning. [58] and [14] represent the closest works related to the analysis of neural networks
in active learning. Both [58] and our work utilized the theory of NTK, making their results directly
comparable. [14] established a connection between their regret upper bound and the training error of
a neural network function class. However, they did not provide a clear trade-off between the training
error and the function class radius, making it challenging to compare [14] with our theoretical results.

3 PROBLEM DEFINITION

In this paper, we consider the K-class classification problem for both stream-based and pool-based
active learning.

Let X denote the input space over Rd and Y represent the label space over {0, 1}K . D is some
unknown distribution over X × Y . For any round t ∈ [T] = {1, 2, . . . , T}, an instance xt is
drawn from the marginal distribution DX . Accordingly, the associated label yt is drawn from the
conditional distribution DY|xt

, in which the dimension with value 1 indicates the ground-truth class
of xt. For the clarity of presentation, we use yt,k, k ∈ [K] to represent the K possible predictions,
i.e., yt,1 = [1, 0, . . . , 0]⊤, . . . ,yt,K = [0, 0, . . . , 1]⊤.

Given an instance xt ∼ DX , the learner is required to make a prediction yt,k̂, k̂ ∈ [K] based on
some function. Then, the label yt is observed. A loss function ℓ : Y × Y → [0, 1], represented by
ℓ(yt,k̂,yt), reflects the quality of this prediction. We investigate the non-parametric setting of active
learning. Specifically, we make the following assumption for the conditional distribution of the loss.

Assumption 3.1. The conditional distribution of the loss given xt is defined by some unknown
function h : X → [0, 1]K , such that

∀k ∈ [K],Eyt∼DY|xt
[ℓ(yt,k,yt)|xt] = h(xt)[k], (3.1)

where h(xt)[k] represents the value of the kth dimension of h(xt).

3

Published as a conference paper at ICLR 2024

Assumption 3.1 is the standard formulation in [58; 14]. Related works [14; 58] restricted ℓ to be 0-1
loss. In contrast, we only assume ℓ is bounded for the sake of generality.

Stream-based. For stream-based active learning, at each round t ∈ [T], the learner receives an
instance xt ∼ DX . Then, the learner is compelled to make a prediction yt,k̂, and at the same time,
decides on-the-fly whether or not to observe the label yt.

Then, the goal of active learning is to minimize the Population Cumulative Regret. Given the data
distribution D and the number of rounds T , the Population Cumulative Regret is defined as:

Rstream(T) :=
T∑

t=1

[
E

(xt,yt)∼D
[ℓ(yt,k̂,yt)]− E

(xt,yt)∼D
[ℓ(yt,k∗ ,yt)]

]
, (3.2)

where yt,k∗ is the prediction induced by the Bayes-optimal classifier with respect to xt in round t,
i.e., k∗ = argmink∈[K] h(xt)[k]. The Population Regret reflects the generalization performance of a
model in T rounds of stream-based active learning.

At the same time, the goal of the learner is to minimize the expected label query cost: N(T) :=∑T
t=1 E

xt∼DX
[It|xt], where It is an indicator of the query decision in round t such that It = 1 if yt is

observed; It = 0, otherwise.

Pool-based. The goal pool-based active learning is to maximize the performance of a model with
a limited label budget given the pool of instances. In a round, assume there is an instance pool
Pt = {x1,x2, . . . ,xB} with B instances, which are drawn from DX . Then, for any xt ∈ Pt, the
learner is able to request a label from the conditional distribution yt ∼ DY|xt

with one unit of
budget cost. The total number of queries is set as Q. Let yt,k̂ be the prediction of xt ∈ Pt by some
hypothesis. Then, the Population Cumulative Regret for pool-based active learning is defined as:

Rpool(Q) :=

Q∑
t=1

[
E

(xt,yt)∼D
[ℓ(yt,k̂,yt)]− E

(xt,yt)∼D
[ℓ(yt,k∗ ,yt)]

]
, (3.3)

where k∗ = argmink∈[K] h(xt)[k]. Rpool(Q) reflects the generalization performance of a model in
Q rounds of pool-based active learning.

4 PROPOSED ALGORITHMS

In this section, we present the proposed algorithms for both stream-based and pool-based active
learning. The proposed NN models incorporate two neural networks for exploitation and exploration.
The exploitation network directly takes the instance as input and outputs the predicted probabilities for
K classes synchronously, instead of taking the transformed K long vectors as input and computing
the probabilities sequentially. The exploration network has a novel embedding as input to incorporate
the information of K classes in the exploitation network simultaneously instead of calculating K
embeddings for K arms sequentially as in bandit-based approaches.

Exploitation Network f1. The exploitation network f1 is a neural network which learns the mapping
from input space X to the loss space [0, 1]K . In round t ∈ [T], we denote the network by f1(·;θ1

t),
where the superscript of θ1

t indicates the network and the subscript indicates the index of the round
after updates for inference. f1 is defined as a fully-connected neural network with L-depth and
m-width:

f1(xt;θ
1) :=

√
mW1

Lσ(W
1
L−1 . . . σ(W

1
1xt))) ∈ RK , (4.1)

where W1
1 ∈ Rm×d,W1

l ∈ Rm×m, for 2 ≤ l ≤ L − 1, W1
L ∈ RK×m, θ1 =

[vec(W1
1)

⊤, . . . , vec(W1
L)

⊤]⊤ ∈ Rp1 , and σ is the ReLU activation function σ(x) = max{0,x}.
We randomly initialize θ1 denoted by θ1

1, where each entry is drawn from normal distribution
N(0, 2/m) for W1

l , l ∈ [L− 1], and each entry is drawn from N(0, 1/(Km)) for W1
L.

Note that we take the basic fully-connected network as an example for the sake of analysis in over-
parameterized networks, and f1 can be easily replaced with other advanced models depending on the
tasks. Given an instance xt, f1(xt;θ

1
t) can be considered as the estimation for ℓ(yt,k,yt), k ∈ [K].

4

Published as a conference paper at ICLR 2024

Algorithm 1 NEURONAL-S

Input: T,K, f1, f2, η1, η2 (learning rate), γ (exploration para.), δ (confidence para.), S (norm para.)

1: Initialize θ1
1,θ

2
1; θ̂

1

1 = θ1
1; θ̂

2

1 = θ2
1,Ω1 = {(θ̂

1

1, θ̂
2

1)}
2: for t = 1, 2, . . . , T do
3: Receive an instance xt ∼ DX
4: f(xt;θt) = f1(xt;θ

1
t) + f2(ϕ(xt);θ

2
t)

5: k̂ = argmink∈[K] f(xt;θt)[k]
6: k◦ = argmink∈([K]\{ k̂ }) f(xt;θt)[k]

7: Predict yt,k̂

8: It = 1{|f(xt;θt)[k̂]− f(xt;θt)[k
◦]| < 2γβt} ∈ {0, 1}; βt =

√
KS2

t +
√

2 log(3T/δ)
t

9: Observe yt and ℓ, if It = 1; yt = yt,k̂, otherwise

10: θ̂
1

t+1 = θ̂
1

t − η1▽θ̂
1Lt,1(θ̂

1

t)

11: θ̂
2

t+1 = θ̂
2

t − η2▽θ̂
2Lt,2(θ̂

2

t)

12: Ωt+1 = Ωt ∪ {(θ̂
1

t+1, θ̂
2

t+1)}
13: Draw (θ1

t+1,θ
2
t+1) uniformly from Ωt+1

14: end for
15: return θT

In round t, after receiving the label yt, we conduct stochastic gradient descent to update θ1, based
on the loss function Lt,1(θ

1
t), such as Lt,1(θ

1
t) =

∑
k∈[K]

(
f1(xt;θ

1
t)[k]− ℓ(yt,k,yt)

)2
/2, where

f1(xt;θ
1
t)[k] represents the value of the kth dimension of f1(xt;θ

1
t).

Exploration Network f2. The exploration network f2 learns the uncertainty of estimating f1(·;θ1).
In round t ∈ [T], given an instance xt and the estimation f1(xt;θ

1
t), the input of f2 is a mapping or

embedding ϕ(xt) that incorporates the information of both xt and the discriminative information of
θ1
t . We introduce the following embedding ϕ(xt):

Definition 4.1 (End-to-end Embedding). Given the exploitation network f1(·;θ1
t) and an input

context xt, its end-to-end embedding is defined as

ϕ(xt)
⊤ =

(
σ(W1

1xt)
⊤, vec(∇W1

L
f1(xt;θ

1
t))

⊤
)
∈ Rm+Km, (4.2)

where the first term is the output of the first layer of f1 and the second term is the partial derivative of
f1 with respect to the parameters of the last layer. ϕ(xt) is usually normalized.

The first term σ(W1
1xt)

⊤ can be thought of as an embedding to transform xt ∈ Rd into another space
in Rm, as the input dimension d can be a very large number. Thus, we leverage the representation
power of f1 and minimize the dependence on d for f2. The last layer might play the more important
role in terms of classification ability [46] and hence we only take the gradient of the last layer which
incorporates the discriminative information of θ1

t , to reduce the computation cost.

Then, specifically, given an embedding ϕ(xt), f2 is defined as:

f2(ϕ(xt);θ
2) :=

√
mW2

Lσ(W
2
L−1 . . . σ(W

2
1ϕ(xt))) ∈ RK , (4.3)

where W2
1 ∈ Rm×(m+Km),W2

l ∈ Rm×m, for 2 ≤ l ≤ L − 1, W2
L ∈ RK×m, θ2 =

[vec(W2
1)

⊤, . . . , vec(W2
L)

⊤]⊤ ∈ Rp2 , and σ is the ReLU activation function σ(x) = max{0,x}.
Similarly, we randomly initialize θ2 denoted by θ2

1, where each entry is drawn from Normal distribu-
tion N(0, 2/m) for W2

l , l ∈ [L− 1], and each entry is drawn from N(0, 1/Km) for W2
L.

In round t, after receiving yt, the label for training f2 is the estimated error of f1(·;θ1)[k],
represented by (ℓ(yt,k,yt) − f1(xt;θ

1
t)[k]). Therefore, we conduct stochastic gradient descent

to update θ2, based on the loss Lt,2(θ
2
t), such as Lt,2(θ

2
t) =

∑
k∈[K]

(
f2(ϕ(xt);θ

2
t)[k] −

5

Published as a conference paper at ICLR 2024

Algorithm 2 NEURONAL-P

Input: Q,B,K, f1, f2, η1, η2, µ, γ
1: Initialize θ1

1,θ
2
1

2: for t = 1, 2, . . . , Q do
3: Draw B instances, Pt, from DX
4: for xi ∈ Pt do
5: f(xi;θt) = f1(xi;θ

1
t) + f2(ϕ(xi);θ

2
t)

6: k̂ = argmink∈[K] f(xi;θt)[k]
7: k◦ = argmink∈([K]\{ k̂ }) f(xi;θt)[k]

8: wi = f(xi;θt)[k̂]− f(xi;θt)[k
◦]

9: end for
10: wî = mini∈[B] wi

11: For each i ̸= î, pi =
wî

µwî+γ(wi−wî)

12: pî = 1−
∑

i=î pi
13: Draw one instance xt from Pt according to probability distribution P formed by pi
14: Query xt, Predict yt,k̂, and observe yt

15: Update θ1,θ2 as Lines 11-12 in Algorithm 1
16: end for
17: return θQ

(
ℓ(yt,k,yt) − f1(xt;θ

1
t)[k]

))2
/2, where f2(ϕ(xt);θ

2
t)[k] represents the value of the kth dimen-

sion of f2(ϕ(xt);θ
2
t).

Stream-based Algorithm. Our proposed stream-based active learning algorithm is described in
Algorithm 1. In a round, when receiving a data instance, we calculate its exploitation-exploration
score and then make a prediction (Lines 3-7), where k◦ is used in the decision-maker (Line 8). When
It = 1, which indicates that the uncertainty of this instance is high, we query the label of this data
instance to attain new information; otherwise, we treat our prediction as the pseudo label (Line 9).
Finally, we use the SGD to train and update the parameters of NN models (Lines 10-13). Here, we
draw the parameters from the pool Ωt for the sake of analysis to bound the expected approximation
error of one round. One can use the mini-batch SGD to avoid this issue in implementation.

Pool-based Algorithm. Our proposed pool-based active learning algorithm is described in Algorithm
2. In each round, we calculate the exploitation and exploration scores, and then calculate the
prediction gap w for each data instance (Lines 4-9). Then, we form a distribution of data instances
(Lines 10-13), P , where Lines 11-12 are inspired by the selection scheme in [2]. The intuition behind
this is as follows. The prediction gap wi reflects the uncertainty of this data instance. Smaller wi

shows the larger uncertainty of xi. Thus, the smaller wi, the higher the drawing probability pi (Line
11). Finally, we draw a data instance according to the sampling probability P and conduct SGD to
update the neural networks.

5 REGRET ANALYSIS

In this section, we provide the regret analysis for both the proposed stream-based and pool-based
active learning algorithms.

Existing works such as [58; 42; 70] studied active learning in binary classification, where the label
space Y ∈ [0, 1] can be parametrized by the Mammen-Tsybakov low noise condition [43]: There
exist absolute constants c > 0 and α ≥ 0, such that for all 0 < ϵ < 1/2,x ∈ X , k ∈ {0, 1},
P(|h(x)[k] − 1

2 | ≤ ϵ) ≤ cϵα. For simplicity, we are interested in the two extremes: α = 0 results
in no assumption whatsoever on D while α = ∞ gives the hard-margin condition on D. These two
conditions can be directly extended to the K-class classification task. Next, we will provide the regret
analysis and comparison with [58].

Our analysis is associated with the NTK matrix H defined in C.1. There are two complexity terms
in [58] as well as in Neural Bandits [68; 12]. The assumption H ⪰ λ0I is generally held in this

6

Published as a conference paper at ICLR 2024

literature to guarantee that there exists a solution for NTK regression. The first complexity term is S =√
h⊤H−1h where h = [h(x1)[1],h(x1)[2], . . . ,h(xT)[K]]⊤ ∈ RTK . S is to bound the optimal

parameters in NTK regression: there exists θ∗ ∈ Rp such that h(xt)[k] = ⟨∇θf(xt;θ
∗)[k],θ∗−θ1⟩

and ∥θ∗ − θ1∥2 ≤ S. The second complexity term is the effective dimension d̃, defined as d̃ =
log det(I+H)
log(1+TK) , which describes the actual underlying dimension in the RKHS space spanned by NTK.

[58] used the term LH to represent d̃: LH = log det(I + H) = d̃ log(1 + TK). We provide the
upper bound and lower bound of LH in Appendix C: TK log(1 + λ0) ≤ LH ≤ Õ(mdK).

First, we present the regret and label complexity analysis for Algorithm 1 in binary classification,
which is directly comparable to [58].
Theorem 5.1. [Binary Classification] Given T , for any δ ∈ (0, 1), λ0 > 0, suppose K = 2,
∥xt∥2 = 1, t ∈ [T], H ⪰ λ0I, m ≥ Ω̃(poly(T, L, S) · log(1/δ)), η1 = η2 = Θ(S

m
√
2T

). Then, with

probability at least 1− δ over the initialization of θ1
1,θ

2
1, Algorithm 1 achieves the following regret

bound:
Rstream(T) ≤ Õ((S2)

α+1
α+2T

1
α+2),

N(T) ≤ Õ((S2)
α

α+2T
2

α+2).

