
Fast Algorithms for Separable Linear Programs

Sally Dong∗

University of Washington
sallyqd@uw.edu

Gramoz Goranci†
University of Vienna

gramoz.goranci@univie.ac.at

Lawrence Li‡
University of Toronto

lawrenceli@cs.toronto.edu

Sushant Sachdeva§
University of Toronto

sachdeva@cs.toronto.edu

Guanghao Ye¶

Massachusetts Institute of Technology
ghye@mit.edu

November 5, 2023

Abstract

In numerical linear algebra, considerable effort has been devoted to obtaining faster algorithms for linear
systems whose underlying matrices exhibit structural properties. A prominent success story is the method of
generalized nested dissection [Lipton-Rose-Tarjan’79] for separable matrices. On the other hand, the majority
of recent developments in the design of efficient linear program (LP) solvers have not leveraged the ideas
underlying these faster linear system solvers nor exploited the separable structure of the constraint matrix.

In this work, we consider LPs of the form minAx=b,`≤x≤u c>x, where the graphical support of the constraint
matrix A ∈ Rn×m is nα-separable. We present an Õ((m+m1/2+2α) log(1/ε))-time algorithm for solving these
LPs to ε relative accuracy.

Our new solver has two important implications: for the k-multicommodity flow problem on planar graphs,
we obtain an Õ(k5/2m3/2 log(1/ε))-time algorithm; and when the support of A is nα-separable with α ≤ 1/4,
our runtime of Õ(m log(1/ε)) is nearly optimal. The latter significantly improves upon the natural approach
of combining interior point methods and nested dissection, whose time complexity is lower bounded by
Ω (
√
m(m+mαω)) = Ω(m3/2), where ω ≈ 2.373 is the matrix multiplication exponent. Lastly, our solver can

be applied to low-treewidth LPs to recover the results of [DLY21,GS22] while using significantly simpler data
structure machinery.

∗Sally Dong was supported by NSERC PGS-D 557770-2021, and NSF awards CCF-1749609, DMS-1839116, DMS-2023166,
CCF-2105772.

†Faculty of Computer Science, University of Vienna, Vienna, Austria.
‡Lawrence Li was supported by NSERC Discovery Grant RGPIN-2018-06398 and Ontario Early Researcher Award (ERA)

ER21-16-283 awarded to SS.
§Sushant Sachdeva was supported by an NSERC Discovery Grant RGPIN-2018-06398, an Ontario Early Researcher Award (ERA)

ER21-16-283, and a Sloan Research Fellowship.
¶Guanghao Ye was supported by NSF awards CCF-1955217 and DMS-2022448.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited3558

D
ow

nl
oa

de
d

10
/1

9/
24

 to
 1

08
.2

6.
19

2.
79

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Contents

1 Introduction 1
1.1 Previous work . 2
1.2 Technical overview . 4

2 Preliminaries 5

3 Overview of RIPM framework 6
3.1 Robust interior point method . 6
3.2 Projection operators . 6

3.2.1 Operators on a tree . 7
3.3 Implicit representations of the solution . 8
3.4 Solution approximation . 9
3.5 Main theorem for the RIPM framework . 9

4 From separator tree to projection operators 10
4.1 Separator tree . 10
4.2 Nested dissection using a separator tree . 12
4.3 Projection operators definition . 12
4.4 Maintenance of projection operators . 14
4.5 Projection operator complexities . 17

5 Proofs of main theorems 19
5.1 Proof of Theorem 1.1 . 19
5.2 Proof of Theorem 1.2 . 21
6.1 Proof of Theorem 1.3 . 22

A Robust interior point method 26

B Maintaining the implicit representation 28

E Maintaining vector approximation 35
E.1 Reduction to change detection . 36
E.2 From change detection to sketch maintenance . 38
E.3 Sketch maintenance . 41
F.1 Proof of 3.3 . 43

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited3559

D
ow

nl
oa

de
d

10
/1

9/
24

 to
 1

08
.2

6.
19

2.
79

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

1 Introduction
Linear programming (LP) is a widely used technique for solving a broad range of problems that emerge in
optimization, operations research, and computer science, among others. LP solvers have been a subject of research
for many years, both from theoretical as well as practical perspectives. This has led to the development of several
algorithmic gems such as the Simplex algorithm [12], ellipsoid algorithm [43] and interior point method [39], to
name a few.

Fast solvers for LPs via interior point methods have received considerable attention recently, especially in the
theoretical computer science community. A series of improvements culminated in the recent breakthrough work of
Cohen, Lee and Song [9], which shows that any linear program minAx=b,l≤x≤u c>x with n constraints and m
variables can be solved in Õ(mω log(1/ε)) time, where ε is the accuracy parameter and ω ≈ 2.3715 is the matrix
multiplication exponent [18, 70]. When A is a dense matrix, their running time is almost optimal as it nearly
matches the O(mω) algorithm for solving a linear system Ax = b, which is a sub-problem of linear programming.
However, the case when A is a sparse matrix is equally important, since the constraint matrices of many LP
instances that arise in practical applications happen to be sparse.

A widely-used method for identifying structures in a sparse matrix A involves associating a graph with its
non-zero pattern, which captures the interactions between the equations in the system. In this paper, we are
interested in when said graph is separable; we use a weighted-version of the definition as is common in literature,
such as [32]:

Definition 1.1. (Separable graphs) A (hyper-)graph G = (V, E) is nα-separable for some α ∈ [0, 1] if
there exists constants b ∈ (0, 1) and c > 0, such that for any vertex weight assignment w, the vertices of
G can be partitioned into S, A and B such that |S| ≤ c · |V |α, there are no edges between A and B, and
max{w(A), w(B)} ≤ b · w(V). We call S the (b-)balanced vertex separator of H (with respect to w).

A notable case is α = 1/2, which includes the family of planar and bounded-genus graphs [50]. It has also been
empirically observed that road networks have separators of size n1/3[13, 59].

Building upon the seminal work of George [25], Lipton Tarjan and Rose [49] introduced the generalized nested
dissection algorithm, which solves the linear system Ax = b in O(m+mαω) time when A is a symmetric-positive
definite matrix and the associated graph is O(nα)-separable. When α < 1, this algorithm outperforms the canonical
O(mω)-time algorithm for general linear systems. Motivated by this, we ask the natural question of how to leverage
the structures in the constraints to speed up linear programming:

Are there faster LP solvers for the class of problems where the constraint matrix A can be represented by an
O(nα)-separable graph?

Given the constraint matrix A, [49] associates with it the unique graph whose adjacency matrix has the same
non-zero pattern as A. In the context of linear programs, we define the dual graph GA of a constraint matrix
A ∈ Rn×m to be the hypergraph with vertex set {1, . . . , n} corresponding to the rows of A and hyper-edges
{e1, . . . , em}, such that vertex i is in hyperedge ej if Ai,j 6= 0.

In this paper, we present a faster solver for LPs whose dual graph is separable.

Theorem 1.1. Given a linear program min {c>x : Ax = b, l ≤ x ≤ u}, where A ∈ Rn×m is a full-rank matrix
with n ≤ m, suppose the dual graph GA is O(nα)-separable with α ∈ [0, 1], and a balanced separator is computable
in T (n) time.

Suppose that r is the inner radius of the polytope, namely, there is x such that Ax = b and l + r ≤ x ≤ u− r.
Let L = ‖c‖2 and R = ‖u− l‖2. Then, for any 0 < ε ≤ 1/2, we can find a feasible x with high probability such
that

c>x ≤ min
Ax=b, l≤x≤u

c>x + ε · LR,

in time
Õ
(

(m+m1/2+2α) · log(R/(rε)) + T (n)
)
.

Our result should be compared against the natural Õ(m1/2(m+mαω)) runtime, which directly follows from
the fact that IPM-based methods require Õ(

√
m) iterations, each of which can be implemented in O(m+mαω)

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited3560

D
ow

nl
oa

de
d

10
/1

9/
24

 to
 1

08
.2

6.
19

2.
79

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

time using the nested dissection [49, 2] algorithm. For linear programs whose dual graph are O(nα)-separable with
α ≤ 1/4, our algorithm achieves Õ(m log(1/ε)) time, which is optimal up to poly-logarithmic factors.

We would like to emphasize that Õ(m+m1/2+2α) represents a natural barrier for the (robust) IPM-based
approaches. At a high level, each iteration of IPM involves performing matrix operations using the inverse of
an O(mα)×O(mα) matrix1. Even if one is given access to said inverse, multiplying a vector against it takes at
least Ω(m2α), showing that improving upon the m2α factor will require significantly new ideas in the design and
analysis of robust Interior Point Methods. Obtaining an LP solver whose time complexity is Õ(m+mαω), which
would in turn nearly match the time complexity for solving linear systems with recursively separable structure,
remains an outstanding open problem [26].

An immediate application of Theorem 1.1 is a faster algorithm for solving the (fractional) k-commodity flow
problem on planar graphs to high accuracy. For general sparse graphs, an Õ((km)ω) time algorithm for this
problem follows by the recent linear program solvers that run in matrix multiplication time [9, 65]. It is known
that solving the k-commodity flow problem is as hard as linear programming [34, 14], suggesting that additional
structural assumptions on the input graph are necessary to obtain faster algorithms. As shown in the theorem
below, our result achieves a polynomial speed-up when the input graph is planar.

Theorem 1.2. Given a minimum-cost k-multicommodity flow problem on a planar graph G = (V,E) on n vertices
and m edges, with edge-vertex incidence matrix B, integer edge capacities u ∈ RE≥0, integer costs c1, . . . , ck ∈ RE

and integer demands d1, . . . ,dk ∈ RE for each commodity, we can solve the LP

min
k∑
i=1

c>i fi

s.t B>fi = di ∀i ∈ [k]

k∑
i=1

fi ≤ u

fi ≥ 0 ∀i ∈ [k]

(1.1)

to ε accuracy in Õ(k2.5m1.5 log(M/ε)) time, where M is an upper on the absolute values of u, c,d.

Our main result also has the important advantage of recovering and simplifying the recent work by Dong, Lee
and Ye [16] and Gu and Song [28] who obtain fast solvers for LPs whose constraint matrix has bounded treewidth.

Theorem 1.3. Suppose we have a linear program with the same setup as Theorem 1.1, and we are given a
tree-decomposition of the dual graph GA

2 of width τ . Then we can solve the linear program in time

Õ(mτ2 log(R/(εr))) or Õ(mτ (ω+1)/2 log(R/(εr))).

1.1 Previous work It is known that 2-commodity flow is as hard as linear programming [34]. Recently, [14]
showed a linear-time reduction from linear programs to sparse k-commodity flow instance, indicating that sparse
k-commodity flow instances are hard to solve. This has led to renewed interest in solving k-commodity flow in
restricted settings, with the authors of [68] making progress on dense graphs.

Linear programming solvers. The quest for understanding the computational complexity of linear
programming has a long and rich history in computer science and mathematics. Since the seminal works
of Khachiyan [43] and later Karmarkar [39], who were the first to prove that LPs can be solved in polynomial
time, the interior point method and its subsequent variants have become the central methods for efficiently
solving linear programs with provable guarantees. This has led to a series of refined and more efficient IPM-based
solvers [58, 64, 54, 46, 47, 9, 37], which culminated in the recent breakthrough work of Cohen, Lee, and Song [9]
who showed that an LP solver whose running time essentially matches the matrix multiplication cost, up to small
low-order terms. In a follow-up work, Brand [65] managed to derandomize their algorithm while retaining the
same time complexity.

1For O(nα)-separable graph, where α < 1, it is known that m = O(n), see e.g., [49].
2We can view the hypergraph GA as a graph, where we interpret each hyper-edge as a clique, and consider its treewidth as usual.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited3561

D
ow

nl
oa

de
d

10
/1

9/
24

 to
 1

08
.2

6.
19

2.
79

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

A problem closely related to this paper is solving LPs when the support of the constraint matrix has bounded
treewidth τ . Dong, Lee and Ye [16] showed that such structured LPs can be solved in Õ(mτ2), which is near-linear
when τ is poly-logarithmic in the parameters of the input.

High-accuracy and approximate multi-commodity flow. As mentioned above, it is known that we
can solve multicommodity flow in the high-accuracy regime using linear programming. For a graph with n
nodes, m edges, and k commodities, the underlying constraint matrix has km variables and kn + m equality
constraints. Thus, using the best-known algorithms for solving linear programs [9, 65], one can achieve a runtime
time complexity of Õ((km)ω) for solving multi-commodity flow. In the special case of dense graphs, Brand and
Zhang [68] recently showed an improved algorithm achieving Õ(k2.5

√
mnω−1/2) runtime.

In the approximate regime, Leighton et al. [48] show that (1+ε) multi-commodity flow on undirected graphs can
be solved in Õ(kmn), albeit with a rather poor dependency on ε. This result led to several follow-up improvements
in the low-accuracy regime [24, 21, 51]. Later on, breakthrough works in approximating single commodity max
flow in nearly-linear time were also extended to the k-commodity flow problem on undirected graphs [42, 60, 56],
culminating in the work of Sherman [61] who achieved an Õ(mkε−1) time algorithm for the problem.

Multi-commodity flow on planar graphs. The multi-commodity flow problem on planar graphs was
studied in the 1980s, but there has not been much interest in it until most recently. Results in the past focused
on finding conditions under which solutions existed [55, 30], or finding simple algorithms in even more restricted
settings, with the authors of [53] demonstrating that the problem could be solved in O(kn+ n2(log n)1/2) time if
the sources and sinks were all on the outer face of the graph. More recently, [41] studied the all-or-nothing version
of planar multi-commodity flow, where flows have to be integral, and demonstrate that an O(1)-approximation
could be achieved in polynomial time.

Max flow and min-cost flow on general graphs. In what follows, we will focus on surveying only exact
algorithms for max-flow and min-cost flow on general graphs. For earlier developments on these problems, including
fast approximation algorithms, we refer the reader to the following works [44, 1, 8, 60, 42, 56, 62, 4], and the
references therein.

An important view, unifying almost all recent max-flow or min-cost flow developments, is interpreting max-flow
as the problem of finding one unit of s-t flow that minimizes the `∞ congestion of the flow vector. Motivated
by the near-linear Laplacian solver of Spielman and Teng [63] (which in turn can be used to solve the problem
of finding one unit of s-t flow that minimizes the `2 congestion), and the fact that the gap between `∞ and `2
is roughly O(

√
m), Daitch and Spielman [11] showed how to implement the IPM for solving min-cost flows in

Õ(m3/2) time.
Follow-up works initially made progress on the case of unit capacitated graphs, with the work of Madry [52]

achieving an Õ(m10/7) time algorithm for max flow and thus being the first to break the 3/2-exponent barrier in
the runtime. The running time was later improved to O(m4/3+o(1)) and it was generalized to the min-cost flow
problem [3, 40].

For general, polynomially bounded capacities, Brand et al. [67] gave an improved algorithm for dense graphs
that runs in Õ(m + n3/2). In the sparse graph regime, Gao, Liu and Peng [23] were the first to break the
3/2-exponent barrier by giving an Õ(m3/2−1/128) time algorithm, which was later improved to Õ(m3/2−1/58) [66].
Very recently, the breakthrough work of Chen et al. [7] shows that the min-cost flow problem can be solved in
Õ(m1+o(1)), which is optimal up to the subpolynomial term.

Max flow and min-cost flow on planar graphs. The study of flows on planar graphs dates back to the
celebrated work of Ford and Fulkerson [22] who showed that for the case of s, t-planar graphs3, there is an O(n2)
time algorithm for max flow. This was subsequently improved to O(n log n) by Itai and Shiloach [35] and finally
to O(n) by Henzinger et al [32], the latter building upon a prior work of Hassin [29].

