
Published as a conference paper at ICLR 2024

CONTEXTUAL BANDITS WITH ONLINE NEURAL
REGRESSION

Rohan Deb, Yikun Ban, Shiliang Zhou, Jingrui He, & Arindam Banerjee
University of Illinois, Urbana-Champaign
{rd22,yikunb2,szuo3,jingrui,arindamb}@cs.illinois.edu

ABSTRACT

Recent works have shown a reduction from contextual bandits to online regression
under a realizability assumption (Foster and Rakhlin, 2020; Foster and Krishna-
murthy, 2021). In this work, we investigate the use of neural networks for such
online regression and associated Neural Contextual Bandits (NeuCBs). Using
existing results for wide networks, one can readily show a O(

p
T) regret for online

regression with square loss, which via the reduction implies a O(
p
KT 3/4) regret

for NeuCBs. Departing from this standard approach, we first show a O(log T)
regret for online regression with almost convex losses that satisfy QG (Quadratic
Growth) condition, a generalization of the PL (Polyak-Łojasiewicz) condition, and
that have a unique minima. Although not directly applicable to wide networks since
they do not have unique minima, we show that adding a suitable small random
perturbation to the network predictions surprisingly makes the loss satisfy QG with
unique minima. Based on such a perturbed prediction, we show a O(log T) regret
for online regression with both squared loss and KL loss, and subsequently convert
these respectively to Õ(

p
KT) and Õ(

p
KL⇤ +K) regret for NeuCB, where L⇤

is the loss of the best policy. Separately, we also show that existing regret bounds
for NeuCBs are ⌦(T) or assume i.i.d. contexts, unlike this work. Finally, our
experimental results on various datasets demonstrate that our algorithms, especially
the one based on KL loss, persistently outperform existing algorithms.

1 INTRODUCTION

Contextual Bandits (CBs) provide a powerful framework for sequential decision making problems,
where a learner takes decisions over T rounds based on partial feedback from the environment. At each
round, the learner is presented with K context vectors to choose from, and a scalar output is generated
based on the chosen context. The objective is to minimize1 the accumulated output in T rounds. Many
existing works assume that the expected output at each round depends linearly on the chosen context.
This assumption has enabled tractable solutions, such as UCB-based approaches (Chu et al., 2011;
Abbasi-Yadkori et al., 2011) and Thompson Sampling (Agrawal and Goyal, 2013). However, in many
real-world applications, the output function may not be linear, rendering these methods inadequate.
Recent years have seen progress in the use of neural networks for contextual bandit problems (Zhou
et al., 2020; Zhang et al., 2021) by leveraging the representation power of overparameterized models,
especially wide networks (Allen-Zhu et al., 2019b; Cao and Gu, 2019b; Du et al., 2019; Arora et al.,
2019b). These advances focus on learning the output function in the Neural Tangent Kernel (NTK)
regime and drawing on results from the kernel bandit literature (Valko et al., 2013).

Separately, (Foster and Rakhlin, 2020) adapted the inverse gap weighting idea from Abe and Long
(1999); Abe et al. (2003) and gave an algorithm (SquareCB) that relates the regret of CBs, RegCB(T)
to the regret of online regression with square loss RSq(T). The work uses a realizability assumption:
the true function generating the outputs belongs to some function class F . In this approach, the learner
learns a score for every arm (using online regression) and computes the probability of choosing an arm
based on the inverse of the gap in scores leading to a regret bound RegCB(T) = O

�p
KTRSq(T)

�
.

Subsequently, Foster and Krishnamurthy (2021) revisited SquareCB and provided a modified algo-
rithm (FastCB), with binary Kullback–Leibler (KL) loss and a re-weighted inverse gap weighting
scheme that attains a first-order regret bound. A first-order regret bound is data-dependent in the

1We use the loss formulation instead of rewards.

1

Published as a conference paper at ICLR 2024

sense that it scales sub-linearly with the loss of the best policy L⇤ instead of T . They showed
that if regret of online regression with KL loss is RKL(T) then the regret for the bandit problem
can be bounded by RegCB(T) = O(

p
KL⇤RKL(T) +KRKL(T)). Further, under the realizability

assumption, Simchi-Levi and Xu (2020) showed that an offline regression oracle with O(log T)
calls can also achieve an optimal regret for CBs. This improves upon the O(T) calls to an online
regression oracle made by SquareCB and FastCB but works only for the stochastic setting, i.e., when
the contexts are drawn i.i.d. from a fixed distribution.

In this work we develop novel regret bounds for online regression with neural networks and subse-
quently use the reduction in Foster and Rakhlin (2020); Foster and Krishnamurthy (2021) to give
regret guarantees for NeuCBs. Before we unpack the details, we discuss the research gaps in existing
algorithms for NeuCBs to better motivate our contributions in the context of available literature.

1.1 RESEARCH GAPS IN NEURAL CONTEXTUAL BANDITS

We discuss some problems and restrictive assumptions with existing NeuCB algorithms. Table 1
summarizes these comparisons. We also discuss why naively extending existing results for wide
networks with the CBs to online regression reduction lead to sub-optimal regret bounds. In Section F
we further outline some related works in contextual bandits and overparameterized neural models.

1. Neural UCB ((Zhou et al., 2020)) and Neural TS ((Zhang et al., 2021)): Both these works focus
on learning the loss function in the Neural Tangent Kernel (NTK) regime and drawing on results
from the kernel bandit literature (Valko et al., 2013). The regret bound is shown to be Õ(d̃

p
T),

where d̃ is the effective dimension of the NTK matrix. When the eigen-values of the kernel decreases
polynomially, one can show that d̃ depends logarithmically in T (see Remark 4.4 in (Zhou et al.,
2020) and Remark 1 in (Valko et al., 2013)) and therefore the final regret is still Õ(

p
T). However in

Appendix A we show that under the assumptions in the papers, the regret bounds for both NeuralUCB
and NeuralTS is ⌦(T) in worst case.

2. EE-Net (Ban et al., 2022b): This work uses an exploitation network for learning the output
function and an exploration network to learn the potential gain of exploring at current step. Although
EE-Net avoids picking up a d̃ dependence in its regret bound, it has two drawbacks. 1) It assumes
that the contexts are chosen i.i.d. from a given distribution, an assumption that generally does not
hold for real world CB problems. 2) It needs to store all the previous networks until the current time
step and then makes a prediction by randomly picking a network from all the past networks (see lines
32-33 in Algorithm 1 of Ban et al. (2022b)), a strategy that does not scale to real world deployment.

3. SquareCB (Foster and Rakhlin, 2020) and FastCB (Foster and Krishnamurthy, 2021): Both
these works provide regret bounds for CBs in terms of regret for online regression. Using online
gradient descent for online regression (as in this paper) with regret O(

p
T), SquareCB and FastCB

provide O(
p
KT 3/4) and O(

p
KL⇤T 1/4 +K

p
T) regret for CBs (see Example 2 in Section 2.3

of Foster and Rakhlin (2020) and Example 5 in Section 4 of Foster and Krishnamurthy (2021)
respectively). Existing analysis with neural models that use almost convexity of the loss (see Chen
et al. (2021)) show O(

p
T) regret for online regression, and naively combining it with the SquareCB

and FastCB lead to the same sub-optimal regret bounds for NeuCBs.

1.2 OUR CONTRIBUTIONS

1. Lower Bounds: As outlined in Section 1.1, we formally show that an (oblivious) adversary can
always choose a set of context vectors and a reward function at the beginning, such that the regret
bounds for NeuralUCB ((Zhou et al., 2020)) and NeuralTS ((Zhang et al., 2021)) becomes ⌦(T).
See Appendix A.1 and A.2 for the corresponding theorems and their proofs.

2. QG Regret: We provide O(log T)+✏T regret for online regression when the loss function satisfies
(i) ✏- almost convexity, (ii) QG condition, and (iii) has unique minima (cf. Assumption 2) as long
as the minimum cumulative loss in hindsight (interpolation loss) is O(log T). This improves over
the O(

p
T) + ✏T bound in Chen et al. (2021) that only exploits ✏- almost convexity.

3. Regret for wide networks: While the QG result is not directly applicable for neural models, since
they do not have unique minima, we show adding a suitably small random perturbation to the
prediction (10), makes the losses satisfy QG with unique minima. Using such a perturbed neural
prediction, we provide regret bounds with the following loss functions:

2

Published as a conference paper at ICLR 2024

Algorithm Regret Remarks

NeuralUCB (Zhou et al., 2020) Õ(d̃
p
T) Bound is ⌦(T) in worst case.

NeuralTS Zhang et al. (2021) Õ(d̃
p
T) Bound is ⌦(T) in worst case.

EE-Net (Ban et al., 2022b) Õ(
p
T)

Assumes that the contexts are drawn i.i.d
and needs to store all previous networks.

NeuSquareCB (This work) Õ(
p
KT)

No dependence on d̃ and holds even when
the contexts are chosen adversarially.

NeuFastCB (This work) Õ(
p
L⇤K +K)

No dependence on d̃ and holds even when
the contexts are chosen adversarially.

Table 1: Comparison with prior works. T is the horizon length, L⇤ is the cumulative loss of the best
policy, d̃ is the effective dimension of the NTK matrix and K is the number of arms.

(a) Squared loss: We provide O(log T) regret for online regression with the perturbed network
(Theorem 3.2) and thereafter using the online regression to CB reduction obtain Õ(

p
KT)

regret for NeuCBs with our algorithm NeuSquareCB (Algorithm 1).

(b) Kullback–Leibler (KL) loss: We further provide an O(log T) regret for online regression
with KL loss using the perturbed network (Theorem 3.3). To the best of our knowledge,
this is the first result that shows PL/QG condition holds for KL loss, and would be of
independent interest. Further, using the reduction, we obtain the first data dependent regret
bound of Õ(

p
L⇤K +K) for NeuCBs with our algorithm NeuFastCB (Algorithm 2).

4. Empirical Performance: Finally, in Section 5 we compare our algorithms against baseline
algorithms for NeuCBs. Unlike previous works, we feed in contexts to the algorithms in an
adversarial manner (see Section 5 for details). Our experiments on various datasets demonstrate
that the proposed algorithms (especially NeuFastCB) consistently outperform existing NeuCB
algorithms, which themselves have been shown to outperform their linear counterparts such as
LinUCB and LinearTS (Zhou et al., 2020; Zhang et al., 2021; Ban et al., 2022b).

We also emphasize that our regret bounds are independent of the effective dimension that appear in
kernel bandits (Valko et al., 2013) and some recent neural bandit algorithms (Zhou et al., 2020; Zhang
et al., 2021). Further our algorithms are efficient to implement, do not require matrix inversions
unlike NeuralUCB (Zhou et al., 2020) and NeuralTS (Zhang et al., 2021), and work even when the
contexts are chosen adversarially unlike approaches specific to the i.i.d. setting (Ban et al., 2022b).

2 NEURAL ONLINE REGRESSION: SETTING AND FORMULATION

Problem Formulation: At round t 2 [T], the learner is presented with an input xt 2 X ⇢ Rd and is
required to make real-valued predictions ŷt. Then, the true outcome yt 2 Y = [0, 1] is revealed.

Assumption 1 (Realizability). The conditional expectation of yt given xt is given by some unknown
function h: X 7! Y , i.e., E[yt|xt] = h(xt). Further, the context vectors satisfy kxtk  1 8t 2 [T].

Neural Architecture: We consider a feedforward neural network with smooth activations as in Du
et al. (2019); Banerjee et al. (2023) and the network output is given by

f(✓t;x) := m�1/2
v
>
t �(m

�1/2Wt
(L)�(· · · �(m�1/2Wt

(1)
x) · · ·)) , (1)

where L is the number of hidden layers and m is the width of the network. Further, Wt
(1)

2

Rm⇥d,W (l)
t 2 Rm⇥m, 8l 2 {2, . . . , L} are layer-wise weight matrices with W (l)

t = [w(l)
t,i,j],

vt 2 Rm is the last layer vector and �(·) is a lipschitz and smooth (pointwise) activation function.

We define

✓t := (vec(W (1)
t)>, . . . , vec(W (L)

t)>,v>)> (2)

as the vector of all parameters in the network. Note that ✓t 2 Rp, where p = md+ (L� 1)m2 +m
is total number of parameters.

3

Published as a conference paper at ICLR 2024

Regret: At time t an algorithm picks a ✓t 2 B, where B ⇢ Rp is some comparator class, and outputs
the prediction f(✓t;xt). Consider a loss function ` : Y ⇥ Y 7! R that measures the error between
f(✓t;xt) and the true output yt. Then the regret of neural online regression with loss ` is defined as

R(T) :=
TX

t=1

`(yt, f(✓t;xt))� inf
✓2B

TX

t=1

`(yt, f(✓;xt)) , (3)

Remark 2.1. Given the definition of regret in (3), one might wonder if we are assuming that the
function h in Assumption 1 is somehow f(✓̃; ·) for some ✓̃ 2 B. Wide networks in fact can realize
any function h on a finite set of T points (see Theorem E.1 in Appendix E).

Using almost convexity of the loss function for wide networks, Chen et al. (2021) show R(T) =
O(

p
T) regret. Instead, we work with a small random perturbation to the neural model prediction

denoted by f̃ (see Section 3) with E[f̃] = f and consider the following regret:

R̃(T) :=
TX

t=1

`(yt, f̃(✓t;xt))� inf
✓2B

TX

t=1

`(yt, f̃(✓;xt)) . (4)

As we shortly show in Section 3, the surprising aspect of working with such mildly perturbed f̃ is
that we will get R̃(T) = O(log T). Further, the cumulative loss with such f̃ will also be competitive
against the best non-perturbed f with ✓ 2 B in hindsight (Remark 3.4).

Notation: n = O(t) (and ⌦(t) respectively) means there exists constant c > 0 such that n  ct (and
n � ct respectively). Further the notation n = ⇥(t) means there exist constants c1, c2 > 0 such that
c1t  n  c2t. The notations Õ(t), ⌦̃(t), ⇥̃(t) further hide the dependence on logarithmic terms.

3 NEURAL ONLINE REGRESSION: REGRET BOUNDS

Our objective in this section is to provide regret bounds for projected Online Gradient Descent (OGD)
with the projection operator

Y

B

(✓) = arginf✓02Bk✓
0
� ✓k2. The iterates are given by

✓t+1 =
Y

B

�
✓t � ⌘tr`(yt, f(✓t;xt))

�
. (5)

Definition 3.1 (Quadratic Growth (QG) condition). Consider a function J : Rp
! R and let the

solution set be J
⇤ = {✓0 : ✓0 2 argmin✓ J(✓)}. Then J is said to satisfy the QG condition with QG

constant µ, if J(✓)� J(✓⇤) � µ
2 k✓ � ✓⇤k2 , 8✓ 2 Rp

\ J
⇤, where ✓⇤ is the projection of ✓ onto J

⇤.

Remark 3.1 (PL) QG). The recent literature has extensively studied the PL condition and how
neural losses satisfy the PL condition (Karimi et al., 2016; Liu et al., 2020; 2022). While the Quadratic
Growth (QG) condition has not been as widely studied, one can show that the PL condition implies
the QG condition (Karimi et al., 2016, Appendix A), i.e., for µ > 0

J(✓)� J(✓⇤) 
1

2µ
krJ(✓)k22 (PL)) J(✓)� J(✓⇤) �

µ

2
k✓ � ✓⇤k22 (QG)

Assumption 2. Consider a predictor g(✓;x) and suppose the loss `(yt, g(✓;xt)), 8t 2 [T], satisfies

(a) Almost convexity, i.e., there exists ✏ > 0, such that 8✓, ✓0 2 B,

`(yt, g(✓;xt)) � `(yt, g(✓
0;xt)) + h✓ � ✓0,r✓`(yt, g(✓

0;xt))i � ✏. (6)

(b) QG condition i.e., 9µ > 0, such that 8✓ 2 B \ ⇥⇤
t , where ⇥⇤

t =
{✓t|✓t 2 arginf✓ `(yt, g(✓;xt))} and ✓⇤t is the projection of ✓ onto ⇥⇤

t we have

`(yt, g(✓;xt))� `(yt, g(✓
⇤
t ;xt)) �

µ

2
k✓ � ✓⇤t k

2
2. (7)

(c) has a unique minima.

Following (Liu et al., 2020; 2022), we also assume the following for the activation and loss function.

Assumption 3. With `t := `(yt, ŷt), `0t :=
d`t
dŷt

, and `00t := d2`t
dŷ2

t

, we assume that the loss `(yt, ŷt) is
Lipschitz, i.e., |`0t|  �, strongly convex, i.e., `00t � a and smooth, i.e., `00t  b, for some �, a, b > 0.

4

Published as a conference paper at ICLR 2024

Theorem 3.1 (Regret Bound under QG condition). Under Assumptions 2 and 3 the regret of
projected OGD with step size ⌘t = 4

µt , where µ is the QG constant from Assumption 2(b), satisfies

R̃(T)  O

✓
�2

µ
log T

◆
+ ✏T + 2 inf

✓2B

TX

t=1

`(yt, g(✓;xt)). (8)

The proof of Theorem 3.1 can be found in Appendix C.1.

Remark 3.2. Under Assumption 2(a), Chen et al. (2021) show R(T) = O(
p
T) + ✏T . In contrast

our bound improves the first term to O(log T) but has an extra term: cumulative loss of the best ✓,
and uses two additional assumptions (2(b) and 2(c)). Note that the third term vanishes if g interpolates
and the interpolation loss is zero (holds for e.g., with over-parameterized networks and square loss).
Further for over-parameterized networks Chen et al. (2021) show that ✏ = 1/poly(m), and therefore
the ✏T term is O(1) for large enough m. A similar argument also holds for our model.

Next we discuss if Theorem 3.1 can indeed be used for neural loss functions. For concreteness
consider the square loss `Sq(yt, f(✓t;xt)) := 1

2 (yt � f(✓t;xt))2. Following Liu et al. (2020);
Banerjee et al. (2023), we make the following assumption on the initial parameters of the network.

Assumption 4. We initialize ✓0 with w(l)
0,ij ⇠ N (0,�2

0) for l 2 [L] where �0 = �1

2
⇣
1+

p
log mp
2m

⌘ ,�1 > 0,

and v0 is a random unit vector with kv0k2 = 1.

Next we define KNTK(✓) := [hrf(✓;xt),rf(✓;xt0)i] 2 RT⇥T to be the so-called Neural Tangent
Kernel (NTK) matrix at ✓ (Jacot et al., 2018) and make the following assumption at initialization.

Assumption 5. KNTK(✓0) is positive definite, i.e., KNTK(✓0) ⌫ �0I for some �0 > 0.

Remark 3.3. The above assumption on the NTK is common in the deep learning literature (Du et al.,
2019; Arora et al., 2019b; Cao and Gu, 2019a) and is ensured as long any two context vectors xt do
not overlap. All existing regret bounds for NeuCBs make this assumption (see Assumption 4.2 in
Zhou et al. (2020), Assumption 3.4 in Zhang et al. (2021) and Assumption 5.1 in Ban et al. (2022b)).