Compared to [58], Theorem 5.1 removes the term Õ
(
LH

2(α+1)
α+2 T

1
α+2

)
and further improve the

regret upper bound by a multiplicative factor LH

α+1
α+2 . For the label complexity N(T), compared to

[58], Theorem 5.1 removes the term Õ
(
LH

2α
α+2T

2
α+2

)
and further improve the regret upper bound

by a multiplicative factor LH
α

α+2 .

Next, we show the regret bound for the stream-based active learning algorithm (Algorithm 1) in
K-classification, without any assumption on the distribution D (Tsybakov noise α = 0).
Theorem 5.2. [Stream-based]. Given T , for any δ ∈ (0, 1), λ0 > 0, suppose ∥xt∥2 = 1, t ∈ [T],
H ⪰ λ0I, m ≥ Ω̃(poly(T,K,L, S) · log(1/δ)), η1 = η2 = Θ(S

m
√
TK

). Then, with probability at

least 1− δ over the initialization of θ1
1,θ

2
1, Algorithm 1 achieves the following regret bound:

Rstream(T) ≤ O(
√
T) ·

(√
KS +

√
2 log(3T/δ)

)
, N(T) ≤ O(T).

Theorem 5.2 shows that NEURONAL-S achieves a regret upper bound of Õ(
√
TKS). Under the same

condition (α = 0), [58] obtains the regret upper bound: Rstream(T) ≤ Õ
(√

TLHS +
√
TLH

)
.

This core term is further bounded by Õ(
√
T ·

√
TK log(1 + λ0)S) ≤ Õ

(√
TLHS

)
≤

Õ(
√
TmdKS) . Concerning K, Theorem 5.2 results in regret-growth rate

√
K · Õ(

√
TS) in contrast

with
√
K · Õ(

√
TmdS) at most in [58]. Therefore, our regret bound has a slower growth rate concern-

ing K compared to [58] by a multiplicative factor at least O(
√

T log(1 + λ0)) and up to Õ(
√
md).

In binary classification, we reduce the regret bound by Õ(
√
TLH), i.e., remove the dependency of d̃,

and further improve the regret bound by a multiplicative factor at least O(
√
T log(1 + λ0)).

The regret analysis of [14] introduced two other forms of complexity terms: Õ(
√
T · (√µ+ ν)). µ

is the data-dependent term interpreted as the minimal training error of a function class on the data,
while ν is the function class radius. [3] had implied that when ν has the order of Õ(poly(T)), µ
can decrease to Õ(1). But, their regret bounds also depend on O(ν). This indicates that their regret
analysis is invalid when ν has O(T). Since [14] did not provide the upper bound and trade-off of µ
and ν or build the connection with NTK, their results are not readily comparable to ours.

For the label complexity, Theorem 5.2 has the trivial O(T) complexity which is the same as [58; 14].
This turns into the active learning minimax rate of N(T)−1/2, which is indeed the best rate under
α = 0 [16; 30; 36; 21]. Next, we provide the analysis under the following margin assumption.
Assumption 5.1 ([14]). Given an instance xt and the label yt, xt has a unique optimal class if there
exists ϵ > 0 such that

∀t ∈ [T],h(xt)[k
∗]− h(xt)[k

◦] ≥ ϵ, (5.1)

7

Published as a conference paper at ICLR 2024

where k∗ = argmink∈[K] h(xt)[k] and k◦ = argmink∈([K]\{k∗}) h(xt)[k].

Assumption 5.1 describes that there exists a unique Bayes-optimal class for each input instance. Then,
we have the following theorem.
Theorem 5.3. [Stream-based]. Given T , for any δ ∈ (0, 1), γ > 1, λ0 > 0, suppose ∥xt∥2 = 1, t ∈
[T], H ⪰ λ0I, m ≥ Ω̃(poly(T,K,L, S) · log(1/δ)), η1 = η2 = Θ(S

m
√
TK

), and Assumption 5.1

holds. Then, with probability at least 1− δ over the initialization of θ1
1,θ

2
1, Algorithm 1 achieves the

following regret bound and label complexity:

Rstream(T) ≤ O((KS2 + log(3T/δ))/ϵ), N(T) ≤ O((KS2 + log(3T/δ))/ϵ2). (5.2)

Theorem 5.3 provides the regret upper bound and label complexity of Õ(KS2) for NEURONAL-S
under margin assumption. With α → ∞, [58] obtained Õ(LH(LH+S2)) ≤ Õ(mdK(mdK+S2)).
Therefore, with margin assumption, the regret of NEURONAL-S grows slower than [58] by a
multiplicative factor up to O(md) with respect to K. [14] achieved Õ(ν2 + µ), but the results are
not directly comparable to ours, as discussed before.

Theorem 5.4 (Pool-based). For any 1 > δ > 0, λ0 > 0, by setting µ = Q and γ =
√
Q/(KS2),

suppose ∥xt∥2 = 1 for all instances, H ⪰ λ0I, m ≥ Ω̃(poly(Q,K,L,R) · log(1/δ)), η1 = η2 =
Θ(1

mLK). Then, with probability at least 1− δ over the initilization of θ1
1,θ

2
1, Algorithm 2 achieves:

Rpool(Q) ≤ O(
√
QKS) +O

(√
Q

KS2

)
· log(2δ−1) +O(

√
Q log(3δ−1)).

Theorem 5.4 provides a performance guarantee of Õ(
√
QKS) for NEURONAL-P in the non-

parametric setting with neural network approximator. This result shows that the pool-based algorithm
can achieve a regret bound of the same complexity as the stream-based algorithm (Theorem 5.2)
with respect to the number of labels. Meanwhile, Theorem 5.4 indicates the Õ(

√
1/Q) minimax

rate in the pool-based setting which matches the rate (α = 0) in [8; 64; 28]. However, the results in
[8; 64; 28] only work with the linear separator, i.e., they assume h as the linear function with respect
to the data instance x. Note that [58; 14] only work on stream-based active learning.

6 EXPERIMENTS

In this section, we evaluate NEURONAL for both stream-based and pool-based settings on the follow-
ing six public classification datasets: Adult, Covertype (CT), MagicTelescope (MT), Shuttle [24],
Fashion [61], and Letter [18]. For all NN models, we use the same width m = 100 and depth L = 2.
Due to the space limit, we move additional results (figures) to Appendix A.

Stream-based Setups. We use two metrics to evaluate the performance of each method: (1) test
accuracy and (2) cumulative regret. We set T = 10, 000. After T rounds of active learning, we
evaluate all the methods on another 10, 000 unseen data points and report the accuracy. As MT does
not have enough data points, we use 5, 000 data points for the evaluation. In each iteration, one
instance is randomly chosen and the model predicts a label. If the predicted label is wrong, the regret
is 1; otherwise 0. The algorithm can choose to observe the label, which will reduce the query budget
by one. We restrict the query budget to avoid the situation of the algorithm querying every data point
in the dataset, following [14]. The default label budget is 30%× T . We ran each experiment 10 times
and reported the mean and std of results. We use three baselines for comparison in the stream-based
setting: (1) NeurAL-NTK [58], (2) I-NeurAL [14], and (3) ALPS [22]. Due to the space limit, we
reported the cumulative regret and more details in Appendix A.1.

Stream-based Results. To evaluate the effectiveness of NEURONAL-S, first, we report the test
accuracy of bandit-based methods in Table 1, which shows the generalization performance of each
method. From this table, we can see that the proposed NEURONAL-S consistently trains the best
model compared to all the baselines for each dataset, where NEURONAL-S achieves non-trivial
improvements under the same label budget with the same width and depth of NN models. Compared
to bandit-based approaches, NeurAL-NTK and I-NeurAL, NEURONAL-S has new input and output,
which enable us to better exploit the full feedback in active learning instead of bandit feedback and to
explore more effectively. The results of ALPS are placed in Table 3. ALPS manages to select the
best pre-trained hypotheses for the data. However, the model parameters are fixed before the online

8

Published as a conference paper at ICLR 2024

Table 2: Testing accuracy (%) and running time on all methods in Pool-based Setting

Adult MT Letter Covertype Shuttle Fashion
Accuracy

CoreSet 76.7 ± 1.13 75.1 ± 0.79 80.6 ± 0.63 62.6 ± 3.11 97.7 ± 0.41 80.4 ± 0.08
BADGE 76.6 ± 0.49 71.6 ± 0.81 81.7 ± 0.57 64.8 ± 1.02 98.6 ± 0.39 76.1 ± 0.21

DynamicAL 72.4 ± 0.14 67.8 ± 1.01 63.2 ± 0.31 54.1 ± 0.12 78.7 ± 0.05 54.5 ± 0.19
ALBL 78.1 ± 0.45 73.9 ± 0.71 81.9 ± 0.47 65.3 ± 0.14 98.6 ± 0.37 77.6 ± 0.32

NEURONAL-P 79.1 ± 0.04 81.3 ± 0.12 83.7 ± 0.07 67.6 ± 0.21 99.5 ± 0.01 81.1 ± 0.13
Running Time

CoreSet 43.1 ± 7.65 119.3 ± 4.42 228.3 ± 6.51 32.5 ± 10.94 10.9 ± 2.22 33.1 ± 6.32
BADGE 159.5 ± 4.61 212.5 ± 9.32 484.8 ± 7.04 545.7 ± 9.32 222.9 ± 5.13 437.8 ± 5.32

DynamicAL 24.3 ± 5.21 821.5 ± 6.14 382.3 ± 3.13 621.6 ± 3.21 483.4 ± 9.78 413.2 ± 7.14
ALBL 315.8 ± 4.31 343.5 ± 6.24 271.3 ± 6.32 481.3 ± 5.21 63.2 ± 2.16 92.1 ± 3.42

NEURONAL-P 17.2 ± 3.24 140.1 ± 3.69 133.7 ± 12.8 14.1 ± 5.81 15.6 ± 8.03 25.5 ± 7.80

active learning process. Hence, ALPS is not able to take the new knowledge obtained by queries into
account and its performance is highly limited by the hypothesis class. Table 1 shows the running time
of NEURONAL-S compared to bandit-based approaches. NEURONAL-S achieves the best empirical
performance and significantly saves the time cost. The speed-up is boosted when K is large. This is
because of NEURONAL-S’s new NN model structure to calculate the predicted score synchronously.
In contrast, bandit-based approaches calculate the score sequentially, of which the computational cost
is scaled by K. We also conduct the ablation study for different label budgets in the active learning
setting placed in Appendix A.

Pool-based Setups. We use the test accuracy to evaluate the performance of each method. Following
[57], we use batch active learning. In each active learning round, we select and query 100 points for
labels. After 10 rounds of active learning, we evaluate all the methods on another 10, 000 unseen data
points and report the accuracy. We run each experiment 10 times and report the mean and standard
deviation of results. The four SOTA baselines are: (1) CoreSet [52], (2) BADGE [6], (3) DynamicAL
[57], and (4) ALBL [33].

Pool-based results. To evaluate the effectiveness of NEURONAL-P, we report the test accuracy of
all methods in Table 2. Our method, NEURONAL-P, can consistently outperform other baselines
across all datasets. This indicates that these baselines without explicit exploration are easier to be
trapped in sub-optimal solutions. Our method has a more effective network structure (including the
principled exploration network), allowing us to exploit the full feedback and explore new knowledge
simultaneously in active learning. Moreover, we use the inverse gap strategy to draw samples, which
further balances exploitation and exploration. CoreSet always chooses the maximal distance based
on the embeddings derived by the last layer of the exploitation neural network, which is prone to
be affected by outlier samples. BADGE also works on the last layer of the exploitation network
using the seed-based clustering method, and it is not adaptive to the state of the exploitation network.
DynamicAL relies on the training dynamics of the Neural Tangent Kernel, but the rules it uses might
only work on the over-parameterized neural networks based on the analysis. ALBL is a hybrid
active learning algorithm that combines Coreset and Conf [55]. ALBL shows a stronger performance
but still is outperformed by our algorithm. As mentioned before, these baselines do not provide a
theoretical performance guarantee. For the running time, as there are B samples in a pool in each
round, NEURONAL-P takes O(2B) to make a selection. For other baselines, CoreSet takes O(2B).
In addition to O(2B) cost, BADGE and DynamicAL need to calculate the gradient for each sample,
which is scaled by O(B). Thus, BADGE and DynamicAL are slow. ALBA is slow because it
contains another algorithm, and thus, it has two computational costs in addition to neural models. We
also conduct the hyper-parameter sensitivity study for different label budgets in the active learning
setting placed in Appendix A.2.

7 CONCLUSION

In this paper, we propose two algorithms for both stream-based and pool-based active learning. The
proposed algorithms mitigate the adverse effects of K in terms of computational cost and performance.
The proposed algorithms build on the newly designed exploitation and exploration neural networks,
which enjoy a tighter provable performance guarantee in the non-parametric setting. Ultimately,
we use extensive experiments to demonstrate the improved empirical performance in stream- and
pool-based settings.

9

Published as a conference paper at ICLR 2024

ACKNOWLEDGEMENT

This work is supported by National Science Foundation under Award No. IIS-2117902, IIS-2002540,
IIS-2134079, Agriculture and Food Research Initiative (AFRI) grant no. 2020-67021-32799/project
accession no.1024178 from the USDA National Institute of Food and Agriculture, MIT-IBM Watson
AI Lab, and IBM-Illinois Discovery Accelerator Institute - a new model of an academic-industry
partnership designed to increase access to technology education and skill development to spur
breakthroughs in emerging areas of technology. The views and conclusions are those of the authors
and should not be interpreted as representing the official policies of the funding agencies or the
government.

REFERENCES

[1] Yasin Abbasi-Yadkori, Dávid Pál, and Csaba Szepesvári. Improved algorithms for linear
stochastic bandits. In Advances in Neural Information Processing Systems, pp. 2312–2320,
2011.

[2] Naoki Abe and Philip M Long. Associative reinforcement learning using linear probabilistic
concepts. In ICML, pp. 3–11. Citeseer, 1999.

[3] Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via
over-parameterization. In International Conference on Machine Learning, pp. 242–252. PMLR,
2019.

[4] Sanjeev Arora, Simon S Du, Wei Hu, Zhiyuan Li, Russ R Salakhutdinov, and Ruosong Wang.
On exact computation with an infinitely wide neural net. In Advances in Neural Information
Processing Systems, pp. 8141–8150, 2019.

[5] Jordan Ash, Surbhi Goel, Akshay Krishnamurthy, and Sham Kakade. Gone fishing: Neural
active learning with fisher embeddings. Advances in Neural Information Processing Systems,
34, 2021.

[6] Jordan T Ash, Chicheng Zhang, Akshay Krishnamurthy, John Langford, and Alekh Agar-
wal. Deep batch active learning by diverse, uncertain gradient lower bounds. arXiv preprint
arXiv:1906.03671, 2019.

[7] Pranjal Awasthi, Maria Florina Balcan, and Philip M Long. The power of localization for
efficiently learning linear separators with noise. In Proceedings of the forty-sixth annual ACM
symposium on Theory of computing, pp. 449–458, 2014.

[8] Maria-Florina Balcan and Phil Long. Active and passive learning of linear separators under
log-concave distributions. In Conference on Learning Theory, pp. 288–316. PMLR, 2013.

[9] Yikun Ban and Jingrui He. Generic outlier detection in multi-armed bandit. In Proceedings of
the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp.
913–923, 2020.