For general planar graphs, there have been two lines of work focusing on the undirected and the directed
version of the problem respectively. In the first setting, Reif [57] (and later Hassin and Johnson [31]) gave an
O(n log2 n) time algorithm. The state-of-the-art algorithm is due to Italiano et al. [36] and achieves O(n log log n)
runtime. Weihe [69] gave the first speed-up for directed planar max flow running in O(n log n) time. However, his
algorithm required some assumptions on the connectivity of the input graph. Later on, Borradaile and Klein [5]
gave an O(n log n) algorithm for general planar directed graphs. Generalization of planar graphs, e.g., graphs of

3planar graphs where s and t lie on the same face

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited3562

D
ow

nl
oa

de
d

10
/1

9/
24

 to
 1

08
.2

6.
19

2.
79

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

bounded genus have also been studied in the context of the max flow problem. The work of Chambers et al. [6]
showed that these graphs also admit near-linear time max flow algorithms.

Imai and Iwano [33] obtained an O(n1.594 logM) min-cost flow algorithm for graphs that are O(
√
n) recursively

separable. For the min-cost flow problem on planar graphs with unit capacities, Karczmarz and Sankowski [38]
gave an O(n4/3) algorithm. Very recently, Dong et al. [15] showed that the min-cost flow on planar directed graphs
with polynomially bounded capacities admits an Õ(n) time algorithm, which is optimal up to polylogarithmic
factors.

1.2 Technical overview Our algorithm framework builds on the work of Dong-Gao-Goranci-Lee-Peng-Sachdeva-
Ye on planar min-cost flow [15]. We solve our linear program using the robust interior point method used in
[16, 15], where we maintain feasible primal and dual solutions x and s to the linear program that converge to the
optimal solution over Õ(

√
m)-many steps of IPM. At every step, we want to move our solutions in the direction

of steepest descent of the objective function. To stay close to the central path and avoid violating the capacity
lower and upper bounds, the IPM controls the weights W on the variables and the step direction v, in order
to limit the magnitude of the update to a variable as it approach its bounds. Both W and v are defined to be
entry-wise dependent on the current solution x and s. To maintain feasibility of the solutions, we apply the
weighted projection Pw

def
= W1/2A>(AWA>)−1AW1/2 matrix to the desired step direction v, which ensures the

resulting x and s after a step remain in their respective feasible subspaces. In robust IPMs, we also maintain
entry-wise approximations x, s to x and s, and use these approximations to compute w,v, and Pw at every step.
By limiting the updates to x, s, robust IPMs achieve efficient runtimes.

The key challenge in the RIPM framework is to implement each step efficiently, specifically, computing the
projection Pwv, as well as updating x, s. Similar to [15], we use a separator tree to recursively factor the term
AWA> in Pw via nested dissection and recursive Schur complements. However, there are several challenges
in applying the framework from [15] to general linear programs: In flow problems, the constraint matrix A is
the vertex-edge incidence matrix of the underlying graph, and therefore AWA>, as well as all recursive Schur
complements along the separator tree, are weighted Laplacian matrices, for which we have efficient nearly-linear-
time solvers [63] and sparse approximations to Schur complements [45, 27]. This allows [15] to work with an
approximate P̃w ≈ Pw efficiently, with implicit access via a collection of approximate Schur complements that
can be viewed as sparse Laplacians.

In the context of general separable linear programs, we do not have fast solvers or sparse approximate Schur
complements, so instead, we must maintain the collection of Schur complements and their inverses explicitly, by
computing them in a bottom-up fashion using the separator tree. To bound the update time, we show that a
rank-k update to AWA> induced by changes in W corresponds to rank-k updates to all the recursive Schur
complements.

Our second contribution is the dynamic data structures to maintain the implicit representations of x, s, which
can be viewed as a significant refinement of those from [15]. We recall the notion of tree operators introduced in
[15] and define an analogous inverse tree operator, and give simplified modular data structures to maintain x, s
using the tree and inverse tree operator. Specifically, we demonstrate more cleanly the power of nested dissection
and the recursive subgraph structure in supporting efficient lazy updates to the IPM solutions.

Our third technical contribution is the definition of a fine-grained separator tree which we call the (a, b, λ)-
separator tree. The parameters are defined based on the parameters of separable graphs, but they also capture
important characteristics of other classes such as low-treewidth graphs. These trees guarantee that at any node,
we are able to separate not only the associated graph region, but also the boundary of the region. We use them to
maintain the tree operators from the implicit representations, and a careful analysis of node and boundary sizes
allows us to conclude that the maintenance can be performed efficiently.

Finally, we note that this work recovers the treewidth LP result of [16] and [28] with significantly lower
technical complexity. Whereas [16] constructs an elimination tree to directly compute the Cholesky factorization
of AWA> = LL>, we use a separator tree to recursively factor AWA>. There is a key difference in the two tree
constructions, which we believe this paper is correct in: To construct an elimination tree, [16] finds a balanced
vertex separator S of GA, remove S from GA yielding two disconnected subgraphs H1, H2, recursively construct
the elimination tree for H1 and H2, and attach them as children to a vertical path of length |S| corresponding
to the vertices of S. When the treewidth of A ∈ Rn×m is t, this process results in an elimination tree of height
Õ(t) where each node corresponds to a vertex of GA, which can then be used to identify explicit coordinates in

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited3563

D
ow

nl
oa

de
d

10
/1

9/
24

 to
 1

08
.2

6.
19

2.
79

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

the Cholesky factor L to update when W changes. Next, an extremely involved transformation using heavy-light
decomposition is needed to turn the elimination tree into a sampling tree of height O(log n), in order to facilitate
the sampling of entries from some implicit vector of the form A>L−>z (required for maintaining x, s). In contrast,
to construct our separator tree, we find a balanced vertex separator S of GA, but include S in both subgraphs
that are recursed on, and partition the hyperedges in E(S) arbitrarily between the two subgraphs. The resulting
separator tree has height O(log n), where each node corresponds to a subgraph of GA, and each level of the tree
gives a partition of the columns of A. This recursive partitioning gives a cleaner, recursive rather than brute-force
factorization of AWA>, and leads to a significant difference in the data structures. When W changes at a step,
[16] updates the Cholesky factorization by processing one changed coordinate at a time ([28] processes one block
at a time), so that the data structure update time is linear in the number of new coordinates. On the other hand,
our separator tree allows us to update W in one pass through the tree and yields a sublinear dependence on the
number of new coordinates. Moreover, as each node in our separator tree naturally corresponds to a subset of
columns of A, we can use it in a much more straight-forward manner to sample coordinates of A>L−>z.

2 Preliminaries
General Notations. We assume all matrices and vectors in an expression have matching dimensions. That

is, we will trivially pad matrices and vectors with zeros when necessary. This abuse of notation is unfortunately
unavoidable as we will be considering lots of submatrices and subvectors.

An event holds with high probability if it holds with probability at least 1− nc for arbitrarily large constant c.
The choice of c affects guarantees by constant factors.

We use boldface lowercase variables to denote vectors, and boldface uppercase variables to denote matrices.
We use ‖v‖2 to denote the 2-norm of vector v and ‖v‖M to denote

√
v>Mv. We use nnz(v) to denote the number

of non-zero entries in the vector v, equivalently, it is the zero-norm. For any vector v and scalar x, we define
v + x to be the vector obtained by adding x to each coordinate of v and similarly v − x to be the vector obtained
by subtracting x from each coordinate of v. We use 0 for all-zero vectors and matrices where dimensions are
determined by context.

For an index set A, we use 1A for the vector with value 1 on coordinates in A and 0 everywhere else. We
use I for the identity matrix and IS for the identity matrix in RS×S . For any vector x ∈ RS , x|C denotes the
sub-vector of x supported on C ⊆ S; more specifically, x|C ∈ RS, where xi = 0 for all i /∈ C.

For any matrix M ∈ RA×B , we use the convention that MC,D denotes the sub-matrix of M supported on
C ×D where C ⊆ A and D ⊆ B. When M is not symmetric and only one subscript is specified, as in MD, this
denotes the sub-matrix of M supported on A×D. To keep notations simple, M−1 will denote the inverse of M if
it is an invertible matrix and the Moore-Penrose pseudo-inverse otherwise.

For any vector v, we use the corresponding capitalized letter V to denote the diagonal matrix with v on the
diagonal.

For two positive semi-definite matrices L1 and L2, we write L1 ≈t L2 if e−tL1 � L2 � etL1, where A � B
means B−A is positive semi-definite. Similarly we define ≥t and ≤t for scalars, that is, x ≤t y if e−tx ≤ y ≤ etx.

When multiplying two matrices of differing sizes, say an m× n matrix with an n× k matrix, we decompose
both matrices into blocks of size min{m,n, k}. We then perform block matrix multiplication, with fast matrix
multiplication used for the multiplication of two blocks. For example, multiplying a m× n matrix with an n× n
matrix, with m ≥ n, takes (m/n)(nω) time.

Trees. For a tree T , we write H ∈ T to mean H is a node in T . We write TH to mean the complete subtree
of T rooted at H. We say a node A is an ancestor of H and H is a descendant of A if H is in the subtree rooted
at A, and H 6= A. Given a set of nodes H, we use PT (H) to denote the set of all nodes in T that are ancestors of
some node in H unioned with H.

The level of a node in a tree has the following properties: the root is at level 0; the maximum level is one less
than the height of the tree; and the level of a node must be at least one greater than the level of its parent, but
this difference does not have to be equal to one. We may assign levels to nodes arbitrarily as long as the above is
satisfied. We use T (i) to denote the collection of all nodes at level i in tree T .

IPM data structures. When we discuss data structures in the context of the IPM, step 0 means the
initialization step. For k > 0, step k means the k-th iteration of the while-loop in Solve (Algorithm 2); that is, it
is the k-th time we update the current solutions. For any vector or matrix x used in the IPM, we use x(k) to
denote the value of x at the end of the k-th step.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited3564

D
ow

nl
oa

de
d

10
/1

9/
24

 to
 1

08
.2

6.
19

2.
79

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

In all procedures in these data structures, we assume inputs are given by the set of changed coordinates and
their values, compared to the previous input. Similarly, we output a vector by the set of changed coordinates and
their values, compared to the previous output. This can be implemented by checking memory for changes.

3 Overview of RIPM framework
In this section, we set up the general framework for solving a linear program using a robust IPM. We show that if
the projection matrix from the IPM can be maintained efficiently based on the structure of its sparsity pattern,
then the overall IPM can be implemented efficiently.

3.1 Robust interior point method

Theorem 3.1. (RIPM) Consider the linear program

min
Ax=b, l≤x≤u

c>x

with A ∈ Rn×m. We are given a scalar r > 0 such that there exists some interior point x◦ satisfying Ax◦ = b and
l + r ≤ x◦ ≤ u− r. Let L = ‖c‖2 and R = ‖u− l‖2. For any 0 < ε ≤ 1/2, the algorithm RIPM (Algorithm 2)
finds x such that Ax = b, l ≤ x ≤ u and

c>x ≤ min
Ax=b, l≤x≤u

c>x + εLR.

Furthermore, the algorithm has the following properties:

• Each call of Solve involves O(
√
m logm log(mRεr))-many steps, and t is only updated O(logm log(mRεr))-many

times.

• In each step of Solve, the coordinate i in w,v changes only if xi or si changes.

• In each step of Solve, h‖v‖2 = O(1
logm).

• Algorithm 2 to Algorithm 2 takes O(K) time in total, where K is the total number of coordinate changes in
x, s.

We note that this algorithm only requires access to (x, s), but not (x, s) during the main while loop. Hence,
(x, s) can be implicitly maintained via any data structure. We only require (x, s) explicitly when returning the
approximately optimal solution at the end of the algorithm Algorithm 2.

3.2 Projection operators At step k of Solve with step direction v(k) and weights w (we drop its superscript
(k) for convenience), recall we define the projection matrix

Pw
def
= W1/2A>(AWA>)−1AW1/2.

We want to make the primal and dual updates

x← x + h(k)W1/2v(k) − h(k)W1/2Pwv(k),

s← s + th(k)W−1/2Pwv(k).

The first term for the primal update is straightforward to maintain, so we may ignore it without loss of
generality. After this reduction, we see that the primal and dual updates are analogous. In the remainder of this
section, we show how to maintain x undergoing the update

x← x + h(k)W1/2Pwv(k).

First, observe that W1/2Pw is an operator dependent on the dynamic weights w, which motivates us to
formalize this problem setting:

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited3565

D
ow

nl
oa

de
d

10
/1

9/
24

 to
 1

08
.2

6.
19

2.
79

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Definition 3.1. (Dynamic linear operator, update complexity) Let w be a dynamic vector. We say M
is a dynamic linear operator dependent on w if M is a function of w. Let w(k) be the value of w at step k, then
we use M(k) to denote the corresponding value of M at step k.

Suppose exists a data structure that dynamically maintains M and w, such that at every step k, if w(k−1) and
w(k) differ on K coordinates, then the data structure can update M(k−1) to M(k) in f(K) time. Then we say M
has update complexity f .

Next, we define two types of dynamic operators dependent on the weights w from the IPM: the inverse tree
operator ∇ and the tree operator ∆. For linear programs with separable structures, they should crucially combine
so that throughout algorithm, we have

(3.1) W1/2Pw = ∆∇.

3.2.1 Operators on a tree In this section, we fix T to be a constant-degree rooted tree with root node G,
called the operator tree. Let each node H ∈ T be associated with a set FH , where the FH ’s are pairwise disjoint.
Let each leaf node L ∈ T be further associated with a non-empty set E(L), where the E(L)’s are pairwise
disjoint. For a non-leaf node H , define E(H)

def
=
⋃

leaf L∈TH E(L). Finally, define E def
= E(G) =

⋃
leaf L∈T E(L) and

V
def
=
⋃
H∈T FH .

We define two special classes of linear operators that build on the structure of T . The advantage of these
operators lie in their decomposability, which allows them to be efficiently maintained.

Definition 3.2. (Inverse tree operator) Let T be an operator tree with the associated sets as above. We
say a linear operator ∇ : RE 7→ RV is an inverse tree operator supported on T if there exists a linear edge
operator ∇H for each non-root node H in T , corresponding to the edge from H to its parent, such that ∇ can be
decomposed as

∇ =
∑

leaf L, node H : L∈TH

IFH∇H←L,

where ∇H←L is defined as follows: If L = H, then ∇H←L
def
= I; otherwise, suppose the path in T from leaf L to

node H is given by (Ht
def
= L,Ht−1, . . . ,H1, H0

def
= H), then

∇H←L
def
= ∇H1

· · · ∇Ht−1
∇Ht .

To maintain ∇, it will suffice to maintain ∇H at each non-root node H in T .

Intuitively, when applying an inverse tree operator to a vector v ∈ RE , v is partitioned according to the
leaves of T , and then the edge operators are applied sequentially along the tree edges in a bottom-up fashion. It
is natural to then also define the opposite process, where edge operators are applied along the tree edges in a
top-down fashion.

Definition 3.3. (Tree operator) Let T be an operator tree with the associated sets as above. We say a linear
operator ∇ : RV 7→ RE is tree operator supported on T if there exists a linear edge operator ∇H for each non-root
node H in T , corresponding to the edge from H to its parent, such that ∇ can be decomposed as

∆
def
=

∑
leaf L, node H : L∈TH

∆L←HIFH .

where ∆H←L is defined as follows: If L = H, then ∆L←H
def
= I. Otherwise, suppose the path in T from node H to

leaf L is given by (Ht
def
= L,Ht−1, . . . ,H0

def
= H), then

∆L←H
def
= ∆Ht · · ·∆H2

∆H1
.

We define the complexity of a tree (and inverse tree) operator to be parameterized by the number of edge
operators applied.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited3566

D
ow

nl
oa

de
d

10
/1

9/
24

 to
 1

08
.2

6.
19

2.
79

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Definition 3.4. (Query complexity) Let ∆
def
= {∆H : H ∈ T } be a tree (or inverse tree) operator on tree

T . Suppose for any set H of K distinct non-root nodes in T , and any two families of K vectors indexed by H,
{uH : H ∈ H} and {vH : H ∈ H}, the total time to compute {u>H∆H : H ∈ H} and {∆HvH : H ∈ H} is bounded
by f(K). Then we say ∆ has query complexity f for some function f .

Without loss of generality, we may assume f(0) = 0, f(k) ≥ k, and f is concave.

By examining the definition of the inverse tree and tree operator, we see they are related.