Finally we choose the comparator class B = BFrob
⇢,⇢1 (✓0), the layer-wise Frobenius ball around the

initialization ✓0 with radii ⇢, ⇢1 (to be chosen as part of analysis) which is defined as

BFrob
⇢,⇢1 (✓0) := {✓ 2 Rp as in (2) : k vec(W (l))� vec(W (l)

0)k2  ⇢, l 2 [L], kv � v0k2  ⇢1}. (9)

Consider a network f(✓;x) that satisfies Assumption 5 with ✓0 initialized as in Assumption 4.
Then for B = BFrob

⇢,⇢1 (✓0) we can show the following: (i) `Sq satisfies Assumption 2(a) with ✏ =
O(poly(L, ⇢, ⇢1)/

p
m) (Lemma 13) and therefore with m = ⌦(poly(T, L, ⇢, ⇢1)), the second term

in (8) is O(1). (ii) `Sq for a wide networks satisfies PL condition (Liu et al., 2022) which implies QG,
and therefore Assumption 2(b) is satisfied. (iii) Further the network interpolates (Theorem E.1) which
ensures that the third term in (8) is 0, which makes the rhs O(log T). However neural models do not
have a unique minima and as such we cannot take advantage of Theorem 3.1 as Assumption 2(c)
is violated. To mitigate this, in the next subsection we construct a randomized predictor f̃ with
E[f̃] = f and show that Assumption 2(a), 2(b) and 2(c) hold in high probability.

3.1 REGRET BOUNDS FOR SQUARED LOSS

To ensure that the loss has a unique minimizer at every time step, we consider a random network with
a small perturbation to the output. In detail, given the input xt, we define a perturbed network as

f̃(✓t,xt, ") = f(✓t;xt) + cp

pX

j=1

(✓t � ✓0)T ej"j
m1/4

, (10)

where f(✓t;xt) is the output of the network as defined in (1), cp is the perturbation constant to be
chosen later, {ej}pj=1 are the standard basis vectors and " = ("1, . . . , "p)T is a random vector where
"j is drawn i.i.d from a Rademacher distribution, i.e., P ("j = +1) = P ("j = �1) = 1/2.

Note that E[f̃] = f . Further f̃ ensures that the expected loss E"`Sq
�
yt, f̃(✓,xt, ")

�
has a unique

minimizer (see Lemma 14). However, since running projected OGD on E"`Sq
�
yt, f̃(✓,xt, ")

�
is not

5

Published as a conference paper at ICLR 2024

feasible, we next consider an average version of it. Let "s = ("s,1, "s,2, . . . , "s,p)T where each "s,i
is i.i.d. Rademacher. Consider S such i.i.d. draws {"s}Ss=1, and define the predictor

f̃ (S)
⇣
✓;xt, "

(1:S)
⌘
=

1

S

SX

s=1

f̃(✓;xt, "s), (11)

where f̃(✓;xt, "s) is as defined in (10). We define the corresponding regret with square loss as

R̃Sq(T) =
TX

t=1

`Sq

⇣
yt, f̃

(S)
�
✓t;xt, "

(1:S)
�⌘

� min
✓2BFrob

⇢,⇢1
(✓0)

TX

t=1

`Sq

⇣
yt, f̃

(S)
�
✓;xt, "

(1:S)
�⌘

. (12)

However, instead of running projected OGD with the loss `Sq

⇣
yt, f̃ (S)

�
✓;xt, "(1:S)

�⌘
, we use

L
(S)
Sq

⇣
yt,
�
f̃(✓;xt, "s)

 S
s=1

⌘
:=

1

S

SX

s=1

`Sq

⇣
yt, f̃(✓;xt, "s)

⌘
(13)

Note that since `Sq is convex in the second argument, using Jensen we have

`Sq

⇣
yt, f̃

(S)
�
✓;xt, "

(1:S)
�⌘

= `Sq

⇣
yt,

1

S

SX

s=1

f̃(✓;xt, "s)
⌘


1

S

SX

s=1

`Sq

⇣
yt, f̃(✓;xt, "s)

⌘
. (14)

Subsequently we will show via (14) that bounding the regret with (13) implies a bound on (12).

Theorem 3.2 (Regret Bound for square loss). Under Assumption 1, 4 and 5 with appropriate choice
of step-size sequence {⌘t}, width m, and perturbation constant cp in (10), with probability at least�
1� C

T 4

�
for some constant C > 0, over the randomness of initialization and {"}Ss=1, the regret in

(12) of projected OGD with loss L(S)
Sq

⇣
yt,
�
f̃(✓;xt, "s)

 S
s=1

⌘
, S = ⇥(logm) and projection ball

BFrob
⇢,⇢1 (✓0) with ⇢ = ⇥(

p
T/�0) and ⇢1 = ⇥(1) is given by R̃Sq(T) = O(log T).

Proof sketch. The proof of the theorem follows along four key steps as described below. All of these
hold with high probability over the randomness of initialization and {"s}Ss=1. A detailed version of
the proof along with all intermediate lemmas and their proofs are in Appendix C.2. Note that we do
not use Assumptions 2 and 3 and, but rather explicitly prove that they hold.

1. Square loss is Lipschitz, strongly convex, and smooth w.r.t. the output: This step ensures that
Assumption 3 is satisfied. Strong convexity and smoothness follow trivially from the definition
of the `Sq. To show that `Sq is Lipschitz we show that the output f̃(✓;x, ") is bounded for any
✓ 2 BFrob

⇢,⇢1 (✓0). Also note from Theorem 3.1 that the lipschitz parameter of the loss, � appears in
the log T term and therefore to obtain a O(log T) regret we also ensure that � = O(1).

2. The average loss in (13) is almost convex and has a unique minimizer: We show that with
S = ⇥(logm), the average loss in (13) is ⌫ - Strongly Convex (SC) with ⌫ = O

⇣
1p
m

⌘
w.r.t.

✓ 2 BFrob
⇢,⇢1 (✓0), 8t 2 [T] which immediately implies Assumption 2(a) and 2(c).

3. The average loss in (13) satisfies the QG condition: It is known that square loss with wide
networks under Assumption 5 satisfies the PL condition (eg. Liu et al. (2022)) with µ = O(1).
We show that the average loss in (13) with S = ⇥(logm), also satisfies the PL condition with
µ = O(1), which implies that it satisfies the QG condition with same µ.

4. Bounding the final regret: Steps 1 and 2 above surprisingly show that with a small output
perturbation, square loss satisfies (a) almost convexity, (b) QG, and (c) unique minima as in
Assumption 2. Combining with step 3, all the assumptions of Theorem 3.1 are satisfied by L

(S)
Sq .

Using union bound over the three steps, invoking Theorem 3.1 we get with high probability
TX

t=1

L
(S)
Sq

⇣
yt,
�
f̃(✓t;xt, "s)

 S
s=1

⌘
� inf
✓2BFrob

⇢,⇢1
(✓0)

TX

t=1

L
(S)
Sq

⇣
yt,
�
f̃(✓;xt, "s)

 S
s=1

⌘

 2 inf
✓2BFrob

⇢,⇢1
(✓0)

TX

t=1

L
(S)
Sq

⇣
yt,
�
f̃(✓;xt, "s)

 S
s=1

⌘
+O(log T). (15)

6

Published as a conference paper at ICLR 2024

Algorithm 1 Neural SquareCB (NeuSquareCB); Uses Square loss
1: Initialize ✓0, �, {⌘t}
2: for t = 1, 2, ..., T do
3: Receive contexts xt,1, ...,xt,K , and compute ŷt,a = f̃ (S)

�
✓;xt,a, "(1:S)

�
, 8a 2 [K] using

equation 11
4: Let b = argmina ŷt,a, pt,a = 1

K+�(ŷt,b�ŷt,a)
, and pt,b = 1�

P
a 6=b pt,a

5: Sample arm at ⇠ pt and observe output yt,at

6: Update ✓t+1 =
Q

BFrob
⇢,⇢1

(✓0)

⇣
✓t � ⌘trL

(S)
Sq
�
yt,at

,
�
f̃(✓;xt,at

, "s)
 S
s=1

�⌘
.

7: end for

Finally we show inf✓2BFrob
⇢,⇢1

(✓0)

PT
t=1 L

(S)
Sq
�
yt,
�
f̃(✓̃⇤;xt, "s)

 S
s=1

�
= O(1) using the fact that

wide networks interpolate (Theorem E.1) which implies
PT

t=1 L
(S)
Sq
�
yt,
�
f̃(✓t;xt, "s)

 S
s=1

�
=

O(log T) which using (14) and recalling the definition in (13) implies R̃Sq(T) = O(log T)

Remark 3.4. Note that
PT

t=1 L
(S)
Sq
�
yt,
�
f̃(✓t;xt, "s)

 S
s=1

�
= O(log T) from step-4 above also im-

plies that
PT

t=1 L
(S)
Sq
�
yt,
�
f̃(✓t;xt, "s)

 S
s=1

�
�min✓2BFrob

⇢,⇢1
(✓0)

PT
t=1 `Sq

�
yt, f(✓,xt)

�
= O(log T)

and therefore our predictions are competitive against f as defined in (1) as well.

Remark 3.5. Although the average loss in (13) is SC (Lemma 6), we do not use standard results from
Shalev-Shwartz (2012); Hazan (2021) to obtain O(log T) regret. This is because, the strong convexity
constant ⌫ = O(1/

p
m), and although OGD ensures O(log T) regret for SC functions, the constant

hidden by O scales as 1
⌫ =

p
m. For large width models, m >> T , and therefore this approach does

not yield a O(log T) bound. The key idea is to introduce bare minimum strong convexity using (10),
to ensure unique minima, without letting go of the QG condition with µ = O(1).

3.2 REGRET BOUNDS FOR KL LOSS

Next we consider the binary KL loss, defined as `KL(yt, ŷt) = yt ln
⇣

yt

�(ŷt)

⌘
+(1�yt) ln

⇣
1�yt

1��(ŷt)

⌘
,

where �(y) = 1
1+e�y is the sigmoid function. Following the approach outlined in Section 3.1, we

consider a perturbed network as defined in (10). Note that here the output of the neural network is
finally passed through a sigmoid. As in (11), we will consider a combined predictor. With slight
abuse of notation, we define the prediction and the corresponding regret with `KL respectively as

�
�
f̃ (S)

�
✓;xt, "

(1:S)
��

=
1

S

SX

s=1

�(f̃(✓;xt, "s)) (16)

R̃KL(T) =
TX

t=1

`KL
�
yt,�

�
f̃ (S)

�
✓t;xt, "

(1:S)
���

� min
✓2BFrob

⇢,⇢1
(✓0)

TX

t=1

`KL
�
yt,�

�
f̃ (S)

�
✓;xt, "

(1:S)
���

.

Theorem 3.3 (Regret Bound for KL Loss). Under Assumption 1, 4 and 5 for yt 2 [z, 1 � z],
0 < z < 1, with appropriate choice of step-size sequence {⌘t}, width m, and perturbation constant cp,
with high probability over the randomness of initialization and {"}Ss=1, the regret of projected OGD
with loss L(S)

KL
�
yt,
�
�(f̃(✓;xt, "s))

 S
s=1

�
= 1

S

PS
s=1 `KL

⇣
yt,�(f̃

�
✓;xt, "s)

�⌘
, S = ⇥(logm) and

projection ball BFrob
⇢,⇢1 (✓0) with ⇢ = ⇥(

p
T/�0) and ⇢1 = ⇥(1) is given by RKL(T) = O(log T).

The proof of the theorem follows a similar approach as in proof of Theorem 3.2 (See Appendix C.3).

4 NEURAL CONTEXTUAL BANDITS: FORMULATION AND REGRET BOUNDS

We consider a contextual bandit problem where a learner needs to make sequential decisions over T
time steps. At any round t 2 [T], the learner observes the context for K arms xt,1, , ...,xt,K 2 Rd,
where the contexts can be chosen adversarially. The learner chooses an arm at 2 [K] and then the
associated output yt,at

2 [0, 1] is observed. We make the following assumption on the output.

Assumption 6. The conditional expectation of yt,a given xt,a is given by h: Rd
7! [0, 1], i.e.,

E[yt,a|xt,a] = h(xt,a). Further, the context vectors satisfy kxt,ak  1, t 2 [T], a 2 [K].

7

Published as a conference paper at ICLR 2024

Algorithm 2 Neural FastCB (NeuFastCB); Uses KL loss
1: Initialize ✓0, �, {⌘t}
2: for t = 1, 2, ..., T do
3: Receive contexts xt,1, ...,xt,K and compute ŷt,k, 8k 2 [K] using (16)
4: Let bt = argmin

k2[K]
ŷt,k, pt,k =

ŷt,bt

Kŷt,bt
+�(ŷt,k�ŷt,bt

) , k 2 [K], and pt,bt = 1�
P

k 6=bt
pt,k.

5: Sample arm at ⇠ pt and observe output yt,at

6: Update ✓t+1 =
Q

BFrob
⇢,⇢1

(✓0)

�
✓t � ⌘trL

(S)
KL
�
yt,at

,
�
f̃(✓;xt,at

, "s)
 S
s=1

��
.

7: end for

The learner’s goal is to minimize the regret of the contextual bandit problem and is defined as the
expected difference between the cumulative output of the algorithm and that of the optimal policy:

RegCB(T) = E
h TX

t=1

�
yt,at

� yt,a⇤
t

� i
, (17)

where a⇤t = argmink2[K] h(xt,a) is the best action minimizing the expected output in round t.

NeuSquareCB and NeuFastCB are summarized in Algorithm 1 and Algorithm 2 respectively. At
time t, the algorithm computes f̃ (S)

�
✓;xt,a, "(1:S)

�
, 8a 2 [K] using (11) (see line 4). It then

computes the probability of selecting an arm using the gap between learned outputs following inverse
gap weighting scheme from Abe and Long (1999) (see line 6) and samples an action at from this
distribution (see line 7). It then receives the true output for the selected arm yt,at

, and updates the
parameters of the network using projected online gradient descent. NeuFastCB employs a similar
approach, except that it uses KL loss to update the parameters of the network and uses a slightly
different weighting scheme to compute the action distribution (Foster and Krishnamurthy, 2021).

Theorem 4.1 (Regret bound for NeuSquareCB). Under Assumption 6 and 5 with appropriate choice
of the parameter �, step-size sequence {⌘t} width m, and regularization parameter cp, with high
probability over the randomness in the initialization and {"}Ss=1 the regret for NeuSquareCB with
⇢ = ⇥(

p
T/�0), ⇢1 = ⇥(1) is given by RegCB(T)  Õ(

p
KT).

Theorem 4.2 (Regret bound for NeuFastCB). Under Assumption 6 and 5 with appropriate choice
of the parameter �, step-size sequence {⌘t} width m, and regularization parameter cp, with high
probability over the randomness in the initialization and {"}Ss=1, the regret for NeuFastCB with
⇢ = ⇥(

p
T/�0), ⇢1 = ⇥(1) is given by RegCB(T)  Õ(

p
L⇤K +K), where L⇤ =

PT
t=1 yt,a⇤

t
.

The proof of the Theorem 4.1 and 4.2 follow using the reduction from Foster and Rakhlin (2020) and
(Foster and Krishnamurthy, 2021) respectively, and crucially using our sharp regret bounds for online
regression in Section 3. We provide both proofs in Appendix D for completeness.

Remark 4.1. Note that since L⇤
 T then O(

p
KL⇤)  O(

p
KT). Therefore NeuFastCB is

expected to perform better in most settings “in practice”, especially when L⇤ is small, i.e., the
best policy has low regret. Also note that going by the upper bounds on the regret, especially the
dependence on K, NeuSquareCB could outperform NeuFastCB only if L⇤ = ⇥(T) and K >> T .

Remark 4.2. In the linear setting, (Azoury and Warmuth, 2001) gives RSq(T)  O(p log(T/p)),
where p is the feature dimension (Section 2.3, Foster and Rakhlin (2020)). This translates to
RegCB(T)  Õ(

p
pKT). Further with KL loss, using continuous exponential weights gives

RKL(T) = O(p log T/p) which translates to RegCB(T)  O(
p
L⇤Kp log T/p+Kp log T/p) (Sec-

tion 4, Foster and Krishnamurthy (2021)). However, with over-parameterized networks, (with
p >> T), both bounds are ⌦(T). Therefore it becomes essential to obtain regret bounds that are
independent of the number of parameters in the network, which our results do.

5 EXPERIMENTS

In this section, we evaluate the performance of NeuSquareCB and NeuFastCB, without output
perturbation against some popular NeuCB algorithms. We briefly describe the settings and the
baselines considered here. For more details, a scaled-up version of Figure 1 and a discussion on the
effect of output perturbation, see Appendix G).

8

Published as a conference paper at ICLR 2024

Figure 1: Comparison of cumulative regret of NeuSquareCB and NeuFastCB with baselines on
openml datasets (averaged over 20 runs).

Baselines and Datasets. For comparison, we choose four NeuCB algorithms: (i) Neural UCB
(Zhou et al., 2020) (ii) Neural TS (Zhang et al., 2021), (iii) EE-Net (Ban et al., 2022b) and (iv)
Neural-✏ greedy. We consider a collection of 6 multiclass classification datasets from the openml.org
platform: covertype, fashion, MagicTelescope, mushroom, Plants and shuttle. We follow the standard
evaluation strategy as in Zhou et al. (2020); Ban et al. (2022b) (see Appendix G for details).

Adversarial Contexts. In order to evaluate the performance of the algorithms on adversarially chosen
contexts, we feed data points to each of the model in the following manner: for the first 500 rounds,
an instance x is uniformly sampled from each of the classes, transformed into context vectors as
described above and presented to the model. We calculate the accuracy for each class by recording
the rewards of this class divided by the number of instances drawn from this class. In the subsequent
500 rounds, we increase the probability of sampling instances from the class which had the least
accuracy in the previous rounds. We repeat this procedure every 500 rounds.

Results. Figure 1 plots the cumulative regret of all the algorithms across different rounds. All
experiments were averaged across 20 rounds and the standard deviation is plotted along with the
average performance. Although all the algorithms use a neural network to model the potential non-
linearity in the reward, the baseline algorithms show erratic performance with a lot of variance. Both
our algorithms NeuSquareCB and NeuFastCB show consistent performance across all the datasets.
Moreover, NeuFastCB persistently outperforms all baselines for all the datasets.