[10] Yikun Ban and Jingrui He. Local clustering in contextual multi-armed bandits. In Proceedings
of the Web Conference 2021, pp. 2335–2346, 2021.

[11] Yikun Ban, Jingrui He, and Curtiss B Cook. Multi-facet contextual bandits: A neural network
perspective. In The 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining,
Virtual Event, Singapore, August 14-18, 2021, pp. 35–45, 2021.

[12] Yikun Ban, Yunzhe Qi, Tianxin Wei, and Jingrui He. Neural collaborative filtering bandits via
meta learning. ArXiv abs/2201.13395, 2022.

[13] Yikun Ban, Yuchen Yan, Arindam Banerjee, and Jingrui He. EE-net: Exploitation-exploration
neural networks in contextual bandits. In International Conference on Learning Representations,
2022. URL https://openreview.net/forum?id=X_ch3VrNSRg.

10

https://openreview.net/forum?id=X_ch3VrNSRg

Published as a conference paper at ICLR 2024

[14] Yikun Ban, Yuheng Zhang, Hanghang Tong, Arindam Banerjee, and Jingrui He. Improved
algorithms for neural active learning. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave,
and Kyunghyun Cho (eds.), Advances in Neural Information Processing Systems, 2022. URL
https://openreview.net/forum?id=riIaC2ivcYA.

[15] Yuan Cao and Quanquan Gu. Generalization bounds of stochastic gradient descent for wide and
deep neural networks. Advances in Neural Information Processing Systems, 32:10836–10846,
2019.

[16] Rui M Castro and Robert D Nowak. Minimax bounds for active learning. IEEE Transactions
on Information Theory, 54(5):2339–2353, 2008.

[17] Gui Citovsky, Giulia DeSalvo, Claudio Gentile, Lazaros Karydas, Anand Rajagopalan, Afshin
Rostamizadeh, and Sanjiv Kumar. Batch active learning at scale. Advances in Neural Information
Processing Systems, 34, 2021.

[18] Gregory Cohen, Saeed Afshar, Jonathan Tapson, and Andre Van Schaik. Emnist: Extending
mnist to handwritten letters. In 2017 international joint conference on neural networks (IJCNN),
pp. 2921–2926. IEEE, 2017.

[19] David A Cohn, Zoubin Ghahramani, and Michael I Jordan. Active learning with statistical
models. Journal of artificial intelligence research, 4:129–145, 1996.

[20] Sanjoy Dasgupta, Daniel J Hsu, and Claire Monteleoni. A general agnostic active learning
algorithm. Advances in neural information processing systems, 20, 2007.

[21] Ofer Dekel, Claudio Gentile, and Karthik Sridharan. Selective sampling and active learning from
single and multiple teachers. The Journal of Machine Learning Research, 13(1):2655–2697,
2012.

[22] Giulia DeSalvo, Claudio Gentile, and Tobias Sommer Thune. Online active learning with
surrogate loss functions. Advances in Neural Information Processing Systems, 34, 2021.

[23] Bo Du, Zengmao Wang, Lefei Zhang, Liangpei Zhang, Wei Liu, Jialie Shen, and Dacheng Tao.
Exploring representativeness and informativeness for active learning. IEEE transactions on
cybernetics, 47(1):14–26, 2015.

[24] Dheeru Dua, Casey Graff, et al. Uci machine learning repository. 2017.

[25] Dylan Foster and Alexander Rakhlin. Beyond ucb: Optimal and efficient contextual bandits
with regression oracles. In International Conference on Machine Learning, pp. 3199–3210.
PMLR, 2020.

[26] Dongqi Fu, Dawei Zhou, and Jingrui He. Local motif clustering on time-evolving graphs. In
KDD ’20: The 26th ACM SIGKDD Conference on Knowledge Discovery and Data Mining,
Virtual Event, CA, USA, August 23-27, 2020, pp. 390–400. ACM, 2020.

[27] Dongqi Fu, Dawei Zhou, Ross Maciejewski, Arie Croitoru, Marcus Boyd, and Jingrui He.
Fairness-aware clique-preserving spectral clustering of temporal graphs. In Proceedings of the
ACM Web Conference 2023, WWW 2023, Austin, TX, USA, 30 April 2023 - 4 May 2023, pp.
3755–3765. ACM, 2023.

[28] Claudio Gentile, Zhilei Wang, and Tong Zhang. Achieving minimax rates in pool-based batch
active learning. In International Conference on Machine Learning, pp. 7339–7367. PMLR,
2022.

[29] Steve Hanneke. A bound on the label complexity of agnostic active learning. In Proceedings of
the 24th international conference on Machine learning, pp. 353–360, 2007.

[30] Steve Hanneke. Adaptive rates of convergence in active learning. In COLT. Citeseer, 2009.

[31] Steve Hanneke et al. Theory of disagreement-based active learning. Foundations and Trends®
in Machine Learning, 7(2-3):131–309, 2014.

11

https://openreview.net/forum?id=riIaC2ivcYA

Published as a conference paper at ICLR 2024

[32] Apivich Hemachandra, Zhongxiang Dai, Jasraj Singh, See-Kiong Ng, and Bryan Kian Hsiang
Low. Training-free neural active learning with initialization-robustness guarantees. In Interna-
tional Conference on Machine Learning, pp. 12931–12971. PMLR, 2023.

[33] Wei-Ning Hsu and Hsuan-Tien Lin. Active learning by learning. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 29, 2015.

[34] Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and
generalization in neural networks. In Advances in neural information processing systems, pp.
8571–8580, 2018.

[35] Yoon-Yeong Kim, Kyungwoo Song, JoonHo Jang, and Il-chul Moon. Lada: Look-ahead
data acquisition via augmentation for deep active learning. Advances in Neural Information
Processing Systems, 34, 2021.

[36] Vladimir Koltchinskii. Rademacher complexities and bounding the excess risk in active learning.
The Journal of Machine Learning Research, 11:2457–2485, 2010.

[37] Aryeh Kontorovich, Sivan Sabato, and Ruth Urner. Active nearest-neighbor learning in metric
spaces. Advances in Neural Information Processing Systems, 29, 2016.

[38] Lihong Li, Wei Chu, John Langford, and Robert E Schapire. A contextual-bandit approach to
personalized news article recommendation. In Proceedings of the 19th international conference
on World wide web, pp. 661–670, 2010.

[39] Lihui Liu, Boxin Du, Jiejun Xu, Yinglong Xia, and Hanghang Tong. Joint knowledge graph
completion and question answering. In Proceedings of the 28th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, pp. 1098–1108, 2022.

[40] Lihui Liu, Blaine Hill, Boxin Du, Fei Wang, and Hanghang Tong. Conversational question
answering with reformulations over knowledge graph. arXiv preprint arXiv:2312.17269, 2023.

[41] Zhuoming Liu, Hao Ding, Huaping Zhong, Weijia Li, Jifeng Dai, and Conghui He. Influence
selection for active learning. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 9274–9283, 2021.

[42] Andrea Locatelli, Alexandra Carpentier, and Samory Kpotufe. Adaptivity to noise parameters
in nonparametric active learning. In Proceedings of the 2017 Conference on Learning Theory,
PMLR, 2017.

[43] Enno Mammen and Alexandre B Tsybakov. Smooth discrimination analysis. The Annals of
Statistics, 27(6):1808–1829, 1999.

[44] Stanislav Minsker. Plug-in approach to active learning. Journal of Machine Learning Research,
13(1), 2012.

[45] Jooyoung Moon, Jihyo Kim, Younghak Shin, and Sangheum Hwang. Confidence-aware learning
for deep neural networks. In international conference on machine learning, pp. 7034–7044.
PMLR, 2020.

[46] Eliya Nachmani, Yair Be’ery, and David Burshtein. Learning to decode linear codes using
deep learning. In 2016 54th Annual Allerton Conference on Communication, Control, and
Computing (Allerton), pp. 341–346. IEEE, 2016.

[47] Aldo Pacchiano, My Phan, Yasin Abbasi Yadkori, Anup Rao, Julian Zimmert, Tor Lattimore,
and Csaba Szepesvari. Model selection in contextual stochastic bandit problems. Advances in
Neural Information Processing Systems, 33:10328–10337, 2020.

[48] Remus Pop and Patric Fulop. Deep ensemble bayesian active learning: Addressing the mode
collapse issue in monte carlo dropout via ensembles. arXiv preprint arXiv:1811.03897, 2018.

[49] Yunzhe Qi, Yikun Ban, and Jingrui He. Graph neural bandits. In Proceedings of the 29th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 1920–1931, 2023.

12

Published as a conference paper at ICLR 2024

[50] Yunzhe Qi, Yikun Ban, Tianxin Wei, Jiaru Zou, Huaxiu Yao, and Jingrui He. Meta-learning
with neural bandit scheduler. Advances in Neural Information Processing Systems, 36, 2024.

[51] Pengzhen Ren, Yun Xiao, Xiaojun Chang, Po-Yao Huang, Zhihui Li, Brij B Gupta, Xiaojiang
Chen, and Xin Wang. A survey of deep active learning. ACM computing surveys (CSUR), 54
(9):1–40, 2021.

[52] Ozan Sener and Silvio Savarese. Active learning for convolutional neural networks: A core-set
approach. arXiv preprint arXiv:1708.00489, 2017.

[53] Burr Settles. Active learning literature survey. 2009.

[54] Wei Tan, Lan Du, and Wray Buntine. Diversity enhanced active learning with strictly proper
scoring rules. Advances in Neural Information Processing Systems, 34, 2021.

[55] Dan Wang and Yi Shang. A new active labeling method for deep learning. In 2014 International
joint conference on neural networks (IJCNN), pp. 112–119. IEEE, 2014.

[56] Haonan Wang, Wei Huang, Andrew Margenot, Hanghang Tong, and Jingrui He. Deep active
learning by leveraging training dynamics. arXiv preprint arXiv:2110.08611, 2021.

[57] Haonan Wang, Wei Huang, Ziwei Wu, Hanghang Tong, Andrew J Margenot, and Jingrui
He. Deep active learning by leveraging training dynamics. Advances in Neural Information
Processing Systems, 35:25171–25184, 2022.

[58] Zhilei Wang, Pranjal Awasthi, Christoph Dann, Ayush Sekhari, and Claudio Gentile. Neural
active learning with performance guarantees. Advances in Neural Information Processing
Systems, 34, 2021.

[59] Tianxin Wei and Jingrui He. Comprehensive fair meta-learned recommender system. In
Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining,
pp. 1989–1999, 2022.

[60] Tianxin Wei, Bowen Jin, Ruirui Li, Hansi Zeng, Zhengyang Wang, Jianhui Sun, Qingyu Yin,
Hanqing Lu, Suhang Wang, Jingrui He, et al. Towards universal multi-modal personalization:
A language model empowered generative paradigm. In The Twelfth International Conference
on Learning Representations, 2023.

[61] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for
benchmarking machine learning algorithms. 2017.

[62] Donggeun Yoo and In So Kweon. Learning loss for active learning. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pp. 93–102, 2019.

[63] Chicheng Zhang. Efficient active learning of sparse halfspaces. In Conference on Learning
Theory, pp. 1856–1880. PMLR, 2018.

[64] Chicheng Zhang and Yinan Li. Improved algorithms for efficient active learning halfspaces
with massart and tsybakov noise. In Conference on Learning Theory, pp. 4526–4527. PMLR,
2021.

[65] Chicheng Zhang, Jie Shen, and Pranjal Awasthi. Efficient active learning of sparse halfspaces
with arbitrary bounded noise. Advances in Neural Information Processing Systems, 33:7184–
7197, 2020.

[66] Yuheng Zhang, Hanghang Tong, Yinglong Xia, Yan Zhu, Yuejie Chi, and Lei Ying. Batch active
learning with graph neural networks via multi-agent deep reinforcement learning. Proceedings
of the AAAI Conference on Artificial Intelligence, 36:9118–9126, 2022.

[67] Fedor Zhdanov. Diverse mini-batch active learning. arXiv preprint arXiv:1901.05954, 2019.

[68] Dongruo Zhou, Lihong Li, and Quanquan Gu. Neural contextual bandits with ucb-based
exploration. In International Conference on Machine Learning, pp. 11492–11502. PMLR,
2020.

13

Published as a conference paper at ICLR 2024

[69] Jingbo Zhu and Matthew Ma. Uncertainty-based active learning with instability estimation for
text classification. ACM Transactions on Speech and Language Processing (TSLP), 8(4):1–21,
2012.

[70] Yinglun Zhu and Robert D Nowak. Active learning with neural networks: Insights from
nonparametric statistics. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun
Cho (eds.), Advances in Neural Information Processing Systems, 2022. URL https://
openreview.net/forum?id=LRMmgkcoCnW.

14

https://openreview.net/forum?id=LRMmgkcoCnW
https://openreview.net/forum?id=LRMmgkcoCnW

Published as a conference paper at ICLR 2024

A EXPERIMENTS DETAILS

In this section, we provide more experiments and details for both stream-based and pool-based
settings.

Figure 1: Regret comparison on six datasets in the stream-based setting. NEURONAL-S outperforms
baselines on most datasets.

A.1 STREAM-BASED

Table 3: Test accuracy of all methods in stream-based setting

Adult MT Letter Covertype Shuttle Fashion
NeurAL-NTK 80.1 ± 0.06 76.9 ± 0.1 79.6 ± 0.23 62.1 ± 0.02 96.2 ± 0.21 64.3 ± 0.13

I-NeurAL 84.1 ± 0.29 79.9 ± 0.14 82.9 ± 0.04 65.2 ± 0.16 99.3 ±0.07 73.6 ± 0.29
ALPS 75.6 ± 0.19 35.9 ± 0.76 73.0 ± 0.41 36.2 ± 0.25 78.5 ± 0.21 74.3 ± 0.01

NEURONAL-S 84.7 ± 0.32 83.7 ± 0.16 86.8 ± 0.12 74.5 ± 0.15 99.7 ± 0.02 82.2 ±0.18

Baselines. Given an instance, NeurAL-NTK is a method that predicts K scores for K classes
sequentially, only based on the exploitation NN classifier with an Upper-Confidence-Bound (UCB).
On the contrary, I-NeurAL predicts K scores for K classes sequentially, based on both the exploitation
and exploration NN classifiers. NeurAL-NTK and I-NeurAL query for a label when the model cannot
differentiate the Bayes-optimal class from other classes. Finally, ALPS makes a prediction by
choosing a hypothesis (from a set of pre-trained hypotheses) that minimizes the loss of labeled and
pseudo-labeled data, and queries based on the difference between hypotheses.

Implementation Details. We perform hyperparameter tuning on the training set. Each method has a
couple of hyperparameters: the learning rate, number of epochs, batch size, label budget percentage,
and threshold (if applicable). During hyperparameter tuning for all methods, we perform a grid search
over the values {0.0001, 0.0005, 0.001} for the learning rate, {10, 20, 30, 40, 50, 60, 70, 80, 90} for
the number of epochs, {32, 64, 128, 256} for the batch size, {0.1, 0.3, 0.5, 0.7, 0.9} for the label
budget percentage and {1, 2, 3, 4, 5, 6, 7, 8, 9} for the threshold (exploration) parameter. Here are
the final hyperparameters in the form {learning rate, number of epochs, batch size, label budget
percentage, and the turning hyperparameter}: NeurAL-NTK and ALPS use {0.001, 40, 64, 0.3, 3},
and I-NeurAL uses {0.001, 40, 32, 0.3, 6}. For NEURONAL-S, we set µ = 1 for all experiments
and conduct the grid search for γ over {1, 2, 3, 4, 5, 6, 7, 8, 9}. In the end, NEURONAL-S uses
{0.0001, 40, 64, 0.3, 6} for all datasets. We set S = 1 as the norm parameter for NEURONAL-S all
the time.