Lemma 3.1. If ∆ is a tree operator on T , then ∆> is an inverse tree operator on T , where its edge operators are
obtained from ∆’s edge operators by taking a transpose. Furthermore, ∆ and ∇ have the same query and update
complexity.

3.3 Implicit representations of the solution Assuming we have dynamic inverse tree and tree operators ∇
and ∆ on tree T dependent on w such that W1/2Pw = ∆∇, we can now state how to abstractly maintain the
implicit representation of the solutions throughout Solve (Algorithm 2). Specifically, we want to maintain the
solution x, and at every step k, carry out an update of the form

(3.2) x← x + h(k)W1/2Pwv(k).

We design a data structure MaintainRep to accomplish this, by:

• At the start of Solve, initializing the data structure using the procedure Initialize with x = x(init),

• At each step k, updating the weights w in the data structure using the procedure Reweight, followed by
updating x according to Eq. (3.2) using the procedure Move,

• At the end of Solve, outputing the final x using the procedure Exact.

The key to designing an efficient data structure is to make use of the structure of the operators. Due to their
decomposition along T , we can update the operators and apply them to vectors without exploring all of T every
time.

Theorem 3.2. (Implicit representation maintenance) Let w be the weights changing at every step of
Solve (Algorithm 2). Suppose there exists dynamic inverse tree and tree operators ∇ and ∆ on tree T both
dependent on w such that W1/2Pw = ∆∇ throughout the IPM. Let Q be the max of the query complexity of the
tree and inverse tree operator, and let U be the max of the update complexity of the two operators. Suppose T has
constant degree and height η. Then there is a data structure MaintainRep that satisfies the following invariants
at the end of step k:

• It explicitly maintains the dynamic weights w and step direction v from the current step.

• It explicitly maintains scalar c and vectors z(step), z(sum), which together represent the implicitly-maintained
vector z

def
= cz(step) + z(sum). At the end of step k, z(step) = ∇(k)v(k), and

z =
k∑
i=1

h(i)∇(i)v(i).

• It implicitly maintains x so that at the end of step k,

x = x(init) +
k∑
i=1

h(i)∆(i)∇(i)v(i),

where x(init) is some initial value set at the start of Solve.

The data structure supports the following procedures and runtimes:

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited3567

D
ow

nl
oa

de
d

10
/1

9/
24

 to
 1

08
.2

6.
19

2.
79

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

• Initialize(∆,∇,v(init) ∈ Rm,w(init) ∈ Rm>0,x
(init) ∈ Rm): Preprocess and set x← x(init).

The procedure runs in O(U(m) +Q(m)) time.

• Reweight(δw ∈ Rm>0): Update the weights to w ← w + δw.

The procedure runs in O(U(ηK) +Q(ηK)) total time, where K = nnz(δw).

• Move(h ∈ R, δv ∈ Rm): Update the current step direction to v ← v + δv. Update the implicit representation
of x to reflect the following change in value:

x← x + h∆∇v.

The procedure runs in O(Q(ηK)) time, where K = nnz(δv).

• Exact: Output the current exact value of x in O(Q(m)) time.

3.4 Solution approximation In the IPM, one key operation is to maintain the solution vector x that is close
to x throughout the algorithm. (Analogously for the slack s close to s.) Since we have implicit representations of
the solution x from MaintainRep, we now show how to maintain x close to x. To accomplish this, we use a
meta data structure that solves this in a more general setting introduced in [15].

Theorem 3.3. (Approximate vector maintenance with tree operator [15]) Let 0 < ρ < 1 be a failure
probability. Suppose ∆ ∈ Rm×n is a tree operator with query complexity Q and supported on a constant-degree tree
T with height η. There is a randomized data structure MaintainApprox that takes as input the dynamic weights
w and the dynamic x implicitly maintained according to Theorem 3.2 at every step, and explicitly maintains the
approximation x to x satisfying

∥∥W−1/2(x− x)
∥∥
∞ ≤ δ at every step with probability 1− ρ.

Suppose ‖W(k)−1/2(x(k)−x(k−1))‖2 ≤ β for all steps k. Furthermore, suppose w is a function of x coordinate-
wise. Then, for each ` ≥ 0, x admits 22` coordinate changes every 2` steps. Over N total steps, the total cost of
the data structure is

(3.3) Õ(η3(β/δ)2 log3(mN/ρ))

(
Q(m) +

N∑
k=1

Q(S(k)) +

logN∑
`=0

N

2`
·Q(22`)

)
,

where S(k) is the number of nodes H where ∆H or uH in the implicit representation of x changed at step k.

3.5 Main theorem for the RIPM framework We are now ready to state and prove the main result in this
framework.

Theorem 3.4. (RIPM framework) Consider an LP of the form

(3.4) min
x∈P

c>x where P = {Ax = b, l ≤ x ≤ u}

where A ∈ Rn×m. For any vector w, let Pw
def
= W1/2A>(AWA>)−1AW1/2, and suppose there exists dynamic tree

and inverse tree operators ∆ and ∇ dependent on w, such that W1/2Pw = ∆∇. Let U be the update complexity
of ∆ and ∇, and let Q be their query complexity. Let r and R = ‖u− l‖2 be the inner and outer radius of P, and
let L = ‖c‖2. Then, there is a data structure to solve Eq. (3.4) to εLR accuracy with probability 1− 2−m in time

Õ

η4√m log(
R

εr
) ·

1
2 logm∑
`=0

U(22`) +Q(22`)

2`

 .

Proof. [Proof of Theorem 3.4] We implement the IPM algorithm using the data structures from Sections 3.3
and 3.4, and bound the cost of each operations of the data structures. For simplicity, we only discuss the primal
variables in this proof, but the slack variables are analogous. We use one copy of MaintainRep to maintain
x, and one copy of MaintainApprox to maintain x. At each step, we perform the implicit update of x using

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited3568

D
ow

nl
oa

de
d

10
/1

9/
24

 to
 1

08
.2

6.
19

2.
79

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Move and update w using Reweight in MaintainRep. We construct the explicit approximations x using
Approximate in MaintainApprox.

Theorem 3.3 shows that throughout the IPM, for each ` ≥ 0, there are 22` coordinate changes to x every
2` steps. Since w is a function of x coordinate-wise, there are also 22` coordinate changes in w every 2` steps.
Similarly, we observe that v is defined as a function of x and s coordinate-wise, so there are O(22`) coordinate
changes to v every 2` steps. Then Theorem 3.2 shows that the total runtime over N steps for the MaintainRep
data structure is

(3.5) Õ(U(m) +Q(m)) + Õ

(
logN∑
`=0

N

2`
·
(
U(η · 22`) +Q(η · 22`)

))
.

Theorem 3.3 shows that the total runtime over N steps for MaintainApprox is

(3.6) Õ(η3(β/δ)2 log3(mN/ρ))

(
Q(m) +

N∑
k=1

Q(S(k)) +

logN∑
`=0

N

2`
·Q(22`)

)
,

where the variables are defined as in the theorem statement. By examining Theorem 3.2, we see that when a
coordinate of w or v changes, the implicit representation of x admits updates at O(η)-many nodes. Combined
with the concavity of Q, we can bound

N∑
k=1

Q(S(k)) ≤ O(η) ·
logN∑
`=0

N

2`
·Q(22`).

Theorem 3.1 guarantees that there are N =
√
m logm log(mRεr) total IPM steps, and at each step k, we have

h(k)
∥∥∥W(k)−1/2(x(k) − x(k−1))

∥∥∥
2

= h(k)
∥∥v(k) −Pwv(k)

∥∥
2
≤ O(1

logm), so we can set β = O(1
logm). By examining

Algorithm 2, we see it suffices to set δ = O(1
logm). We choose the failure probability ρ to be appropriately small,

e.g. 2−m. Finally, we conclude that the overall runtime of the IPM framework is

Õ

η4√m log(
R

εr
) ·

1
2 logm∑
`=0

U(22`) +Q(22`)

2`

 ,

where the terms for intialization times have been absorbed.

4 From separator tree to projection operators
In this section, we explore the separable structure of the dual graph GA of the LP constraint matrix A, and use
these properties to help define and maintain the tree operator and inverse tree operator as needed for the IPM
framework from Section 3.

Throughout this section, we fix A ∈ Rn×m, so that the dual graph GA = (V,E) has n vertices, m hyperedges.
Additionally, let ρ denote the max hyperedge size in GA; equivalently, ρ is the column sparsity of A.

4.1 Separator tree The notion of using a separator tree to represent the recursive decomposition of a separable
graph is well-established in literature, c.f [19, 32]. In our work, we use the following definition:

Definition 4.1. (Separator tree) Let G be a hypergraph with n vertices, m hyperedges, and max hyperedge
size ρ. A separator tree S for G is a constant-degree tree whose nodes represent a recursive decomposition of G
based on balanced separators.

Formally, each node of S is a region (edge-induced subgraph) H of G; we denote this by H ∈ S. At a node
H, we define subsets of vertices ∂H, S(H), FH , where ∂H is the set of boundary vertices of H, i.e. vertices with
neighbours outside H in G; S(H) is a balanced vertex separator of H; and FH is the set of eliminated vertices at
H. Furthermore, let E(H) denote the edges contained in H.

The nodes and associated vertex sets are defined in a top-down manner as follows:

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited3569

D
ow

nl
oa

de
d

10
/1

9/
24

 to
 1

08
.2

6.
19

2.
79

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

𝑆(𝐻)

𝜕(𝐻)

𝐹𝐻 𝐹𝐻

Level: 0

Level: 1

Level: 2

Figure 4.1: An example of a separator tree. The bold edges denote the boundary of each component, ∂H while
the dotted lines denote the separators S(H). Note that FH = S(H) \ ∂H is defined differently on the leaves.

1. The root of S is the node H = G, with ∂H = ∅ and FH = S(H).

2. A non-leaf node H ∈ S has a constant number of children whose union is H. The children form a edge-disjoint
partition of H, and the intersection of their vertex sets is a balanced separator S(H) of H. Define the set of
eliminated vertices at H to be FH

def
= S(H) \ ∂H.

The set FH ∪ ∂H consists of all vertices in the boundary and separator, which can intuitively be interpreted
as the skeleton of H. In later sections, we recursively construct graphs (matrices) on FH ∪ ∂H which capture
compressed information about all of H.

By definition of boundary vertices, for a child D of H, we have ∂D def
= (∂H ∪ S(H)) ∩ V (D).

3. At a leaf node H, we define S(H) = ∅ and FH = V (H) \ ∂H. (This convention allows leaf nodes to exist at
different levels in S.) The leaf nodes of S partition the edges of G.

We use η to denote the height of S.

For a separator tree to be meaningful, the leaf node regions should be sufficiently small, to indicate that we
have a good overall decomposition of the graph. Additionally, for our work, we want a more careful bound on the
sizes of the skeleton of regions. This motivates the following refined definition:

Definition 4.2. ((a, b, λ)-separator tree) Let G be a graph with n vertices, m edges, and max hyperedge size
ρ. Let a ∈ [0, 1] and b ∈ (0, 1) be constants, and λ ≥ 1 be an expression in terms of m,n, ρ. An (a, b, λ)-separator
tree S for G is a separator tree satisfying the following additional properties:

1. There are at most O(b−i) nodes at level i in S,

2. any node H at level i satisfies |FH ∪ ∂H| ≤ O(λ · bai),

3. a node H at level i is a leaf node if and only if |V (H)| ≤ O(ρ).

Intuitively, a and b come from the separability parameters of G, and λ is a scaling factor for node sizes in S.
Since there could be hyperedges of size ρ, regions of size ρ are not necessarily separable, so we set the region as a
leaf.

We make extensive use of these properties in subsequent sections when computing runtimes.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited3570

D
ow

nl
oa

de
d

10
/1

9/
24

 to
 1

08
.2

6.
19

2.
79

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

4.2 Nested dissection using a separator tree Let S be any separator tree for GA. In this section, we show
how to use S to factor the matrix L−1

def
= (AWA>)−1 recursively:

Definition 4.3. (Block Cholesky decomposition) The block Cholesky decomposition of a symmetric
matrix L with blocks indexed by F and C is:

(4.1) L =

[
I 0

LC,F (LF,F)−1 I

] [
LF,F 0

0 Sc(L, C)

] [
I (LF,F)−1LF,C
0 I

]
,

where the middle matrix in the decomposition is a block-diagonal matrix with blocks indexed by F and C, with the
lower-right block being the Schur complement Sc(L, C) of L onto C:

(4.2) Sc(L, C)
def
= LC,C − LC,FL−1F,FLF,C .

Since Sc(L, C) is a symmetric matrix, we can recursively apply the decomposition Eq. (4.1) to it. By choosing
the index sets F,C for each recursive step according to S, we get a recursive decomposition of L−1:

Theorem 4.1. (L−1 factorization, c.f. [15] Theorem 33) Let S be the separator tree of GA with height η.
For each node H ∈ S with hyperedges E(H), let AH ∈ Rn×m denote the matrix A restricted to columns indexed
by E(H). Define

L[H]
def
= AHWAH

>, and(4.3)

L(H) def
= Sc(L[H], FH ∪ ∂H).(4.4)

Then, we have

(4.5) L−1 = Π(η)> · · ·Π(1)>ΓΠ(1) · · ·Π(η),

where4

(4.6) Γ
def
=



(∑
H∈T (η)

(
L
(H)
FH ,FH

)−1)
0 0

0
. . . 0

0 0

(∑
H∈T (0)

(
L
(H)
FH ,FH

)−1)
 ,

and for i = 1, . . . , η,

(4.7) Π(i) def
= I−

∑
H∈T (i)

X(H),

where T (i) is the set of nodes at level i in T , the matrix Π(i) is supported on
⋃
H∈T (i) FH ∪ ∂H and padded with

zeros to n-dimensions, and for each H ∈ S,

(4.8) X(H) def
= L

(H)
∂H,FH

(
L
(H)
FH ,FH

)−1
.

4.3 Projection operators definition Suppose S is a separator tree for GA. In this subsection, we define the
operator tree T based on S, followed by the tree operator ∆ and inverse tree operator ∇ which will be supported
on T . Finally, we will show that our definitions indeed satisfy

W1/2Pw = ∆∇.

4We use a different definition of level compared to [15]. In [15], the root has level η in and leaf nodes have level 0, and in this
paper, the root has level 0 and leaf nodes have level η. This is purely for notational convenience in later calculations, so this theorem
is otherwise unaffected.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited3571

D
ow

nl
oa

de
d

10
/1

9/
24

 to
 1

08
.2

6.
19

2.
79

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Recall that S is a constant-degree tree. The leaf nodes of S partition the hyperedges of GA, however, we do
not have a bound on the number of hyperedges in a leaf node. In constructing T , we simply want to modify S so
that each leaf contains exactly one hyperedge. Specifically, for each leaf node H ∈ S containing |E(H)| hyperedges,
we construct a complete binary tree T +

H rooted at H with |E(H)| leaves, assign one hyperedge from E(H) to one
new leaf, and attach T +

H at the node H. This construction yields the desired operator tree T whose height is
within a log |E| factor of S.

We define the tree operator ∆ on T follows: For non-root node H in T , let

(4.9) ∆H
def
=


IFH∪∂H −X(H)> if H exists in S
WE(H)

1/2AH
> if H is a leaf node in T

I else.

Note that the first two cases are indeed disjoint by construction. We pad zeros to all matrices in order to arrive at
the correct overall dimensions.

Lemma 4.1. (c.f. [15], Lemma 59) Let ∆ be the tree operator as defined above. Then

(4.10) ∆ = W1/2A>Π(η)> · · ·Π(1)>.

Next, we establish the query complexity of the tree operator:

Lemma 4.2. Suppose L is the total number of leaf nodes in S. The query complexity of ∆ is

Q(K) = O

ρK + max
H:set of K leaves in S

∑
H∈PS(H)

|FH ∪ ∂H|2


for K ≤ L, where PS(H) is the set of all nodes in S that are ancestors of some node in H unioned with H. When
K > L, then we define Q(K) = Q(L).