6 CONCLUSION

In this work, we develop novel regret bounds for online regression with neural networks and subse-
quently give regret guarantees for NeuCBs. We provide a sharp O(log T) regret for online regression
when the loss satisfies almost convexity, QG condition, and has unique minima. We then propose a
network with a small random perturbation, and show that this surprisingly makes the loss satisfy all
three conditions. Using these results we obtain O(log T) regret bound with both square loss and KL
loss and thereafter, convert these bounds to regret bounds for NeuCBs. Separately, we provide lower
bound results for Neural UCB (Zhou et al., 2020) and Neural TS (Zhang et al., 2021) and show that
even an oblivious adversary can choose a sequence of contexts and a reward function that make their
regret bounds ⌦(T). Our algorithms in contrast guarantee O(

p
T) regret, are efficient to implement,

work even for contexts drawn by an adaptive adversary and does not need to store previous networks
(unlike (Ban et al., 2022b)). Additionally, our experimental comparisons with the baselines on various
datasets further highlight the advantages of our methods and therefore significantly advances the state
of the art in NeuCBs from both theoretical and empirical perspectives.

9

Published as a conference paper at ICLR 2024

ACKNOWLEDGEMENT

The work was supported in part by grants from the National Science Foundation (NSF) through
awards IIS 21-31335, OAC 21-30835, DBI 20-21898, IIS-2002540 as well as a C3.ai research award.

REFERENCES

Y. Abbasi-Yadkori, D. Pál, and C. Szepesvári. Improved algorithms for linear stochastic bandits.
Advances in neural information processing systems, 24, 2011.

N. Abe and P. M. Long. Associative reinforcement learning using linear probabilistic concepts. In
ICML, pages 3–11. Citeseer, 1999.

N. Abe, A. W. Biermann, and P. M. Long. Reinforcement learning with immediate rewards and linear
hypotheses. Algorithmica, 37(4):263–293, 2003.

S. Agrawal and N. Goyal. Thompson sampling for contextual bandits with linear payoffs. In
International conference on machine learning, pages 127–135. PMLR, 2013.

Z. Allen-Zhu, Y. Li, and Y. Liang. Learning and generalization in overparameterized neural networks,
going beyond two layers. Advances in neural information processing systems, 32, 2019a.

Z. Allen-Zhu, Y. Li, and Z. Song. A convergence theory for deep learning via over-parameterization.
In International Conference on Machine Learning, pages 242–252. PMLR, 2019b.

S. Arora, S. Du, W. Hu, Z. Li, and R. Wang. Fine-grained analysis of optimization and generaliza-
tion for overparameterized two-layer neural networks. In International Conference on Machine
Learning, pages 322–332. PMLR, 2019a.

S. Arora, S. S. Du, W. Hu, Z. Li, R. R. Salakhutdinov, and R. Wang. On exact computation with an
infinitely wide neural net. Advances in Neural Information Processing Systems, 32, 2019b.

K. S. Azoury and M. K. Warmuth. Relative loss bounds for on-line density estimation with the
exponential family of distributions. Mach. Learn., 43(3):211–246, jun 2001. ISSN 0885-6125. doi:
10.1023/A:1010896012157. URL https://doi.org/10.1023/A:1010896012157.

Y. Ban and J. He. Generic outlier detection in multi-armed bandit. In Proceedings of the 26th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining, pages 913–923,
2020.

Y. Ban and J. He. Local clustering in contextual multi-armed bandits. In Proceedings of the Web
Conference 2021, pages 2335–2346, 2021.

Y. Ban, J. He, and C. B. Cook. Multi-facet contextual bandits: A neural network perspective. In
Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining,
pages 35–45, 2021.

Y. Ban, Y. Qi, T. Wei, and J. He. Neural collaborative filtering bandits via meta learning. arXiv
preprint arXiv:2201.13395, 2022a.

Y. Ban, Y. Yan, A. Banerjee, and J. He. EE-net: Exploitation-exploration neural networks in
contextual bandits. In International Conference on Learning Representations, 2022b. URL
https://openreview.net/forum?id=X_ch3VrNSRg.

A. Banerjee, P. Cisneros-Velarde, L. Zhu, and M. Belkin. Restricted strong convexity of deep
learning models with smooth activations. In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.net/forum?id=PINRbk7h01.

Y. Cao and Q. Gu. Generalization error bounds of gradient descent for learning over-parameterized
deep relu networks. In AAAI Conference on Artificial Intelligence, 2019a.

Y. Cao and Q. Gu. Generalization bounds of stochastic gradient descent for wide and deep neural
networks. Advances in neural information processing systems, 32, 2019b.

10

https://doi.org/10.1023/A:1010896012157
https://openreview.net/forum?id=X_ch3VrNSRg
https://openreview.net/forum?id=PINRbk7h01

Published as a conference paper at ICLR 2024

Z. Charles and D. Papailiopoulos. Stability and generalization of learning algorithms that converge to
global optima. In J. Dy and A. Krause, editors, Proceedings of the 35th International Conference
on Machine Learning, volume 80 of Proceedings of Machine Learning Research, pages 745–754.
PMLR, 10–15 Jul 2018.

X. Chen, E. Minasyan, J. D. Lee, and E. Hazan. Provable regret bounds for deep online learning and
control. arXiv preprint arXiv:2110.07807, 2021.

W. Chu, L. Li, L. Reyzin, and R. Schapire. Contextual bandits with linear payoff functions. In
Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics,
pages 208–214. JMLR Workshop and Conference Proceedings, 2011.

S. Du, J. Lee, H. Li, L. Wang, and X. Zhai. Gradient descent finds global minima of deep neural
networks. In International conference on machine learning, pages 1675–1685. PMLR, 2019.

D. Foster and A. Rakhlin. Beyond ucb: Optimal and efficient contextual bandits with regression
oracles. In International Conference on Machine Learning, pages 3199–3210. PMLR, 2020.

D. J. Foster and A. Krishnamurthy. Efficient first-order contextual bandits: Prediction, allocation,
and triangular discrimination. Advances in Neural Information Processing Systems, 34, 2021.

S. Frei and Q. Gu. Proxy convexity: A unified framework for the analysis of neural networks
trained by gradient descent. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. W. Vaughan, editors,
Advances in Neural Information Processing Systems, 2021. URL https://openreview.

net/forum?id=NVpGLJUuPx5.

E. Hazan. Introduction to online convex optimization, 2021.

J. Honorio and T. Jaakkola. Tight Bounds for the Expected Risk of Linear Classifiers and PAC-Bayes
Finite-Sample Guarantees. In S. Kaski and J. Corander, editors, Proceedings of the Seventeenth
International Conference on Artificial Intelligence and Statistics, volume 33 of Proceedings of
Machine Learning Research, pages 384–392, Reykjavik, Iceland, 22–25 Apr 2014. PMLR. URL
https://proceedings.mlr.press/v33/honorio14.html.

A. Jacot, F. Gabriel, and C. Hongler. Neural tangent kernel: Convergence and generalization in neural
networks. Advances in neural information processing systems, 31, 2018.

H. Karimi, J. Nutini, and M. Schmidt. Linear convergence of gradient and proximal-gradient methods
under the Polyak-lojasiewicz condition. In Joint European conference on machine learning and
knowledge discovery in databases, pages 795–811. Springer, 2016.

C. Liu, L. Zhu, and M. Belkin. On the linearity of large non-linear models: when and why the tangent
kernel is constant. Advances in Neural Information Processing Systems, 33:15954–15964, 2020.

C. Liu, L. Zhu, and M. Belkin. Loss landscapes and optimization in over-parameterized non-linear
systems and neural networks. Applied and Computational Harmonic Analysis, 59:85–116, 2022.

S. Lojasiewicz. A topological property of real analytic subsets (in french). In Les équations aux
dérivées partielles, pages 87–89. Coll. du CNRS, 1963.

X. Lu and B. Van Roy. Ensemble sampling. In Proceedings of the 31st International Conference on
Neural Information Processing Systems, NIPS’17, page 3260–3268, Red Hook, NY, USA, 2017.
Curran Associates Inc. ISBN 9781510860964.

B. Polyak. Gradient methods for the minimisation of functionals. USSR Computational Mathe-
matics and Mathematical Physics, 3(4):864–878, 1963. ISSN 0041-5553. doi: https://doi.org/
10.1016/0041-5553(63)90382-3. URL https://www.sciencedirect.com/science/

article/pii/0041555363903823.

Y. Qi, Y. Ban, and J. He. Neural bandit with arm group graph. In Proceedings of the 28th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, pages 1379–1389, 2022.

Y. Qi, Y. Ban, and J. He. Graph neural bandits. In Proceedings of the 29th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining, pages 1920–1931, 2023.

11

https://openreview.net/forum?id=NVpGLJUuPx5
https://openreview.net/forum?id=NVpGLJUuPx5
https://proceedings.mlr.press/v33/honorio14.html
https://www.sciencedirect.com/science/article/pii/0041555363903823
https://www.sciencedirect.com/science/article/pii/0041555363903823

Published as a conference paper at ICLR 2024

C. Riquelme, G. Tucker, and J. Snoek. Deep bayesian bandits showdown: An empirical comparison
of bayesian deep networks for thompson sampling. In International Conference on Learning
Representations, 2018. URL https://openreview.net/forum?id=SyYe6k-CW.

I. Sason. On reverse pinsker inequalities, 2015.

S. Shalev-Shwartz. Online learning and online convex optimization. Foundations and Trends®
in Machine Learning, 4(2):107–194, 2012. ISSN 1935-8237. doi: 10.1561/2200000018. URL
http://dx.doi.org/10.1561/2200000018.

D. Simchi-Levi and Y. Xu. Bypassing the monster: A faster and simpler optimal algorithm for
contextual bandits under realizability. ArXiv, abs/2003.12699, 2020.

M. Valko, N. Korda, R. Munos, I. Flaounas, and N. Cristianini. Finite-time analysis of kernelised
contextual bandits. arXiv preprint arXiv:1309.6869, 2013.

R. Vershynin. Introduction to the non-asymptotic analysis of random matrices, 2011.

T. Zahavy and S. Mannor. Neural linear bandits: Overcoming catastrophic forgetting through
likelihood matching, 2020. URL https://openreview.net/forum?id=r1gzdhEKvH.

W. Zhang, D. Zhou, L. Li, and Q. Gu. Neural thompson sampling. In International Conference on
Learning Representation (ICLR), 2021.

D. Zhou, L. Li, and Q. Gu. Neural contextual bandits with ucb-based exploration. In International
Conference on Machine Learning, pages 11492–11502. PMLR, 2020.

12

https://openreview.net/forum?id=SyYe6k-CW
http://dx.doi.org/10.1561/2200000018
https://openreview.net/forum?id=r1gzdhEKvH

Published as a conference paper at ICLR 2024

A COMPARISON WITH RECENT NEURAL CONTEXTUAL BANDIT ALGORITHMS

In this section we show that the regret bounds for NeuralUCB (Zhou et al., 2020) and Neural
Thompson Sampling (NeuralTS) (Zhang et al., 2021) is ⌦(T) in the worst case. We start with a
brief description of the notations used in these works. H is the Neural Tangent Kernel (NTK) matrix
computed from all the context vectors xt,i, t 2 [T], i 2 [K], and h(x) is the true reward function
given a context x. The cumulative reward vector is defined as h = (h(x1), . . . , h(xTK))>.

With � as the regularization parameter in the loss, the effective dimension d̃ of the Neural Tangent
Kernel H on the contexts {xt}

TK
t=1 is defined as:

d̃ =
log det(I+H/�)

log(1 + T/�)

Further it is assumed that H ⌫ �0I (see Assumption 4.2 in (Zhou et al., 2020) and Assumption 3.4 in
(Zhang et al., 2021)).

A.1 ⌦(T) REGRET FOR NEURALUCB

The bound on the regret for NeuralUCB (Zhou et al., 2020) is given by (ignoring constants):

RegCB(T) 
p

T

s

d̃ log

✓
1 +

TK

�

◆ s

d̃ log

✓
1 +

TK

�

◆
+
p

�S

!

=
p

T

d̃ log

✓
1 +

TK

�

◆
+ S

s

d̃ log

✓
1 +

TK

�

◆
�

!
:= BNUCB(T,�),

where, � is the regularization constant and S �

p

hTH�1h with h = (h(x1), . . . , h(xTK))T . We
provide two ⌦(T) regret bounds for NeuralUCB.

The first result creates an instance that an oblivious adversary can choose before the algorithm begins
such that the regret bound is ⌦(T). The second result provides an ⌦(T) bound for any reward
function and set of context vectors as long as



khk
is ⇥(1).

Theorem A.1. There exists a reward vector h such that the regret bound for NeuralUCB is lower
bounded as

BNUCB(�, T) �
1
p
2

p

KT.

Proof. Consider the eigen-decomposition of H = U⌃HUT , where columns of U 2 RTK⇥TK are
the normalized eigen-vectors {ui}

TK
i=1 of H and ⌃H is a diagonal matrix containing the eigenvalues

{�i(H)}TK
i=1 of H . Now,

S �

p

hTH�1h =
q
hTU⌃�1

H
UTh =

vuut
TKX

i=1

1

�i(H)
(uT

i h)
2 � ⇠

vuut
TKX

i=1

1

�i(H)
, (18)

where ⇠ = min
i
(uT

i h)

Further observe that we can rewrite the effective dimension as follows:

d̃ =
log det(I+H/�)

log(1 + TK/�)
=

log

TKY

i=1

✓
1 +

�i(H)

�

◆!

log(1 + TK/�)
=

TKX

i=1

✓
1 +

�i(H)

�

◆

log(1 + TK/�)

13

Published as a conference paper at ICLR 2024

Using these we can lower bound BNUCB(T,�) as follows:

BNUCB(T,�) �
p

T

TKX

i=1

log
⇣
1 + �i(H)

�

⌘

log
�
1 + TK

�

� log

✓
1 +

TK

�

◆

+ ⇠

vuut
TKX

i=1

�

�i(H)

TKX

i=1

log(1 + �i(H)
�)

log
�
1 + TK

�

� log

✓
1 +

TK

�

◆!

=
p

T

0

@
TKX

i=1

log

✓
1 +

�i(H)

�

◆
+ ⇠

vuut
TKX

i=1

�

�i(H)

TKX

i=1

log

✓
1 +

�i(H)

�

◆1

A

�

p

T

0

@
TKX

i=1

log

✓
1 +

�i(H)

�

◆
+ ⇠

vuut
TKX

i=1

�

�i(H)
log

✓
1 +

�i(H)

�

◆1

A

=
p

T

0

@
TKX

i=1

log

✓
1 +

1

yi

◆
+ ⇠

vuut
TKX

i=1

yilog

✓
1 +

1

yi

◆1

A ,

where yi =
�

�i(H) , i 2 [TK]. Using this we can further bound BNUCB(T,�) as follows:

BNUCB(T,�) �
p

T

TKX

i=1

log

✓
1 +

1

yi

◆
+

⇠
p
TK

TKX

i=1

s

yilog

✓
1 +

1

yi

◆!

�
1

p
K

TKX

i=1

log

✓
1 +

1

yi

◆
+ ⇠yilog

✓
1 +

1

yi

◆!

�
1

p
K

TKX

i=1

log

✓
1 +

1

yi

◆�
1 + ⇠yi

�
!

�
1

p
K

TKX

i=1

1
yi

1 + 1
yi

�
1 + ⇠yi

�
!

=
1

p
K

TKX

i=1

1 + ⇠yi
1 + yi

!

� T
p

K⇠.

Recall that ⇠ = min
i
(uT

i h)
2. Now, consider an h that makes a ⇡/4 angle with all the eigen-vectors

ui, i 2 [TK] and therefore ⇠ = 1p
2

. Note that for the positive definite assumption of NTK to hold,
all the contexts need to be distinct and therefore an oblivious adversary can always choose such an h.
In such a case, the regret bound for NeuralUCB is BNUCB(T,�) = ⌦(T).

Remark A.1. Note that the ⌦(T) regret holds for any h whose dot product with all the eigen vectors
of H is lower bounded by a constant.

Theorem A.2. For any cumulative reward vector h, with  as the condition number of the NTK
matrix, the regret bound for NeuralUCB is

BNUCB(�, T) �
khk2
p


p

KT.

14

Published as a conference paper at ICLR 2024

Proof. Using the same notation as in the previous section, we can lower bound S and d̃ as follows:

S �

q
�min(H�1)khk22 =

1p
�max(H)

khk2

d̃ =
log det(I+H/�)

log(1 + TK/�)
�

log
⇣
�min (I+H/�)TK

⌘

log (1 + TK/�)
� TK

log(1 + �0
�)

log
�
1 + TK

�

�

Using these we can lower bound BNUCB(T,�) as follows:

BNUCB(T,�) �
p

T

TK

log(1 + �0
�)

log
�
1 + TK

�

� log
✓
1 +

TK

�

◆

+ khk2

s

TK
�

�max(H)

log(1 + �0
�)

log
�
1 + TK

�

� log
✓
1 +

TK

�

◆!

= T
p

K

p

TK log

✓
1 +

�0
�

◆
+

khk2
p


s
�

�0
log

✓
1 +

�0
�

◆!

= T
p

K

p

TK log

✓
1 +

1

y

◆
+

khk2
p


s

y log

✓
1 +

1

y

◆!
,

where y = �
�0

and  =
�max(H)

�min(H) is the condition number of of the NTK. Since y log(1 + 1
y)  1 and

for T,K � 1, we have

BNUCB(T,�) � T
p

K

✓
log

✓
1 +

1

y

◆✓
1 +

ykhk2
p


◆◆
(19)

� T
p

K

0

@
1 + khk2p


y

1 + y

1

A (20)

� T
p

K
khk2
p


(21)

If


khk
is ⇥(1) then BNUCB(T,�) is ⌦(T).

A.2 ⌦(T) REGRET FOR NEURAL THOMPSON SAMPLING

The bound on the regret for Neural Thompson sampling (Zhang et al., 2021) is given by (ignoring
constants):

RegCB(T) 
p

T (1 +
p
log T + logK)

✓
S +

q
d̃ log(1 + TK/�)

◆q
�d̃ log(1 + TK)

:= B(T)

We present two lower bounds on BNTS(T) below. As in NeuralUCB, the first result creates an instance
that an oblivious adversary can choose before the algorithm begins such that the regret bound is ⌦(T)
and the second result provides an ⌦(T) bound for any reward function and set of context vectors as
long as �0 is ⇥(1).

Theorem A.3. There exists a reward vector h such that the regret bound for NeuralUCB is lower
bounded as

BNUCB(�, T) �
1

2
p
2

p

KT.