Cumulative Regret. Figure 1 shows the regret comparison for each of the six datasets in 10,000
rounds of stream-based active learning. NEURONAL-S outperforms baselines on most datasets. This

15

Published as a conference paper at ICLR 2024

demonstrates that our designed NN model attains effectiveness in the active learning process, which
is consistent with the best performance achieved by NEURONAL-S in testing accuracy.

Ablation study for label budget. Tables 4 to 6 show the NEURONAL-S in active learning with
different budget percentages: 3%, 10%, 50 %. NEURONAL-S achieves the best performance in
most of the experiments. With 3% label budget, almost all NN models are not well trained. Thus,
NEURONAL does not perform stably. With 10% and 50% label budget, NEURONAL achieves
better performance, because the advantages of NN models can better exploit and explore this label
information.

Table 4: Test accuracy with 3% budget in stream-based setting

Adult Covertype Fashion MagicTelescope Letter Shuttle
I-NeurAL 79.4% 52.8% 51.9% 72.3% 74.6% 93.0%

NeurAL-NTK 23.9% 1.56% 11.9% 32.9% 42.8% 70.6%
ALPS 24.2% 36.8% 10.0% 64.9% 72.7% 79.4%

NEURONAL-S 79.9% 65.6% 69.7% 77.3% 74.2% 99.8%

Table 5: Test accuracy with 10% budget in stream-based setting

Adult Covertype Fashion MagicTelescope Letter Shuttle
I-NeurAL 80.5% 55.4% 71.4% 77.9% 81.8% 99.2%

NeurAL-NTK 70.5% 59.9% 38.7% 34.3% 53.8% 75.9%
ALPS 24.2% 36.8% 10.0% 35.1% 79.9% 79.4%

NEURONAL-S 79.5% 71.3% 81.3% 82.1% 81.8% 99.8%

Table 6: Test accuracy with 50% budget in stream-based setting

Adult Covertype Fashion MagicTelescope Letter Shuttle
I-NeurAL 83.4% 65.9% 82.5% 77.9% 85.8% 99.7%

NeurAL-NTK 76.9% 73.1% 56.8% 81.6% 79.3% 97.1%
ALPS 75.8% 36.8% 10.0% 64.9% 81.5% 79.4%

NEURONAL-S 84.6% 75.9% 85.4% 86.4% 86.9% 99.8%

A.2 POOL-BASED

Baselines. BADGE uses gradient embeddings to model uncertainty - if the gradient in the last
neural network layer is large, the uncertainty is also large. They pick random points to query using
the k-meanss++ algorithm and repeat this process. DynamicAL introduces the concept of training
dynamics into active learning. Given an instance, they assign it a pseudo-label and monitor how
much the model changes. They query for the label of the point with the biggest change in the training
dynamics. CoreSet has a simple but powerful approach. The algorithm chooses points to query based
on the loss over the labeled points and the loss over the unlabelled points, i.e., the core-set loss. ALBL
is a hybrid active learning algorithm that combines Coreset and Conf [55].

Implementation details. For all methods, we conduct the same grid search as the stream-based
setting for the learning rate and number of epochs. For NEURONAL-P, we perform a grid search over
µ, γ ∈ {500, 1000, 2000}.

Testing accuracy. Figure 2 shows the average test accuracy at each round. NEURONAL-P can
outperform baselines in a few query rounds. Our method utilizes a highly effective network structure,
including the principled exploration network and inverse-weight-based selection strategy. Unlike
CoreSet, which solely relies on the embeddings derived from the last layer of exploitation neural
networks to select samples based on maximum distance, our approach avoids susceptibility to outlier
samples. Similarly, BADGE also operates on the last layer of the exploitation network using the seed-
based clustering method, lacking adaptability to the state of the exploitation network. DynamicAL’s
approach relies on the training dynamics of the Neural Tangent Kernel that usually requires very wide
neural networks. ALBL is a blending approach, but it still suffers from the limitation of CoreSet.

16

Published as a conference paper at ICLR 2024

Figure 2: Test accuracy versus the number of query rounds in pool-based setting on six datasets.
NEURONAL-P outperforms baselines on all datasets.

Ablation study for µ and γ. Table 7 shows NEURONAL-P with varying µ and γ values (500, 1000,
2000) on four datasets. Intuitively, if γ and µ is too small, NEURONAL-P will place more weights
on the tail of the distribution of P . Otherwise, NEURONAL-P will focus more on the head of the
distribution of P . From the results in the table, it seems that different datasets respond to different
values of µ and γ. This sensitivity study roughly shows good values for µ, γ.

Table 7: Testing Accuracy on four datasets (Letter, Adult, Fashion, and MT) with varying µ and γ in
pool-based setting

Letter Adult
γ γ

500 1000 2000 500 1000 2000
500 80.9% 81.7% 80.5% 500 79.9% 79.4% 78.9%

µ 1000 77.9% 83.9% 78.9% µ 1000 79.1% 79.7% 79.0%
2000 81.7% 81.8% 80.1% 2000 79.4% 79.4% 79.7%

Fashion MT
γ γ

500 1000 2000 500 1000 2000
500 80.3% 80.5% 79.5% 500 79.5% 80.9% 80.6%

µ 1000 80.5% 80.6% 80.4% µ 1000 80.2% 80.9% 80.1%
2000 80.8% 80.9% 80.7% 2000 80.5% 80.6% 81.3%

B STREAM-BASED VS POOL-BASED

To answer the question "Can one directly convert the stream-based algorithm to the pool-based
setting?", we implemented the idea that one uniformly samples data from the pool to feed it to the
stream-based active learner. Denote the new algorithm by Neu-UniS, described as follows.

Neu-UniS: In a round of pool-based active learning, we uniformly draw a sample from the pool and
feed it to the stream-based learner. If the stream-based learner decides to query the label, it costs
one unit of the label budget; otherwise, we keep uniformly drawing a sample until the stream-based
learner decides to query the label. Once the label is queried, we train the neural model based on the
sample and label. We keep doing this process until we run out of the label budget. In this algorithm,
the stream-based learner is set as NEURONAL-S (Algorithm 1 in the manuscript).

17

Published as a conference paper at ICLR 2024

Under the same setting used in our pool-based experiments, the testing accuracy of Neu-UniS
compared to our pool-based algorithm NEURONAL-P is reported in Table 8.

Table 8: Test Accuracy of Neu-UniS and NEURONAL-P

Adult Covertype Fashion MT Letter Shuttle
Neu-UniS 78.0 59.4 78.6 71.3 79.4 97.9

NEURONAL-P 79.9 66.9 80.9 81.3 83.9 99.6

Why does NEURONAL-P outperform Neu-UniS? Because Neu-UniS does not rank data instances
and only randomly chooses the data instances that satisfy the query criterion. All the stream-based
algorithms have one criterion to determine whether to query the label for this data point, such as
Lines 8-9 in Algorithm 1. Suppose there are 200 data points. If the 100 data points among them
satisfy the criterion, then Neu-UniS will randomly choose one from the 100 data points, because we
uniformly draw a data point and feed it to stream-based learner in each round.

On the contrary, NEURONAL-P has a novel component (Lines 10-12 in Algorithm 2) to rank all the
data points, and then draw a sample from the newly formed distribution, to balance exploitation and
exploration. To the best of our knowledge, this is the first inverse-gap weighting strategy in active
learning. Thus, its analysis is also novel.

In summary, stream-based algorithms cannot directly convert into pool-based algorithms, because
they do not have the ranking component which is necessary in the pool-based setting. Existing works
[58; 22; 14] only focus on the stream-based setting and [52] [6] [57] only focus on pool-based setting.
We could hardly find existing works that incorporate both stream-based and pool-based settings.

C UPPER BOUND AND LOWER BOUND FOR LH

Definition C.1 (NTK [34; 58]). Let N denote the normal distribution. Given the data instances
{xt}Tt=1, for all i, j ∈ [T], define

H0
i,j = Σ0

i,j = ⟨xi,xj⟩, Al
i,j =

(
Σl

i,i Σl
i,j

Σl
j,i Σl

j,j

)
Σl

i,j = 2Ea,b∼N (0,Al−1
i,j)[σ(a)σ(b)], Hl

i,j = 2Hl−1
i,j Ea,b∼N (0,Al−1

i,j)[σ
′(a)σ′(b)] + Σl

i,j .

Then, the Neural Tangent Kernel matrix is defined as H = (HL +ΣL)/2.

Then, we define the following gram matrix G. Let g(x;θ0) = ▽θf(x;θ0) ∈ Rp and G =
[g(x1,1;θ0)/

√
m, . . . , g(xT,K ;θ0)/

√
m] ∈ Rp×TK where p = m+mKd+m2(L−2). Therefore,

we have G = G⊤G. Based on Theorem 3.1 in [4], when m ≥ Ω(T 4K6 log(2TK/δ)/ϵ4), with
probability at least 1− δ, we have

∥G−H∥F ≤ ϵ.

Then, we have the following bound:

log det(I+H) = log det (I+G+ (H−G))

(e1)

≤ log det(I+G) + ⟨(I+G)−1, (H−G)⟩
≤ log det(I+G) + ∥(I+G)−1∥F ∥H−G∥F
(e2)

≤ log det(I+G) +
√
T∥H−G∥F

(e3)

≤ log det(I+G) + 1

(C.1)

18

Published as a conference paper at ICLR 2024

where (e1) is because of the concavity of log det(·), (e2) is by Lemma B.1 in [68] with the choice of
m, and (e3) is by the proper choice of ϵ. Then, LH can be bounded by:

log det(I+H) ≤ log det(I+G) + 1

(e1)
= log det(I+GG⊤) + 1

= log det

(
I+

TK∑
i=1

g(xi;θ0)g(xi;θ0)
⊤/m

)
+ 1

(e2)

≤ p · log(1 +O(TK)/p) + 1

where (e1) is because of det(I+G⊤G) = det(I+GG⊤) and (e2) is an application of Lemma 10
in [1] and ∥g(xi;θ0)∥2 ≤ O(

√
mL) with L = 2. Because p = m+mKd+m2 × (L− 2), we have

LH = log det(I+H) ≤ Õ(mKd). (C.2)

For the lower bound of LH, we have

LH = log det(I+H) ≥ log
(
λmin (I+H)

TK
)
= TK log(1 + λ0). (C.3)

D PROOF OF THEOREM 5.2 AND THEOREM 5.3

First, define the general neural structure:

f(xt;θ) :=
√
mWLσ(WL−1 . . . σ(W1xt))) ∈ RK , (D.1)

where θ = [vec(W1)
⊤, . . . , vec(WL)

⊤]⊤ ∈ Rp. Following [3; 15], given an instance x, we define
the outputs of hidden layers of the neural network:

gt,0 = xt,gt,l = σ(Wlgt,l−1), l ∈ [L− 1].

Then, we define the binary diagonal matrix functioning as ReLU:

Dt,l = diag(1{(Wlgt,l−1)1}, . . . ,1{(Wlgt,l−1)m}), l ∈ [L− 1].

Accordingly, the neural network is represented by

f(xt;θ) =
√
mWL(

L−1∏
l=1

Dt,lWl)xt,

and we have the following gradient form:

∇Wl
f(xt;θ) =

{√
m · [gt,l−1WL(

∏L−1
τ=l+1 Dt,τWτ)]

⊤, l ∈ [L− 1]√
m · g⊤

t,L−1, l = L.

Let θ1 be the random initialization of parameters of neural networks. Then, we define the following
neural network function class: Given a constant R > 0, the function class is defined as

B(θ1, R) = {θ ∈ Rp : ∥θ − θ1∥2 ≤ R/m1/2}. (D.2)

Lemma D.1 ([3]). With probability at least 1 − O(TL) · exp[−Ω(mω2/3L)], given ω ≤
O(L−9/2[log(m)]−3/2), for all θ,θ′ ∈ B(θ1, R), i ∈ [T], l ∈ [L− 1]

∥gt,l∥ ≤ O(1)

∥Di,l −D′
i,l∥2 ≤ O(Lω2/3m).

Lemma D.2. With probability at least 1−O(TL2)·exp[−Ω(mω2/3L)], uniformly over any diagonal
matrices D′′

i,1, . . . ,D
′′
i,L−1 ∈ [−1, 1]m×m with at most O(mω2/3L) non-zero entries, for any θ,θ′ ∈

B(θ1;ω) with ω ≤ O(L−6[log(m)]−3/2), we have the following results:

19

Published as a conference paper at ICLR 2024

(1)∥
∏
τ∈l

(Di,τ +D′′
i,τ)Wτ∥2 ≤ O(

√
L) (D.3)

(2)∥WL

L−1∏
τ=l1

(Di,τ +D′′
i,τ)Wτ∥F ≤ O

(
1√
K

)
(D.4)

(3)

∥∥∥∥∥W′
L

L−1∏
τ=l1

(D′
i,τ +D′′

i,τ)W
′
τ −WL

L−1∏
τ=l1

Di,τWτ

∥∥∥∥∥
F

≤ O

(
ω1/3L2

√
log(m)√

K

)
. (D.5)

Proof. Based on Lemma D.1, with high probability at least 1−O(nL) ·exp(−Ω(Lω2/3m)), ∥D′
i,l+

D′′
i,l −D

(1)
i,l ∥0 ≤ O(Lω2/3m)∥0. Applying Lemma 8.6 in [3] proves D.3. Then, by lemma 8.7 in

[3] with s = O(mω2/3L) to W and W′, the results hold:

√
m

∥∥∥∥∥W(1)
L

L−1∏
τ=l1

(D′
i,τ +D′′

i,τ)W
′
τ −W

(1)
L

L−1∏
r=l1

D
(1)
i,τW

(1)
τ

∥∥∥∥∥
2

≤ O

(
ω1/3L2

√
m log(m)√
K

)
√
m

∥∥∥∥∥W(1)
L

L−1∏
τ=l1

Di,τWτ −W
(1)
L

∏
τ=l1

D
(1)
i,τW

(1)
τ

∥∥∥∥∥ ≤ O

(
ω1/3L2

√
m log(m)√
K

)
.

(D.6)
Moreover, using Lemma D.1 gain, we have∥∥∥∥∥(W′

L −W
(1)
L)

L−1∏
τ=l1

(D′
i,τ +D′′

i,τ)W
′
τ

∥∥∥∥∥
2

≤ O(
√
Lω) ≤ O

(
ω1/3L2

√
m log(m)√
K

)
∥∥∥∥∥(WL −W

(1)
L)

L−1∏
τ=l1

Di,τWτ

∥∥∥∥∥
2

≤ O(
√
Lω) ≤ O

(
ω1/3L2

√
m log(m)√
K

) (D.7)

Then, combining (D.6) and (D.7) leads the result. For, it has∥∥∥∥∥WL

L−1∏
τ=l1

(Di,τ +D′′
i,τ)Wτ

∥∥∥∥∥
2

≤

∥∥∥∥∥WL

L−1∏
τ=l1

(Di,τ +D′′
i,τ)Wτ −W

(1)
L

L−1∏
τ=l1

D(1)
i,τ W

(1)
τ

∥∥∥∥∥
2

+ ∥W(1)
L

L−1∏
τ=l1

D
(1)
i,τW

(1)
τ ∥2

(a)

≤ O

(
ω1/3L2

√
m log(m)√
K

)
+O(

1√
K

) = O(
1√
K

)

where (a) is applying the and Lemma 7.4 in [3]. The proof is completed.