Proof. First, we consider the query time Q(1) for a single edge. Let u be any vector, and let H be a non-root
node in T . If H is a leaf node, then computing ∆Hu and u>∆H both take O(ρ) time. If H exists in S, then
computing ∆Hu takes O

(
|FH |2 + |∂H||FH |

)
≤ O

(
|FH ∪ ∂H|2

)
time, since the bottleneck is naively computing

L
(H)
∂H,FH

(
L
(H)
FH ,FH

)−1
u. Therefore, Q(1) = O

(
ρ+ maxH∈S |FH ∪ ∂H|2

)
.

For K > 1, we can simply bound the query time for K distinct edges by

Q(K) = O

(
ρK + max

H:set of K nodes in S

∑
H∈H

|FH ∪ ∂H|2
)
.

Finally, note that we can take the summation over H ∈ PS(H) instead of H ∈ H for an upper bound. In this case,
it suffices to take the max over sets of leaf nodes.

By taking the transpose of ∆, we get an inverse tree operator, and together, they give the projection matrix
using Eq. (4.5).

Corollary 4.1. Let ∇ def
= ∆> be the inverse tree operator obtained from ∆ by transposing the edge and leaf

operators. Then

(4.11) W1/2Pw
def
= W1/2W1/2A>L−1AW1/2 = (W1/2∆)Γ∇.

Remark 4.1. Without loss of generality, we have chosen to simplify our presentation and consider ∆∇ in place
of W1/2∆Γ∇.

This is possible for two reasons: One, W1/2∆ is a tree operator, which we can in fact maintain in the same
time complexity as ∆. Two, Γ is a block-diagonal matrix, with a block for each H ∈ T that is indexed by FH . It is
straightforward to show we can maintain and apply Γ∇ in the same time complexity as ∇.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited3572

D
ow

nl
oa

de
d

10
/1

9/
24

 to
 1

08
.2

6.
19

2.
79

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

4.4 Maintenance of projection operators So far, we have defined the separator tree S for the graph GA,
which we then used to define the operator tree T , which supports the tree operator ∆ needed for the IPM
framework. In this subsection, we discuss how to maintain L(H),Sc(L(H), ∂H), and (L

(H)
FH ,FH

)−1 at each node
H ∈ S using the data structure DynamicSC (Algorithm 1), as the weight vector w undergoes changes throughout
the IPM. This will in turn allow us to maintain the tree operator ∆.

We begin with a lemma showing that given a symmetric matrix and a low-rank update, we can compute its
new inverse and Schur complement quickly.

Lemma 4.3. Let L′ = L + UV ∈ Rn×n be a symmetric matrix plus a rank-K update, where U and V> both have
dimensions n×K. Given L′,U,V, we can compute L′

−1 in O(n2Kω−2) time.
Additionally, suppose we are also given L−1 and Sc(L, S) for an index set S. Then we can compute Sc(L′, S),

U′,V′ in O(n2Kω−2) time, so that Sc(L, S) + U′V′ = Sc(L′, S), and U′,V′> both have K columns.

Proof. The Sherman-Morrison formula states

L′
−1

= L−1 − L−1U(IK + VL−1U)−1VL−1.

The time to compute this update is dominated by the time required to multiply an n× n matrix with an n×K
matrix, which is O(n2Kω−2).

For the second part of the lemma, recall that the Schur complement is defined to be:

(4.12) Sc(L, C)
def
= LC,C − LC,FL−1F,FLF,C .

If we were to naively use this definition of the Schur complement to perform the updates and construct U′ and V′>,
we will run into an issue where the rank of the new update blows up by a factor of 8, leading to an exponential
blowup in the rank as we go up the levels recursively. Instead, we make use of the fact that the inverse of the
Schur complement, Sc(L, S)−1 is exactly the S, S submatrix of L−1 to control the rank of the updates.

We first apply the definition of Schur complement and then use the Sherman-Morrison formula to get

Sc(L′, S)−1 = L′−1S,S

= L−1S,S −
(
L−1U(IK + VL−1U)−1VL−1

)
S,S

= Sc(L, S)−1 − ISL−1U(IK + VL−1U)−1VL−1IS .

This gives us the new rank-K update Sc(L′, S)−1 = Sc(L, S)−1 + U∗V∗ with

U∗ = −ISL−1U

V∗ = (IK + VL−1U)−1VL−1IS .

We can now determine the Schur complement update by applying Sherman-Morrison again:

Sc(L′, S) = Sc(L, S)− Sc(L, S)U∗(IK + V∗Sc(L, S)U∗)−1V∗Sc(L, S).

This is a rank-K update Sc(L′, S) = Sc(L, S) + U′V′ with

U′ = −Sc(L, S)U∗

V′ = (IK + V∗Sc(L, S)U∗)−1V∗Sc(L, S).

The time to compute U∗,V∗,U′,V′ are all dominated by the time to multiply an n× n matrix with an n×K
matrix, which is O(n2Kω−2).

Now, we are ready to present the data structure for maintaining the Schur complement matrices along a
separator tree.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited3573

D
ow

nl
oa

de
d

10
/1

9/
24

 to
 1

08
.2

6.
19

2.
79

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Algorithm 1 Data structure to maintain dynamic Schur complements
1: data structure DynamicSC
2: private: member
3: Hypergraph GA with incidence matrix A
4: w ∈ Rm: Dynamic weight vector
5: S: Separator tree of height η. Every node H of S stores:
6: FH , ∂H: Sets of eliminated vertices and boundary vertices of region H
7: E(H): Set of hyperedges of region H
8: L(H), (L

(H)
FH ,FH

)−1,Sc(L(H), ∂H),: Matrices to maintain as a function of w

9: L(H)−1: Additional inverse matrix to maintain as a function of w
10: UH ,VH : Low-rank update at H, used in Reweight
11:
12: procedure Initialize(S, w(init) ∈ Rm)
13: S ← S,w ← w(init)

14: for level i = η to 0 do
15: for each node H at level i do
16: L(H), (L

(H)
FH ,FH

)−1,Sc(L(H), ∂H)← 0,0,0
17: SchurNode(H,w)
18: end for
19: end for
20: end procedure
21:
22: procedure Reweight(δw ∈ Rm)
23: H ← set of nodes H in S where δw|E(H) 6= 0
24: for level i = η to 0 do
25: for each node H ∈ H at level i do
26: SchurNode(H, δw)
27: end for
28: end for
29: w ← w + δw
30: end procedure
31:
32: procedure SchurNode(H ∈ S, δw ∈ Rm)
33: if H is a leaf node then . rank of update ≤ min{nnz(δw|E(H)), |FH ∪ ∂H|}
34: L(H) ← L(H) + AHdiag(δw|E(H))A

>
H

35: else if nnz(δw|E(H)) ≤ |FH ∪ ∂H| then . rank of update ≤
∑

child DKD ≤ nnz(δw|E(H))

36: L(H) ← L(H) +
∑

child D of H UDVD

37: else . rank of update ≤ |FH ∪ ∂H|
38: L(H) ←

∑
child D of H Sc(L(D), ∂D)

39: end if
40: Let KH

def
= min{nnz(δw|E(H)), |FH ∪ ∂H|} . upper bound on the rank of update to L(H)

41: Compute (L
(H)
FH ,FH

)−1 and L(H)−1 by Lemma 4.3
42: Compute Sc(L(H), ∂H) and its rank-KH update factorization UH ,VH by Lemma 4.3
43: end procedure

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited3574

D
ow

nl
oa

de
d

10
/1

9/
24

 to
 1

08
.2

6.
19

2.
79

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Lemma 4.4. Let w be the weights changing at every step of the IPM. Let S be any separator tree for GA. Recall
GA has n vertices, m hyperedges, and max hyperedge size ρ. Then the data structure DynamicSC (Algorithm 1)
correctly maintains the matrices L(H), (L

(H)
FH ,FH

)−1,Sc(L(H), ∂H) at every node H ∈ S dependent on w throughout
the IPM. The data structure supports the following procedures and runtimes:

• Initialize(S,w(init) ∈ Rm): Set w ← w(init), and compute all matrices with respect to w, in time

O

 ∑
leaf H∈S

|E(H)| · |FH ∪ ∂H|ω−1 +
∑
H∈S
|FH ∪ ∂H|ω

 .

• Reweight(δw ∈ Rm): Update the weight vector to w ← w + δw, and update all the maintained matrices
with respect to the new weights, in time

O

 ∑
leaf H∈H

nnz(δw|E(H)) · |FH ∪ ∂H|ω−1 +
∑
H∈H

|FH ∪ ∂H|2 ·Kω−2
H

 .

where H is the set of nodes H with δw|E(H) 6= 0, KH
def
= min{nnz(δw|E(H)), |FH ∪ ∂H|}.

Proof. Initialize is a special case of Reweight, where the change in the weight vector is from 0 to w(init), so we
focus on a single call of Reweight.

It suffices for Reweight visits only nodes in H, since if none of the edges in a region admits a weight update,
then the matrices stored at the node remain the same by definition. Also note that H ∈ H implies all ancestors of
H are also in H.

Correctness. We use the superscript (new) on L(H) to indicate that it is computed with respect to the new
weights, and (old) otherwise. Recall that L(H) is supported on FH ∪ ∂H.

We maintain some additional matrices at each node, in order to efficiently compute low-rank updates.
Specifically, we use helper matrices UH ,VH at H, and guarantee that during a single Reweight(δw) call, after
SchurNode(H, δw) is run, they satisfy Sc(L(H)(old), ∂H) = Sc(L(H)(new)

, ∂H) + UHVH , and UH ,VH
> both

have at most KH -many columns.
Now, we show inductively that after SchurNode(H, δw) is run, all matrices at H , as well as all matrices at all

descendants of H , are updated correctly: When H is leaf node, recall L(H) is defined to be L[H]
def
= AHWE(H)AH

>,
so clearly SchurNode updates L(H) correctly, and the rank of the update is at most KH . The remaining matrices
at H are computed correctly by Lemma 4.3.

Inductively, when H is a non-leaf node, the recursive property of Schur complements (c.f. [15, Lemma 18])
allows us to write L(H)(new)

=
∑

child D of H Sc(L(D)(new)
, ∂D) at every node H ∈ S. This formula trivially shows

that the update L(H)(new)−L(H)(old) has rank |FH∪∂H| (ie. full-rank). Alternatively, if nnz(δw|E(H)) ≤ |FH∪∂H|,
then by the guarantees on the helper matrices, we have

L(H)(new)
=

∑
child D of H

Sc(L(D)(new)
, ∂D)

=
∑

child D of H

Sc(L(D)(old), ∂D) + UDVD

= L(H)(old) +
∑

child D of H

UDVD.

This gives a low-rank factorization of the update L(H)(new) − L(H)(old) with rank at most
∑

child DKD, which we
can show by induction is at most nnz(δw|E(H)). Since we have the correct low-rank update to L(H), the remaining
matrices at H again are computed correctly by Lemma 4.3.

This completes the correctness proof.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited3575

D
ow

nl
oa

de
d

10
/1

9/
24

 to
 1

08
.2

6.
19

2.
79

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Runtime. Consider the runtime of the procedure SchurNode(H, δw) at a node H : If H is a leaf node, then
computing the update to L(H) involves multiplying a |FH ∪ ∂H| × nnz(δw|E(H))-sized matrix with its transpose
(Algorithm 1). Note that if |FH ∪ ∂H| > nnz(δw|E(H)), then this runtime can be absorbed into the runtime
expression for the remaining steps of the procedure, since KH = nnz(δw|E(H)). Otherwise, we use fast matrix
multiplication which takes O(nnz(δw|E(H)) · |FH ∪∂H|ω−1) time. If H is a non-leaf node, there are two cases for the
update to L(H) in the algorithm. The first case (Algorithm 1) takes O (|FH ∪ ∂H| · (

∑
KD)) ≤ O(|FH ∪ ∂H| ·KH)

time, and the second case (Algorithm 1) takes O(|FH ∪ ∂H|2) time. Computing the other matrices at any node H
takes O

(
|FH ∪ ∂H|2 ·KH

ω−2) time by Lemma 4.3.
The runtime of Reweight(δw) is therefore given by∑

H∈H
SchurNode(H, δw) time

= O

(∑
leaf H∈H

nnz(δw|E(H)) · |FH ∪ ∂H|ω−1 +
∑
H∈H

|FH ∪ ∂H|2 ·Kω−2
H

)
.

For Initialize, we further simplify the expression using nnz(δw|E(H)) = |E(H)| and KH ≤ |FH ∪ ∂H|.

4.5 Projection operator complexities In this subsection, we summarize the runtime complexities for the
tree operator, in the special case when S is a (a, b, λ)-separator tree for GA. Parametrizing the separator tree this
way allows us to write the runtime expressions using geometric series. For non-negative x, we use the standard
bound

∑u
i=` x

i ≤ O(x` + xu). When it is clear x < 1, we bound
∑u
i=` x

i ≤ O(x`).

Lemma 4.5. Suppose S is an (a, b, λ)-separator tree for GA on n vertices, m edges, with max hyperedge size ρ,
where a ∈ [0, 1] and b ∈ (0, 1). Let η denote the height of S, and let L denote the number of leaf nodes. Let ∆ be
the tree operator on T as defined in Section 4.3. Then there is a data structure to maintain ∆ as a function of the
weights w throughout Solve, so that:

• The data structure can be initialize in time

(4.13) O
(
ρω−1m+ λω ·

(
1 + (baω−1)η

))
.

• The query complexity of ∆ is

(4.14) Q(K) = O
(
ρK + λ2

(
1 + (min{K,L})1−2a

))
• When a < 1, the update complexity of ∆ is U(K) =

(4.15) ρω−1K + λ2 min{K,λ}ω−2 +


λ2K1−2a if K ≤ λ
λ2K1−2a + λ

ω−1
1−αK

1−αω
1−α if λ < K ≤ λ · b(a−1)η

λω · b(aω−1)η if K > λ · b(a−1)η.

When a = 1, the update complexity is U(K) = ρω−1K + λ2 min{K,λ}ω−2.

Proof. The data structure we use to maintain ∆ is precisely the data structure DynamicSC with respect to S.
Initialization time. We use the runtime expression for Initialize in DynamicSC (Lemma 4.4) combined

with the parameters of the (a, b, λ)-separator tree. For any H , we have |FH ∪∂H| ≤ ρ, so
∑

leaf H∈S |E(H)| · |FH ∪
∂H|ω−1 ≤ ρω−1m. Moreover,

∑
H∈S
|FH ∪ ∂H|ω ≤

η∑
i=0

b−i
(
λ · bai

)ω ≤ O(λω) ·
[
1 + (baω−1)η

]
.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited3576

D
ow

nl
oa

de
d

10
/1

9/
24

 to
 1

08
.2

6.
19

2.
79

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Query complexity. We substitute the (a, b, λ)-separator tree bounds in Lemma 4.2, to conclude that the
query complexity of ∆ is

Q(K) = O

ρK +
∑

H∈PS(H)

(λ · bai)2
 ,

where H is any set of K leaf nodes in S. We group terms according to their node level, and note that there are
min{K, b−i}-many terms at any level i, so

= O

(
ρK +

η∑
i=0

min{K, b−i} · (λ · bai)2
)

= O(ρK) +O(λ2) ·

− logbK∑
i=0

b−i · b2ai +K ·
η∑

i=− logbK

b2ai


Note that K can be at most L in the summation, so we have

= O
(
ρK + λ2(1 + (min{K,L})1−2a)

)
.

Update complexity. When w changes, we update ∆ by invoking Reweight(δw) in DynamicSC, where
δw denotes the change in w. By Lemma 4.4, the runtime for the fixed δw is

(4.16)
∑

leaf H: δw|E(H) 6=0

nnz(δw|E(H)) · |FH ∪ ∂H|ω−1 +
∑

node H: δw|E(H) 6=0

|FH ∪ ∂H|2 ·KH
ω−2.

Hence, the update complexity of ∆ is the max of the above expression taken over all choices of δw. For any leaf
node H, we upper bound |FH ∪ ∂H|ω−1 ≤ ρω−1, and therefore the first summation is at most ρω−1K.