Proof. For Neural Thompson sampling the regularization parameter � is chosen to be � = 1 + 1/T
(see Theorem 3.5 in Zhang et al. (2021)) and therefore 1  �  2 for any T � 1. Therefore we can

15

Published as a conference paper at ICLR 2024

lower bound the effective dimension as,

d̃ =
log det(I+H/�)

log(1 + TK/�)
=

log

TKY

i=1

✓
1 +

�i(H)

�

◆!

log(1 + TK/�)

=

TKX

i=1

log

✓
1 +

�i(H)

�

◆

log(1 + TK/�)
�

TKX

i=1

log

✓
1 +

�i(H)

2

◆

log(1 + TK)

BNTS(T) �
p

T

0

@
p

hTH�1h

vuut
TKX

i=1

log

✓
1 +

�i(H)

2

◆
+

TKX

i=1

log

✓
1 +

�i(H)

2

◆1

A

�

p

T

0

@⇠

vuut
TKX

i=1

1

�i(H)

TKX

i=1

log

✓
1 +

�i(H)

2

◆
+

TKX

i=1

log

✓
1 +

�i(H)

2

◆1

A

where recall from equation 18 that

S � ⇠

vuut
TKX

i=1

1

�i(H)
,

where ⇠ = min
i
(uT

i h)

Therefore

BNTS(T) �
p

T

0

@⇠

vuut
TKX

i=1

yi log

✓
1 +

1

2yi

◆
+

TKX

i=1

log

✓
1 +

1

2yi

◆1

A

�

p

T

⇠

1
p
TK

TKX

i=1

s

yi log

✓
1 +

1

2yi

◆
+

TKX

i=1

log

✓
1 +

1

2yi

◆!

�

p

T

1

p
TK

TKX

i=1

⇠yi log

✓
1 +

1

2yi

◆
+ log

✓
1 +

1

2yi

◆!

=
p

T

1

p
TK

TKX

i=1

log

✓
1 +

1

2yi

◆
(1 + ⇠yi)

!

�

p

T

1

p
TK

TKX

i=1

1/2yi
1 + 1/2yi

(1 + ⇠yi)

!

=
p

T

1

p
TK

TKX

i=1

1 + ⇠yi
1 + 2yi

!

�

p

T
1

p
TK

TK
⇠

2

= T
p

K
⇠

2
.

As in the proof of Theorem A.1, for h making an angle of ⇡/4 with all eigen-vectors of H, ⇠ � 1p
2

,
which proves the claim.

Theorem A.4. For any cumulative reward vector h, the regret bound for Neural Thompson sampling
is

BNTS(�, T) � T
p

TK
�0

2 + �0

16

Published as a conference paper at ICLR 2024

Recall, 1  �  2 for any T � 1, and therefore we can lower bound the effective dimension as,

d̃ =
log det(I +H/�)

log(1 + TK/�)
� TK

log(1 + �0/�)

log(1 + TK/�)
� TK

log(1 + �0/�)

log(1 + TK)

Therefore, using 1  �  2 and S �

p

hTH�1h,

BNTS(T) �
p

T
⇣p

hTH�1h+
p
TK log(1 + �0/2)

⌘p
TK log(1 + �0/2)

� T
p

TK log(1 + �0/2)

� T
p

TK
�0/2

1 + �0/2

� T
p

TK
�0

2 + �0

If �0 = ⇥(1), BNTS(T) is ⌦(T).

B BACKGROUND AND PRELIMINARIES FOR TECHNICAL ANALYSIS

Before we proceed with the proof of the claims in Section 3, we state a few recent results from
Banerjee et al. (2023) that we will use throughout our proofs. We assume the loss to be the squared
loss throughout this subsection.

Lemma 1 (Hessian Spectral Norm Bound, Theorem 4.1 and Lemma 4.1 in Banerjee et al. (2023)).
Under Assumptions 3 and 4, for any x 2 X , ✓ 2 BSpec

⇢,⇢1 (✓0), with probability at least (1� 2(L+1)
m),

we have ��r2
✓f(✓;x)

��
2


cH
p
m

and kr✓f(✓;x)k2  % , (22)

where,

cH = L(L2�2L + L�L + 1) · (1 + ⇢1) · H ·max
l2[L]

�L�l + L�L max
l2[L]

h(l) ,

� = �1 +
⇢

p
m
, h(l) = �l�1 + |�(0)|

l�1X

i=1

�i�1,

 H = max
1l1<l2L

⇢
��h(l1)

2 , h(l1)

✓
��
2
(�2 + h(l2)

2) + 1

◆
, ���

2h(l1)h(l2)

�
,

%2 = (h(L+ 1))2 +
1

m
(1 + ⇢1)

2
L+1X

l=1

(h(l))2�2(L�l).

Lemma 2 (Loss bounds, Lemma 4.2 in Banerjee et al. (2023)). Under Assumptions 3 and 4, for
� = �1 + ⇢p

m
, each of the following inequalities hold with probability at least

⇣
1� 2(L+1)

m

⌘
:

`(✓0)  c0,�1 and `(✓)  c⇢1,� for ✓ 2 BFrob
⇢,⇢1 (✓0), where ca,b = 2

PN
i=1 y

2
i + 2(1 + a)2|g(b)|2 and

g(a) = aL + |�(0)|
PL

i=1 a
i for any a, b 2 R.

Lemma 3 (Loss gradient bound, Corollary 4.1 in Banerjee et al. (2023)). Under Assumptions 3 and
4, for ✓ 2 BFrob

⇢,⇢1 (✓0), with probability at least
⇣
1� 2(L+1)

m

⌘
, we have kr✓`(✓)k2  2

p
`(✓)% 

2
p
c⇢1,�%, with % as in Lemma 1 and c⇢1,� as in Lemma 2.

Lemma 4 (Local Smoothness, Theorem 5.2 in Banerjee et al. (2023)). Under Assumptions 3 and 4,
with probability at least (1� 2(L+1)

m), 8✓, ✓0 2 BFrob
⇢,⇢1 (✓0),

`(✓0)  `(✓) + h✓0 � ✓,r✓
ˆ̀(✓)i+

�

2
k✓0 � ✓k22 , with � = b%2 +

cH
p
c⇢1,�

p
m

, (23)

with cH as in Lemma 1, % as in Lemma 1, and c⇢1,� as in Lemma 2. Consequently, ˆ̀ is locally
�-smooth.

17

Published as a conference paper at ICLR 2024

C PROOF OF CLAIMS FOR NEURAL ONLINE REGRESSION (SECTION 3)
C.1 REGRET BOUND UNDER QG CONDITION (PROOF OF THEOREM 3.1)
Theorem 3.1 (Regret Bound under QG condition). Under Assumptions 2 and 3 the regret of
projected OGD with step size ⌘t = 4

µt , where µ is the QG constant from Assumption 2(b), satisfies

R̃(T)  O

✓
�2

µ
log T

◆
+ ✏T + 2 inf

✓2B

TX

t=1

`(yt, g(✓;xt)). (8)

Proof. Take any ✓0 2 B. By Assumption 2(a) (almost convexity) we have
`(yt, g(✓t;xt))� `(yt, g(✓

0;xt))  h✓t � ✓0,r`(yt, g(✓t;xt))i+ ✏

Note that for any ✓ 2 B, we have
�����
Y

B

(✓00)� ✓

�����
2

 k✓00 � ✓k2.

As a result, for ✓0 2 B, we have
k✓t+1 � ✓0k22 � k✓t � ✓0k22  k✓t � ⌘tr`(yt, g(✓t;xt))� ✓0k22 � k✓t � ✓0k22

= �2⌘th✓t � ✓0,r`(yt, g(✓t;xt))i+ ⌘2t
��r`(yt, g(✓t;xt))

��2
2

 �2⌘t (`(yt, g(✓t;xt))� `(yt, g(✓
0;xt))� ✏) + ⌘2t �

2%2 .

Rearranging sides and dividing by 2⌘t we get

`(yt, g(✓t;xt))� `(yt, g(✓
0;xt)) 

k✓t � ✓0k22 � k✓t+1 � ✓0k22
2⌘t

+
⌘t
2
�2%2 + ✏ . (24)

Let ⌘t = 4
µt . Then, summing (24) over t = 1, . . . , T , we have

R̃(T) =
TX

t=1

`(yt, g(✓t;xt))�
TX

t=1

`(yt, g(✓
0;xt))



TX

t=1

k✓t � ✓0k22

✓
1

2⌘t
�

1

2⌘t�1

◆
+
�2%2

2

TX

t=1

⌘t + ✏


µ

8

TX

t=1

k✓t � ✓0k22 +O(�2 log T) +
c0T
p
m


µ

4

TX

t=1

k✓t � ✓⇤t k
2
2 +

µ

4

TX

t=1

k✓0 � ✓⇤t k
2
2 +O(�2 log T) + ✏ (25)

where ✓⇤t 2 arginf✓ `(yt, g(✓;xt)). By Assumption 2(b), the loss satisfies the QG condition and by
Assumption 2(c), it has unique minimizer, so that for t 2 [T]

`(yt, g(✓t;xt))� `(yt, g(✓
⇤
t ;xt)) �

µ

2
k✓t � ✓⇤t k

2
2 , (26)

`(yt, g(✓
0;xt))� `(yt, g(✓

⇤
t ;xt)) �

µ

2
k✓0 � ✓⇤t k

2
2 . (27)

Then, we can lower bound the regret as

R̃(T) =
TX

t=1

`(yt, g(✓t;xt))�
TX

t=1

`(yt, g(✓
0;xt))

=
TX

t=1

(`(yt, g(✓t;xt))� `(yt, g(✓
⇤
t ;xt)))�

TX

t=1

(`(yt, g(✓
0;xt))� `(yt, g(✓

⇤
t ;xt)))

�
µ

2

TX

t=1

k✓t � ✓⇤t k
2
2 �

TX

t=1

`(yt, g(✓
0;xt)) , (28)

18

Published as a conference paper at ICLR 2024

from (26) Multiplying (28) by �
1
2 and adding to (25), we get

1

2
R̃(T) =

TX

t=1

`(yt, g(✓t;xt))�
TX

t=1

`(yt, g(✓
0;xt))


µ

4

TX

t=1

k✓0 � ✓⇤t k
2
2 +O(�2 log T) + ✏T +

PT
t=1 `(yt, g(✓

0;xt))

2


1

2

TX

t=1

(`(yt, g(✓
0;xt))� `(yt, g(✓

⇤
t ;xt))) +O(�2 log T) + ✏T +

PT
t=1 `(yt, g(✓

0;xt))

2



TX

t=1

`(yt, g(✓
0;xt)) +O(�2 log T) + ✏T .

Since ✓0 2 B was arbitrary, taking an infimum completes the proof.

C.2 REGRET BOUND FOR SQUARE LOSS (PROOF OF THEOREM 3.2)

Theorem 3.2 (Regret Bound for square loss). Under Assumption 1, 4 and 5 with appropriate choice
of step-size sequence {⌘t}, width m, and perturbation constant cp in (10), with probability at least�
1� C

T 4

�
for some constant C > 0, over the randomness of initialization and {"}Ss=1, the regret in

(12) of projected OGD with loss L(S)
Sq

⇣
yt,
�
f̃(✓;xt, "s)

 S
s=1

⌘
, S = ⇥(logm) and projection ball

BFrob
⇢,⇢1 (✓0) with ⇢ = ⇥(

p
T/�0) and ⇢1 = ⇥(1) is given by R̃Sq(T) = O(log T).

Proof. The proof follows along the following four steps.

1. Square loss is Lipschitz, strongly convex, and smooth w.r.t. the output:

This step ensures that Assumption 3 (lipschitz, strong convexity and smoothness) is satisfied.
We show that the loss function `Sq is lipschitz, strongly convex and smooth with respect to the
output f̃(✓;x, ") inside BFrob

⇢,⇢1 (✓0) with high probability over the randomness of initialization
and {"}Ss=1. We will denote �Sq, aSq and bSq as the lipschitz, strong convexity and smoothness
parameters respectively as defined in Assumption 3.

Lemma 5. For ✓ 2 BFrob
⇢,⇢1 (✓0), with probability

⇣
1� 2(L+1)+1

m

⌘
over the randomness of ini-

tialization and {"}Ss=1, the loss `Sq
�
yt, f̃(✓;xt, ")

�
is lipschitz, strongly convex and smooth with

respect to its output f̃(✓;xt, "). Further the corresponding parameters for square loss, �Sq, aSq
and bSq are O(1).

Strong convexity and smoothness follow trivially from the definition of the `Sq. To show that
`Sq is Lipschitz we show that the output of the neural network f̃(✓;x, ") is bounded for any
✓ 2 BFrob

⇢,⇢1 (✓0). Also note from Theorem 3.1 that �2 appears in the log T term and therefore
to obtain a O(log T) regret we must ensure that �Sq = O(1), which Lemma 5 does. Note that
using a union bound over t 2 [T] and Lemma 5 it follows that with probability

⇣
1� 2(L+1)+1

m

⌘
,

L
(S)
Sq

⇣
yt,
�
�(f̃(✓;xt, "s))

 S
s=1

⌘
is also lipschitz, strongly convex and smooth with respect to

each of the outputs f̃
�
✓;xt, "s), s 2 [S].

2. The average loss in (13) is almost convex and has a unique minimizer:

We show that with S = ⇥(logm), the average loss in (13) is ⌫ - Strongly Convex (SC) with
⌫ = O

⇣
1p
m

⌘
w.r.t. ✓ 2 BFrob

⇢,⇢1 (✓0), 8t 2 [T] which immediately implies Assumption 2(a)
(almost convexity) and 2(c) (unique minima).

19

Published as a conference paper at ICLR 2024

Lemma 6. Under Assumption 5 and cp =
p

8�SqCH , with probability
⇣
1� 2T (L+2)

m

⌘
over the

randomness of the initialization and {"s}Ss=1, L(S)
Sq

⇣
yt,
�
f̃(✓;xt, "s)

 S
s=1

⌘
is ⌫-strongly convex

with respect to ✓ 2 BFrob
⇢,⇢1 (✓0), where ⌫ = O

⇣
1p
m

⌘
.

3. The average loss in (13) satisfies the QG condition:

It is known that square loss with wide networks under Assumption 5 (positive definite NTK)
satisfies the PL condition (eg. Liu et al. (2022)) with µ = O(1). We show that the average loss
in (13) with S = ⇥(logm), also satisfies the PL condition with µ = O(1), which implies that it
satisfies the QG condition with same µ with high probability over the randomness of initialization
"s.

Lemma 7. Under Assumption 5 with probability
�
1� 2T (L+1)C

m

�
, for some absolute constant

C > 0, L(S)
Sq

⇣
yt,
�
f̃(✓;xt, "s)

 S
s=1

⌘
satisfies the QG condition over the randomness of the

initialization and {"s}Ss=1, with QG constant µ = O(1).

4. Bounding the final regret.

Steps 1 and 2 above surprisingly show that with a small output perturbation, square loss satisfies
(a) almost convexity, (b) QG, and (c) unique minima as in Assumption 2. Combining with step 3,
we have that all the assumptions of Theorem 3.1 are satisfied by the average loss. Using union
bound over the three steps, invoking Theorem 3.1 we get with probability

�
1 �

T (L+1)C
m

�
for

some absolute constant C > 0, with ✓̃⇤ = min✓2BFrob
⇢,⇢1

(✓0)

PT
t=1 L

(S)
Sq

⇣
yt,
�
f̃(✓;xt, "s)

 S
s=1

⌘
,

TX

t=1

L
(S)
Sq

⇣
yt,
�
f̃(✓t;xt, "s)

 S
s=1

⌘
� L

(S)
Sq

⇣
yt,
�
f̃(✓̃⇤;xt, "s)

 S
s=1

⌘
(29)

 2
TX

t=1

L
(S)
Sq

⇣
yt,
�
f̃(✓̃⇤;xt, "s)

 S
s=1

⌘
+O(log T). (30)

Next we bound
PT

t=1 L
(S)
Sq

⇣
yt,
�
f̃(✓̃⇤;xt, "s)

 S
s=1

⌘
using the following lemma.

Lemma 8. Under Assumption 1 and 5 with probability
⇣
1� 2T (L+1)

m

⌘
over the randomness of

the initialization and {"s}Ss=1 we have
PT

t=1 L
(S)
Sq

⇣
yt,
�
f̃(✓̃⇤;xt, "s)

 S
s=1

⌘
= O(1).

Using Lemma 8 and (29) we have
PT

t=1 L
(S)
Sq

⇣
yt,
�
f̃(✓t;xt, "s)

 S
s=1

⌘
= O(log T) which using

(14) and recalling the definition in (13) implies R̃Sq(T) = O(log T)

Next we prove all the intermediate lemmas in the above steps.

Lemma 5. For ✓ 2 BFrob
⇢,⇢1 (✓0), with probability

⇣
1� 2(L+1)+1

m

⌘
over the randomness of initializa-

tion and {"}Ss=1, the loss `Sq
�
yt, f̃(✓;xt, ")

�
is lipschitz, strongly convex and smooth with respect

to its output f̃(✓;xt, "). Further the corresponding parameters for square loss, �Sq, aSq and bSq are
O(1).

Proof. We begin by showing that the output of both regularized and un-regularized network defined
in (10) and (1) respectively is bounded with high probability over the randomness of the initialization
and in expectation over the randomness of ". Consider any ✓ 2 BFrob

⇢,⇢1 (✓0) and x 2 X . Then, the

20

Published as a conference paper at ICLR 2024

output of the network in expectation w.r.t. "i’s can be bounded as follows.