Lemma D.3. Suppose the derivative of loss function L′ ≤ O(1). With probability at least 1 −
O(TKL2) · exp[−Ω(mω2/3L)], for all t ∈ [T], ∥θ − θ1∥ ≤ ω and ω ≤ O(L−6[log(m)]−3),
suppose ∥Lt(θ)

′∥2 ≤
√
K, it holds uniformly that

∥∇θf(xt;θ)∥2 ≤ O(
√
Lm) (D.8)

∥∇θf(xt;θ)[k]∥ ≤ O(
√
Lm) (D.9)

∥∇θLt(θ)∥2 ≤ O
(√

(K + L− 1)m
)

(D.10)

Proof. By Lemma D.1, the result holds:

∥∇WL
f(xt;θ)∥F = ∥

√
mgt,L−1∥2 ≤ O(

√
m).

20

Published as a conference paper at ICLR 2024

For l ∈ [L− 1], the results hold:

∥∇Wl
f(xt;θ)∥F =

√
m∥gt,l−1WL(

L−1∏
τ=l+1

Dt,τWτ)∥

=
√
m · ∥gt,l−1∥2 · ∥WL(

L−1∏
τ=l+1

Dt,τWτ)∥F

≤ O
(√

m√
K

)
Thus, applying the union bound, for l ∈ [L], t ∈ [T], k ∈ [K] it holds uniformly that

∥∇θf(xt;θ)∥2 ≤

√√√√ L∑
l−1

∥∇Wl
f(xi;θ)∥2F ≤ O

(√
K + L

K
m

)
= O(

√
Lm).

Let ek be the k-th basis vector. Then, we have

∥∇θf(xt;θ)[k]∥2 ≤

√√√√ L∑
l−1

∥ek∥22∥∇Wl
f(xi;θ)∥2F ≤ O(

√
Lm).

These prove (D.8) and (D.9). For WL, the result holds:

∥∇WL
Lt(θ)∥F = ∥Lt(θ)

′∥2 · ∥∇WL
f(xt;θ)∥F ≤ O(

√
Km).

For l ∈ [L− 1], the results hold:

∥∇Wl
Lt(θ)∥F = ∥Lt(θ)

′∥2 · ∥∇Wl
f(xt;θ)∥F ≤ O(

√
m).

Therefore, ∥∇θLt(θ)∥2 =
√∑L

l=1 ∥∇Wl
Lt(θ)∥2F ≤

√
(K + L− 1)m.

Lemma D.4. With probability at least 1 − O(TL2K) exp[−Ω(mω2/3L)] over random initial-
ization, for all t ∈ [T], and θ,θ′ satisfying ∥θ − θ1∥2 ≤ w and ∥θ′ − θ1∥2 ≤ w with
ω ≤ O(L−6[logm]−3/2), , it holds uniformly that

|f(xt;θ
′)[k]− f(xt;θ)[k]− ⟨∇θf(xt;θ)[k],θ

′ − θ⟩| ≤ O

(
ω1/3L3

√
m log(m)√
K

)
∥θ − θ′∥2.

Proof. Let F (xt;θ
′)[k] = f(xt;θ)[k] − ⟨∇θf(xt;θ)[k],θ

′ − θ⟩ and ek ∈ RK be the k-th basis
vector. Then, we have

f(xt;θ
′)[k]− F (xt;θ

′)[k] = −
√
m

L−1∑
l−1

e⊤k WL(

L−1∑
τ=l+1

Dt,τWτ)Dt,τ (W
′
l −Wl)gi,l=1

+
√
me⊤k W

′
L(g

′
t,L−1 − gt,L−1).

Using Claim 8.2 in [3], there exist diagonal matrices D′′
t,l ∈ Rm×m with entries in [−1, 1] such that

∥D′′
t,l∥0 ≤ O(mω2/3) and

gt,L−1 − g′
t,L−1 =

L−1∑
l=1

[
L−1∏

τ=l+1

(D′
t,τ +D′′

t,τ)W
′
τ

]
(D′

t,l +D′′
t,l)(Wl −W′

l)gt,l−1.

21

Published as a conference paper at ICLR 2024

Thus, we have

|f(xt;θ
′)[k]− F (xt;θ

′)[k]| =
√
m

L−1∑
l=1

e⊤k W
′
L

[
(D′

t,τ +D′′
t,τ)W

′
τ (D

′
t,l +D′′

t,l)(Wl −W′
l)gt,l−1

]
−
√
m

L−1∑
l−1

e⊤k WL(
L−1∑

τ=l+1

Dt,τWτ)Dt,l(W
′
l −Wl)gi,l−1

(a)

≤

(
ω1/3L2

√
m log(m)√
K

)
·
L−1∑
l=1

∥gt,l−1 ·W′
l −Wl∥2

(b)

≤

(
ω1/3L3

√
m log(m)√
K

)
∥θ − θ′∥2

where (a) is applying (D.5) and (b) is based on Lemma D.1. The proof is completed.

Define Lt(θ) = ∥f(xt;θ) − lt∥2 and Lt,k = |f(xt;θ)[k] − lt[k]|, where lt ∈ RK represents the
corresponding label to train.
Lemma D.5 (Almost Convexity). With probability at least 1−O(TL2K) exp[−Ω(mω2/3L)] over
random initialization, for any ϵ > 0 and all t ∈ [T], and θ,θ′ satisfying ∥θ − θ1∥2 ≤ ω and ∥θ′ −
θ1∥2 ≤ ω with ω ≤ O

(
ϵ3/4L−9/4(Km[logm])−3/8

)
∧O(L−6[logm]−3/2), it holds uniformly that

Lt(θ
′) ≥ Lt(θ) +

K∑
k=1

⟨∇θLt,k(θ),θ
′ − θ⟩ − ϵ.

Proof. Let Lt,k(θ) be the loss function with respect to f(xt;θ
′)[k]. By convexity of L, it holds

uniformly that
Lt(θ

′)− Lt(θ)

(a)

≥
K∑

k=1

L′
t,k(θ)

(
f(xt;θ

′)[k]− f(xt;θ)[k]
)

(b)

≥
K∑

k=1

L′
t,k(θ)⟨∇f(xt;θ)[k],θ

′ − θ⟩

−
K∑

k=1

∣∣L′
t,k(θ) · [f(xt;θ

′)[k]− f(xt;θ)[k]− ⟨∇f(xt;θ)[k],θ
′ − θ⟩]

∣∣
(c)

≥
K∑

k=1

⟨∇θLt,k(θ),θ
′ − θ⟩ −

K∑
k=1

|f(xt;θ
′)[k]− f(xt;θ)[k]− ⟨∇f(xt;θ)[k],θ

′ − θ⟩|

(d)

≥
K∑

k=1

⟨∇θLt,k(θ),θ
′ − θ⟩ −K · O

(
ω4/3L3

√
m logm)√
K

)
(e)

≥
K∑

k=1

⟨∇θLt,k(θ),θ
′ − θ⟩ − ϵ

where (a) is due to the convexity of Lt, (b) is an application of triangle inequality, (c) is because of
the Cauchy–Schwarz inequality, (d) is the application of Lemma D.4, and (e) is by the choice of ω.
The proof is completed.

Lemma D.6 (Loss Bound). With probability at least 1−O(TL2K) exp[−Ω(mω2/3L)] over random
initialization and suppose R, η,m satisfy the condition in Theorem 5.2, the result holds that

T∑
t=1

Lt(θt) ≤
T∑

t=1

Lt(θ
∗) +O(

√
TKR). (D.11)

22

Published as a conference paper at ICLR 2024

where θ∗ = arg infθ∈B(θ1,R)

∑T
t=1 Lt(θ).

Proof. Let w = O
(
ϵ3/4L−6(Km)−3/8[logm]−3/2

)
such that the conditions of Lemma D.5 are

satisfied. Next, we aim to show ∥θt − θ1∥2 ≤ ω, for any t ∈ [T]. The proof follows a simple
induction. Obviously, θ1 is in B(θ1, R). Suppose that θ1,θ2, . . . , θT ∈ B(θ1, R). We have, for any
t ∈ [T],

∥θT − θ1∥2 ≤
T∑

t=1

∥θt+1 − θt∥2 ≤
T∑

t=1

η∥∇Lt(θt)∥2 ≤
T∑

t=1

ηO(
√
Lκm)

≤ T · O(
√
Lκm) · R

m
√
TK

≤ ω

when m > Ω̃(T 4L52KR8ϵ−6). This also leads to R√
m

≤ ω.

In round t, therefore, based on Lemma D.5, for any ∥θt − θ′∥2 ≤ ω, it holds uniformly

Lt(θt)− Lt(θ
′) ≤

K∑
k−1

⟨∇θLt,k(θt),θt − θ′⟩+ ϵ,

Then, it holds uniformly

Lt(θt)− Lt(θ
′
t)

(a)

≤ ⟨θt − θt+1,θt − θ′⟩
η

+ ϵ

(b)
=
∥θt − θ′∥22 + ∥θt − θt+1∥22 − ∥θt+1 − θ′∥22

2η
+ ϵ

≤∥θt − θ′∥22 − ∥θt+1 − θ′∥22
2η

+ 2η∥∇θLt(θt)∥22 + ϵ

(c)

≤ ∥θt − θ′∥22 − ∥θt+1 − θ′∥22
2η

+ η(K + L− 1)m+ ϵ

where (a) is because of the definition of gradient descent, (b) is due to the fact 2⟨A,B⟩ = ∥A∥2F +
∥B∥2F − ∥A−B∥2F , (c) is by ∥θt − θt+1∥22 = ∥η∇θLt(θt)∥22 ≤ O(η2(K + L− 1)m).

Then, for T rounds, we have

T∑
t=1

Lt(θt)−
T∑

t=1

Lt(θ
′
t)

(a)

≤ ∥θ1 − θ′∥22
2η

+
T∑

t=2

∥θt − θ′∥22(
1

2η
− 1

2η
) +

T∑
t=1

(L+K − 1)ηm+ Tϵ

≤∥θ1 − θ′∥22
2η

+
T∑

t=1

(L+K − 1)ηm+ Tϵ

≤ R2

2mη
+ T (K + L− 1)ηm+ Tϵ

(b)

≤O
(√

TKR
)

where (a) is by simply discarding the last term and (b) is setting by η = R
m

√
TK

, L ≤ K, and

ϵ =
√
KR√
T

. The proof is completed.

23

Published as a conference paper at ICLR 2024

Lemma D.7. Let G = [∇θ0
f(x1;θ0)[1],∇θ0

f(x1;θ0)[2], . . . ,∇θ0
f(xT ;θ0)[K]]/

√
m ∈ Rp×TK .

Let H be the NTK defined in. Then, for any 0 < δ ≤ 1, suppose m = Ω(T
4K4L6 log(TKL/δ)

λ4
0

), then
with probability at least 1− δ, we have

∥G⊤G−H∥F ≤ λ0/2;

G⊤G ⪰ H/2.

Proof. Using Theorem 3.1 in [4], for any ϵ > 0 and δ ∈ (0, 1), suppose m = Ω(L
6 log(L/δ)

ϵ4), for any
i, j ∈ [T], k, k′ ∈ [K], with probability at least 1− δ, the result holds;

|⟨∇θ0
f(xi;θ0)[k],∇θ0

f(xj ;θ0)[k
′]⟩/m−Hik,jk′ | ≤ ϵ.

Then, take the union bound over [T] and [K] and set ϵ = λ0

2TK , with probability at least 1− δ, the
result hold

∥G⊤G−H∥F =

√√√√ T∑
i=1

K∑
k=1

T∑
j=1

K∑
k′=1

|⟨∇θ0
f(xi;θ0)[k],∇θ0

f(xi;θ0)[k′]⟩/m−Hik,jk′ |2

≤ TKϵ =
λ0

2

where m = Ω(L
6T 4K4 log(T 2K2L/δ)

λ0
).

Lemma D.8. Define u = [ℓ(y1,1,y1), · · · , ℓ(yT,K ,yT)] ∈ RTK and S′ =
√
u⊤H−1u. With

probability at least 1− δ, the result holds:

inf
θ∈B(θ0;S′)

T∑
t=1

Lt(θ) ≤
√
TKS′

Proof. Suppose the singular value decomposition of G is PAQ⊤,P ∈ Rp×TK ,A ∈
RTK×TK ,Q ∈ RTK×TK , then, A ⪰ 0. Define θ̂

∗
= θ0 +PA−1Q⊤u/

√
m. Then, we have

√
mG⊤(θ∗ − θ0) = QAP⊤PA−1Q⊤u = u.

which leads to
T∑

t=1

K∑
k=1

|ℓ(yt,k,yt)− ⟨∇θ0
f(xt;θ0)[k], θ̂

∗
− θ0⟩| = 0.

Therefore, the result holds:

∥θ∗ − θ0∥22 = u⊤QA−2Q⊤u/m = u⊤(G⊤G)−1u/m ≤ u⊤H−1u/m (D.12)

Based on Lemma D.4, given ω = R
m1/2 and initialize f(xt;θ0) → 0, we have

T∑
t=1

Lt(θ) ≤
T∑

t=1

K∑
k=1

|yt[k]− ⟨∇θ0
f(xt;θ0)[k],θ

∗ − θ0)|+ TK · O
(
ω1/3L3

√
m log(m)

)
· ∥θ − θ0∥2

≤
T∑

t=1

K∑
k=1

|yt[k]− ⟨∇θ0
f(xt;θ0)[k],θ

∗ − θ0)|+ TK · O
(
ω4/3L3

√
m log(m)

)
≤

T∑
t=1

K∑
k=1

|yt[k]− ⟨∇θ0f(xt;θ0)[k],θ
∗ − θ0)|+ TK · O

(
(R/m1/2)4/3L3

√
m log(m)

)
(a

≤
T∑

t=1

K∑
k=1

|yt[k]− ⟨∇θ0
f(xt;θ0)[k],θ

∗ − θ0)|+
√
TKR

24

Published as a conference paper at ICLR 2024

where (a) is by the choice of m : m ≥ Ω̃(T 3K3R2). Therefore, by putting them together, we have

inf
θ∈B(θ0;R)

T∑
t=1

Lt(θ) ≤
√
TKS′.

where R = S′ =
√
u⊤H−1u.

D.1 MAIN LEMMAS

Lemma D.9. Suppose m, η1, η2 satisfy the conditions in Theorem 5.3. For any δ ∈ (0, 1), with
probability at least 1− δ over the initialization, it holds uniformly that

1

T

T∑
t=1

E
yt∼DX|xt

[∥∥∥f1(xt; θ̂
1

t)− (ut − f2(ϕ(xt); θ̂
2

t))
∥∥∥
2
∧ 1|Ht−1

]
≤ O

(√
K

T
· S

)
+ 2

√
2 log(3/δ)

T
,

where ut = [ℓ(yt,1,yt), . . . , ℓ(yt,K ,yt)]
⊤, Ht−1 = {xτ ,yτ}t−1

τ=1 is historical data.