For the second summation, we substitute in the (a, b, λ)-separator tree bounds, and group terms according to
their node level. Let S(i) denotes all nodes at level i in S. Then for any δw, we have

(4.17)
∑

node H: δw|E(H) 6=0

|FH ∪ ∂H|2 ·KH
ω−2 ≤

η∑
i=0

(λ · bai)2 ·
∑

H∈S(i)

KH
ω−2

 ,

where the KH ’s are non-negative integers satisfying
∑
H∈S(i)KH ≤ K and KH ≤ |FH ∪ ∂H| ≤ λ · bai for H ∈ S(i).

We are interested in upper bounding Eq. (4.17). At any level i, there are b−i nodes, and the sum is maximized
when all the KH ’s are equal. Depending on the relationship between K and the level i, we have the following
three cases:

• If K ≤ b−i, that is, the total update rank is less than the number of nodes at the level, then the sum is
maximized if KH = 1 for K-many nodes, and KH = 0 for the rest.

• If b−i < K ≤ b−i · (λ · bai), the sum is upper bounded by setting KH = K/b−i.

• If K > O(b−i) · (λ · bai), the sum is upper bounded by setting KH = λ · bai.

Then, we can bound the summation term in Eq. (4.17) by∑
0≤i≤η
K≤b−i

K(λ · bai)2 +
∑

0≤i≤η:
b−i<K≤λ·b(a−1)i

(λ · bai)2 · b−i · (Kbi)ω−2 +
∑

0≤i≤η:
K>λ·b(a−1)i

b−i · (λ · bai)ω

≤ λ2K
η∑

i=− logbK

b2ai + λ2Kω−2
− logbK∑

i=
logb(K/λ)

a−1

b(2a+ω−3)i + λω

logb(K/λ)

a−1∑
i=0

b(aω−1)i.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited3577

D
ow

nl
oa

de
d

10
/1

9/
24

 to
 1

08
.2

6.
19

2.
79

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

We need to further consider different cases for the possible values of K, which affects the summation indices. If
logb(K/λ) < 0, i.e. K < λ, the expression simplifies to

λ2K1−2a + λ2Kω−2.

If 0 ≤ logb(K/λ)/(a− 1) ≤ η, i.e. λ ≤ K ≤ λ · b(a−1)η, the expression simplifies to

λ2K1−2a + λ
ω−1
1−αK

1−αω
1−α + λω.

And lastly, if logb(K/λ)/(a− 1) > η, i.e K > λ · b(a−1)η, the expression simplifies to

λω + λω · b(aω−1)η.

We combine the cases to arrive at the overall update complexity, having implicitly assumed that α < 1. When
α = 1, the summation in Eq. (4.17) is maximized when KH = min{K,λ} · bi for H at level i. Then we can upper
bound the summation term by

η∑
i=0

(λ · bi)2 · b−i · (min{K,λ} · bi)ω−2 ≤ O(λ2 min{K,λ}ω−2).

5 Proofs of main theorems
For our main theorems, it remains to show that we can construct an appropriate (a, b, λ)-separator tree for GA in
each of the scenarios: when GA is nα-separable; when A is the constraint matrix for a planar k-multicommodity
flow instance; and when GA has a tree decomposition of width τ . Then, we apply Lemma 4.5 to the separator
tree get the complexity of the tree operator, which we combine with Theorem 3.4 to conclude the overall IPM
running times.

5.1 Proof of Theorem 1.1 First, we show how to construct a separator tree for an nα-separable graph, by
modifying the proof from [20].

Lemma 5.1. Suppose GA is a graph on n vertices and m edges. If GA is nα-separable for α < 1, then GA admits
an (α, b, cnα)-separator tree, where b ∈ (0, 1) and c > 0 are some constants. Furthermore, if a balanced vertex
separator for GA can be computed in T (n) time, then the separator tree can be computed in Õ(T (n)) time.

Proof. Let b′ ∈ (0, 1) and c′ = 1 (without loss of generality) be the parameters for GA being nα-separable. In the
separator tree construction process, assume inductively that we have constants b ∈ (0, 1) and c > 0, both to be
chosen later, such that for any node H at level i, we have |V (H)| ≤ bin and |∂H| ≤ cnα · bαi. In the base case at
the root node, we have i = 0, and |V (GA)| ≤ n and |∂GA| = 0 ≤ cnα.

We show how to construct the nodes at level i+ 1. Let H be an already-constructed node at level i. There
are three cases:

1. If H satisfies |V (H)| ≤ bi+1n and |∂H| ≤ cnα · bα(i+1), put a copy of H as its only child at level i+ 1.

2. If |V (H)| ≥ bi+1n, then assign a weight of 1 to all vertices, find a balanced vertex separator S(H), and
partition H accordingly into H1 and H2. Let us consider H1; the analogous holds for H2.

By definition of separability, we know |V (H1)| ≤ b′ · |V (H)| + |V (H)|α ≤ b · |V (H)| ≤ bi+1n as long as
b ∈ (b′, 1). If |∂H1| ≤ c · |V (H1)|α, then we can upper bound this expression by cnα · bα(i+1), and we are
done.

On the other hand, if |∂H1| > c · |V (H1)|α, then by definition of boundary, we have |∂H1| ≤ |∂H|+ |S(H)| ≤
(c + 1)nα · bαi using the guarantees at H. Next, we assign a weight of 1 to vertices in ∂H1 and 0 to all
other vertices, find a balanced separator S(H1) of H1 with respect to these weights, and create two children

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited3578

D
ow

nl
oa

de
d

10
/1

9/
24

 to
 1

08
.2

6.
19

2.
79

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

D1, D2 of H1 accordingly. Then, for j = 1, 2, we have

|∂Dj | ≤ b · |∂H1|+ |V (H1)|α

≤ b(c+ 1)nα · bαi + nα · bα(i+1)

≤
(
b1−α · c+ 1

c
+

1

c

)
· cnα · bα(i+1),

As long as c is large enough so the expression in the parentheses to be less than 1. In this case, observe that
we can add S(H1) to the balanced separator S(H), and set D1 and D2 directly as the children of H.

3. If |V (H)| ≤ b(i+1)n and |∂H| ≥ cnα · bα(i+1), then we apply case 2 with H1 being H.

So we have shown inductively that at the end of this construction, any node H at level i satisfies |V (H)| ≤ bin
and |∂H| ≤ cnα · bαi. It follows that |FH ∪ ∂H| ≤ |S(H)|+ |∂H| = O(cnα · bαi).

Next, we show that there are only O(b−i) nodes at level i. Let Li(n) denote the total number of boundary
vertices with multiplicities, when carrying out the construction starting on a graph of size n and ending when each
leaf node H satisfies the level-i assumptions. We can recursively write

Li(k) =
4∑
j=1

Li(bjk + 3ckα), if k > Cbin

Bi(k) = 1 else.

where
∑
bj = 1, each bj ≤ b′, and C is a positive constant we choose. To see this, note that a node of size k

has at most four children in the construction; the separator is of size 3ckα since we may need to compute up to
three separators each of size ckα and take their union; and child j has at most bjk vertices that are not from the
separator. Solving the recursion yields Li(k) ≤ k/(Cbin)− γkα for some constant γ > 0. Therefore, there are at
most Li(n) ≤ O(b−i) nodes at level i.

Finally, it is straightforward to see that the separator tree can be computed in Õ(T (n)) time, since the node
sizes decrease by a geometric factor as we proceed down the tree during construction.

Proof. [Proof of Theorem 1.1] We consider the cases when α = 1 and α < 1 separately.
All hypergraphs are trivially n-separable with max hyperedge size ρ = n. In this case, let S be the separator

tree consisting of simply one node representing GA, which is a (1, 1/2, n)-separator tree. By Lemma 4.5, the tree
operator data structure can be initialized in O(mω) time; the query complexity is Q(K) = O(nK + n2), and the
update complexity is U(K) = O(nω−1K + n2Kω−2).

We apply Theorem 3.4 to get the overall runtime:

Õ

√m log(
R

εr
) ·

1
2 logm∑
`=0

n22` + n2 + n222`(ω−2)

2`

 = Õ

(√
mn2 log(

R

εr
)

)
.

If GA is nα-separable for α < 1, then by Lemma 5.1, GA admits a (α, b, cnα)-separator tree computable in Õ(n)
time. In this case, ρ = O(1), and η = O(log1/b n). Plugging the parameters into Lemma 4.5, we get the following
tree operator runtimes:

• The data structure can be initialize in O
(
m+ nαω(1 + n1−αω)

)
≤ O(m+mαω) time.

• The query complexity is Q(K) ≤ O(K + n2α(1 +K1−2α)).

• The update complexity is

U(K) ≤ O
(
K + n2α min{K,nα}ω−2 + n2αK1−2α + n

α(ω−1)
1−α K

1−αω
1−α · 1K≥nα

)
.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited3579

D
ow

nl
oa

de
d

10
/1

9/
24

 to
 1

08
.2

6.
19

2.
79

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

We apply Theorem 3.4 to get the overall runtime.

Õ

(√
m log(

R

εr
)

)
·

1
2 logm∑
`=0

22` + n2α + nαω · 122`>nα + n2α2(1−2α)2` + n
α(ω−1)

1−α 2
1−αω
1−α 2` · 122`>nα

2`

= Õ

(√
m log(

R

εr
)

)
·
(√

m+ n2α + nαω−
α
2 + n2αm1−2α− 1

2 + n
α(ω−1)

1−α

(
n
α(1−αω)

1−α −α2 +m
1−αω
1−α −

1
2

))
= Õ

((
m+m

1
2+2α

)
· log(

R

εr
)

)
,

where in the last step, we used the fact αω − α
2 ≤ 2α.

5.2 Proof of Theorem 1.2 Let G = (V,E) denote the planar graph for the original problem, with
V = {v1, . . . , vn} and E = {e1, . . . , em}. First, we write the LP in Eq. (1.1) in standard form by adding
slack variables s ∈ RE :

min
k∑
i=1

c>i fi

s.t B>fi = di ∀i ∈ [k]

k∑
i=1

fi + s = u

fi ≥ 0 ∀i ∈ [k]

s ≥ 0

(P ′)

Let A denote the full constraint matrix of P ′. Then

(5.1) A =



B> 0 · · · 0 0

0 B>
...

...
. . .

0 0 · · · B> 0
I I · · · I I

 ∈ R(kn+m)×(k+1)m

where the top left part of A contains k copies of B> in block-diagonal fashion, and all the identity matrices are of
dimension m×m. The dual graph of B> is precisely G. Let GA be the dual graph of A.

First, we describe GA: It contains k independent copies of the vertices V , which we label with V i = (vi1, . . . , v
i
n),

so that vij is a copy of vj ∈ V . Additionally, GA contains m vertices u1, . . . , um, where the vertex ui is identified
with edge ei ∈ E. For each edge ei ∈ E with endpoints vi1 , vi2 , there are k hyper-edges in GA of the form
{v`i1 , v

`
i2
, ui} for ` = 1, . . . , k. Additionally, there are m hyper-edges f1, . . . , fm where fi contains only the vertex

ui.
Next, we show how to construct an appropriate separator tree efficiently.

Claim 6. GA admits a (1
2 , b, kn

1/2)-separator tree that can be computed in O(kn log n) time.

Proof. Let G be the original planar graph which is
√
n-separable, and let S̃ be the (12 , b, n

1/2)-separator tree for G
constructed using Lemma 5.1 in O(n log n) time by [49]. We show how to construct a (1

2 , b, kn
1/2)-separator tree

S for GA based on S̃. Without loss of generality, we ignore the hyper-edges f1, . . . fm in this construction.
Intuitively, S will have the same tree structure as S̃, but each node will be larger by a factor of O(k) due to

the k copies of G in GA. For each H̃ ∈ S̃, we construct a corresponding H ∈ S as follows: if vj ∈ H̃, then vij ∈ H
for all i ∈ [k]; if ej ∈ E(H̃), i.e. both endpoints of ej are in H̃, add uj to H. Since the k copies v1j , . . . , vkj are
always grouped together, we will refer to them together as vj in GA as well.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited3580

D
ow

nl
oa

de
d

10
/1

9/
24

 to
 1

08
.2

6.
19

2.
79

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Let us show that this is indeed a (1
2 , b, kn

1/2)-separator tree. Suppose H is a node with children D1 and D2

in S, corresponding to nodes H̃, D̃1, D̃2 in S̃. Let S(H)
def
= V (D1) ∩ V (D2), then vj ∈ S(H) iff vj ∈ S(H̃), and

uj ∈ S(H) iff ej ∈ E(S(H̃)) for all values of j. It is straightforward to see that S(H) is indeed a separator of
H. When it comes to the set of boundary vertices, we see vj ∈ ∂H iff vj ∈ ∂H̃, and if uj ∈ ∂H with vj1 , vj2
being the two endpoints of ej , then vj1 , vj2 are both in ∂H. Since G is a planar graph, the number of edges in
H̃ is on the same order as the number of vertices, so we conclude that |V (H)| ≤ O(k) · |V (H̃)|, and similarly,
|FH ∪ ∂H| ≤ O(k) · |FH̃ ∪ ∂H̃|. Since node sizes in S have increased by a factor of O(k) compared to S̃, we
conclude S is a (1

2 , b, kn
1/2)-separator tree.

Finally, we can compute S̃ for G in O(n log n) time, so we can compute S in O(kn log n) time.

We reduce our problem to minimum cost multi-commodity circulation problem in order to establish the
existence of an interior point in the polytope, before invoking the RIPM in Theorem 3.1. For each commodity
i ∈ [k], we add extra vertices si and ti. Let di be the demand vector of the i-th commodity. For every vertex
v with di,v < 0, we add a directed edge from si to v with capacity −di,v and cost 0. For every vertex v with
di,v > 0, we add a directed edge from v to ti with capacity di,v and cost 0. Then, we add a directed edge from ti
to si with capacity 4kmM and cost −4kmM . The modified graph G′ has only 2k extra vertices of the form si and
ti compared to GA, so we can construct a (12 , b, kn

1/2 + 2k)-separator tree for G′ based on the (12 , kn
1/2)-separator

tree for GA, where we include the extra vertices at every node of the tree.
To show the existence of the interior point, we remove all the directed edges that no single commodity flow

from si to ti can pass for any i ∈ [k]. This can be done by run BFS for k times which takes O(km) time. For the
interior point f , we construct this finding a circulation f (e) that passing through e and si, ti for some i with flow
value 1/(10km) for all the remaining edge e. Then, since the capacities are integers, we find a feasible f , s with
value at least 1/(10km). This shows the inner radius r of the polytope is at least 1/(10km). For the L and R, we
note we can bound it by O(kmM).

Let A′ be the constraint matrix of the reduced problem with dual graph G′. The RIPM in Theorem 3.1
invokes the subroutine Solve twice. In the first run, we make a new constraint matrix by concatenating A′ three
times. One can check that the dual graph is G′ with each edge duplicated three times, so the corresponding
separator tree is straightforward to construct.

Now, we bounding the running time. The tree operator complexities are similar to the analysis in the previous
section with an additional factor of k in the expression for λ. The initialization time is O(km+ (kn1/2)ω). The
query complexity is Q(K) = O(K + k2n). After simplifying, the update complexity is

U(K) = K +

{
k2nKω−2 if K ≤ kn1/2

(kn1/2)ω else.

Note that the number of variables is km. Plugging our choice of L, R, and r, by Theorem 3.4, the total runtime
simplifies to

Õ
(
k2.5m1.5 log(M/ε)

)
.

6.1 Proof of Theorem 1.3 First, we show how to construct a (0, 1/2, O(τ log n))-separator tree S for GA

when we have a tree decomposition of GA of width τ . At the root of S, we can use the tree decomposition to
compute a balanced separator S of GA of size O(τ) in Õ(nτ) time (c.f. [16, Theorem 4.17]), so that the two parts
A and B of GA \ S each have size at most 2

3n. We construct two children of the root node on the vertex sets
A ∪ S and B ∪ S respectively, and apply this procedure recursively until the nodes are of size at most 9τ .