E"|f̃(✓;xt, ")|
2
 2|f(✓;x)|2 + 2c2regE"

0

@
pX

j=1

(✓ � ✓0)T ej"j
m1/4

1

A
2

= 2|f(✓;x)|2 + 2c2reg

0

@
pX

i=1

pX

j=1

(✓ � ✓0)T eieTj (✓ � ✓0)
p
m

E"["i"j]

1

A

(a)
 2|f(✓;x)|2 + 2c2reg

pX

j=1

(✓ � ✓0)2i
p
m

=
2

m
|v

>↵(L)(x)|2 +
2c2reg
p
m

k✓ � ✓0k
2

(b)


2

m
kvk

2
k↵(L)(x)k2 +

2
p
m
c2reg(L⇢+ ⇢1)

2

(c)


2

m
(1 + ⇢1)

2

�L + |�(0)|

LX

i=1

�i�1

!2

m+
2

p
m
c2reg(L⇢+ ⇢1)

2

where � = �1 +
⇢p
m

. Here (a) follows from the fact that E["i"j] = 0 when i 6= j, and E["i"j] = 1

when i = j, (b) follows from k✓ � ✓0k2  L⇢+ ⇢1, and (c) holds with probability
⇣
1� 2(L+1)

m

⌘

and follows from the fact that kvk  kv0k+ kv � v0k  1 + ⇢1 and thereafter using the arguments
in proof of Lemma 4.2 from Banerjee et al. (2023). Finally with a union bound over t 2 [T] and
using Jensen we get with probability

⇣
1� 2T (L+1)

m

⌘

E|f̃(✓;xt, ")| 
q
E|f̃(✓;xt, ")|2



vuut2(1 + ⇢1)2

�L + |�(0)|

LX

i=1

�i�1

!2

+
2

p
m
c2reg(L⇢+ ⇢1)2. (31)

Now consider " = ("1, . . . , "j�1, "j , "j+1 . . . , "p) and "0 = ("1, . . . , "j�1, "0j , "j+1 . . . , "p) that
differ only at the j-th variable where "j is an independent copy of "0j . Now,

|f̃(✓;xt, ")� f̃(✓;xt, "
0)| =

creg

m1/4
|(✓ � ✓0)

T vj"j � (✓ � ✓0)
T vj"

0
j |


2creg

m1/4
|(✓ � ✓0)j |

By McDiarmid’s inequality we have with probability (1� �) over the randomness of {"i}pi=1

���|f̃(✓;xt, ")|� E|f̃(✓;xt, ")|
��� 

p
2creg

m1/4

vuut
pX

j=1

(✓ � ✓0)2j ln(1/�)

=

p
2creg

m1/4
k✓ � ✓0k2

p
ln(1/�)



p
2creg

m1/4
(L⇢+ ⇢1)

p
ln(1/�)

Taking a union bound over t 2 [T], with probability 1� � over the randomness of {"i}pi=1 we have
���|f̃(✓;xt, ")|� E|f̃(✓;xt, ")|

��� 
p
2creg

m1/4
(L⇢+ ⇢1)

p
ln(T/�)

Choosing � = 1
m we get with probability

�
1� 1

m

�
over the randomness of {"i}pi=1

���|f̃(✓;xt, ")|� E|f̃(✓;xt, ")|
��� 

p
2creg

m1/4
(L⇢+ ⇢1)

p
ln(mT)

21

Published as a conference paper at ICLR 2024

Combining with (31), we have with probability at least
⇣
1� 2T (L+2)+1

m

⌘
over the randomness of

the initialization and {"i}
p
i=1 we have

|f̃(✓;xt, ")| 

vuut2(1 + ⇢1)2

�L + |�(0)|

LX

i=1

�i�1

!2

+
2

p
m
c2reg(L⇢+ ⇢1)2

+

p
2creg

m1/4
(L⇢+ ⇢1)

p
ln(mT) (32)

Finally taking a union bound over {"s}Ss=1 for S = O(logm) and using the fact that m =

⌦(T 5L/�60) we get with probability at least
⇣
1� 2T (L+2)+1

m

⌘
over the randomness of the ini-

tialization and {"}Ss=1, 8t 2 [T], L(S)
Sq

⇣
yt,
�
f̃(✓;xt, "s)

 S
s=1

⌘
is lipschitz with �Sq = ⇥(1).

Further `00Sq = 1 and therefore the loss is strongly convex and smooth with aSq = bSq = 1 a.s. over
the randomness of {"s}Ss=1, which completes the proof.

Lemma 6. Under Assumption 5 and cp =
p
8�SqCH , with probability

⇣
1� 2T (L+2)

m

⌘
over the

randomness of the initialization and {"s}Ss=1, L(S)
Sq

⇣
yt,
�
f̃(✓;xt, "s)

 S
s=1

⌘
is ⌫-strongly convex with

respect to ✓ 2 BFrob
⇢,⇢1 (✓0), where ⌫ = O

⇣
1p
m

⌘
.

Proof. From (10) we have a.s.

r✓f̃(✓,xt, ") = r✓f(✓;x) + creg

pX

i=1

ei"i
m1/4

, (33)

r
2
✓f̃(✓,xt, ") = r

2
✓f(✓;x). (34)

Next, with `0t = (f̃(✓,xt, ")� yt)

r✓`Sq
�
yt, f̃(✓,xt, ")

�
= `0tr✓f̃(✓,xt, ")

r
2
✓`Sq

�
yt, f̃(✓,xt, ")

�
= r✓f̃(✓,xt, ")r✓f̃(✓,xt, ")

T + `0tr
2
✓f̃(✓,xt, ")

where we have used the fact that `00t = 1, and r
2
✓f̃(✓,xt, ") = r

2
✓f(✓;xt) from (34).

Consider u 2 S
p�1, the unit ball in Rp. Then

uT
r

2
✓L

(S)
Sq

⇣
yt,
�
f̃(✓;xt, "s)

 S
s=1

⌘
u =

1

S

SX

s=1

uT

"
r✓f(✓;xt)r✓f(✓;xt)

T

+creg

pX

i=1

vir✓f(✓;xt)T

m1/4
"s,i + creg

pX

i=1

r✓f(✓;xt)vTi
m1/4

"s,i + c2reg

pX

i=1

pX

j=1

vivTj
p
m
"s,i"s,j

#
u

+`0t,iu
T
r

2
✓f(✓;xt)u

= hr✓f(✓;xt), ui
2 + 2hr✓f(✓;xt), ui

creg

m1/4

1

S

SX

s=1

pX

i=1

ui"s,i

| {z }
�s

+
c2reg
p
m

1

S

SX

s=1

pX

i=1

pX

j=1

uiuj"s,i"s,j

| {z }
�2
s

+`0t,iu
T
r

2
✓f(✓;xt)u (35)

22

Published as a conference paper at ICLR 2024

Notice that 8s 2 [S], �s = hu, "si is a weighted sum of Rademacher random variables and therefore
is kuk2 = 1 sub-gaussian. Using Hoeffding’s inequality, for a given t 2 [T],

P

(
1

S

SX

s=1

�s  �!1

)
 e�S2!2

1/2.

Taking a union bound we get t 2 [T]

P

(
1

S

SX

s=1

�s  �!1

)
 Te�S2!2

1/2.

Further if �s is �s sub-gaussian, then �2
s is (⌫2,↵) sub-exponential with ⌫ = 4

p
2�2

s ,↵ = 4�2
s (see

Honorio and Jaakkola (2014, Appendix B)) and therefore �2
s is (4

p
2, 4) sub-exponential. Using

Bernstein’s inequality for a given t 2 [T],

P

(
1

S

SX

s=1

�2
s � E�2

s  �!2

)
 e

� 1
2 min

✓
S
2
!
2
2

32 ,
S!2
4

◆

Taking a union bound we get for any t 2 [T]

P

(
1

S

SX

s=1

�2
s � E�2

s  �!2

)
 Te

� 1
2 min

✓
S
2
!
2
2

32 ,
S!2
4

◆

Now choosing !1 = !2 = 1
2 , we get for any t 2 [T]

P

(
1

S

SX

s=1

�s  �
1

2

)
 Te�S2/8.

P

(
1

S

SX

s=1

�2
s � E�2

s  �
1

2

)
 Te

� 1
2 min

⇣
S
2

128 ,
S

8

⌘

 Te�S/8 , 8S � 16

Observing that E�s = 0, E�2
s = 1, combining with (35) and recalling that with probability⇣

1� 2(L+1)T
m

⌘
over the randomness of initialization, kr✓f(✓;xt)k2 

cHp
m

we get with proba-

bility at least 1� T (e�S2/8 + e�S/8)� 2(L+1)T
m

uT
r

2
✓L

(S)
Sq

⇣
yt,
�
f̃(✓;xt, "s)

 S
s=1

⌘
u � hr✓f(✓;xt), ui

2
� hr✓f(✓;xt), ui

creg

m1/4
| {z }

I

+
c2reg

2
p
m

�
�SqCH
p
m

.

Term I is minimized for hr✓f(✓;xt), ui =
creg

2m1/4
and the minimum value is � c2reg

4
p
m

. Substituting
this back to the above equation we get

uT
r

2
✓L

(S)
Sq

⇣
yt,
�
f̃(✓;xt, "s)

 S
s=1

⌘
u � �

c2reg

4
p
m

+
c2reg

2
p
m

�
�SqCH
p
m

=
c2reg

4
p
m

�
�SqCH
p
m

=
�SqCH
p
m

where the last equality follows because c2reg = 8�SqCH . Since S2/8 � S/8 for S � 1, we have for
S � 16 with probability 1� 2Te�S/8

�
2(L+1)T

m

uT
r

2
✓L

(S)
Sq

⇣
yt,
�
f̃(✓;xt, "s)

 S
s=1

⌘
u �

�SqCH
p
m

> 0.

23

Published as a conference paper at ICLR 2024

Choosing S = max{8 logm, 16}, we have with probability
⇣
1� 2T (L+2)

m

⌘
over the randomness of

initialization and {"s}Ss=1 we have

uT
r

2
✓L

(S)
Sq

⇣
yt,
�
f̃(✓;xt, "s)

 S
s=1

⌘
u �

�SqCH
p
m

> 0.

which completes the proof.

Lemma 7. Under Assumption 5 with probability
�
1� 2T (L+1)C

m

�
, for some absolute constant C > 0,

L
(S)
Sq

⇣
yt,
�
f̃(✓;xt, "s)

 S
s=1

⌘
satisfies the QG condition over the randomness of the initialization and

{"s}Ss=1, with QG constant µ = O(1).

Proof. We have

���rL
(S)
Sq

⇣
yt,
�
f̃(✓;xt, "s)

 S
s=1

⌘���
2

2
=
���
1

S

SX

s=1

rLSq

⇣
yt, f̃(✓;xt, "s)

⌘���
2

2

=
1

S2

SX

s=1

SX

s0=1

(f̃(✓;xt, "s)� yt)(f̃(✓;xt, "s)� yt)
D
rf̃(✓;xt, "s),rf̃(✓;xt, "s0)

E

=
1

S2
(F (✓;xt)� yt S)

T K̃(✓,xt)(F (✓;xt)� yt S) (36)

where F (✓,xt) : Rp⇥d
! RS such that (F (✓,xt))s = f̃(✓;xt, "s), S is an S-dimensional vector

of 10s and K̃(✓,xt) =
⇥⌦
r✓f̃(✓;xt, "s),r✓f̃(✓;xt, "0s)

↵⇤
.

Now,

K̃(✓,xt)s,s0 =
D
rf(✓;xt) +

creg

m1/4

pX

j=1

ej"s,j , f(✓;xt) +
creg

m1/4

pX

j=1

ej"s0,j
E

=
D
rf(✓;xt) +

creg

m1/4
"̄s, f(✓;xt) +

creg

m1/4
"̄s0
E

=
⌦
rf(✓;xt),rf(✓;xt)

↵
+

creg

m1/4
h"̄s,rf(✓;xt)i

+
creg

m1/4
h"̄s0 ,rf(✓;xt)i+

c2reg
p
m
h"̄s, "̄s0i

where "̄s 2 RS with ("̄s)j = "s,j . Therefore,

K̃(✓,xt) =
⌦
rf(✓;xt),rf(✓;xt)

↵
S

T
S +

c2reg
p
m
"TM"M

+
creg

m1/4

0

BBB@

rf(✓;xt)T "̄1 rf(✓;xt)T "̄2 · · · rf(✓;xt)T "̄S
rf(✓;xt)T "̄1 rf(✓;xt)T "̄2 · · · rf(✓;xt)T "̄S

...
rf(✓;xt)T "̄1 rf(✓;xt)T "̄2 · · · rf(✓;xt)T "̄S

1

CCCA

+
creg

m1/4

0

BBB@

rf(✓;xt)T "̄1 rf(✓;xt)T "̄1 · · · rf(✓;xt)T "̄1
rf(✓;xt)T "̄2 rf(✓;xt)T "̄2 · · · rf(✓;xt)T "̄2

...
...

rf(✓;xt)T "̄S rf(✓;xt)T "̄S · · · rf(✓;xt)T "̄S

1

CCCA

24

Published as a conference paper at ICLR 2024

where "M is an p⇥ S matrix whose columns are "̄s. Next we give a uniform bound on the smallest
eigenvalue of K̃(✓,xt). Consider u 2 S

S�1, unit sphere in RS . We have

uT K̃(✓,xt)u =
⌦
rf(✓;xt),rf(✓;xt)

↵
uT

S
T
Su| {z }

I

+
c2reg
p
m
uT"TM"Mu

| {z }
II

+
creg

m1/4

SX

s=1

SX

s0=1

usus0
�
rf(✓;xt)

T "̄s +rf(✓;xt)
T "̄s0

�

| {z }
III

Consider term I . We can lower bound it as follows
⌦
rf(✓;xt),rf(✓;xt)

↵
uT

S
T
Su �

⌦
rf(✓;xt),rf(✓;xt)

↵
�
�0
2
.

where the first inequality follows because �min(S
T
S) � 1 and the second inequality because for

any ✓ 2 BFrob
⇢,⇢1 (✓0) with probability

⇣
1� 2(L+1)

m

⌘
over the initialization

⌦
rf(✓;xt),rf(✓;xt)

↵
� �min(KNTK(✓)) � �0 �

2cH%T
p
m

L(⇢+ ⇢1) �
�0
2

� 0 , (37)

where the last inequality holds by choosing m �
16c2

H
%T 2(L⇢+⇢1)

2

�2
0

= ⌦(T 3/�40). To see why (37)
holds observe that using the exact same argument as in (55) and (52) we have

kKNTK(✓)�KNTK(✓0)k2  2
p

T%
cH

p
T

p
m

k✓ � ✓0k2

Using the fact that ✓ 2 BFrob
⇢,⇢1 (✓0) we have

kKNTK(✓)�KNTK(✓0)k2 
2cH%T
p
m

L(⇢+ ⇢1)

and therefore

�min(KNTK(✓)) � �min(KNTK(✓0))� kKNTK(✓)�KNTK(✓0)k2

��0 �
2cH%T
p
m

L(⇢+ ⇢1) .

Next consider term II . Since every entry of the p⇥ S matrix "M is i.i.d Rademacher, using Lemma
5.24, Vershynin (2011), it follows that the rows are independent sub-gaussian, with the sub-gaussian
norm of the any row k("M)ik 2  Ci, where Ci is an absolute constant. Further using Theorem
5.39 from Vershynin (2011) we have with probability at least 1� 2 exp(�cM t2)

�min("
T
M"M) �

p
p� CM

p

S � t

where CM and cM depend on the maximum of sub-gaussian norm of the rows of "M , i.e.,
maxi k("M)ik 2 , which is an absolute constant. Choosing t =

p
S, for some absolute constant c,

with probability at least
�
1� c

m

�
, uniformly for any u 2 S

S�1 we have

�min("
T
M"M) �

p
p� (CM + 1)

p

S

Noting that S = max{16, 8 logm} and p = md+ (L� 1)m2 +m we have

�min("
T
M"M) �

m+
p
m

2
� (CM + 1)

p
max{16, 8 logm}.

Using m � 64(CM +1)2,
p
m logm � 8

p
2(CM +1), with probability at least

�
1� c

m

�
, uniformly

for any u 2 S
S�1 we have

uT ("TM"M)u � m/2

25

Published as a conference paper at ICLR 2024

Finally consider term III . We have

creg

m1/4

SX

s=1

SX

s0=1

usus0
�
rf(✓;xt)

T "̄s +rf(✓;xt)
T "̄s0

�
�

2
p
Screg

m1/4

SX

s=1

usrf(✓;xt)
T"s.

Since each "s,j is 1 sub-gaussian, therefore rf(✓;xt)T"s is krf(✓;xt)k2 ( %) sub-gaussian with
zero mean. Using Hoeffding we have with probability at least 1� exp(�S2t2)

2
p
Screg

m1/4

SX

s=1

usrf(✓;xt)
T"s � �

2
p
Screg

m1/4
St

Choosing t = 1
8 and noting that S = max{16, 8 logm}, we get with probability at least

�
1� 1

m2

�

2
p
Screg

m1/4

SX

s=1

usrf(✓;xt)
T"s �

�16creg

m1/4
(logm)3/2 � �1

where the last inequality used m1/4
� 16creg and m1/4(logm)�3/2

� 4
p
2. Finally to get a uniform

bound over SS�1, we can use a standard ✏-net argument with ✏ = 1/4 and metric entropy S log 9
(see eg. proof of Theorem 5.39 in Vershynin (2011)). Using m(logm)�1

� 8 log 9, with probability
at least

�
1� 1

m

�
uniformly for any u 2 S

S�1 we have

2
p
Screg

m1/4

SX

s=1

usrf(✓;xt)
T"s � �1

Combining all the terms and using m � 4, we get with probability
�
1� 2(L+1)C

m

�
for some absolute

constant C > 0
1

S2
(F (✓;xt)� yt S)

T K̃(✓,xt)(F (✓;xt)� yt S) �
m

4S

1

S

��(F (✓;xt)� yt S)
��
2

=
m

64 logm

1

S

SX

s=1

LSq

⇣
yt, f̃(✓;xt, "s)

⌘

� 2µL
(S)
Sq

⇣
yt,
�
f̃(✓;xt, "s)

 S
s=1

⌘

where µ = O(1) and the last inequality follows from m(logm)�1
� 1. Combining with (36) and

using the fact that PL implies QG (see Remark 3.1) along with a union bound over t 2 [T] completes
the proof.

Lemma 8. Under Assumption 1 and 5 with probability
⇣
1� 2T (L+1)

m

⌘
over the randomness of the

initialization and {"s}Ss=1 we have
PT

t=1 L
(S)
Sq

⇣
yt,
�
f̃(✓̃⇤;xt, "s)

 S
s=1

⌘
= O(1).

Proof. Consider any ✓ 2 BFrob
⇢,⇢1 (✓0). We have

L
(S)
Sq

⇣
yt,
�
f̃(✓;xt, "s)

 S
s=1

⌘
=

1

S

SX

s=1

LSq

⇣
yt, f̃(✓;xt, "s)

⌘
=

1

2S

SX

s=1

�
yt � f̃(✓;xt, "s)

�2

=
1

2S

SX

s=1

0

@yt � f(✓t;xt)� creg

pX

j=1

(✓t � ✓0)T ej"s,j
m1/4

1

A
2

=
1

2

"
�
yt � f(✓t;xt)

�2
� 2creg

�
yt � f(✓t;xt)

� 1

S

SX

s=1

⇣ pX

j=1

(✓ � ✓0)T ej"s,j
m1/4

⌘

| {z }
I

+ c2reg
1

S

SX

s=1

⇣ pX

j=1

(✓ � ✓0)T ej"s,j
m1/4

⌘2

| {z }
II

#
(38)

26

Published as a conference paper at ICLR 2024

Consider term I .

1

S

SX

s=1

⇣ pX

j=1

(✓ � ✓0)T ej"s,j
m1/4

⌘
=

1

m1/4

1

S

SX

s=1

⇣ pX

j=1

(✓ � ✓0)j"s,j
⌘

| {z }
�s

Since "s,j is 1 sub-gaussian, �s is k✓ � ✓0k22 sub-gaussian. Using Hoeffding’s inequality

P

(
1

S

SX

s=1

�s � !1

)
 e�S2!2

1/2k✓�✓0k2 .

Taking a union bound we get t 2 [T]

P

(
1

S

SX

s=1

�s � !1

)
 Te�S2!2

1/2k✓�✓0k2 .

Next consider term II .