Proof. This lemma is inspired by Lemma 5.1 in [13]. For any round t ∈ [T], define

Vt =E
ut

[
∥f2(ϕ(xt); θ̂

2

t)− (ut − f1(xt; θ̂
1

t))∥2 ∧ 1
]

− ∥f2(ϕ(xt); θ̂
2

t)− (ut − f1(xt; θ̂
1

t))∥2 ∧ 1

(D.13)

Then, we have

E[Vt|Ft−1] =E
ut

[
∥f2(ϕ(xt); θ̂

2

t)− (ut − f1(xt; θ̂
1

t))∥2 ∧ 1
]

− E
ut

[
∥f2(ϕ(xt); θ̂

2

t)− (ut − f1(xt; θ̂
1

t))∥2 ∧ 1|Ft−1

]
=0

(D.14)

where Ft−1 denotes the σ-algebra generated by the history H1
t−1. Therefore, {Vt}tt=1 are the

martingale difference sequence. Then, applying the Hoeffding-Azuma inequality and union bound,
we have

P

 1

T

T∑
t=1

Vt −
1

T

T∑
t=1

E[Vt|Ft−1]︸ ︷︷ ︸
I1

>

√
2 log(1/δ)

T

 ≤ δ (D.15)

As I1 is equal to 0, with probability at least 1− δ, we have

1

T

T∑
t=1

E
ut

[
∥f2(ϕ(xt); θ̂

2

t)− (ut − f1(xt; θ̂
1

t))∥2 ∧ 1
]

≤ 1

T

T∑
t=1

∥f2(ϕ(xt); θ̂
2

t)− (ut − f1(xt; θ̂
1

t))∥2︸ ︷︷ ︸
I2

+

√
2 log(1/δ)

T

(D.16)

For I2, applying the Lemma D.6 and Lemma D.8 to θ2, we have

I2 ≤ O(
√
TKS′). (D.17)

25

Published as a conference paper at ICLR 2024

Combining the above inequalities together and applying the union bound, with probability at least
1− δ, we have

1

T

T∑
t=1

E
ut

[
∥f2(ϕ(xt); θ̂

2

t)− (ut − f1(xt; θ̂
1

t))∥2 ∧ 1
]

≤O

(√
K

T
· S′

)
+

√
2 log(2/δ)

T
.

(D.18)

Apply the Hoeffding-Azuma inequality again on S′, due to E[S′] = S, the result holds:

1

T

T∑
t=1

E
ut

[
∥f2(ϕ(xt); θ̂

2

t)− (ut − f1(xt; θ̂
1

t))∥2 ∧ 1
]

≤O

(√
K

T
· S

)
+ 2

√
2 log(3/δ)

T
,

where the union bound is applied. The proof is completed.

Lemma D.10 is an variance of Lemma D.9
Lemma D.10. Suppose m, η1, η2 satisfy the conditions in Theorem 5.3. For any δ ∈ (0, 1), with
probability at least 1− δ over the random initialization, for all t ∈ [T], it holds uniformly that

E
(xt,yt)∼D

[∥∥f1(xt;θ
1
t)− (ut − f2(ϕ(xt);θ

2
t))
∥∥
2
∧ 1|H1

t−1

]
≤ O

(√
K

t
· S

)
+ 2

√
2 log(3T/δ)

t
,

(D.19)

where ut = (ℓ(yt,1,yt), . . . , ℓ(yt,K ,yt))
⊤, Ht−1 = {xτ ,yτ}t−1

τ=1 is historical data, and the expec-
tation is also taken over (θ1

t ,θ
2
t).

Proof. For any round τ ∈ [t], define

Vτ = E
(xτ ,yτ)∼D

[
∥f2(ϕ(xτ); θ̂

2

τ)− (uτ − f1(xτ ; θ̂
1

τ))∥2 ∧ 1
]

− ∥f2(ϕ(xτ); θ̂
2

τ)− (uτ − f1(xτ ; θ̂
1

τ))∥2 ∧ 1

(D.20)

Then, we have

E[Vτ |Fτ−1] = E
(xτ ,yτ)∼D

[
∥f2(ϕ(xτ); θ̂

2

τ)− (uτ − f1(xτ ; θ̂
1

τ))∥2 ∧ 1
]

− E
(xτ ,yτ)∼D

[
∥f2(ϕ(xτ); θ̂

2

τ)− (uτ − f1(xτ ; θ̂
1

τ))∥2 ∧ 1|Fτ−1

]
=0

(D.21)

where Fτ−1 denotes the σ-algebra generated by the history H1
τ−1. Therefore, {Vτ}tτ=1 are the

martingale difference sequence. Then, applying the Hoeffding-Azuma inequality and union bound,
we have

P

1t
t∑

τ=1

Vτ − 1

t

t∑
τ=1

E[Vτ |Fτ−1]︸ ︷︷ ︸
I1

>

√
2 log(1/δ)

t

 ≤ δ (D.22)

As I1 is equal to 0, with probability at least 1− δ, we have

1

t

t∑
τ=1

E
(xτ ,yτ)∼D

[
∥f2(ϕ(xτ); θ̂

2

τ)− (uτ − f1(xτ ; θ̂
1

τ))∥2 ∧ 1
]

≤1

t

t∑
τ=1

∥f2(ϕ(xτ); θ̂
2

τ)− (uτ − f1(xτ ; θ̂
1

τ))∥2 +
√

2 log(1/δ)

t

(D.23)

26

Published as a conference paper at ICLR 2024

Based on the the definition of θ1
t−1,θ

2
t−1 in Algorithm 1, we have

E
(xt,yt)∼D

E
(θ1,θ2)

[
∥f1(xt;θ

1
t)− (ut − f2(xt;θ

2
t))∥2 ∧ 1

]
=
1

t

t∑
τ=1

E
(xτ ,yτ)∼D

[
∥f1(xτ ; θ̂

1

τ)− (uτ − f2(xτ ; θ̂
2

τ))∥2 ∧ 1
]
.

(D.24)

Therefore, putting them together, we have

E
(xt,yt)∼D

E
(θ1,θ2)

[
∥f1(xt;θ

1
t−1)− (ut − f2(xt;θ

2
t))∥2 ∧ 1

]
≤1

t

t∑
τ=1

∥f2(xτ ; θ̂
2

τ)− (uτ − f1(xτ ; θ̂
1

τ))∥2︸ ︷︷ ︸
I2

+

√
2 log(1/δ)

t
. (D.25)

For I2, which is an application of Lemma D.6 and Lemma D.8, we have

I2 ≤ O(
√
tKS′) (D.26)

where (a) is because of the choice of m.

Combining above inequalities together, with probability at least 1− δ, we have

E
(xt,yt)∼D

[∣∣f1(xt;θ
1
t−1) + f2(ϕ(xt); θ

2
t−1)− ut

∣∣]
≤ O

(√
K

t
· S′

)
+

√
2 log(2T/δ)

t
.

(D.27)

where we apply union bound over δ to make the above events occur concurrently for all T rounds.
Apply the Hoeffding-Azuma inequality again on S′ completes the proof.

Lemma D.11. Suppose m, η1, η2 satisfy the conditions in Theorem 5.3. For any δ ∈ (0, 1), γ > 1,
with probability at least 1− δ over the random initialization, for all t ∈ [T], when It = 0, it holds
uniformly that

E
xt∼DX

[h(xt)[k̂]] = E
xt∼DX

[h(xt)[k
∗]],

Proof. As It = 0, we have

|f(xt;θt)[k̂]− f(xt;θt)[k
◦]| = f(xt;θt)[k̂]− f(xt;θt)[k

◦] ≥ 2γβt.

In round t, based on Lemma D.10, with probability at least 1− δ, the following event happens:

Ê0 =

{
τ ∈ [t], k ∈ [K], E

xτ∼DX

[
|f(xτ ;θτ)[k]− h(xτ)[k]|

]
≤ βτ

}
. (D.28)

When Ê0 happens with probability at least 1− δ, we have E
xt∼DX

[f(xt;θt)[k̂]]− βt ≤ E
xt∼DX

[h(xt)[k̂]] ≤ E
xt∼DX

[f(xt;θt)[k̂]] + βt

E
xt∼DX

[f(xt;θt)[k
◦]]− βt ≤ E

xt∼DX
[h(xt)[k

◦]] ≤ E
xt∼DX

[f(xt;θt)[k
◦]] + βt

(D.29)

Then, with probability at least 1− δ,we have

E
xt∼DX

[h(xt)[k̂]− h(xt)[k
◦]] ≥ E

xt∼DX
[f(xt;θt)[k̂]− f(xt;θt)[k

◦]]− 2βt

≥ 2γβt − 2βt

> 0

(D.30)

where the last inequality is because of γ > 1. Then, similarly, for any k′ ∈ ([K] \ {k̂, k◦}),
we have E

xt∼DX
[h(xt)[k̂] − h(xt)] ≥ 0. Thus, based on the definition of h(xt)[k

∗], we have

E
xt∼DX

[h(xt)[k̂]] = E
xt∼DX

[h(xt)[k
∗]]. The proof is completed.

27

Published as a conference paper at ICLR 2024

Lemma D.12. When t ≥ T̄ = Õ(γ
2(KS2)

ϵ2), it holds that 2(γ + 1)βt ≤ ϵ.

Proof. To achieve 2(γ + 1)βt ≤ ϵ, there exist constants C1, C2, such that

t ≥
4(γ + 1)2 ·

[
KS2 + log(3T/δ)

]
ϵ2

⇒
√

KS2

t
+

√
2 log(3T/δ)

t
) ≤ ϵ

2(γ + 1)

The proof is completed.

Lemma D.13. Suppose m, η1, η2 satisfy the conditions in Theorem 5.3. Under Assumption 5.1, for
any δ ∈ (0, 1), γ > 1, with probability at least 1− δ over the random initialization, when t ≥ T̄ , it
holds uniformly:

E
xt∼DX

[It] = 0,

E
xt∼DX

[h(xt)[k
∗]] = E

xt∼DX
[h(xt)[k̂]].

Proof. Define the events

E1 =

{
t ≥ T̄ , E

xt∼DX
[h(xt)[k

∗]− h(xt)[k̂]] = 0

}
,

E2 =

{
t ≥ T̄ , E

xt∼DX
[f(xt;θt)[k

∗]− f(xt;θt)[k̂]] = 0

}
,

Ê1 =

{
t ≥ T̄ , E

xt∼DX
[f(xt;θt)[k

∗]− f(xt;θt)[k
◦]] < 2γβt

}
.

(D.31)

The proof is to prove that Ê1 will not happen. When Ê0 Eq. (D.28) happens with probability at least
1− δ, we have E

xt∼DX
[f(xt;θt)[k

∗]]− βt ≤ E
xt∼DX

[h(xt)[k
∗]] ≤ E

xt∼DX
[f(xt;θt)[k

∗]] + βt

E
xt∼DX

[f(xt;θt)[k
◦]]− βt ≤ E

xt∼DX
[h(xt)[k

◦]] ≤ E
xt∼DX

[f(xt;θt)[k
◦]] + βt

(D.32)

Therefore, we have

E
xt∼DX

[h(xt)[k
∗]− h(xt)[k

◦]] ≤ E
xt∼DX

[f(xt;θt)[k
∗]] + βt −

(
E

xt∼DX
[f(xt;θt)[k

◦]]− βt

)
≤ E

xt∼DX
[f(xt;θt)[k

∗]− f(xt;θt)[k
◦]] + 2βt.

Suppose Ê1 happens, we have

E
xt∼DX

[h(xt)[k
∗]− h(xt)[k

◦]] ≤ 2(γ + 1)βt.

Then, based on Lemma D.12, when t > T̄ , 2(γ + 1)βt ≤ ϵ. Therefore, we have

E
xt∼DX

[h(xt)[k
∗]− h(xt)[k

◦]] ≤ 2(γ + 1)βt ≤ ϵ.

This contradicts Assumption 5.1, i.e., h(xt)[k
∗]− h(xt)[k

◦] ≥ ϵ. Hence, Ê1 will not happen.

Accordingly, with probability at least 1− δ, the following event will happen

Ê2 =

{
t ≥ T̄ , E

xt∼DX
[f(xt;θt)[k

∗]− f(xt;θt)[k
◦]] ≥ 2γβt

}
. (D.33)

Therefore, we have E[f(xt;θt)[k
∗]] > E[f(xt;θt)[k

◦]].

28

Published as a conference paper at ICLR 2024

Recall that k∗ = argmaxk∈[K] h(xt)[k] and k̂ = argmaxk∈[K] f(xt;θt)[k]. As

∀k ∈ ([K] \ {k̂}), f(xt;θt)[k] ≤ f(xt;θt)[k
◦]

⇒ ∀k ∈ ([K] \ {k̂}), E
xt∼DX

[f(xt;θt)[k]] ≤ E
xt∼DX

[f(xt;θt)[k
◦]],

we have
∀k ∈ ([K] \ {k̂}), E

xt∼DX
[f(xt;θt)[k

∗]] > E
xt∼DX

[f(xt;θt)[k]].

Based on the definition of k̂, we have

E
xt∼DX

[f(xt;θt)[k
∗]] = E

xt∼DX
[f(xt;θt)[k̂]] = E

xt∼DX
[max
i∈[k]

f(xt;θt)[k]]. (D.34)

This indicates E2 happens with probability at least 1− δ.

Therefore, based on Ê2 and (D.34), the following inferred event Ê3 happens with probability at least
1− δ:

Ê3 =

{
t ≥ T̄ , E

xt∼DX
[f(xt;θt)[k̂]− f(xt;θt)[k

◦]] ≥ 2γβt

}
.

Then, based on Eq. D.32, we have

E[h(xt)[k̂]− h(xt)[k
◦]] ≥ E[f(xt;θt)[k̂]]− βt − (E[f(xt;θt)[k

◦]] + βt)

= E[f(xt;θt)[k̂]− f(xt;θt)[k
◦]]− 2βt

E1

≥ 2(γ − 1)βt

> 0

(D.35)

where E1 is because Ê3 happened with probability at least 1− δ. Therefore, we have

E
xt∼DX

[h(xt)[k̂]]− E
xt∼DX

[h(xt)[k
◦]] > 0.

Similarly, we can prove that

⇒ ∀k ∈ ([K] \ {k̂}), E
xt∼DX

[h(xt)[k̂]]− E
xt∼DX

[h(xt)[k]] > 0.

Then, based on the definition of k∗, we have

E
xt∼DX

[h(xt)[k̂]] = E
xt∼DX

[h(xt)[k
∗]] = E

xt∼DX
[max
k∈[K]

h(xt)[k]].

Thus, the event E1 happens with probability at least 1− δ.

D.2 LABEL COMPLEXITY

Lemma D.14 (Label Complexity Analysis). For any δ ∈ (0, 1), γ ≥ 1, suppose m satisfies the
conditions in Theorem 5.2. Then, with probability at least 1− δ, we have

NT ≤ T̄ . (D.36)

Proof. Recall that xt,̂i = maxxt,i,i∈[k] f(xt;θt)[k], and xt,i◦ = maxxt,i,i∈([k]/{xt,î}) f(xt;θt)[k].
With probability at least 1− δ, according to Eq. (D.28) the event

Ê0 =

{
τ ∈ [t], k ∈ [K], E

xτ∼DX
[|f(xτ ;θτ)[k]− h(xτ)[k]|] ≤ βτ

}
happens. Therefore, we have E

xt∼DX
[h(xt)[k̂]]− βt ≤ E

xt∼DX
[f(xt;θt)[k̂]] ≤ E

xt∼DX
[h(xt)[k̂]] + βt

E
xt∼DX

[h(xt)[k
◦]]− βt ≤ E

xt∼DX
[f(xt;θt)[k

◦]] ≤ E
xt∼DX

[h(xt)[k
◦]] + βt.