Claim 7. There are O(n/τ)-many leaves at the end of this construction.

Proof. Let L(k) denote the number of leaves when starting the construction with a size k subgraph. We know
L(k) = 1 if k ≤ 9τ , and L(k) = L(k1 + τ) + L(k2 + τ) if k > 9τ , where k1 + k2 + τ = k and k1, k2 ≤ 2/3k. By
induction, we can show that L(k) ≤ 2(k/τ − 1) when k > 2τ , where the balanced separator crucially ensures that
the recursion does not reach the base case of k ≤ 2τ .

The resulting separator tree is binary, so there are at most 2i nodes at level i. Since there are L = O(n/τ)-many
leaves, the height η is at most η ≤ log2(n/τ). The boundary of a node H is contained in the union of balanced
separators over its ancestors, so |FH ∪ ∂H| ≤ τη ≤ O(τ log n). The max hyperedge size of GA is ρ = τ .

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited3581

D
ow

nl
oa

de
d

10
/1

9/
24

 to
 1

08
.2

6.
19

2.
79

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Using these values, we simplify the complexities in Lemma 4.5: The initialization time for the tree
operator data structure is Õ

(
τω−1m+ τω (1 + n/τ)

)
= Õ(τω−1m). The query complexity of ∆ is Q(K) =

Õ
(
τK + τ2 min{K,L}

)
. The update complexity of ∆ is

U(K) ≤ τω−1K +

{
τ2K if K ≤ n
τω if K > n

Finally, we apply Theorem 3.4 to get the overall runtime, which is clearly bounded by

Õ

(√
m log(

R

εr
)

)
·

1
2 logm∑
`=0

τ222`

2`
= Õ

(
mτ2 log(R/(εr))

)
.

To obtain the faster runtime given in [28], we use the data structure restarting trick: Recall MaintainApprox
guarantees there are 22`-many coordinate updates to x and s every 2` steps, i.e. the number of coordinate updates
grows superlinearly with respect to the total number of steps taken. By reinitializing MaintainApprox with the
exact solution once in a while, we limit the total number of coordinate updates. In the proof of Theorem 3.4, we
showed that running M steps of the RIPM takes

Õ

(
U(m) +Q(m) + η4M log(

R

εr
) ·

logM∑
`=0

U(22`) +Q(22`)

2`

)

time, where U(m) +Q(m) is the time to initialize the data structures and obtain the final exact solutions. There
are N =

√
m logm log(mRεr)-many total IPM steps, and we reinitialize the data structures every M steps. Then

the total running time is (ignoring the big-O notation and log factors)

N

M

(
U(m) +Q(m) +M

logM∑
`=0

U(22`) +Q(22`)

2`

)

=

√
m

M

(
τω−1m+ τ2M2

)
.

The expression is minimized by taking M =
√
mτ

ω−3
2 , which gives an overall runtime of

Õ
(
mτ (ω+1)/2 log(R/(εr))

)
.

Acknowledgements We thank the anonymous reviewers for helpful feedback.

References

[1] Ahuja, R. K., Magnanti, T. L., and Orlin, J. B. Network Flows. Prentice Hall, 1988.
[2] Alon, N., and Yuster, R. Solving linear systems through nested dissection. In 2010 IEEE 51st Annual Symposium

on Foundations of Computer Science (2010), IEEE, pp. 225–234.
[3] Axiotis, K., Mądry, A., and Vladu, A. Faster sparse minimum cost flow by electrical flow localization. In 2021

IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS) (2022), pp. 528–539.
[4] Bernstein, A., Gutenberg, M. P., and Saranurak, T. Deterministic decremental SSSP and approximate

min-cost flow in almost-linear time. In 62st IEEE Annual Symposium on Foundations of Computer Science, FOCS
2021 (2021), IEEE.

[5] Borradaile, G. Exploiting Planarity for Network Flow and Connectivity Problems. Brown University, 2008.
[6] Chambers, E. W., Erickson, J., Fox, K., and Nayyeri, A. Minimum cuts in surface graphs. SIAM J. Comput.

52, 1 (2023), 156–195.
[7] Chen, L., Kyng, R., Liu, Y. P., Peng, R., Gutenberg, M. P., and Sachdeva, S. Maximum flow and

minimum-cost flow in almost-linear time. In 63rd IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2022, Denver, CO, USA, October 31 - November 3, 2022 (2022), IEEE, pp. 612–623.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited3582

D
ow

nl
oa

de
d

10
/1

9/
24

 to
 1

08
.2

6.
19

2.
79

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

[8] Christiano, P., Kelner, J. A., Madry, A., Spielman, D. A., and Teng, S.-H. Electrical flows, laplacian
systems, and faster approximation of maximum flow in undirected graphs. In Proceedings of the forty-third annual
ACM symposium on Theory of computing (2011), pp. 273–282.

[9] Cohen, M. B., Lee, Y. T., and Song, Z. Solving linear programs in the current matrix multiplication time.
Journal of the ACM (JACM) 68, 1 (2021), 1–39.

[10] Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. Introduction to algorithms. MIT press, 2009.
[11] Daitch, S. I., and Spielman, D. A. Faster approximate lossy generalized flow via interior point algorithms. In

Proceedings of the 40th annual ACM symposium on Theory of computing (2008), pp. 451–460.
[12] Dantzig, G. B. Maximization of a linear function of variables subject to linear inequalities. Activity analysis of

production and allocation 13 (1951), 339–347.
[13] Dibbelt, J., Strasser, B., and Wagner, D. Customizable contraction hierarchies. In Experimental Algorithms

(Cham, 2014), J. Gudmundsson and J. Katajainen, Eds., Springer International Publishing, pp. 271–282.
[14] Ding, M., Kyng, R., and Zhang, P. Two-commodity flow is equivalent to linear programming under nearly-linear

time reductions. In 49th International Colloquium on Automata, Languages, and Programming, ICALP 2022, July 4-8,
2022, Paris, France (2022), M. Bojanczyk, E. Merelli, and D. P. Woodruff, Eds., vol. 229 of LIPIcs, Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, pp. 54:1–54:19.

[15] Dong, S., Gao, Y., Goranci, G., Lee, Y. T., Peng, R., Sachdeva, S., and Ye, G. Nested dissection meets
ipms: Planar min-cost flow in nearly-linear time. In Proceedings of the 2022 Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA) (2022), SIAM, pp. 124–153.

[16] Dong, S., Lee, Y. T., and Ye, G. A nearly-linear time algorithm for linear programs with small treewidth: A
multiscale representation of robust central path. In Proceedings of the 53rd Annual ACM SIGACT Symposium on
Theory of Computing (2021), STOC 2021, ACM, pp. 1784–1797.

[17] Dong, S., Lee, Y. T., and Ye, G. A nearly-linear time algorithm for linear programs with small treewidth: A
multiscale representation of robust central path. arXiv preprint arXiv:2011.05365v2 (2021).

[18] Duan, R., Wu, H., and Zhou, R. Faster matrix multiplication via asymmetric hashing. arXiv preprint
arXiv:2210.10173 (2022).

[19] Eppstein, D., Galil, Z., Italiano, G. F., and Spencer, T. H. Separator based sparsification: I. planarity testing
and minimum spanning trees. journal of computer and system sciences 52, 1 (1996), 3–27.

[20] Federickson, G. N. Fast algorithms for shortest paths in planar graphs, with applications. SIAM Journal on
Computing 16, 6 (1987), 1004–1022.

[21] Fleischer, L. K. Approximating fractional multicommodity flow independent of the number of commodities. SIAM
Journal on Discrete Mathematics 13, 4 (2000), 505–520.

[22] Ford, L. R., and Fulkerson, D. R. Maximal flow through a network. Canadian journal of Mathematics 8 (1956),
399–404.

[23] Gao, Y., Liu, Y. P., and Peng, R. Fully dynamic electrical flows: Sparse maxflow faster than Goldberg-Rao. In
62st IEEE Annual Symposium on Foundations of Computer Science, FOCS2021 (2021), IEEE.

[24] Garg, N., and Könemann, J. Faster and simpler algorithms for multicommodity flow and other fractional packing
problems. SIAM Journal on Computing 37, 2 (2007), 630–652.

[25] George, A. Nested dissection of a regular finite element mesh. SIAM journal on numerical analysis 10, 2 (1973),
345–363.

[26] Gohberg, I., Kailath, T., and Koltracht, I. Efficient solution of linear systems of equations with recursive
structure. Linear Algebra and its Applications 80 (1986), 81–113.

[27] Goranci, G., Henzinger, M., and Peng, P. Dynamic effective resistances and approximate Schur Complement on
separable graphs. In 26th Annual European Symposium on Algorithms, ESA 2018 (2018), vol. 112 of LIPIcs, Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, pp. 40:1–40:15.

[28] Gu, Y., and Song, Z. A faster small treewidth SDP solver. CoRR abs/2211.06033 (2022).
[29] Hassin, R. Maximum flow in (s, t) planar networks. Information Processing Letters 13, 3 (1981), 107.
[30] Hassin, R. On multicommodity flows in planar graphs. Networks 14, 2 (1984), 225–235.
[31] Hassin, R., and Johnson, D. B. An O(n log2 n) algorithm for maximum flow in undirected planar networks. SIAM

Journal on Computing 14, 3 (1985), 612–624.
[32] Henzinger, M. R., Klein, P., Rao, S., and Subramanian, S. Faster shortest-path algorithms for planar graphs.

Journal of Computer and System Sciences 55, 1 (1997), 3–23.
[33] Imai, H., and Iwano, K. Efficient sequential and parallel algorithms for planar minimum cost flow. In Algorithms,

International Symposium SIGAL ’90, Tokyo, Japan (1990), vol. 450 of Lecture Notes in Computer Science, Springer,
pp. 21–30.

[34] Itai, A. Two-commodity flow. J. ACM 25, 4 (1978), 596–611.
[35] Itai, A., and Shiloach, Y. Maximum flow in planar networks. SIAM Journal on Computing 8, 2 (1979), 135–150.
[36] Italiano, G. F., Nussbaum, Y., Sankowski, P., and Wulff-Nilsen, C. Improved algorithms for min cut and

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited3583

D
ow

nl
oa

de
d

10
/1

9/
24

 to
 1

08
.2

6.
19

2.
79

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

max flow in undirected planar graphs. In Proceedings of the 43rd ACM Symposium on Theory of Computing, STOC
2011 (2011), ACM, pp. 313–322.

[37] Jiang, S., Song, Z., Weinstein, O., and Zhang, H. A faster algorithm for solving general lps. In STOC ’21:
53rd Annual ACM SIGACT Symposium on Theory of Computing, Virtual Event, Italy, June 21-25, 2021 (2021),
S. Khuller and V. V. Williams, Eds., ACM, pp. 823–832.

[38] Karczmarz, A., and Sankowski, P. Min-cost flow in unit-capacity planar graphs. In 27th Annual European
Symposium on Algorithms, ESA 2019, Munich/Garching, Germany (2019), vol. 144 of LIPIcs, Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, pp. 66:1–66:17.

[39] Karmarkar, N. A new polynomial-time algorithm for linear programming. In Proceedings of the sixteenth annual
ACM symposium on Theory of computing (1984), pp. 302–311.

[40] Kathuria, T., Liu, Y. P., and Sidford, A. Unit capacity maxflow in almost o(m4/3) time. In 61st IEEE Annual
Symposium on Foundations of Computer Science, FOCS 2020, Durham, NC, USA, November 16-19, 2020 (2020),
pp. 119–130.

[41] Kawarabayashi, K.-i., and Kobayashi, Y. All-or-nothing multicommodity flow problem with bounded fractionality
in planar graphs. In 2013 IEEE 54th Annual Symposium on Foundations of Computer Science (2013), pp. 187–196.

[42] Kelner, J. A., Lee, Y. T., Orecchia, L., and Sidford, A. An almost-linear-time algorithm for approximate
max flow in undirected graphs, and its multicommodity generalizations. In Proceedings of the twenty-fifth annual
ACM-SIAM symposium on discrete algorithms (2014), SIAM, pp. 217–226.

[43] Khachiyan, L. G. Polynomial algorithms in linear programming. USSR Computational Mathematics and
Mathematical Physics 20, 1 (1980), 53–72.

[44] King, V., Rao, S., and Tarjan, R. A faster deterministic maximum flow algorithm. Journal of Algorithms 17, 3
(1994), 447–474.

[45] Kyng, R., and Sachdeva, S. Approximate gaussian elimination for laplacians-fast, sparse, and simple. In 2016
IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS) (2016), IEEE, pp. 573–582.

[46] Lee, Y. T., and Sidford, A. Solving linear programs with sqrt(rank) linear system solves. CoRR abs/1910.08033
(2019).

[47] Lee, Y. T., Song, Z., and Zhang, Q. Solving empirical risk minimization in the current matrix multiplication
time. In Conference on Learning Theory (2019), PMLR, pp. 2140–2157.

[48] Leighton, T., Stein, C., Makedon, F., Tardos, É., Plotkin, S., and Tragoudas, S. Fast approximation
algorithms for multicommodity flow problems. In Proceedings of the twenty-third annual ACM symposium on Theory
of Computing (1991), pp. 101–111.

[49] Lipton, R. J., Rose, D. J., and Tarjan, R. E. Generalized nested dissection. SIAM journal on numerical analysis
16, 2 (1979), 346–358.

[50] Lipton, R. J., and Tarjan, R. E. A separator theorem for planar graphs. SIAM Journal on Applied Mathematics
36, 2 (1979), 177–189.

[51] Madry, A. Faster approximation schemes for fractional multicommodity flow problems via dynamic graph algorithms.
In Proceedings of the forty-second ACM symposium on Theory of computing (2010), pp. 121–130.

[52] Madry, A. Navigating central path with electrical flows: From flows to matchings, and back. In 2013 IEEE 54th
Annual Symposium on Foundations of Computer Science (2013), IEEE, pp. 253–262.

[53] Matsumoto, K., Nishizeki, T., and Saito, N. An efficient algorithm for finding multicommodity flows in planar
networks. SIAM Journal on Computing 14, 2 (1985), 289–302.

[54] Nesterov, Y., and Nemirovsky, A. Acceleration and parallelization of the path-following interior point method
for a linearly constrained convex quadratic problem. SIAM Journal on Optimization 1, 4 (1991), 548–564.

[55] Okamura, H., and Seymour, P. Multicommodity flows in planar graphs. Journal of Combinatorial Theory, Series
B 31, 1 (1981), 75–81.

[56] Peng, R. Approximate undirected maximum flows in o (m polylog (n)) time. In Proceedings of the twenty-seventh
annual ACM-SIAM symposium on Discrete algorithms (2016), SIAM, pp. 1862–1867.

[57] Reif, J. H. Minimum s-t cut of a planar undirected network in O(n log2 n) time. SIAM Journal on Computing 12, 1
(1983), 71–81.

[58] Renegar, J. A polynomial-time algorithm, based on newton’s method, for linear programming. Mathematical
programming 40, 1-3 (1988), 59–93.

[59] Schild, A., and Sommer, C. On balanced separators in road networks. In Experimental Algorithms (Cham, 2015),
E. Bampis, Ed., Springer International Publishing, pp. 286–297.

[60] Sherman, J. Nearly maximum flows in nearly linear time. In 2013 IEEE 54th Annual Symposium on Foundations of
Computer Science (2013), IEEE, pp. 263–269.

[61] Sherman, J. Area-convexity, linf regularization, and undirected multicommodity flow. In Proceedings of the 49th
Annual ACM SIGACT Symposium on Theory of Computing (2017), pp. 452–460.

[62] Sidford, A., and Tian, K. Coordinate methods for accelerating linf regression and faster approximate maximum

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited3584

D
ow

nl
oa

de
d

10
/1

9/
24

 to
 1

08
.2

6.
19

2.
79

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

flow. In 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS) (2018), IEEE, pp. 922–933.
[63] Spielman, D. A., and Teng, S.-H. Nearly-linear time algorithms for graph partitioning, graph sparsification, and

solving linear systems. In Proceedings of the thirty-sixth annual ACM symposium on Theory of computing (2004),
pp. 81–90.