1

S

SX

s=1

⇣ pX

j=1

(✓ � ✓0)T ej"s,j
m1/4

⌘2
=

1
p
m

1

S

SX

s=1

pX

i=1

pX

j=1

(✓ � ✓0)i(✓ � ✓0)j"s,i"s,j

| {z }
�2
s

Further if �s is �s sub-gaussian, then �2
s is (⌫2,↵) sub-exponential with ⌫ = 4

p
2�2

s ,↵ = 4�2
s

(see Honorio and Jaakkola (2014, Appendix B)) and therefore �2
s is

�
4
p
2k✓ � ✓0k22, 4k✓ � ✓0k22

�

sub-exponential. Using Bernstein’s inequality for a given t 2 [T],

P

(
1

S

SX

s=1

�2
s � E�2

s � !2

)
 e

� 1
2 min

✓
S
2
!
2
2

32k✓�✓0k42
,

S!2
4k✓�✓0k22

◆

Taking a union bound we get for any t 2 [T]

P

(
1

S

SX

s=1

�2
s � E�2

s � !2

)
 Te

� 1
2 min

✓
S
2
!
2
2

32k✓�✓0k42
,

S!2
4k✓�✓0k22

◆

Now choosing !1 = k✓ � ✓0k2,!2 = k✓ � ✓0k22, we get for any t 2 [T]

P

(
1

S

SX

s=1

�s � k✓ � ✓0k2

)
 Te�S2/2.

P

(
1

S

SX

s=1

�2
s � E�2

s �
1

2
k✓ � ✓0k

2
2

)
 Te

� 1
2 min

⇣
S
2

128 ,
S

8

⌘

 Te�S/8 , 8S � 16

Observing that E�s = 0, E�2
s =

c2regp
m
k✓ � ✓0k22, using the fact that �Sq = |yt � f(✓;xt)| = ⇥(1)

with probability
⇣
1� 2T (L+1)

m

⌘
(see proof of Lemma 5) and finally combining with (38) we get with

probability at least 1� T (e�S2/2 + e�S/8)� 2T (L+1)
m

L
(S)
Sq

⇣
yt,
�
f̃(✓;xt, "s)

 S
s=1

⌘
 LSq (yt, f(✓;xt)) +

c2reg

2
p
m
k✓ � ✓0k

2
2 +

2creg�Sq

m1/4
k✓ � ✓0k2

Summing over t and taking a min✓2BFrob
⇢,⇢1

(✓0) over the left hand side we get for any ✓ 2 BFrob
⇢,⇢1 (✓0)

min
✓2BFrob

⇢,⇢1
(✓0)

TX

t=1

L
(S)
Sq

⇣
yt,
�
f̃(✓;xt, "s)

 S
s=1

⌘


TX

t=1

LSq (yt, f(✓;xt)) +
TX

t=1

c2reg

2
p
m
k✓ � ✓0k

2
2 +

2creg�Sq

m1/4
k✓ � ✓0k2

27

Published as a conference paper at ICLR 2024

From Theorem E.1 we know there exists ✓̄ 2 BFrob
⇢,⇢1 (✓0) such that with probability at least (1� 2(L+1)

m)
over the randomness of initialization we have f(✓̄,xt) = yt for any set of yt 2 [0, 1], t 2 [T] which
implies LSq

�
yt, f(✓̄;xt)

�
= 0, 8t 2 [T]. Therefore

TX

t=1

L
(S)
Sq

⇣
yt,
�
f̃(✓⇤;xt, "s)

 S
s=1

⌘
 0 +

TX

t=1

c2reg

2
p
m
k✓0 � ✓0k

2
2 +

2creg�Sq

m1/4
k✓0 � ✓0k2

(a)


c2reg

2
p
m
(L⇢+ ⇢1)

2 +
2creg�Sq

m1/4
(L⇢+ ⇢1)

(b)
= O(1) (39)

where (a) follows because ✓̄0 2 BFrob
⇢,⇢1 (✓0) implies ✓0 2 BEuc

L⇢+⇢1
(✓0) and (b) follows by choosing

m = ⌦(T 5L/�60).

C.3 PROOF OF THEOREM 3.3
Theorem 3.3 (Regret Bound for KL Loss). Under Assumption 1, 4 and 5 for yt 2 [z, 1 � z],
0 < z < 1, with appropriate choice of step-size sequence {⌘t}, width m, and perturbation constant cp,
with high probability over the randomness of initialization and {"}Ss=1, the regret of projected OGD
with loss L(S)

KL
�
yt,
�
�(f̃(✓;xt, "s))

 S
s=1

�
= 1

S

PS
s=1 `KL

⇣
yt,�(f̃

�
✓;xt, "s)

�⌘
, S = ⇥(logm) and

projection ball BFrob
⇢,⇢1 (✓0) with ⇢ = ⇥(

p
T/�0) and ⇢1 = ⇥(1) is given by RKL(T) = O(log T).

Proof. The proof of the claim follows along similar lines as in the previous subsection. It consists of
the following four steps:

1. Binary KL loss is lipschitz, strongly convex and smooth w.r.t. the output.

We show that `KL(yt, ŷt) is lipschitz, strongly convex and smooth with respect to the output
ŷt = f̃(✓;xt, ") inside BFrob

⇢,⇢1 (✓0) almost surely over the randomness of initialization and ". We
will use �KL, aKL and bKL respectively to denote the lipschitz, strong convexity and smoothness
parameter for `KL(yt, ŷt) (c.f. Assumption 3(lipschitz, strongly convex and smooth)).

Lemma 9. For ✓ 2 BFrob
⇢,⇢1 (✓0), the loss `KL

�
yt, f̃(✓;xt, ")

�
is lipschitz, strongly convex and

smooth with respect to the output f̃(✓;xt, ") a.s. over the randomness of initialization and ".
Further the parameters �KL, aKL and bKL are O(1).

Note that Lemma 9 implies that L
(S)
KL

⇣
yt,
�
�(f̃(✓;xt, "s))

 S
s=1

⌘
=

1

S

SX

s=1

`KL

⇣
yt,�(f̃

�
✓;xt, "s)

�⌘
is also lipschitz, strongly convex and smooth a.s. with respect

to each of the outputs f̃
�
✓;xt, "s).

2. The average loss at t 2 [T], L(S)
KL

⇣
yt,
�
�(f̃(✓;xt, "s))

 S
s=1

⌘
is almost convext and has a

unique minimizer w.r.t. ✓.

We show that the random perturbation to the output in (10) assures that
L
(S)
KL

⇣
yt,
�
�(f̃(✓;xt, "s))

 S
s=1

⌘
is strongly convex with respect to ✓ 2 BFrob

⇢,⇢1 (✓0) at

every t 2 [T] (with a very small O
⇣

1p
m

⌘
strong convexity parameter), which implies that it

satisfies 2(a) and 2(c).

Lemma 10. Under Assumption 5 and cp =
p
8�SqCH , with probability

⇣
1� 2T (L+2)

m

⌘

over the randomness of the initialization and {"s}Ss=1, L(S)
KL

⇣
yt,
�
�(f̃(✓;xt, "s))

 S
s=1

⌘
is

⌫-strongly convex with respect to ✓ 2 BFrob
⇢,⇢1 (✓0), where ⌫ = O

⇣
1p
m

⌘
.

3. The average loss at t 2 [T], L(S)
KL

⇣
yt,
�
�(f̃(✓;xt, "s))

 S
s=1

⌘
satisfies the QG condition.

28

Published as a conference paper at ICLR 2024

We show that the loss L(S)
KL

⇣
yt,
�
�(f̃(✓;xt, "s))

 S
s=1

⌘
satisfies the QG condition (with QG

constant µ = O(1)) with high probability over the randomness of initialization and {"s}Ss=1.

Lemma 11. Under Assumption 5 with probability
�
1� 2T (L+1)C

m

�
, for some absolute constant

C > 0, L(S)
KL

⇣
yt,
�
f̃(✓;xt, "s)

 S
s=1

⌘
satisfies the QG condition over the randomness of the

initialization and {"s}Ss=1, with constant µ = O(1).

4. Bounding the final regret.
The above three steps ensure that all the assumptions of Theorem 3.1 are satisfied by the loss
function L

(S)
KL

⇣
yt,
�
�(f̃(✓;xt, "s))

 S
s=1

⌘
. Taking a union over the events in the above three

steps, invoking Theorem 3.1, we get with probability
�
1� TLC

m

�
for some absolute constant

C > 0,
TX

t=1

L
(S)
KL

⇣
yt,
�
�(f̃(✓;xt, "s))

 S
s=1

⌘
� L

(S)
KL

⇣
yt,
�
�(f̃(✓⇤;xt, "s))

 S
s=1

⌘

 2
TX

t=1

L
(S)
KL

⇣
yt,
�
�(f̃(✓̃⇤;xt, "s))

 S
s=1

⌘
+O(log T). (40)

where ✓̃⇤ = min
✓2BFrob

⇢,⇢1
(✓0)

TX

t=1

L
(S)
KL

⇣
yt,
�
�(f̃(✓;xt, "s))

 S
s=1

⌘

Next we bound
TX

t=1

L
(S)
KL

⇣
yt,
�
�(f̃(✓⇤;xt, "s))

 S
s=1

⌘
using the following lemma.

Lemma 12. Under Assumption 1 and 5 with probability
�
1� TLC

m

�
for some absolute constant

C > 0 over the randomness of the initialization we have
TX

t=1

L
(S)
KL

⇣
yt,
�
�(f̃(✓⇤;xt, "s))

 S
s=1

⌘
= O(1).

Using Lemma 12 and (40) we have
TX

t=1

L
(S)
KL

⇣
yt,
�
�(f̃(✓;xt, "s))

 S
s=1

⌘
 O(log T). which

implies RKL(T)  O(log T).

Next we prove Lemmas 9,10,11 and 12.

Lemma 9. For ✓ 2 BFrob
⇢,⇢1 (✓0), the loss `KL

�
yt, f̃(✓;xt, ")

�
is lipschitz, strongly convex and smooth

with respect to the output f̃(✓;xt, ") a.s. over the randomness of initialization and ". Further the
parameters �KL, aKL and bKL are O(1).

Proof. Consider ✓ 2 BSpec
⇢,⇢1 (✓0). Now,

`0KL :=
d`KL(yt, f̃(✓,xt, "))

df̃(✓,xt, ")

= �

yt�(f̃(✓,xt, "))(1� �(f̃(✓,xt, ")))

�(f̃(✓,xt, "))
�

(1� yt)�(f̃(✓,xt, ")(1� �(f̃(✓,xt, "))

1� �(f̃(✓,xt, "))

!

= �yt + yt�(f̃(✓,xt, ")) + �(f̃(✓,xt, "))� yt�(f̃(✓,xt, "))

= �(f̃(✓,xt, "))� yt.

It follows that �KL  2 a.s. since �(f̃(✓,xt, ")), yt 2 [0, 1]. Further 0  `00KL = �(f̃(✓,xt, "))
�
1�

�(f̃(✓,xt, "))
�
 1/2 a.s. which completes the proof.

29

Published as a conference paper at ICLR 2024

Lemma 10. Under Assumption 5 and cp =
p
8�SqCH , with probability

⇣
1� 2T (L+2)

m

⌘
over the

randomness of the initialization and {"s}Ss=1, L(S)
KL

⇣
yt,
�
�(f̃(✓;xt, "s))

 S
s=1

⌘
is ⌫-strongly convex

with respect to ✓ 2 BFrob
⇢,⇢1 (✓0), where ⌫ = O

⇣
1p
m

⌘
.

Proof. In Lemma 5 we showed that |f̃(✓;xt, ")| is bounded with high probability over the randomness
of initialization and ". Specifically from (32)) we have with probability at least

⇣
1� 2T (L+2)+1

m

⌘

over the randomness of the initialization and "

|f̃(✓;xt, ")| 

vuut2(1 + ⇢1)2

�L + |�(0)|

LX

i=1

�i�1

!2

+
2

p
m
c2reg(L⇢+ ⇢1)2

+

p
2creg

m1/4
(L⇢+ ⇢1)

p
ln(mN)

:= f̃max(✓;xt, ") (41)

Since m = ⌦(T 5/�60) it follows that f̃max(✓;xt, ") is O(1). Now 8t 2 [T], with
q := �(f̃max(✓;xt, ")) (42)

with probability at least
⇣
1� 2T (L+2)+1

m

⌘
we have �(f̃(✓,xt, ")) 2 [q, (1� q)].

Next we show that LKL is strongly convex. Recall that

L
(S)
KL

⇣
yt,
�
�(f̃(✓;xt, "s))

 S
s=1

⌘
=

1

S

SX

s=1

`KL

⇣
yt,�(f̃

�
✓;xt, "s)

�⌘
,

and therefore we have

r✓L
(S)
KL

⇣
yt,
�
�(f̃(✓;xt, "s))

 S
s=1

⌘
=

1

S

SX

s=1

yt�0(f̃(✓,xt, "s))r✓f̃(✓,xt, "s)

�(f̃(✓,xt, "s))

�
(1� yt)�0(f̃(✓,xt, "s))r✓f̃(✓,xt, "s)

1� �(f̃(✓,xt, "s))

=
1

S

SX

s=1

⇣
yt
�
1� �(f̃(✓,xt, "s))

�
� (1� yt)�(f̃(✓,xt, "s))

⌘
r✓f̃(✓,xt, "s)

=
1

S

SX

s=1

⇣
�(f̃(✓,xt, "s))� yt

⌘
r✓f̃(✓,xt, "s) (43)

where we have used the fact that �0(·) = �(·)(1� �(·)). Further the hessian of the loss is given by,

r
2
✓L

(S)
KL

⇣
yt,
�
�(f̃(✓;xt, "s))

 S
s=1

⌘
=

1

S

SX

s=1

�0(f̃(✓,xt, "s))r✓f̃(✓,xt, "s)r✓f̃(✓,xt, "s)
T

+ (�(f̃(✓,xt, "s))� yt)r
2
✓f̃(✓,xt, "s)

�
1

S

SX

s=1

q(1� q)r✓f̃(✓,xt, "s)r✓f̃(✓,xt, "s)
T
� �KLr

2
✓f(✓;xt)

Consider u 2 S
p�1, the unit ball in Rp. We want to show that

uT
r

2
✓L

(S)
KL

⇣
yt,
�
�(f̃(✓;xt, "s))

 S
s=1

⌘
u > 0. Now as in the proof of Lemma 6 we can

show that with probability
⇣
1� 2T (L+2)

m

⌘

uT
r

2
✓L

(S)
KL

⇣
yt,
�
�(f̃(✓;xt, "s))

 S
s=1

⌘
u � q(1� q)

c2p
4
p
m

�
�KLCH
p
m

=
�KLCH
p
m

,

30

Published as a conference paper at ICLR 2024

where the last equality follows because c2p =
8�KLCH

q(1� q)
= O(1).

Lemma 11. Under Assumption 5 with probability
�
1� 2T (L+1)C

m

�
, for some absolute constant C > 0,

L
(S)
KL

⇣
yt,
�
f̃(✓;xt, "s)

 S
s=1

⌘
satisfies the QG condition over the randomness of the initialization and

{"s}Ss=1, with constant µ = O(1).

Proof. Recall from (43) that we have,

r✓L
(S)
KL

⇣
yt,
�
�(f̃(✓;xt, "s))

 S
s=1

⌘
=

1

S

SX

s=1

⇣
�(f̃(✓,xt, "s))� yt

⌘
r✓f̃(✓,xt, "s),

and therefore,
���r✓L

(S)
KL

⇣
yt,
�
�(f̃(✓;xt, "s))

 S
s=1

⌘���
2

2
=
���
1

S

SX

s=1

⇣
�(f̃(✓,xt, "s))� yt

⌘
r✓f̃(✓,xt, "s)

���
2

2

=
1

S2

SX

s=1

SX

s0=1

�
�(f̃(✓;xt, "s))� yt

��
�(f̃(✓;xt, "s))� yt

�D
rf̃(✓;xt, "s),rf̃(✓;xt, "s0)

E

=
1

S2
(F (✓;xt)� yt S)

T K̃(✓,xt)(F (✓;xt)� yt S)

where F (✓,xt) : Rp⇥d
! RS such that (F (✓,xt))s = �

�
f̃(✓;xt, "s)

�
, S is an S-dimensional

vector of 10s and K̃(✓,xt) =
⇥⌦
r✓f̃(✓;xt, "s),r✓f̃(✓;xt, "0s)

↵⇤
. As in the proof of Lemma 7 with

probability
⇣
1� 2T (L+1)C

m

⌘
for some absolute constant C > 0, we have

1

S2
(F (✓;xt)� yt S)

T K̃(✓,xt)(F (✓;xt)� yt S) � 2µL
(S)
Sq

⇣
yt,
�
�
�
f̃(✓;xt, "s)

� S
s=1

⌘
, (44)

with µ = 128 and

L
(S)
Sq

⇣
yt,
�
�
�
f̃(✓;xt, "s)

� S
s=1

⌘
:=

1

S

SX

s=1

`Sq
�
yt,�(f̃(✓,xt, "s))

�
.

Now using reverse Pinsker’s inequality (see eg. Sason (2015), eq (10)) we have

DKL

⇣
yt||�

�
f̃(✓,xt, ")

�⌘

`Sq
�
yt,�(f̃(✓,xt, "s))

�

2q

where DKL(p||q) is the KL divergence between p and q and �(f̃(✓,xt, ")) 2 [q, (1� q)] holds with
probability at least

⇣
1� 2T (L+2)+1

m

⌘
. Using this we have with probability at least

�
1� TLC

m

�
for

some absolute constant C > 0,

L
(S)
KL

⇣
yt,
�
�(f̃(✓;xt, "s))

 S
s=1

⌘
� L

(S)
KL

⇣
yt,
�
�(f̃(✓⇤;xt, "s))

 S
s=1

⌘

=
1

S

SX

s=1

DKL

⇣
yt||�

�
f̃(✓,xt, "s)

�⌘
�DKL

⇣
yt||�

�
f̃(✓⇤,xt, "s)

�⌘


1

S

SX

s=1

`Sq
�
yt,�(f̃(✓,xt, "s))

�

2q
=

1

2q
L
(S)
Sq

⇣
yt,
�
�
�
f̃(✓;xt, "s)

� S
s=1

⌘
.

Combining with (44) we get with probability at least
�
1� TLC

m

�
over the randomness of the initial-

ization and {"s}Ss=1 ���r✓L
(S)
KL

⇣
yt,
�
�(f̃(✓;xt, "s))

 S
s=1

⌘���
2

2

� µ0

L
(S)
KL

⇣
yt,
�
�(f̃(✓;xt, "s))

 S
s=1

⌘
� L

(S)
KL

⇣
yt,
�
�(f̃(✓⇤;xt, "s))

 S
s=1

⌘!

Therefore L
(S)
KL

⇣
yt,
�
�(f̃(✓;xt, "s))

 S
s=1

⌘
satisfies the QG condition with µ0 = O(1).

31

Published as a conference paper at ICLR 2024

Lemma 12. Under Assumption 1 and 5 with probability
�
1� TLC

m

�
for some absolute constant

C > 0 over the randomness of the initialization we have
TX

t=1

L
(S)
KL

⇣
yt,
�
�(f̃(✓⇤;xt, "s))

 S
s=1

⌘
= O(1).