29

Published as a conference paper at ICLR 2024

Then, we have E
xt∼DX

[f(xt;θt)[k̂]− f(xt;θt)[k
◦]] ≤ E

xt∼DX
[h(xt)[k̂]]− E

xt∼DX
[h(xt)[k

◦]] + 2βt

E
xt∼DX

[f(xt;θt)[k̂]− f(xt;θt)[k
◦]] ≥ E

xt∼DX
[h(xt)[k̂]]− E

xt∼DX
[h(xt)[k

◦]]− 2βt.
(D.37)

Let ϵt = | E
xt∼DX

[h(xt)[k̂]] − E
xt∼DX

[h(xt)[k
◦]]|. Then, based on Lemma D.12 and Lemma D.13,

when t ≥ T̄ , we have
2(γ + 1)βt ≤ ϵ ≤ ϵt ≤ 1. (D.38)

For any t ∈ [T] and t < T̄ , we have E
xt∼DX

[It] ≤ 1.

For the round t > T̄ , based on Lemma D.13, it holds uniformly E
xt∼DX

[h(xt)[k̂]] −
E

xt∼DX
[h(xt)[k

◦]] = ϵt. Then, based on (D.37), we have

E
xt∼DX

[f(xt;θt)[k̂]− f(xt;θt)[k
◦]] ≥ ϵt − 2βt

E2

≥ 2γβt, (D.39)

where E2 is because of Eq. (D.38).

According to Lemma D.13, when t > T̄ , E
xt∼DX

[f(xt;θt)[k
∗]] = E

xt∼DX
[f(xt;θt)[k̂]]. Thus, it holds

uniformly
f(xt;θt)[k̂]− f(xt;θt)[k

◦] ≥ 2γβt, t > T̄ .

Then, for the round t > T̄ , we have E
xt∼DX

[It] = 0.

Then, assume T > T̄ , we have

NT =
T∑

t=1

E
xt∼DX

[
1{f(xt;θt)[k̂]− f(xt;θt)[k

◦] < 2γβt}
]

≤
T̄∑
t=1

1 +
T∑

t=T̄ +1

E
xt∼DX

[
1{f(xt;θt)[k̂]− f(xt;θt)[k

◦] < 2γβt}
]

= T̄ + 0.

(D.40)

Therefore, we have NT ≤ T̄ .

Theorem 5.2. [Stream-based]. Given T , for any δ ∈ (0, 1), λ0 > 0, suppose ∥xt∥2 = 1, t ∈ [T],
H ⪰ λ0I, m ≥ Ω̃(poly(T,K,L, S) · log(1/δ)), η1 = η2 = Θ(S

m
√
TK

). Then, with probability at

least 1− δ over the initialization of θ1
1,θ

2
1, Algorithm 1 achieves the following regret bound:

Rstream(T) ≤ O(
√
T) ·

(√
KS +

√
2 log(3T/δ)

)
, N(T) ≤ O(T).

Proof. Define Rt = E
xt∼DX

[
h(xt)[k̂]− h(xt)[k

∗]
]
.

Rstream(T) =
T∑

t=1

Rt(It = 1 ∨ It = 0)

≤
T∑

t=1

max{Rt(It = 1), Rt(It = 0)}

(a)

≤
T∑

t=1

E
(xt,yt)∼D

[∥f(xt;θt−1)− ut∥2]

≤
T∑

t=1

O

(√
K

t
· S

)
+O

(√
2 log(3T/δ)

t

)
≤O(

√
TKS) +O

(√
2T log(3T/δ)

)
,

30

Published as a conference paper at ICLR 2024

where (a) is based on Lemma D.11: Rt(It = 0) = 0 . The proof is completed.

Theorem 5.3. [Stream-based]. Given T , for any δ ∈ (0, 1), γ > 1, λ0 > 0, suppose ∥xt∥2 =

1, t ∈ [T], H ⪰ λ0I, m ≥ Ω̃(poly(T,K,L, S) · log(1/δ)), η1 = η2 = Θ(S
m

√
TK

), and Assumption

5.1 holds. Then, with probability at least 1− δ over the initialization of θ1
1,θ

2
1, Algorithm 1 achieves

the following regret bound and label complexity:

Rstream(T) ≤ O((KS2 + log(3T/δ))/ϵ), N(T) ≤ O((KS2 + log(3T/δ))/ϵ2). (5.2)

Proof. Given T̄ , we divide rounds into the follow two pars. Then, it holds that

Rstream(T) =
T∑

t=1

Rt(It = 1 ∨ It = 0)

=
T̄∑
t=1

Rt(It = 1) +
T∑

t=T̄ +1

Rt(It = 0)

=

T̄∑
t=1

E
xt∼DX

[h(xt)[k̂]− h(xt)[k
∗]︸ ︷︷ ︸

I1

+

T∑
t=T̄ +1

E
xt∼DX

[h(xt)[k̂]− h(xt)[k
∗]

︸ ︷︷ ︸
I2

(D.41)

For I1, it holds that

Rt(It = 1) = E
xt∼DX

[
h(xt)[k̂]− h(xt)[k

∗]
]

= E
xt∼DX

[
h(xt)[k̂]− f(xt;θt)[k̂] + f(xt;θt)[k̂]− h(xt)[k

∗]
]

(a)

≤ E
xt∼DX

[
h(xt)[k̂]− f(xt;θt)[k̂] + f(xt;θt)[k

∗]− h(xt)[k
∗]
]

≤ E
xt∼DX

[|h(xt)[k̂]− f(xt;θt)[k̂]|] + E
xt∼DX

[|f(xt;θt)[k
∗]− h(xt)[k

∗]|]

≤ 2 E
xt∼DX

[∥h(xt)− f(xt;θt)∥∞]

≤ 2 E
(xt,yt)∼D

[∥f(xt;θt−1)− ut∥2]

(b)

≤ O

(√
K

T
· S

)
+O

(√
2 log(3T/δ)

t

)
,

where (a) is duo the selection criterion of NEURONAL and (b) is an application of D.10. Then,

I1 ≤
T̄∑
t=1

O

(√
K

T
· S

)
+O

(√
2 log(3T/δ)

t

)
≤ (2

√
T̄ − 1)

[√
KS +

√
2 log(3T/δ)

]
For I2, we have Rt|(It = 0) = E

xt∼DX
[h(xt)[k̂]− h(xt)[k

∗]] = 0 based on Lemma D.13.

Therefore, it holds that:

Rstream(T) ≤ (2
√

T̄ − 1)
[√

KS +
√

2 log(3T/δ)
]
.

The proof is completed.

E ANALYSIS IN BINARY CLASSIFICATION

First, we provide the noise condition used in [58].

31

Published as a conference paper at ICLR 2024

Assumption E.1 (Mammen-Tsybakov low noise [43; 58]). There exist absolute constants c > 0 and
α ≥ 0, such that for all 0 < ϵ < 1/2,x ∈ X , k ∈ {0, 1},

P(|h(x)[k]− 1

2
| ≤ ϵ) ≤ cϵα

.

Then, we provide the following theorem.

Theorem 5.1. [Binary Classification] Given T , for any δ ∈ (0, 1), λ0 > 0, suppose K = 2,
∥xt∥2 = 1, t ∈ [T], H ⪰ λ0I, m ≥ Ω̃(poly(T, L, S) · log(1/δ)), η1 = η2 = Θ(S

m
√
2T

). Then, with

probability at least 1− δ over the initialization of θ1
1,θ

2
1, Algorithm 1 achieves the following regret

bound:

Rstream(T) ≤ Õ((S2)
α+1
α+2T

1
α+2),

N(T) ≤ Õ((S2)
α

α+2T
2

α+2).

In comparison, with assumption E.1, [58] achieves the following results:

Rstream(T) ≤ Õ
(
LH

2(α+1)
α+2 T

1
α+2

)
+ Õ

(
LH

α+1
α+2 (S2)

α+1
α+2T

1
α+2

)
,

N(T) ≤ Õ
(
LH

2α
α+2T

2
α+2

)
+ Õ

(
LH

α
α+2 (S2)

α
α+2T

2
α+2

)
.

For the regret Rstream(T), compared to [58], Theorem 5.1 removes the term Õ
(
LH

2(α+1)
α+2 T

1
α+2

)
and further improve the regret upper bound by a multiplicative factor LH

α+1
α+2 . For the label complexity

N(T), compared to [58], Theorem 5.1 removes the term Õ
(
LH

2α
α+2T

2
α+2

)
and further improve the

regret upper bound by a multiplicative factor LH
α

α+2 . It is noteworthy that LH grows linearly with
respect to T , i.e., LH ≥ T log(1 + λ0).

Proof. First, we define

∆t = h(xt)[k̂]− h(xt)[k
◦]

∆̂t = f(xt;θt)[k̂]− f(xt;θt)[k
◦] + 2βt

Tϵ =
T∑

t=1

Ext∼DX [1{∆2
t ≤ ϵ2}].

(E.1)

Lemma E.1. Suppose the conditions of Theorem 5.1 are satisfied. With probability at least 1− δ,
the following result holds:

NT ≤ O
(
Tϵ +

1

ϵ2
(S2 + log(3T/δ))

)
.

Proof. First, based on Lemma D.11, with probability at least 1− δ, we have 0 ≤ ∆̂t −∆t ≤ 4βt.
Because ∆̂t ≥ 0, then ∆̂t ≤ 4βt implies ∆t ≤ 4βt.

Then, we have

It = It1{∆̂t ≤ 4βt}
≤ It1{∆̂t ≤ 4βt, 4βt ≥ ϵ}+ It1{∆̂t ≤ 4βt, 4βt < ϵ}

≤ 16Itβ
2
t

ϵ2
∧ 1 + 1{∆2

t ≤ ϵ2}.

32

Published as a conference paper at ICLR 2024

Thus, we have

NT =
T∑

t=1

Ext∼DX [It1{∆̂t ≤ 4βt}]

≤ 1

ϵ2

T∑
t=1

(16Itβ
2
t ∧ ϵ2) + Tϵ

≤ 1

ϵ2

T∑
t=1

(16Itβ
2
t ∧

1

4
) + Tϵ

≤ 16

ϵ2
(2S2 + 2 log(3T/δ)) + Tϵ

= O(
1

ϵ2
(2S2 + 2 log(3T/δ))) + Tϵ.

The proof is completed.

Lemma E.2. Suppose the conditions of Theorem 5.1 are satisfied. With probability at least 1− δ,
the following result holds:

RT ≤ O
(
ϵTϵ +

1

ϵ
(S2 + log(3T/δ))

)

Proof.

RT =

T∑
t=1

E
xt∼DX

[
h(xt)[k̂]− h(xt)[k

∗]
]

≤
T∑

t=1

E
xt∼DX

[|∆t|]

=
T∑

t=1

E
xt∼DX

[|∆t|1{|∆t| > ϵ}] +
T∑

t=1

E
xt∼DX

[|∆t|1{|∆t| ≤ ϵ}]

where the second term is upper bounded by ϵTϵ. For the first term, we have

T∑
t=1

E
xt∼DX

[|∆t|1{|∆t| > ϵ}]

≤1

ϵ

T∑
t=1

E
xt∼DX

[|∆t|2] ∧ ϵ

(a)

≤ 1

ϵ

T∑
t=1

E
xt∼DX

[|∆t|21{∆t ≤ 2βt}] ∧ ϵ+
1

ϵ

T∑
t=1

E
xt∼DX

[|∆t|21{∆t > 2βt}] ∧ ϵ

≤1

ϵ

T∑
t=1

4β2
t ∧

1

2

≤O
(
1

ϵ
(2S2 + 2 log(3T/δ))

)
where the second term in (a) is zero based on the Lemma D.13. The proof is completed.

Then, because x1, ...,xT are generated i.i.d. with Assumption E.1. Then, applying Lemma 23 in
[58], with probability at least 1− δ, the result holds:

Tϵ ≤ 3Tϵα +O(log
log T

δ
).

33

Published as a conference paper at ICLR 2024

Using the above bound of Tϵ back into both Lemma E.1 and Lemma E.2, and then optimizing over ϵ
in the two bounds separately complete the proof:

RT ≤ O((S2 + log(3T/δ))
α+1
α+2T

1
α+2),

NT ≤ O((S2 + log(3T/δ))
α

α+2T
2

α+2).

F ANALYSIS FOR POOL-BASED SETTING

Define Lt(θt) = ∥f(xt;θt) − ut∥22/2, Lt,k(θt) = (f(xt;θt)[k] − ut[k])
2/2, and ut =

[ℓ(yt,1,yt), . . . , l(yt,K ,yt)].

Lemma F.1 (Almost Convexity). With probability at least 1−O(TL2K) exp[−Ω(mω2/3L)] over
random initialization, for all t ∈ [T], and θ,θ′ satisfying ∥θ − θ1∥2 ≤ ω and ∥θ′ − θ1∥2 ≤ ω with
ω ≤ O(L−6[logm]−3/2), it holds uniformly that

Lt(θ
′) ≥ Lt(θ)/2 +

K∑
k=1

⟨∇θLt,k(θ),θ
′ − θ⟩ − ϵ.

where ω ≤ O
(
(Km logm)−3/8L−9/4ϵ3/4

)
.

Proof. Let Lt,k(θ) be the loss function with respect to f(xt;θ
′)[k]. By convexity of Lt, it holds

uniformly that

∥f(xt;θ
′)− ut∥22/2− ∥f(xt;θ)− ut∥22/2

≥
K∑

k=1

L′
t,k(θ)

(
f(xt;θ

′)[k]− f(xt;θ)[k]
)

(b)

≥
K∑

k=1

L′
t,k(θ)⟨∇f(xt;θ)[k],θ

′ − θ⟩

−
K∑

k=1

∣∣L′
t,k(θ) · [f(xt;θ

′)[k]− f(xt;θ)[k]− ⟨∇f(xt;θ)[k],θ
′ − θ⟩]

∣∣
(c)

≥
K∑

k=1

⟨∇θLt,k(θ),θ
′ − θ⟩

−
K∑

k=1

(
|f(xt;θ)[k]− ut[k]| · |f(xt;θ

′)[k]− f(xt;θ)[k]− ⟨∇f(xt;θ)[k],θ
′ − θ⟩|

)
(d)

≥
K∑

k=1

⟨∇θLt,k(θ),θ
′ − θ⟩ − O

(
ω4/3L3

√
m logm)√
K

)
·

K∑
k=1

|f(xt;θ)[k]− ut[k]|

(e)

≥
K∑

k=1

⟨∇θLt,k(θ),θ
′ − θ⟩ − O

(
ω4/3L3

√
m logm)√
K

)
·

K∑
k=1

(
|f(xt;θ)[k]− ut[k]|2 +

1

4

)

where (a) is due to the convexity of Lt, (b) is an application of triangle inequality, (c) is because of
the Cauchy–Schwarz inequality, and (d) is the application of Lemma D.4 and Lemma D.3, (e) is by

34

Published as a conference paper at ICLR 2024

the fact x ≤ x2 + 1
4 . Therefore, the results hold

∥f(xt;θ
′)− ut∥22/2− ∥f(xt;θ)− ut∥22/2

≤
K∑

k=1

⟨∇θLt,k(θ),θ
′ − θ⟩ − O

(
ω4/3L3

√
m logm)√
K

)
· ∥f(xt;θ)− ut∥22

−
(
ω4/3L3

√
m logm)√
K

)
· K
4

(a)

≤
K∑

k=1

⟨∇θLt,k(θ),θ
′ − θ⟩ − 1

4
· ∥f(xt;θ)− ut∥22

−
(
ω4/3L3

√
m logm)√
K

)
· K
4

where (a) holds when ω ≤ O
(
4−3/4K3/8(m logm)−3/8L−9/4

)
.