[64] Vaidya, P. M. A new algorithm for minimizing convex functions over convex sets. Mathematical programming 73, 3
(1996), 291–341.

[65] van den Brand, J. A deterministic linear program solver in current matrix multiplication time. In Proceedings of
the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms (2020), SIAM, pp. 259–278.

[66] van den Brand, J., Gao, Y., Jambulapati, A., Lee, Y. T., Liu, Y. P., Peng, R., and Sidford, A. Faster
maxflow via improved dynamic spectral vertex sparsifiers. CoRR abs/2112.00722 (2021).

[67] van den Brand, J., Lee, Y. T., Liu, Y. P., Saranurak, T., Sidford, A., Song, Z., and Wang, D. Minimum
cost flows, MDPs, and `1-regression in nearly linear time for dense instances. In Proceedings of the 53rd Annual ACM
SIGACT Symposium on Theory of Computing (2021), pp. 859–869.

[68] van den Brand, J., and Zhang, D. Faster high accuracy multi-commodity flow from single-commodity techniques.
arXiv e-prints (2023), arXiv–2304.

[69] Weihe, K. Maximum (s, t)-flows in planar networks in O(|v| log |v|) time. Journal of Computer and System Sciences
55, 3 (1997), 454–475.

[70] Williams, V. V., Xu, Y., Xu, Z., and Zhou, R. New bounds for matrix multiplication: from alpha to omega.
arXiv preprint arXiv:2307.07970 (2023).

A Robust interior point method
For completeness, we include the robust interior point method from [15], developed in [17], which is a refinement
of the methods in [9, 65]. Although there are many other robust interior point methods, we simply refer to this
method as RIPM. Consider a linear program of the form

(A.1) min
x∈P

c>x where P = {Ax = b, l ≤ x ≤ u}

for some matrix A ∈ Rn×m. As with many other IPMs, RIPM follows the central path x(t) from an interior point
(t� 0) to the optimal solution (t = 0):

x(t)
def
= arg min

x∈P
c>x− tφ(x) where φ(x)

def
= −

∑
i

log(xi − li)−
∑
i

log(ui − xi),

where the term φ controls how close the solution xi can be to the constraints ui and li. Following the central
path exactly is expensive. Instead, RIPM maintains feasible primal and dual solution (x, s) ∈ P × S, where S
is the dual space given by S = {s : A>y + s = c for some y}, and ensures x(t) is an approximate minimizer.
Specifically, the optimality condition for x(t) is given by

µt(x, s)
def
= s/t+∇φ(x) = 0(A.2)

(x, s) ∈ P × S

where µt(x, s) measures how close x is to the minimizer x(t). RIPM maintains (x, s) such that

(A.3) ‖γt(x, s)‖∞ ≤
1

C logm
where γt(x, s)i =

µt(x, s)i

(∇2φ(x))
1/2
ii

,

for some universal constant C. The normalization term (∇2φ)
1/2
ii makes the centrality measure ‖γt(x, s)‖∞

scale-invariant in l and u.
The key subroutine Solve takes as input a point close to the central path (x(tstart), s(tstart)), and outputs

another point on the central path (x(tend), s(tend)). Each step of the subroutine decreases t by a multiplicative
factor of (1− 1√

m logm
) and moves (x, s) within P × S such that s/t+∇φ(x) is smaller for the current t. [17]

proved that even if each step is computed approximately, IPM still outputs a point close to (x(tend), s(tend)) using
Õ(
√
m log(tend/tstart)) steps. See Algorithm 2 for a simplified version.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited3585

D
ow

nl
oa

de
d

10
/1

9/
24

 to
 1

08
.2

6.
19

2.
79

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Algorithm 2 Robust Primal-Dual Interior Point Method from [17]
1: procedure RIPM(A ∈ Rn×m, b, c, l,u, ε)
2: Define L def

= ‖c‖2 and R def
= ‖u− l‖2

3: Define φi(x)
def
= − log(ui − x)− log(x− li)

4: Define µti(x, s)
def
= si/t+∇φi(xi)

. Modify the linear program and obtain an initial (x, s) for modified linear program
5: Let t = 221m5 · LR128 ·

R
r

6: Compute xc = arg minl≤x≤u c>x + tφ(x) and x◦ = arg minAx=b ‖x− xc‖2
7: Let x = (xc, 3R+ x◦ − xc, 3R) and s = (−t∇φ(xc),

t
3R+x◦−xc ,

t
3R)

8: Let the new matrix Anew def
= [A; A;−A], the new barrier

φnewi (x) =

{
φi(x) if i ∈ [m],

− log x else.

. Find an initial (x, s) for the original linear program
9: ((x(1),x(2),x(3)), (s(1), s(2), s(3)))← Solve(Anew, φnew,x, s, t, LR)

10: (x, s)← (x(1) + x(2) − x(3), s(1))

. Optimize the original linear program
11: (x, s)← Solve(A, φ,x, s, LR, ε

4m)
12: return x
13: end procedure

14: procedure Solve(A, φ,x, s, tstart, tend)
15: Define α def

= 1
220λ and λ def

= 64 log(256m2)
16: Let t← tstart, x← x, s← s, t← t
17: while t ≥ tend do
18: t← max((1− α√

m
)t, tend)

19: Update step size h = −α/‖ cosh(λγt(x, s))‖2 where γ is defined in Eq. (A.3)
20: Update diagonal weight matrix W = ∇2φ(x)−1

21: Update step direction v where vi = sinh(λγt(x, s)i) · µt(x, s)i
22: Implicitly update x, s, with Pw

def
= W1/2A>(AWA>)−1AW1/2

x← x + hW1/2(v −Pwv),

s← s + thW−1/2Pwv

23: Explicitly update x, s such that

‖W−1/2(x− x)‖∞ ≤ α,
‖W1/2(s− s)‖∞ ≤ tα

24: If |t− t| ≥ αt, update t← t
25: end while
26: return (x, s)
27: end procedure

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited3586

D
ow

nl
oa

de
d

10
/1

9/
24

 to
 1

08
.2

6.
19

2.
79

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

RIPM calls Solve twice. The first call to Solve finds a feasible point by following the central path of the
following modified linear program

min
A(x(1)+x(2)−x(3))=b

l≤x(1)≤u, x(2)≥0, x(3)≥0

c(1)>x(1) + c(2)>x(3) + c(2)>x(3)

where c(1) = c, and c(2), c(3) are some positive large vectors. The above modified linear program is chosen so that
we know an explicit point on its central path, and any approximate minimizer to this new linear program gives an
approximate central path point for the original problem. The second call to Solve finds an approximate solution
by following the central path of the original linear program.

Theorem A.1. (RIPM) Consider the linear program

min
Ax=b, l≤x≤u

c>x

with A ∈ Rn×m. We are given a scalar r > 0 such that there exists some interior point x◦ satisfying Ax◦ = b and
l + r ≤ x◦ ≤ u− r. Let L = ‖c‖2 and R = ‖u− l‖2. For any 0 < ε ≤ 1/2, the algorithm RIPM (Algorithm 2)
finds x such that Ax = b, l ≤ x ≤ u and

c>x ≤ min
Ax=b, l≤x≤u

c>x + εLR.

Furthermore, the algorithm has the following properties:

• Each call of Solve involves O(
√
m logm log(mRεr))-many steps, and t is only updated O(logm log(mRεr))-many

times.

• In each step of Solve, the coordinate i in w,v changes only if xi or si changes.

• In each step of Solve, h‖v‖2 = O(1
logm).

• Algorithm 2 to Algorithm 2 takes O(K) time in total, where K is the total number of coordinate changes in
x, s.

Proof. The number of steps follows from Theorem A.1 in [17], with the parameter wi = νi = 1 for all i. The
number of coordinate changes in W,v and the runtime of Algorithm 2 to Algorithm 2 follows directly from the
formula of µt(x, s)i and γt(x, s)i. For the bound for h‖v‖2, it follows from

h‖v‖2 ≤ α
‖ sinh(λγt(x, s))‖2
‖ cosh(λγt(x, s))‖2

≤ α = O

(
1

logm

)
.

B Maintaining the implicit representation
In this section, we give the general data structure MaintainRep, which implicitly maintains a vector x throughout
a call of Solve of Algorithm 2. We break up the representation into two parts, the first using the inverse tree
operator, and the second using the tree operator.

First, we present some of the alternative decomposition properties of the tree operator.

Definition B.1. (Subtree operator) Let ∆ be a tree operator on T . Recall TH is the complete subtree of T
rooted at H. We define the subtree operator ∆(H) at each node H to be

(B.1) ∆(H) def
=

∑
leaf L∈TH

∆L←H .

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited3587

D
ow

nl
oa

de
d

10
/1

9/
24

 to
 1

08
.2

6.
19

2.
79

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Corollary B.1. Based on the above definitions, we have

(B.2) ∆ =
∑
H∈T

∆(H)IFH .

Furthermore, if H has children H1, H2, then

(B.3) ∆(H) = ∆(H1)∆H1
+ ∆(H2)∆H2

.

The output of ∆ when restricted to E(H) for a node H ∈ T can be written in two parts, which is useful for
our data structures. The first part involves summing over all nodes in TH , ie. descendants of H and H itself, and
the second part involves a sum over all ancestors of H.

Lemma B.1. At any node H ∈ T , we have

IE(H)∆ =
∑
D∈TH

∆(D)IFD + ∆(H)
∑

ancestor A of H

∆H←AIFA .

Proof. We consider the terms in the sum for ∆ that map into to E(H), which is precisely the set of leaf nodes in
the subtree rooted at H.

IE(H)∆ =
∑

leaf L∈TH

∑
A:L∈TA

∆L←AIFA .

The right hand side involves a sum over the set {(L,A) : leaf L ∈ TH , L ∈ TA}. Observe that (L,A) is in this set
if and only if A is a descendant of H , or A = H , or A is an ancestor of H . Hence, the summation can be written as∑

leaf L ∈ TH

∑
node A ∈ TH

∆L←AIFA +
∑

leaf L ∈ TH

∑
ancestor A of H

∆L←AIFA .

The first term is precisely the first term in the lemma statement. For the second term, we can use the fact that A
is an ancestor of H to expand ∆L←A = ∆L←H∆H←A. Then, the second term is∑

leaf L ∈ TH

∑
ancestor A of H

∆L←H∆H←AIFA

=
∑

leaf L ∈ TH

∆L←H

(∑
ancestor A of H

∆H←AIFA

)

= ∆(H)

(∑
ancestor A of H

∆H←AIFA

)
,

by definition of ∆(H).

Now, we consider the cost of applying the inverse tree operator and the tree operator.

Lemma B.2. Let ∇ : RE 7→ RV be an inverse tree operator on T with query complexity Q. Given v ∈ RE, we can
compute ∇v as well as yH

def
=
∑

leaf L∈TH ∇H←Lv for all H ∈ T in O(Q(ηK)) time, where K = nnz(v) and η is
the height of T .

Proof. Recall the definition

∇v def
=
∑

leaf L

(∑
H: L∈TH

IFH∇H←L

)
v.

At a leaf node L, if we have ve = 0 for all e ∈ E(L), then we can ignore the term for L in the outer sum. So we
can reduce ∇v to consist of at most K terms in the outer sum. We can further rearrange the order of applying
the edge operators so that each edge operator is applied at most once, and this naturally gives the values for all
non-zero yH ’s. We bound the overall runtime loosely by O(Q(ηK)).

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited3588

D
ow

nl
oa

de
d

10
/1

9/
24

 to
 1

08
.2

6.
19

2.
79

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Unlike the inverse tree operator, the tree operator is applied downwards along a tree, and therefore we do not
have non-trivial bounds on total number of edge operators applied. Instead, we have a more general bound:

Lemma B.3. Let ∆ : RV 7→ RE be a tree operator on T with query complexity Q. Given z ∈ RV , we can compute
∆v in O(Q(|E|)) time.

Proof. We simply observe that we can compute ∆v by applying each edge operator at most once. Since the leaf
nodes partition the set E, we know in T , there are O(|E|) edge operators in total, so the overall time is at most
O(Q(|E|)).

With the appropriate partial computations taking advantage of the decomposition of ∇, we can maintain ∇v
efficiently for dynamic ∇ and v. Specifically, we use the following property:

Lemma B.4. Given a vector v ∈ RE, let yH
def
=
∑

leaf L∈TH ∇H←Lv for each H ∈ T . If H has children H1, H2,
then

(B.4) yH = ∇H1
yH1

+∇H2
yH2

.

Furthermore,

(B.5)
∑
H∈T

IFHyH = ∇v.

Lemma B.5. Let ∇ : RE 7→ RV be an inverse tree operator with query complexity Q. Let ∇(new) be ∇ with K
updated edge operators. Suppose we know ∇v, and we know yH

def
=
∑

leaf L∈TH ∇H←Lv at all nodes H, then we

can compute (∇(new) −∇)v and the y
(new)
H ’s in O(Q(ηK)) time.

Proof. Observe that for a node H ∈ T , if no edge operator in TH was updated, then yH remains the same. We
use Eq. (B.4) to compute y

(new)
H up the tree for the O(ηK)-many nodes that admit changes, and then Eq. (B.5) to

extract the change (∇(new) −∇)v.

Now we are ready for the complete data structure involving the inverse tree operator.

Theorem B.1. (Inverse tree operator data structure) Let w ∈ Rm be the weights changing at every
step of Solve, and let v ∈ Rn be a dynamic vector. Suppose ∇ : Rm 7→ Rn is an inverse tree operator dependent
on w supported on T with query complexity Q and update complexity U . Let η be the height of T . Then the data
structure InverseTreeOp (Algorithm 3) maintains z(k) def

=
∑k
i=1 h

(i)∇(i)v(i) so that at the end of each step k,
the variables in the algorithm satisfy

• z = cz(step) + z(sum),

• z(step) = ∇v, and

• yH =
∑

leaf L∈TH ∇H←Lv for all nodes H.

The data structure is initialized via Initialize in O(U(m)+Q(m)) time. At step k, there is one call Reweight(δw)
taking O(U(K) +Q(ηK)) time, where K = nnz(δw), followed by one call of Move(h, δv) taking O(Q(η · nnz(δv)))
time.

Proof. In the data structure, we always maintain z(step) and the yH ’s together. Specifically, at every step, we
update the yH ’s up the tree using the recursive property Eq. (B.4) only at the necessary nodes, and from the
yH ’s, we get z(step) =

∑
H IFHyH .

Consider Initialize. At the end of the function, the variables satisfy

z
def
= cz(step) + z(sum) = 0 · ∇v + 0 = 0,

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited3589

D
ow

nl
oa

de
d

10
/1

9/
24

 to
 1

08
.2

6.
19

2.
79

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Algorithm 3 Dynamic data structure to maintain cumulative ∇v
1: dynamic data structure InverseTreeOp
2: member:
3: T : tree supporting ∇ with edge operators on the edges
4: w ∈ Rm: dynamic weight vector
5: v ∈ Rn: dynamic vector
6: c, z(step), z(sum) ∈ Rn: coefficient, result vectors
7: yH ∈ Rn for each H ∈ T : sparse partial computations
8:
9: procedure Initialize(T ,w(init),v(init))

10: w ← w(init),v ← v(init), c← 0, z(sum) ← 0
11: Initialize ∇ on T based on w
12: Compute ∇v and yH ’s, set z(step) ← ∇v
13: end procedure
14:
15: procedure Reweight(δw)
16: w(new) ← w + δw
17: Let ∇(new) be the new tree operator using w(new)

18: z′ ← (∇(new) −∇)v, and update yH ’s . Lemma B.5
19: z(step) ← z(step) + z′

20: z(sum) ← z(sum) − c · z′
21: w ← w(new),∇ ← ∇(new)

22: end procedure
23:
24: procedure Move(h, δv)
25: Compute z′

def
= ∇δv and the y′H

def
=
∑

leaf L ∈ TH ∇H←Lδv for each node H . Lemma B.2
26: z(step) ← z(step) + z′, and yH ← yH + y′H for each node H
27: z(sum) ← z(sum) − cz′
28: c← c+ h
29: v ← v + δv
30: end procedure

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited3590

D
ow

nl
oa

de
d

10
/1

9/
24

 to
 1

08
.2

6.
19

2.
79

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

and z(step) = ∇v, as required.
Let us consider Reweight. Let the superscript (new) denote the value of an algorithm variable at the end of

the function, and let no superscript denote the value at the start.

z(new) = c(new)z(step)(new)
+ z(sum)(new)

= c(z(step) + z′) + z(sum) − cz′

= cz(step) + z(sum),

and z(step)(new)
= z(step) + (∇(new) −∇)v

= ∇(new)v,

as required. Similarly, let us consider Move:

z(new) = c(new)z(step)(new)
+ z(sum)(new)

= (c+ h)(z(step) + z′) + z(sum) − cz′

= cz(step) + z(sum) + hz(step),

and z(step)(new)
= z(step) +∇(v(new) − v)

= ∇v +∇(v(new) − v)

= ∇v(new),

which is exactly the update we want to make to z, and the invariant we want to maintain.
The runtimes follow directly from Lemmas B.2 and B.5.