Proof. Recall from the proof of Lemma 11 that using reverse Pinsker’s inequality we have with
probability at least

�
1� TLC

m

�
for some absolute constant C > 0,

L
(S)
KL

⇣
yt,
�
�(f̃(✓;xt, "s))

 S
s=1

⌘


1

2q
L
(S)
Sq

⇣
yt,
�
�
�
f̃(✓;xt, "s)

� S
s=1

⌘
.

Therefore
TX

t=1

L
(S)
KL

⇣
yt,
�
�(f̃(✓;xt, "s))

 S
s=1

⌘


1

2q

TX

t=1

L
(S)
Sq

⇣
yt,
�
�
�
f̃(✓;xt, "s)

� S
s=1

⌘
= O(1)

where the last part follows from 39 in the proof of Lemma 8.

Finally we can use Theorem E.1 to conclude that there exists ✓̄ 2 BFrob
⇢,⇢1 (✓0) such that with probability

at least
�
1� 2T (L+1)

m

�
over the randomness of initialization we have �(f(✓̄,xt)) = yt for any set

of yt 2 [q, 1� q], 8t 2 [T] where q is as defined in (42). Without loss of generality assume z = q
(otherwise the predictor can be changed to ŷt = �(kzf(✓,xt)) for some constant kz that depends
on z) and therefore we have with probability at least

�
1� TLC

m

�
for some absolute constant C > 0

min✓2BFrob
⇢,⇢1

(✓0)

PT
t=1 `KL

�
yt,�(f(✓;xt))

�
= 0.

C.4 AUXILIARY LEMMAS

With slight abuse of notation, we have defined zt = (xt, yt) and L(✓; zt) = `(yt, f(✓;xt)).

Lemma 13 (Almost Convexity of Loss). Under the conditions of Lemma 1, with a high probability,
8✓0 2 BFrob

⇢,⇢1 (✓0),

L(✓0; zt) � L(✓t; zt) + h✓0 � ✓t,r✓L(✓t; zt)i+ a h✓0 � ✓t,rf(✓00; zt)i
2
� ✏t , (45)

where ✏t =
4
�
4a%(L⇢+ ⇢1) + �

�
cH(L⇢+ ⇢1)2

p
m

,

for any ✓00 2 BFrob
⇢,⇢1 (✓0), where cH and % are as in Theorem 1 and �, a are as in Assumption 3

(lipschitz, strongly convex, smooth).

Proof. Consider any ✓0 2 BFrob
⇢,⇢1 (✓0). By the second order Taylor expansion around ✓t, we have

L(✓0; zt) = L(✓t; zt) + h✓0 � ✓t,r✓L(✓t; zt)i+
1

2
(✓0 � ✓t)

> @
2
L(✓̃t; zt)

@✓2
(✓0 � ✓t) ,

where ✓̃t = ⇠✓0 + (1� ⇠)✓t for some ⇠ 2 [0, 1]. Since ✓t, ✓0 2 BFrob
⇢,⇢1 (✓0), we have

�� vec(W̃ (l)
t)� vec(W (l)

0)
��
2
=
��⇠ vec(W

0(l)) + (1� ⇠) vec(W (l)
t)� vec(W (l)

0)
��
2

 ⇠
�� vec(W

0(l))� vec(W (l)
0)
��
2
+ (1� ⇠)

�� vec(W (l)
t)� vec(W (l)

0)
��
2

 ⇠⇢+ (1� ⇠)⇢ = ⇢,

kṽt � v0k2  k⇠v0 + (1� ⇠)vt � v0k2  ⇠kv
0
� v0k2 + (1� ⇠)kvt � v0k2

 ⇠⇢1 + (1� ⇠)⇢1 = ⇢1

and therefore ✓̃t 2 BFrob
⇢,⇢1 (✓0) which implies ✓̃t 2 BEuc

L⇢+⇢1
(✓0). Focusing on the quadratic form in

the Taylor expansion, we have

(✓0 � ✓t)
> @

2
L(✓̃t; zt)

@✓2
(✓0 � ✓t) = (✓0 � ✓t)

> 1

nt

ntX

i=1

"
˜̀00
t,i
@f(✓̃t;xt)

@✓

@f(✓̃t;xt)

@✓

>

+ ˜̀0
t,i
@2f(✓̃t;xt)

@✓2

#
(✓0 � ✓t)

=
1

nt

ntX

i=1

˜̀00
t,i

*
✓0 � ✓t,

@f(✓̃t;xt)

@✓

+2

| {z }
I1

+ ˜̀0
t,i(✓

0
� ✓t)

> @
2f(✓̃t;xt)

@✓2
(✓0 � ✓t)

| {z }
I2

,

32

Published as a conference paper at ICLR 2024

˜̀
t,i corresponds to the loss `(yt,i, f(✓̃;xt)), and ˜̀0

t,i, ˜̀
00
t,i denote the corresponding first and second

derivatives w.r.t. ỹt,i = f(✓̃;xt). For analyzing I1, choose any ✓00 2 BFrob
⇢,⇢1 (✓0). Now, note that

I1 = `00t,i

*
✓0 � ✓t,

@f(✓̃t;xt)

@✓

+2

� a

*
✓0 � ✓t,

@f(✓00;xt)

@✓
+

@f(✓̃t;xt)

@✓
�
@f(✓00;xt)

@✓

!+2

= a

⌧
✓0 � ✓t,

@f(✓00;xt)

@✓

�2

+ a

*
✓0 � ✓t,

@f(✓̃t;xt)

@✓
�
@f(✓00;xt)

@✓

+2

+ 2a

⌧
✓0 � ✓t,

@f(✓00;xt)

@✓

�*
✓0 � ✓t,

@f(✓̃t;xt)

@✓
�
@f(✓00;xt)

@✓

+

� a

⌧
✓0 � ✓t,

@f(✓00;xt)

@✓

�2

� 2a

����
@f(✓00;xt)

@✓

����
2

�����
@f(✓̃t;xt)

@✓
�
@f(✓00;xt)

@✓

�����
2

k✓0 � ✓tk
2
2

(a)
� a h✓0 � ✓t,rf(✓00;xt)i

2
� 2a%

cH
p
m
k✓̃t � ✓00k2k✓

0
� ✓tk

2
2

(b)
� a h✓0 � ✓t,rf(✓00;xt)i

2
�

16a%cH(L⇢+ ⇢1)3
p
m

,

where (a) follows from Proposition 1 since ✓̃t 2 B⇢(✓0) and since krf(✓00;xi)k2  %, and (b)
follows since k✓̃t � ✓00k2, k✓0 � ✓tk2, k✓̃t � ✓00k2  2(L⇢ + ⇢1) by triangle inequality because
✓̃, ✓0, ✓t 2 BEuc

L⇢+⇢1
(✓0).

For analyzing I2, with Qt,i = (✓0 � ✓t)>
@2f(✓̃t;xi)

@✓2 (✓0 � ✓t), we have

|Qt,i| =

�����(✓
0
� ✓t)

> @
2f(✓̃t;xi)

@✓2
(✓0 � ✓t)

�����  k✓0 � ✓tk
2
2

�����
@2f(✓̃t;xi)

@✓2

�����
2


cHk✓0 � ✓tk22

p
m


4cH(L⇢+ ⇢1)2

p
m

,

since k✓0 � ✓tk2  2(L⇢+ ⇢1) by triangle inequality because ✓0, ✓t 2 BEuc
L⇢+⇢1

(✓0). Further, since
|˜̀0i|  � by Assumption 3 (lipschitz, strongly convex, smooth), we have

I2 = ˜̀0
iQt,i � �|˜̀0i||Qt,i| � �

4(L⇢+ ⇢1)2cH�
p
m

.

Putting the lower bounds on I1 and I2 back, we have

(✓0 � ✓t)
> @

2
L(✓̃t)

@✓2
(✓0 � ✓t) � a h✓0 � ✓t,rf(✓00;xt)i

2
�

4
�
4a%(L⇢+ ⇢1) + �

�
cH(L⇢+ ⇢1)2

p
m

.

That completes the proof.

Lemma 14. Under Assumption 5 and creg =
p

8�SqCH , with probability
⇣
1� 2T (L+1)

m

⌘
over the

randomness of the initialization, the expected loss E"`Sq
�
yt, f̃(✓,xt, ")

�
is ⌫-strongly convex with

respect to ✓ 2 BFrob
⇢,⇢1 (✓0), where ⌫ = O

⇣
1p
m

⌘
.

Proof. From (10) we have a.s.

r✓f̃(✓,xt, ") = r✓f(✓;x) + creg

pX

i=1

ei"i
m1/4

, (46)

r
2
✓f̃(✓,xt, ") = r

2
✓f(✓;x). (47)

33

Published as a conference paper at ICLR 2024

Next, with `0t = (f̃(✓,xt, ")� yt)

r✓`Sq
�
yt, f̃(✓,xt, ")

�
=

1

nt

ntX

i=1

`0tr✓f̃(✓,xt, ")

r
2
✓`Sq

�
yt, f̃(✓,xt, ")

�
=

1

nt

ntX

i=1

r✓f̃(✓,xt, ")r✓f̃(✓,xt, ")
T + `0tr

2
✓f̃(✓,xt, ")

where we have used the fact that `00t = 1, and r
2
✓f̃(✓,xt, ") = r

2
✓f(✓;xt) from (47). Taking

expectation with respect to "i and using (46) we get

r
2
✓E"`Sq

�
yt, f̃(✓,xt, ")

�
=

1

nt

ntX

i=1

E"r✓f̃(✓,xt, ")r✓f̃(✓,xt, ")
T + `0t,ir

2
✓f(✓;xt)

=
1

nt

ntX

i=1

E"

r✓f(✓;xt) + creg

pX

i=1

ei
m1/4

"i

!
r✓f(✓;xt) + creg

pX

i=1

ei
m1/4

"i

!T

+ `0t,ir
2
✓f(✓;xt)

=
1

nt

ntX

i=1

E"

"
r✓f(✓;xt)r✓f(✓;xt)

T + creg

pX

i=1

eir✓f(✓;xt)T

m1/4
"i

+creg

pX

i=1

r✓f(✓;xt)eTi
m1/4

"i + c2reg

pX

i=1

pX

j=1

eieTj
p
m
"i"j

#
+ `0t,ir

2
✓f(✓;xt)

=
1

nt

ntX

i=1

r✓f(✓;xt)r✓f(✓;xt)
T +

c2reg
p
m
I + `0t,ir

2
✓f(✓;xt)

where the last equality follows from the fact that E["i] = 0 and E["i"j] = 0 for i 6= j and E["i"j] = 1

for i = j and therefore
pX

i=1

eie
T
i = I , the identity matrix. Now consider any u 2 Rp, kuk = 1. We

want to show that uT
r

2
✓E"`Sq

�
yt, f̃(✓,xt, ")

�
u > 0.

uT
r

2
✓E"`Sq

�
yt, f̃(✓,xt, ")

�
u =

1

nt

ntX

i=1

hu,r✓f(✓;xt)i
2 +

c2reg
p
m
kuk2 + `0t,iu

T
r

2
✓f(✓;xt)u

(a)
�

c2reg
p
m

�
�SqCH
p
m

(b)
=
�SqCH
p
m

where (a) uses the fact that |`0t|  �Sq and that kr2
✓f(✓;xt)k2 

CHp
m

holds with probability⇣
1� 2(L+1)

m

⌘
from Proposition 1. Further (b) uses the fact that c2reg = 2�SqCH . Finally with a

union bound over it 2 [nt], t 2 [T] and noting that u was arbitrary we conclude that with probability⇣
1� 2T (L+1)

m

⌘
over the randomness of initialization E"`Sq

�
yt, f̃(✓,xt, ")

�
is ⌫-strongly convex

with ⌫ = �SqCHp
m

.

34

Published as a conference paper at ICLR 2024

D PROOF OF RESULTS FOR CONTEXTUAL BANDITS (SECTION 4)
Theorem 4.1 (Regret bound for NeuSquareCB). Under Assumption 6 and 5 with appropriate choice
of the parameter �, step-size sequence {⌘t} width m, and regularization parameter cp, with high
probability over the randomness in the initialization and {"}Ss=1 the regret for NeuSquareCB with
⇢ = ⇥(

p
T/�0), ⇢1 = ⇥(1) is given by RegCB(T)  Õ(

p
KT).

Proof. Choosing � = 1
T and � =

p
KT/(RSq(T)) + log(2T) in Theorem 1 of Foster and Rakhlin

(2020) we get:

E
⇥

RegCB(T)
⇤
 4
q

KTRSq(T) + 8
p
KT ln(2T) + 1

Using Theorem 4.1 we have with probability at least
�
1� 2LC

m

�
for some absolute constant C > 0,

E
⇥

RegCB(T)
⇤
 Õ(

p
KT log T) + 8

p
KT ln(2T) + 1

 Õ(
p

KT)

which completes the proof.

Theorem 4.2 (Regret bound for NeuFastCB). Under Assumption 6 and 5 with appropriate choice
of the parameter �, step-size sequence {⌘t} width m, and regularization parameter cp, with high
probability over the randomness in the initialization and {"}Ss=1, the regret for NeuFastCB with
⇢ = ⇥(

p
T/�0), ⇢1 = ⇥(1) is given by RegCB(T)  Õ(

p
L⇤K +K), where L⇤ =

PT
t=1 yt,a⇤

t
.

Proof. Choosing � = max(
p
KL⇤/3RKL(T), 10K) and using Theorem 1 from Foster and Krishna-

murthy (2021) we get

E
⇥

RegCB(T)
⇤
= 40

p
L⇤KRKL(T) + 600K RKL(T)

Using Theorem 4.2 we have with probability at least
�
1� 2LC

m

�
for some absolute constant C > 0,

E
⇥

RegCB(T)
⇤
 O(

p
L⇤K log T) + 600KO(log T)

 Õ(
p

KL⇤ +K)

which completes the proof.

Remark D.1. A keen reader might notice that the reduction in (Foster and Rakhlin, 2020)
requires us to control RSq(T) =

PT
t=1 `Sq(yt, ŷt) �

PT
t=1 `Sq(yt, h(xt)), but our regret guar-

antee is for R̃Sq(T) in (12). However, note that in step-4 of the proof of Theorem 3.2 we
argued that

PT
t=1 L

(S)
Sq

⇣
yt,
�
f̃(✓̃⇤;xt, "s)

 S
s=1

⌘
= O(1) and therefore our regret bound im-

plies
PT

t=1 `Sq(yt, ŷt)  O(log T) with ŷT = f̃ (S)
�
✓t;xt, "(1:S)

�
which immediately implies

RegSq(T)  O(log T). A similar argument follows for Foster and Krishnamurthy (2021).

35

Published as a conference paper at ICLR 2024

E INTERPOLATION WITH WIDE NETWORKS (PROOF OF THEOREM E.1)
In this section, we focus on showing that under suitable assumptions, wide networks can interpolate
any given data. We assume ` to be the squared loss throughout this subsection.

Theorem E.1. Under Assumptions 4 and 5, for any h : X 7! [0, 1] and any set of inputs xt 2

X , t 2 [T], for f(✓;x) of the form (1), if the width m = ⌦(T 4), there exists ✓̃ 2 BFrob
⇢,⇢1 (✓0)

with ⇢ = ⇥(
p
T
�0

) and ⇢1 = ⇥(1), such that with probability at least (1 �
2(L+1)

m) we have
f(✓̃,xt) = h(xt), 8t 2 [T]; further, there exists ✓̄ 2 BFrob

⇢,⇢1 (✓0) such that with probability at
least (1� 2(L+1)

m) we have f(✓̄,xt) = yt, for any set of yt 2 [0, 1], t 2 [T].

We start with an outline of the overall proof, which has four technical steps, some of which follow
from direct observations, assumptions, or existing results (especially on the NTK), and some require
new proofs.

1. It is sufficient to prove the interpolation result showing f(✓̄,xt) = yt for any yt as the result
for the interpolation f(✓̄,xt) = h(xt) follow as a special case with yt = h(xt). Further we
consider ⇢1 = 0 which immediately implies the result for ⇢1 = ⇥(1).

2. The interpolation analysis will utilize the fact that the NTK is positive definite at initialization.
For simplicity, Assumption 5 (positive definite NTK) takes care of this aspect for Theorem E.1,
with �0 > 0 being the lower bound to minimum eigen-value of the NTK.

3. To show existence of ✓̄ which interpolates f(✓̄,xt) = yt, t 2 [T], we in fact show that gradient
descent on least squares loss with suitably small step size ⌘ and suitably large width m will
have geometrically decreasing cumulative square loss. The decreasing loss along with the fact
that the sequence of iterates ✓t 2 BFrob

⇢,⇢1 (✓0) with ⇢ = ⇥(
p
T
�0

), ⇢1 = 0, i.e., stay within the
closed ball, implies existence of ✓̄ 2 BFrob

⇢,⇢1 (✓0) which interpolates the data.

4. Two key properties need to be maintained as the gradient descent iterations proceed: first, as
discussed above, the iterates ✓t 2 BFrob

⇢,⇢1 (✓0) with ⇢ = ⇥(
p
T
�0

), ⇢1 = 0, i.e., the iterates stay
within the ball; and second, the NTK corresponding to all ✓t need to stay positive definite. As
we will show, these two properties are coupled, and the geometric decrease of the loss helps in
the analysis of both properties.

We define

ˆ̀(✓) :=
TX

t=1

`(yt, f(✓;xt)) , (48)

Lemma 1 (NTK condition per step). Under Assumptions 5 and 4, for the gradient descent update
✓t+1 = ✓t�⌘trL(✓t) for the cumulative square loss ˆ̀(✓) =

PT
n=1(yn�f(✓;xn))2 with ✓t, ✓t+1 2

BFrob
⇢,⇢1 (✓0) with ⇢ = ⇥(

p
T
�0

), ⇢1 = 0, with probability at least
⇣
1� 2(L+1)

m

⌘
over the initialization

of model,

�min(KNTK(✓t+1)) � �min(KNTK(✓t))� 4cH%
2 T
p
m
⌘t

q
ˆ̀(✓t) , (49)

where cH and % are as in Lemma 1.

Proof. Observe that KNTK(✓) = J(✓)J(✓)>, where the Jacobian

J(✓) =

2

66664

⇣
@f(✓;x1)
@W (1)

⌘>
. . .

⇣
@f(✓;x1)
@W (L)

⌘>

...
. . .

...⇣
@f(✓;xn)
@W (1)

⌘>
. . .