In the end, when ω ≤ O
(
4−3/4(Km logm)−3/8L−9/4ϵ3/4

)
, the result hold:

∥f(xt;θ
′)− ut∥22/2− ∥f(xt;θ)− ut∥22/4

≤
K∑

k=1

⟨∇θLt,k(θ),θ
′ − θ⟩ − ϵ.

The proof is completed.

Lemma F.2. With the probability at least 1−O(TL2K) exp[−Ω(mω2/3L)] over random initializa-
tion, for all t ∈ [T], ∥θ′ − θ1∥ ≤ ω, andω ≤ O(L−9/2[logm]−3), the results hold:

f(xt;θ
′) ≤ logm

Proof. Using Lemma 7.1 in [3], we have gt,L−1 ≤ O(1), Then, Based on the randomness of WL,
the result hold: f(xt;θ

′) ≤ logm (analogical analysis as Lemma 7.1). Using Lemma 8.2 in [3], we
have g′

t,L−1 ≤ O(1), and thus f(xt;θ
′) ≤ logm

Lemma F.3 (Loss Bound). With probability at least 1−O(TL2K) exp[−Ω(mω2/3L)] over random
initialization, it holds that

T∑
t=1

∥f(xt;θt)− ut∥22/2 ≤ inf
θ′∈B(θ0;)

T∑
t=1

∥f(xt;θ
′)− ut∥22 + 4LKR2 (F.1)

where θ∗ = arg infθ∈B(θ1,R)

∑T
t=1 Lt(θ).

Proof. Let ω ≤ O
(
(Km logm)−3/8L−9/4ϵ3/4

)
, such that the conditions of Lemma D.5 are satis-

fied.

The proof follows a simple induction. Obviously, θ1 is in B(θ1, R). Suppose that θ1,θ2, . . . , θT ∈
B(θ1, R). We have, for any t ∈ [T],

∥θT − θ1∥2 ≤
T∑

t=1

∥θt+1 − θt∥2 ≤
T∑

t=1

η∥∇Lt(θt)∥2

≤ η ·
T∑

t=1

∥f(xt;θt)− ut∥2 · ∥∇θt
f(xt;θt)∥2

≤ η ·
√
Lm

T∑
t=1

∥f(xt;θt)− ut∥2

(a)

≤ η ·
√
LmT · logm

(b)

≤ ω

35

Published as a conference paper at ICLR 2024

where (a) is applying Lemma F.2 and (b) holds when m ≥ Ω̃(T 8K−1L14ϵ−6).

Moreover, when m > Ω̃(R8T 8K3L18ϵ−6), it leads to R√
m

≤ ω. In round t, based on Lemma D.5,
for any ∥θt − θ′∥2/2 ≤ ω, it holds uniformly

∥f(xt;θt)− ut∥22/4− ∥f(xt;θ
′)− ut∥22/2 ≤

K∑
k=1

⟨∇θLt,k(θt),θt − θ′⟩+ ϵ.

Then, it holds uniformly

∥f(xt;θt)− ut∥22/4− ∥f(xt;θ
′)− ut∥22/2

(a)

≤ ⟨θt − θt+1,θt − θ′⟩
η

+ ϵ

(b)
=
∥θt − θ′∥22 + ∥θt − θt+1∥22 − ∥θt+1 − θ′∥22

2η
+ ϵ

(c)

≤ ∥θt − θ′∥22 − ∥θt+1 − θ′∥22
2η

+ η∥
K∑

k=1

∇θt
Lt,k(θt)∥2F + ϵ

≤∥θt − θ′∥22 − ∥θt+1 − θ′∥22
2η

+ η∥
K∑

k=1

(f(xt;θt)[k]− ut[k]) · ∇θtf(xt;θt)[k]∥22 + ϵ

≤∥θt − θ′∥22 − ∥θt+1 − θ′∥22
2η

+ ηmL
K∑

k=1

|(f(xt;θt)[k]− ut[k])|2 + ϵ

≤∥θt − θ′∥22 − ∥θt+1 − θ′∥22
2η

+ ηmLK∥f(xt;θt)− ut∥22 + ϵ

where (a) is because of the definition of gradient descent, (b) is due to the fact 2⟨A,B⟩ = ∥A∥2F +
∥B∥2F − ∥A−B∥2F , (c) is by ∥θt − θt+1∥22 = ∥η∇θLt(θt)∥22 ≤ O(η2KLm).

Then, for T rounds, we have

T∑
t=1

∥f(xt;θt)− ut∥22/4−
T∑

t=1

∥f(xt;θ
′)− ut∥22/2

(a)

≤ ∥θ1 − θ′∥22
2η

+
T∑

t=2

∥θt − θ′∥22(
1

2η
− 1

2η
) +

T∑
t=1

ηmLK∥f(xt;θt)− ut∥22 + Tϵ

≤∥θ1 − θ′∥22
2η

+
T∑

t=1

ηmLK∥f(xt;θt)− ut∥22 + Tϵ

≤ R2

2mη
+ ηmLK

T∑
t=1

∥f(xt;θt)− ut∥22 + Tϵ

≤5R2LK +
T∑

t=1

∥f(xt;θt)− ut∥22/8

where (a) is by simply discarding the last term and (b) is setting by η = 1
mLK and ϵ = KR2L

T . Based
on the above inequality, taking the infimum over θ′ ∈ B(θ∞,R), the results hold :

T∑
t=1

∥f(xt;θt)− ut∥22/8 ≤ inf
θ′∈B(θ∞,R)

T∑
t=1

∥f(xt;θ
′)− ut∥22/2 + 5LKR2.

The proof is completed.

36

Published as a conference paper at ICLR 2024

Lemma F.4. Let R = S′ =
√
u⊤h−1u. With probability at least 1−O(TL2K) exp[−Ω(mω2/3L)]

, the result holds that

inf
θ∈B(θ0;R)

T∑
t=1

Lt(θ) ≤ O(LK)

Proof. Let G = [∇θ0
f(x1;θ0)[1],∇θ0

f(x1;θ0)[2], . . . ,∇θ0
f(xT ;θ0)[K]]/

√
m ∈ Rp×TK . Sup-

pose the singular value decomposition of G is PAQ⊤,P ∈ Rp×TK ,A ∈ RTK×TK ,Q ∈ RTK×TK ,
then, A ⪰ 0.

Define θ∗ = θ0 +PA−1Q⊤u/
√
m. Then, we have

√
mG⊤(θ∗ − θ0) = QAP⊤PA−1Q⊤u = u.

This leads to

T∑
t=1

K∑
k=1

|ut[k]− ⟨∇θ0f(xt;θ0)[k],θ
∗ − θ0⟩| = 0.

Therefore, the result holds:

∥θ∗ − θ0∥22 = u⊤QA−2Q⊤u/m = u⊤(G⊤G)−1u/m ≤ 2u⊤H−1u/m (F.2)

Based on Lemma D.4 and initialize (xt;θ0) = 0, t ∈ [T], we have

T∑
t=1

Lt(θ
∗) ≤

T∑
t=1

K∑
k=1

(
ut[k]− ⟨∇θ0

f(xt;θ0)[k],θ
∗ − θ0⟩ − O(ω4/3L3

√
m log(m))

)2
≤

T∑
t=1

K∑
k=1

(ut[k]− ⟨∇θ0
f(xt;θ0)[k],θ

∗ − θ0⟩)2 + TK · O(ω8/3L6m log(m))

≤
T∑

t=1

K∑
k=1

(ut[k]− ⟨∇θ0f(xt;θ0)[k],θ
∗ − θ0⟩)2 + TK · O((S′/m1/2)8/3L6m log(m))

≤
T∑

t=1

K∑
k=1

(ut[k]− ⟨∇θ0
f(xt;θ0)[k],θ

∗ − θ0⟩)2 +O(LK)

≤ O(LK)

Because θ∗ ∈ B(θ0, S
′), the proof is completed.

Lemma F.5. Suppose m, η1, η2 satisfy the conditions in Theorem 5.4. With probability at least 1− δ,
for all t ∈ [Q], it holds uniformly that

1

t

t∑
τ=1

[
∥f2(ϕ(xτ);θ

2
τ)− (h(xτ)− f1(xτ ;θ

1
τ))∥2 ∧ 1

]
≤
√

O(LKS2)

t
+ 2

√
2 log(1/δ)

t
(F.3)

ut = (ℓ(yt,1,yt), . . . , ℓ(yt,K ,yt))
⊤, Ht−1 = {xτ ,yτ}t−1

τ=1 is historical data, and the expectation
is also taken over (θ1

t ,θ
2
t).

37

Published as a conference paper at ICLR 2024

Proof. Then, applying the Hoeffding-Azuma inequality as same as in Lemma D.6, we have

1

t

t∑
τ=1

[
∥f2(ϕ(xτ); θ

2
τ)− (h(xτ)− f1(xτ ;θ

1
τ))∥2 ∧ 1

]
≤1

t

t∑
τ=1

∥f2(ϕ(xτ);θ
2
τ)− (uτ − f1(xτ ;θ

1
τ))∥2 +

√
2 log(1/δ)

t

≤1

t

√√√√t
t∑

τ=1

∥f2(ϕ(xτ);θ
2
τ)− (uτ − f1(xτ ;θ

1
τ))∥22 +

√
2 log(1/δ)

t

(a)

≤
√

O(LKS′2)

t
+

√
2 log(1/δ)

t
(b)

≤
√

O(LKS2)

t
+ 2

√
2 log(1/δ)

t

(F.4)

where (a) is an application of Lemma F.3 and Lemma F.4 and (b) is applying the Hoeffding-Azuma
inequality again on S′. The proof is complete.

Lemma F.6. Suppose m, η1, η2 satisfy the conditions in Theorem 5.4. With probability at least 1− δ,
the result holds:

Q∑
t=1

∑
xi∈Pt

pi(h(xi)[k̂]− h(xi)[k
∗]) ≤γ

4

Q∑
t=1

∑
xi∈Pt

pi(f(xi;θt)[k
∗]− h(xi)[k

∗])2 +
Q

γ

+
√

QKS2 +O(log(1/δ))

Proof. For some η > 0, we have

Q∑
t=1

∑
xi∈Pt

pi(h(xi)[k̂]− h(xi)[k
∗])− η

Q∑
t=1

∑
xi∈Pt

pi(f(xi;θt)[k
∗]− h(xi)[k

∗])2

=

Q∑
t=1

∑
xi∈Pt

pi[(h(xi)[k̂]− h(xi)[k
∗])− η(f(xi;θt)[k

∗]− h(xi)[k
∗])2]

=

Q∑
t=1

∑
xi∈Pt

pi[(h(xi)[k̂]− f(xi;θt)[k̂]) + (f(xi;θt)[k̂]− h(xi)[k
∗])− η(f(xi;θt)[k

∗]− h(xi)[k
∗])2]

≤
Q∑
t=1

∑
xi∈Pt

pi[(h(xi)[k̂]− f(xi;θt)[k̂]) + (f(xi;θt)[k
∗]− h(xi)[k

∗])− η(f(xi;θt)[k
∗]− h(xi)[k

∗])2]

(a)

≤
Q∑
t=1

∑
xi∈Pt

pi(h(xi)[k̂]− f(xi;θt)[k̂]) +
Q

4η

(b)

≤
Q∑
t=1

∥ut − f(xt;θt)∥2 +O(log(1/δ)) +
Q

4η

(c)

≤
√

QKS2 +O(log(1/δ)) +
Q

4η

where (a) is an application of AM-GM: x − ηx2 ≤ 1
η and (b) is application of Lemma F.7. (c) is

based on Lemma F.5. Then, replacing η by γ
4 completes the proof.

Lemma F.7. (Lemma 2, [25]) With probability 1− δ, the result holds:
Q∑
t=1

∑
xi∈Pt

pi∥f(xi;θt)− h(xi)∥22 ≤ 2

Q∑
t=1

∥f(xt;θt)− ut∥22 +O(log(1/δ)).

38

Published as a conference paper at ICLR 2024

Finally, we show the proof of Theorem 5.4.

Proof. Assume the event in F.7 holds. We have

Rpool(Q) =

Q∑
t=1

[
E

(xt,yt)∼D
[ℓ(yt,k̂,yt)]− E

(xt,yt)∼D
[ℓ(yt,k∗ ,yt)]

]
=

Q∑
t=1

[
E

xt∼DX
[h(xt)[k̂]]− E

xt∼DX
[h(xt)[k

∗]]
]

(a)

≤
Q∑
t=1

E[h(xt)[k̂]− h(xt)[k
∗]] +

√
2Q log(2/δ)

≤
Q∑
t=1

∑
xi∈Pt

pi(h(xi)[k̂]− h(xi)[k
∗]) +

√
2Q log(2/δ)

where (a) is an application of Azuma-Hoeffding inequality.

Next, applying Lemma F.6 and Letting ξ =
√
QKS2 +O(log(1/δ)), we have

Rpool(Q)
(a)

≤ γ

4

Q∑
t=1

∑
xi∈Pt

pi(f(xi;θt)[k
∗]− h(xi)[k

∗])2 +
Q

γ
+
√
2Q log(2/δ) + ξ

≤ γ

4

Q∑
t=1

∑
xi∈Pt

pi∥f(xi;θt)− h(xi)∥22 +
Q

γ
+
√
2Q log(2/δ) + ξ

(b)

≤ γ

2

Q∑
t=1

∥f(xi;θt)− ut)∥2 + γ log(δ−1)/4 +
Q

γ
+
√
2Q log(2/δ) + ξ

(c)

≤ γ

2
KS2 + γ log(2δ−1)/4 +

Q

γ
+
√
2Q log(2/δ) +

√
QKS2 +O(log(1/δ))

≤
√
O(QKS2) +

√
Q

KS2
· O(log(δ−1)) +O(

√
2Q log(3/δ))

where (a) follows from F.6, (b) follows from F.7, (c) is based on Lemma F.5, and we apply the union

bound to the last inequality and choose γ =
√

Q
KS2 . Therefore:

Rpool(Q) ≤ O(
√
QKS) +O

(√
Q

KS2

)
· log(δ−1) +O(

√
2Q log(3/δ))

The proof is complete.

39

	Introduction
	Related Work
	Problem Definition
	Proposed Algorithms
	Regret Analysis
	Experiments
	Conclusion
	Experiments Details
	Stream-Based
	Pool-based

	Stream-based VS Pool-based
	Upper Bound and Lower Bound for LH
	Proof of Theorem 5.2 and Theorem 5.3
	 Main Lemmas
	Label Complexity

	Analysis in Binary Classification
	Analysis for Pool-based Setting