⇣
@f(✓;xn)
@W (L)

⌘>

3

77775
2 RT⇥(md+Lm2) , (50)

36

Published as a conference paper at ICLR 2024

where the parameter matrices are vectorized and the last layer W (L+1) = v0 is ignored since we
will not be doing gradient descent on the last layer and its kept fixed. Then, the spectral norm of the
change in the NTK is given by

kKNTK(✓t+1)�KNTK(✓t)k2 =
��J(✓t+1)J(✓t+1)

>
� J(✓t)J(✓t)

>��
2

=
��J(✓t+1)(J(✓t+1)� J(✓t))

>
� (J(✓t+1)� J(✓t))J(✓t)

>��
2

 (kJ(✓t+1)k2 + kJ(✓t)k2) kJ(✓t+1)� J(✓t)k2 .
(51)

Now, for any ✓ 2 BFrob
⇢,⇢1 (✓0),

kJ(✓)k22  kJ(✓)k2F =
NX

n=1

����
@f(✓;xn)

@✓

����
2

2

(a)
 T%2

where (a) follows from by Lemma 1. Assuming ✓t, ✓t+1 2 BFrob
⇢,⇢1 (✓0), we have

kJ(✓t)k2 , kJ(✓t+1)k2 
p
T%, so that from (51) we get

kKNTK(✓t+1)�KNTK(✓t)k2  2
p

T% kJ(✓t+1)� J(✓t)k2 . (52)

Now, note that

kJ(✓t+1)� J(✓t)k2  kJ(✓t+1)� J(✓t)kF (53)



vuut
TX

n=1

����
@f(✓t+1;xn)

@✓
�
@f(✓t;xn)

@✓

����
2

2

(54)

(a)


p

T sup
✓̃t,i

�����
@2f(✓̃t;xi)

@✓2

�����
2

k✓t+1 � ✓tk2

(b)


cH
p
T

p
m

k✓t+1 � ✓tk2 (55)

(c)
=

cH
p
T

p
m

⌘t
���rˆ̀(✓t)

���
2

(d)


2cH
p
T%

p
m

⌘t

q
ˆ̀(✓t) ,

where (a) follows from the mean-value theorem with ✓̃t 2 {(1� ⇠)✓t + ⇠✓t+1for some ⇠ 2 [0, 1]},
(b) follows from Lemma 1 since ✓̃ 2 BFrob

⇢,⇢1 (✓0), (c) follows from the gradient descent update, and
(d) follows from Lemma 3. Then, using (52), we have

kKNTK(✓t+1)�KNTK(✓t)k2  4cH%
2 T
p
m
⌘t

q
ˆ̀(✓t) . (56)

Then, by triangle inequality

�min(KNTK(✓t+1)) � �min(KNTK(✓t))� kKNTK(✓t+1)�KNTK(✓t)k2
(a)
� �min(KNTK(✓t))� 4cH%

2 T
p
m
⌘t

q
ˆ̀(✓t) ,

where (a) follows from (56). That completes the proof.

Theorem E.2 (Geometric convergence: Unknown Desired Loss). Under Assumptions 4 and
5, consider the gradient descent update ✓t+1 = ✓t � ⌘trˆ̀(✓t) for the cumulative loss ˆ̀(✓) =PT

n=1(yi � f(✓;xi))2 with step size

⌘t = ⌘ < min

✓
1

�N
,
1

�0

◆
,

37

Published as a conference paper at ICLR 2024

with � as in Lemma 4. Then, choosing width m = ⌦
⇣

T 3

�4
0

⌘
and depth L = O(1), with probability at

least
⇣
1� 2(L+1)

m

⌘
, we have {✓t}t ⇢ BFrob

⇢,⇢1 (✓0) with ⇢ = ⇥(
p
T
�0

) ⇢1 = 0, and for every t,

ˆ̀(✓t+1)  (1� ⌘�0)
t ˆ̀(✓0) . (57)

Proof. First note that with probability at least
⇣
1� 2(L+1)

m

⌘
, all the bounds in Theorem 1, Lemma 2,

and Corollary 3 hold, and so does Lemma 1, since its proof uses these bounds.

Further, we note that for L = O(1) we obtain the constant cH = O((1+⇢1)(1+(4⌫0+
⇢p
m
)O(1))) =

O(1) following Lemma 1 since ⇢1 = 0, where the last equality follows from the fact that m =

⌦(T
4

�2
0
) > ⌦(T

�2
0
) and ⇢ = ⇥(

p
T
�0

). We will use cH  c2 for some suitable constant c2 > 0.

We also note that %2 = O((1 + 1
m (1 + ⇢1)2(1 + �2(L+1)). Then, using the fact that, L = O(1),

⇢ = ⇥(
p
T
�0

), ⇢1 = 0 and m = ⌦(T
4

�2
0
) > ⌦(T

�2
0
), we obtain that %2 = O(1). We will use %2  c3 for

some suitable constant c3 > 0.

Finally, we observe that c̄⇢1,� = O((1 + ⇢21)(1 + �L)) (see definition in Lemma 2). Then, taking the
definition of � (as in Lemma 4), we have that � = b%2 + 1p

m
O(poly(L)(1 + �3L)(1 + ⇢21). Again,

in a similar fashion as in the analysis of the expressions cH and %, we have that in our problem setting
� = O(1) since ⇢1 = 0. We will use �  c4 for some suitable constant c4 > 0.

We now proceed with the proof by induction. First, for t = 1, we show that, based on the choice of
the step size, ✓1 2 BFrob

⇢,⇢1 (✓0) for ⇢1 = 0. To see this, note that

k✓1 � ✓0k2 = ⌘krˆ̀(✓0)k2
(a)
 2%⌘

q
ˆ̀(✓0)

(b)
 2%⌘

p
T c̄0,4⌫0 = 2%⌘�0

p
T c̄0,4⌫0
�0

 2%
p
c̄0,4⌫0

p
T

�0

(c)
 ⇢ ,

where (a) follows from Lemma 3, (b) from Lemma 2, (c) follows since ⇢ = ⇥(
p
T
�0

) and ⇢1 = 0 so
the last layer is not getting updated. Hence, ✓1 2 BFrob

⇢,⇢1 (✓0). We now take the smoothness property
from Lemma 4, and further obtain

ˆ̀(✓1)� ˆ̀(✓0)  h✓1 � ✓0,r✓
ˆ̀(✓0)i+

�T

2
k✓1 � ✓0k

2
2

(a)
 �⌘

���r✓
ˆ̀(✓0)

���
2

2
+
�⌘2T

2

���r✓
ˆ̀(✓0)

���
2

2

= �⌘

✓
1�

�⌘T

2

◆���r✓
ˆ̀(✓t)

���
2

2

(b)
 �

⌘

2

���r✓
ˆ̀(✓0)

���
2

2

(c)
 �

⌘

2
`0>0 KNTK(✓0)`

0
0

(d)
 �

⌘

2
�min(KNTK(✓0)) k`

0
0k

2
2

(e)
 �

⌘

2
�04ˆ̀(✓0)

 �⌘�0 ˆ̀(✓0)

=) ˆ̀(✓1)  (1� ⌘�0) ˆ̀(✓0),

(58)

where (a) follows from the gradient descent update; (b) follows from our choice of step-size ⌘ 
1
�N

so that �(1� �⌘T
2)  �

1
2 ; (c) follows from the following property valid for any iterate ✓t 2 Rp,

���r✓
ˆ̀(✓t)

���
2

2
=

�����

NX

n=1

`0t,nr✓f(✓t;xn)

�����

2

2

=
NX

n=1

NX

n0=1

`0t,n`
0
t,n0hr✓f(✓t;xn),r✓f(✓t;xn0)i = `0Tt KNTK(✓t)`

0
t ,

38

Published as a conference paper at ICLR 2024

where `0t := [`0t,n] 2 RN , with `0t,n = �2(yi � f(✓t;xn)) and `t,n = (yn � f(✓t;xn))2; (d) follows
from the definition of minimum eigenvalue; and (e) follows from the following property valid for any
iterate ✓t 2 Rp,

k`0tk
2
2 =

NX

n=1

`02t,n = 4
NX

n=1

(yn � f(✓t;xn))
2 = 4ˆ̀(✓t) . (59)

Notice that, from our choice of step-size ⌘ < 1
�0

, we have that 1� ⌘�0 2 (0, 1).

Continuing with our proof by induction, we take the following induction hypothesis: we assume that

ˆ̀(✓t)  (1� ⌘�0)
t�1 ˆ̀(✓0) (60)

and that ✓⌧ 2 BFrob
⇢,⇢1 (✓0) with ⇢1 = 0 for ⌧  t.

First, based on the choice of the step sizes, we show that ✓t+1 2 BFrob
⇢,⇢1 (✓0) with ⇢1 = 0. To see this,

note that, using similar inequalities as in our analysis for the case t = 1,

k✓t+1 � ✓0k2 

tX

⌧=0

k✓⌧+1 � ✓⌧k2 =
tX

⌧=0

⌘kr✓
ˆ̀(✓⌧)k2  2%⌘

tX

⌧=0

q
ˆ̀(✓⌧)

(a)
 2%⌘

tX

⌧=0

(1� ⌘�0)
⌧/2

!q
ˆ̀(✓0)  2%⌘

q
ˆ̀(✓0)

1�
p
1� ⌘�0

(b)


4%
q

ˆ̀(✓0)

�0
 4%

p
c0,4⌫0

p
T

�0

(c)
 ⇢ ,

where (a) follows from our induction hypothesis, (b) follows from x
1�

p
1�x�0


2
�0

for x < 1
�0

, and

(c) follows since ⇢ = ⇥(
p
T
�0

).

Now, we have

�min(KNTK(✓t))
(a)
� �min(KNTK(✓t�1))� 4cH%

2 T
p
m
⌘
q

ˆ̀(✓t�1)

� �min(KNTK)(✓0)� 4cH%
2⌘

T
p
m

t�1X

⌧=0

q
ˆ̀(✓⌧)

(b)
� �0 � 4c2%

2⌘
T
p
m

tX

⌧=0

(1� ⌘�0)
⌧/2

!q
ˆ̀(✓0)

� �0 � 8c2%
2
T
q

ˆ̀(✓0)
p
m

⌘

1�
p
1� ⌘�0

(c)
� �0 �

T 3/2

p
m

c̄⌘

1�
p
1� ⌘�0

� �0 �
2c̄T 3/2

�0
p
m

where (a) follows from Lemma 1, (b) follows by the induction hypothesis, and (c) follows with
c̄ = 8

p
c0,�1c3. Then, with m � 16c̄2 T 3

�4
0

we have

�min(KNTK(✓t)) � �0/2 . (61)

39

Published as a conference paper at ICLR 2024

Since ✓t, ✓t+1 2 BFrob
⇢,⇢1 (✓0) with ⇢1 = 0, we now take the smoothness property and further obtain,

using similar inequalities as in our analysis for the case t = 1,

ˆ̀(✓t+1)� ˆ̀(✓t)  h✓t+1 � ✓t,r✓
ˆ̀(✓t)i+

�T

2
k✓t+1 � ✓tk

2
2

(a)
 �⌘

���r✓
ˆ̀(✓t)

���
2

2
+
�⌘2T

2

���r✓
ˆ̀(✓t)

���
2

2

= �⌘

✓
1�

�⌘T

2

◆���r✓
ˆ̀(✓t)

���
2

2

 �
⌘

2
`0>t KNTK(✓t)`

0
t

 �
⌘

2
�min(KNTK(✓t)) k`

0
tk

2
2

(b)
 �

⌘

2

�0
2
4ˆ̀(✓t)

=) ˆ̀(✓t+1)  (1� ⌘�0) ˆ̀(✓t),

(62)

where (a) follows from the gradient descent update and (b) from our recently derived result. That
establishes the induction step and completes the proof.

40

Published as a conference paper at ICLR 2024

F RELATED WORK

Contextual Bandits: The contextual bandit setting with linear losses has received extensive attention
(see for eg. Abe et al., 2003; Chu et al., 2011; Abbasi-Yadkori et al., 2011; Agrawal and Goyal, 2013;
Ban and He, 2020; 2021). Owing to its remarkable success, Lu and Van Roy (2017); Zahavy and
Mannor (2020); Riquelme et al. (2018) adapted neural models to the contextual bandit setting. In
these initial works all but the last layers of a DNN were utilized as a feature map to transform contexts
from the raw input space to a low-dimensional space and a linear exploration policy was then learned
on top of the last hidden layer of the DNN. Although these attempts have yielded promising empirical
results, no regret guarantees were provided. Subsequently (Zhou et al., 2020) introduced the first
neural bandit algorithm with provable regret guarantees that uses a UCB based exploration and Zhang
et al. (2021) further extended it to the Thompson sampling approach. Both these approaches rely
on Kernel bandits (Valko et al., 2013) and have a linear dependence on effective dimension d̃ of the
(NTK) Neural Tangent Kernel (see Allen-Zhu et al., 2019b; Jacot et al., 2018; Cao and Gu, 2019b).
Moreover both these algorithms require the inversion of a matrix of size equal to the number of
parameters in the model at each step of the algorithm. Recently, Ban et al. (2022b) attained a regret
bound independent of d̃, but makes distributional assumptions on the context. (Qi et al., 2022; 2023;
Ban et al., 2021; 2022a) shows the successful application of neural bandits on the recommender
systems.

Overparameterized Models: Considerable progress has been made in understanding the expressive
power of Deep Neural Networks in the overparameterized regime (Du et al., 2019; Allen-Zhu et al.,
2019b;a; Cao and Gu, 2019b; Arora et al., 2019a). It has been shown that the dynamics of the
Neural Tangent Kernel always stays close to random initialization when the network is wide enough
(Jacot et al., 2018; Arora et al., 2019b). Further Cao and Gu (2019b) demonstrate that the loss
function of neural network has the almost convexity in the overparameterized regime while Liu
et al. (2020; 2022); Frei and Gu (2021); Charles and Papailiopoulos (2018) study neural models
under Polyak-Lojasiewicz (PL) Type conditions (Polyak, 1963; Lojasiewicz, 1963; Karimi et al.,
2016). Recently, Banerjee et al. (2023) provided a bound on the spectral norm of the Hessian of the
netowrk over a larger layerwise spectral norm radius ball (in comparison to Liu et al. (2020)) and
show geometric convergence in deep learning optimization using restricted strong convexity. Our
regret analysis makes use of these recent advances in deep learning.

G DETAILS OF EXPERIMENTS

Baselines. We choose four neural bandit algorithms: (1) NeuralUCB (Zhou et al., 2020) maintains a
confidence bound at every step using the gradients of the network and selects the most optimistic arm.
(2) NeuralTS (Neural Thompson Sampling) (Zhang et al., 2021) estimates the rewards by drawing
them from a normal distribution whose mean is the output of the neural network and the variance is a
quadratic form of the gradients of the network. The arm with the maximum sampled reward from
this distribution is selected. (3) EE-Net (Ban et al., 2022b): In addition to employing an Exploitation
network for learning the output function, it uses another Exploration network to learn the potential
gain of exploring in relation to the current estimated reward. (4) NeuralEpsilon employs the ✏-greedy
strategy: with probability 1� ✏ it chooses the arm with the maximum estimated reward generated by
the network and with probability ✏ it chooses a random arm.

Datasets. We consider a collection of 6 multiclass classification based datasets from the openml.org
platform: covertype, fashion, MagicTelescope, mushroom, Plants and shuttle. Following the evalua-
tion setting of existing works (Zhou et al., 2020; Ban et al., 2022b), given an input xt 2 Rd for a
K-class classification problem, we transform it into dK dimensional context vectors for each arm:
xt,1 = (xt,0,0, . . . ,0)T , xt,2 = (0,xt,0, . . . ,0)T), . . . ,xt,K = (0,0, . . . ,0,xt)T . The reward is
defined as 1 if the index of selected arm equals x’s ground-truth class; otherwise, the reward is 0.

Architecture: Both NeuSquareCB and NeuFastCB use a 2-layered ReLu network with 100 hid-
den neurons. The last layer in NeuRIG uses a linear activation while NeuFastCB uses a sigmoid.
Following the scheme in Zhou et al. (2020) and Zhang et al. (2021) we use a diagonal matrix ap-
proximation in both NeuralUCB and NeuralTS to save computation cost in matrix inversion. Both
use a 2-layered ReLu network with 100 hidden neurons and the last layer uses a linear activation.
We perform a grid-search over the regularization parameter � over (1, 0.1, 0.01) and the exploration
parameter ⌫ over (0.1, 0.01, 0.001). NeuralEpsilon uses the same neural architecture and the ex-
ploration parameter ✏ is searched over (0.1, 0.05, 0.01). For EE-Net we use the architecture from

41

Published as a conference paper at ICLR 2024

https://github.com/banyikun/EE-Net-ICLR-2022. For all the algorithms we also
do a grid-search for the step-size over (0.01, 0.005, 0.001).

Figure 2: Figure 1 re-plotted for better visualization. Comparison of cumulative regret of
NeuSquareCB and NeuFastCB with baselines on real-world datasets (averaged over 20 runs). The
subplot below each figure plots the regret curve for NeuSquareCB and NeuFastCB again.

42

https://github.com/banyikun/EE-Net-ICLR-2022

Published as a conference paper at ICLR 2024

G.1 NeuSquareCB AND NeuFastCB

Although our regret bounds are for the regularized network as defined in (10), the results presented in
Section 5 are for the un-perturbed network. In this section we compare the un-perturbed network
with the regularized one for different choices of perturbation constant c = creg/m1/4.

Figure 3: Comparison of cumulative regret of NeuSquareCB for different choices of the regularization
parameter c = creg/m1/4 for the model defined in (10) (averaged over 10 runs).

As is evident from Figure 3 and 4, the cumulative regrets attained by the un-perturbed networks
(c = 0) are more or less similar to the perturbed one on these data-sets. However, the output
perturbation ensured a provable O(

p
KT) and O(

p
KL⇤ + K) regret bound for NeuSquareCB

and NeuFastCB respectively. For the set of problems in our experiments we observe that the non-
perturbed versions of NeuSquareCB and NeuFastCB behave similar to the perturbed versions, but do
not come with a provable regret bound. In particular, one may be able to construct a problem where
the non-perturbed version performs poorly.

43

Published as a conference paper at ICLR 2024

Figure 4: Comparison of cumulative regret of NeuFastCB for different choices of the regularization
parameter c = creg/m1/4 for the model defined in (10) (averaged over 10 runs).

44

	Introduction
	Research Gaps in Neural Contextual Bandits
	Our Contributions

	Neural Online Regression: Setting and Formulation
	Neural Online Regression: Regret Bounds
	Regret bounds for Squared Loss
	Regret bounds for KL Loss

	Neural Contextual Bandits: Formulation and Regret Bounds
	Experiments
	Conclusion
	Comparison with recent Neural Contextual Bandit Algorithms
	alpha regret for NeuralUCB
	alpha regret for Neural Thompson Sampling

	Background and Preliminaries for Technical Analysis
	Proof of Claims for Neural Online Regression (Section 3)
	Regret Bound under QG condition (Proof of Theorem 3.1)
	Regret Bound for Square Loss (Proof of Theorem 3.2)
	Proof of Theorem 3.3
	Auxiliary Lemmas

	Proof of Results for Contextual Bandits (Section 4)
	Interpolation with Wide Networks (Proof of Theorem E.1)
	Related Work
	Details of Experiments
	alpha and beta