Next, we present the tree operator data structure, which is significantly more involved compared to the inverse
tree operator. Applying the tree operator involves going down the tree to the leaves, which is too costly to do at
every step. To circumvent the issue, we use lazy computations.

Theorem B.2. (Tree operator data structure) Let w ∈ Rm be the weights changing at every step of
Solve. Suppose ∆ : Rn 7→ Rm is a tree operator dependent on w supported on T with query complexity Q
and update complexity U . Let z ∈ Rn be the vector maintained by Algorithm 3, so that at the end of step k,
z =

∑k
i=1 h

(i)∇(i)v(i). Then the data structure TreeOp (Algorithm 4) implicitly maintains x so that at the end
of step k,

x(k) = x(init) +
k∑
i=1

∆(i)∇(i)v(i).

The data structure is initialized via Initialize in O(U(m)) time. At step k, there is one call to Reweight(δw)
taking O(U(K) +Q(ηK)) time, where K = nnz(δw), followed by one call to Move(δz) taking O(nnz(δz)) time.
At the end of Solve, x is returned via Exact in O(Q(m)) time.

Proof. We will show that the data structure maintains the implicit representation via the identity

(B.6) x = c∆z +
∑
H∈T

∆(H)uH ,

where the RHS expression refers to the state of the variables at the end of step k during the algorithm.
At a high level, the variables ∆ and z in the data structure at step k represent the latest ∆(k) and z(k).

We need to introduce additional vectors uH at every node H which intuitively stores lazy computations at node
H, in order to take advantage of the tree structure of ∆. The function Pushdown performs the accumulated
computation at H, and moves the result to its children nodes to be computed lazily at a later point. The next
claim describes this process formally.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited3591

D
ow

nl
oa

de
d

10
/1

9/
24

 to
 1

08
.2

6.
19

2.
79

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Algorithm 4 Dynamic data structure to maintain cumulative ∆z

1: dynamic data structure TreeOp
2: member:
3: T : tree supporting ∆
4: w ∈ Rm: dynamic weight vector
5: z ∈ Rn: dynamic vector
6: uH for each H ∈ T : lazy pushdown computation vectors
7:
8: procedure Initialize(T ,w(init), z(init),x(init))
9: w ← w(init), z ← z(init)

10: Initialize ∆ on T based on w
11: uH ← 0 for each non-leaf H ∈ T
12: uH ← x(init)|E(H) for each leaf H ∈ T
13: end procedure
14:
15: procedure Reweight(δw)
16: w ← w + δw
17: Let ∆(new) be the new tree operator wrt the new weights
18: Let H be all nodes H where ∆H changed
19: for H ∈ PT (H) going down the tree level by level do
20: Pushdown(H)
21: end for
22: for H ∈ PT (H) going down the tree level by level do
23: uH ← cz|FH
24: Pushdown(H)
25: end for
26: ∆←∆(new)

27: for H ∈ PT (H) going down the tree level by level do
28: uH ← −cz|FH
29: Pushdown(H)
30: end for
31: end procedure
32:
33: procedure Move(δz)
34: z ← z + δz
35: end procedure
36:
37: procedure Exact
38: for H ∈ T going down the tree level by level do
39: uH ← uH + z|FH
40: Pushdown(H)
41: end for
42: return x defined by x|E(H)

def
= uH at each leaf H ∈ T

43: end procedure

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited3592

D
ow

nl
oa

de
d

10
/1

9/
24

 to
 1

08
.2

6.
19

2.
79

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Algorithm 5 Dynamic data structure to maintain cumulative ∆z, con’t
1: dynamic data structure TreeOp
2: procedure Pushdown(H ∈ T)
3: for each child D of H do
4: uD ← uD + ∆DuH
5: end for
6: uH ← 0
7: end procedure

Claim 3. Let H ∈ T be a non-leaf node. Pushdown(H) does not change the value of the implicit representation
in Eq. (B.6). Also, at the end of the procedure, uH = 0.

Proof. For any variable in the algorithm, we add the superscript (new) to mean its state at the end of Pushdown;
if there is no superscript, then it refers to the state at the start.

We show the claim for when H has two children H1, H2. Note that ∆ and z are not touched by Pushdown,
so we may ignore the term c∆z in Eq. (B.6). Then,∑

H′∈T
∆(H′)u

(new)
H′

= ∆(H)u
(new)
H +

∑
i=1,2

∆(Hi)u
(new)
Hi

+
∑

H′∈T ,H′ 6=H,H1,H2

∆(H′)uH′(expand terms)

=
∑
i=1,2

∆(Hi)(uHi + ∆HiuH) +
∑

H′∈T ,H′ 6=H,H1,H2

∆(H′)uH′(substitute values)

=
∑
i=1,2

∆(Hi)∆HiuH +
∑

H∈T ,H′ 6=H

∆(H′)uH′

= ∆(H)uH +
∑

H∈T ,H′ 6=H

∆(H′)uH′(by Eq. (B.3))

=
∑
H′∈T

∆(H′)uH′ ,

so the implicit representation of x has not changed in value.

This claim can be generalized from H ∈ T to H ⊆ T ; we omit the full details. Next, we show that the implicit
representation of x by Eq. (B.6) is correctly maintained after reweight.

Claim 4. After the k-th call Reweight, the value of x is unchanged, while the value of ∆ is updated to ∆(k)

which is a function of w(k).

Proof. We begin by observing that if H /∈ PT (H), then ∆(H)(new) = ∆(H) by definition, as there are no edges in
TH with updated operators.

At a high level, we traverse the subtree PT (H) three rounds and perform Pushdown at every node. During
the first round, we simply push down the current uH values at each node H. By Claim 3, we know this does not
change the value of the implicit representation.

During the second round, we first initialize uH ← cz|FH at each node H ∈ PT (H), and then perform
Pushdown. Since Pushdown does not affect the value of the implicit representation, we can use the initial
change in uH to determine the overall change in the implicit representation. Crucially, note that we perform
Pushdown using the old tree operator. So, the change in value of the implicit representation is given by

+c
∑

H∈PT (H)

∆(H)z|FH .

After the second round of Pushdown, we update the tree operator ∆ to ∆(new). Note that ∆(H) changes if
and only if H ∈ PT (H), and in this case, uH = 0. So, updating the tree operator at this point induces a change

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited3593

D
ow

nl
oa

de
d

10
/1

9/
24

 to
 1

08
.2

6.
19

2.
79

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

in the value of the implicit representation of

c∆(new)z − c∆z = c
∑
H∈T

(
∆(H)(new) −∆(H)

)
z|FH = c

∑
H∈PT (H)

(
∆(H)(new) −∆(H)

)
z|FH .

During the third round, we initialize uH ← −cz|FH at each node H ∈ PT (H) and perform Pushdown.
Similar to the first round, the change to the value of the implicit representation induced by this round is given by

−c
∑

H∈PT (H)

∆(H)(new)z|FH .

The sum of the changes from each of the three rounds is exactly 0, so we conclude the value of the implicit
representation did not change.

Finally, we consider the other functions.
For Initialize, we see that by substituting the values assigned during Initialize and applying the definition

from Eq. (B.2), we have
c∆z +

∑
H∈T

∆(H)uH = x(init) + ∆z,

where ∆ is the initial ∆(init) and z is the initial z(init), which is exactly how we want to initialize x.
For Move, we see the value of x is incremented by ∆(k)(z(k) − z(k−1)) after the step k. By definition of z,

we know z(k) − z(k−1) = h(k)∇(k)v(k), so we conclude Move correctly makes the update h(k)∆(k)∇(k)v(k).
For Exact, we calculate the value of x explicitly by performing the computation

∑
H∈T ∆(H)(uH + z|FH)

using a sequence of Pushdown’s down the tree. The final answer x is stored in parts in the uH ’s along the leaf
nodes.

Note that by definition of the query complexity of ∆, Pushdown uses O(Q(1)) time. The remaining runtimes
are straightforward.

Finally, we combine Algorithm 3 and Algorithm 4 to get the overall data structure MaintainRep for
maintaining x throughout Solve as given by Eq. (3.2). We omit the pseudocode implementation.

Proof. [Proof of Theorem 3.2] We use one copy of InverseTreeOp, which maintains z def
= cz(step) + z(sum). We

want to use TreeOp to maintain z which is given in two terms by InverseTreeOp. To resolve this, we can
simply use two copies of the data structure and track the two terms in z separately; then we correctly maintain x.
During Solve, at step k, we first call Reweight and Move in InverseTreeOp, followed by Reweight and
Move in each copy of TreeOp. The runtimes follow in a straightforward manner.

E Maintaining vector approximation
We include this section for completeness; all techniques are from [15].

Recall at every step of the IPM, we want to maintain approximate vectors x, s so that∥∥∥W−1/2(x− x)
∥∥∥
∞
≤ δ and

∥∥∥W1/2(s− s)
∥∥∥
∞
≤ δ′

for some error tolerances δ and δ′.
In the previous section, we showed how to use MaintainRep to maintain x implicitly throughout Solve in

the IPM. In this section, we give a data structure to efficiently maintain an approximate vector x to the x from
MaintainRep, so that at every step, ∥∥∥W−1/2 (x− x)

∥∥∥
∞
≤ δ.

In the remainder of this section, we crucially assume that w is a function of x coordinate-wise, which is indeed
satisfied by the RIPM framework.

Remark E.1. In our problem setting, we do not have full access to the exact vector x. The algorithms in the
next two subsections however will refer to x for readability and modularity. We observe that access to x is limited
to two types: accessing the JL-sketches of specific subvectors, and accessing exact coordinates and other specific
subvectors of sufficiently small size.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited3594

D
ow

nl
oa

de
d

10
/1

9/
24

 to
 1

08
.2

6.
19

2.
79

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

In Section E.1, we reduce the problem of maintaining x to detecting coordinates of x with large changes. In
Section E.2, we detect coordinates of x with large changes using a sampling technique on a constant-degree tree,
where Johnson-Lindenstrauss sketches of subvectors of x are maintained at each node the tree. In Section E.3, we
show how to compute and maintain the necessary collection of JL-sketches on the operator tree T ; in particular,
we do this efficiently with only an implicit representation of x. Finally, we put the three parts together to prove
Theorem 3.3.

For notational simplicity, we use D
def
= W−1/2. Recall we use the superscript (k) to denote the variable at the

end of step k; that is, D(k) and x(k) are the values of D and x at the end of step k. Step 0 is the initialization step.

E.1 Reduction to change detection In this section, we show that in order to maintain an approximation x
to some vector x, it suffices to detect coordinates of x that change a lot.

We make use of dyadic intervals. At step k, for each ` such that k ≡ 0 mod 2`, we find the index set I(k)` that
contains all coordinates i of x such that x(k)

i changed significantly compared to x
(k−2`)
i , that is, compared to 2`

steps ago. Formally:

Definition E.1. At step k of the IPM, for each ` such that k ≡ 0 mod 2`, we define

I
(k)
`

def
= {i ∈ [n] : D

(k)
ii · |x

(k)
i − x

(k−2`)
i | ≥ δ

2 dlogme
,

and xi has not been updated after the (k − 2`)-th step}.

We show how to find the sets I
(k)
` with high probability in the next section. Assuming the correct

implementation, we have the following data structure for maintaining the desired approximation x:

Lemma E.1. (Approximate vector maintenance) Suppose FindLargeCoordinates(`) is a procedure in
AbstractMaintainApprox that correctly computes the set I(k)` at the k-th step. Then the deterministic data
structure AbstractMaintainApprox in Algorithm 6 maintains an approximation x of x with the following
procedures:

• Initialize(T ,x, D, ρ > 0, δ > 0): Initialize the data structure at step 0 with tree T , initial vector x, initial
diagonal scaling matrix D, target additive approximation error δ, and success probability 1− ρ.

• Update(x(new), D(new)): Increment the step counter and update vector x and diagonal scaling matrix D.

• Approximate: Output a vector x such that ‖D(x− x)‖∞ ≤ δ for the latest x and D with probability at
least 1− ρ.

At step k, the procedure Update is called, followed by Approximate. Suppose ‖D(k)(x(k) − x(k−1))‖2 ≤ β
for all steps k, and D is a function of x coordinate-wise. Then, for each ` ≥ 0, the data structure updates
O(22`(β/δ)2 log2m) coordinates of x every 2` steps.

Proof. [Proof of Lemma E.1] The failure case arises from FindLargeCoordinates. Assuming FindLargeCo-
ordinates returns the correct set of coordinates, we prove the correctness of Approximate.

Fix some coordinate i ∈ [m] and fix some step k. Suppose the latest update to xi is xi ← x
(k′)
i at step k′.

So D
(d)
ii is the same for all k ≥ d > k′, and i is not in the set I(d)` returned by FindLargeCoordinates for all

k ≥ d > k′. Since we set x← x every 2dlogme steps by Algorithm 6, we know k − 2dlogme ≤ k′ < k. Using dyadic
intervals, we can define a sequence k0, k1, . . . , ks with s ≤ 2 dlogme, where k′ = k0 < k1 < k2 < · · · < ks = k, each
kj+1 − kj is a power of 2, and (kj+1 − kj) | kj+1. Hence, we have

x
(k)
i − x

(k)
i = x

(ks)
i − x

(k0)
i = x

(ks)
i − x

(k0)
i =

s−1∑
j=0

(
x
(kj+1)
i − x

(kj)
i

)
.

We know that D
(d)
ii is the same for all k ≥ d > k′. By the guarantees of FindLargeCoordinates, we have

D
(k)
ii · |x

(kj+1)
i − x

(kj)
i | = D

(kj+1)
ii · |x(kj+1)

i − x
(kj)
i | ≤ δ

2 dlogme

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited3595

D
ow

nl
oa

de
d

10
/1

9/
24

 to
 1

08
.2

6.
19

2.
79

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Algorithm 6 Data structure AbstractMaintainApprox, Part 1
1: data structure AbstractMaintainApprox
2: private : member
3: T : constant-degree rooted tree with height η and m leaves . leaf i corresponds to xi
4: w

def
= Θ(η2 log(mρ)): sketch dimension

5: Φ ∼ N(0, 1
w)w×m: JL-sketch matrix

6: δ > 0: additive approximation error
7: k: current step
8: x ∈ Rm: current valid approximate vector
9: {x(j) ∈ Rm}kj=0: list of previous inputs

10: {D(j) ∈ Rm×m}kj=0: list of previous diagonal scaling matrices
11:
12: procedure Initialize(T ,x ∈ Rm,D ∈ Rm×m>0 , ρ > 0, δ > 0)
13: T ← T , δ ← δ, k ← 0
14: x← x,x(0) ← x,D(0) ← D
15: sample Φ ∼ N(0, 1

w)w×m

16: end procedure
17:
18: procedure Update(x(new) ∈ Rm,D(new) ∈ Rm×m>0)
19: k ← k + 1, x(k) ← x(new), D(k) ← D(new)

20: end procedure
21:
22: procedure Approximate
23: I ← ∅
24: for all 0 ≤ ` < dlogme such that k ≡ 0 mod 2` do
25: I

(k)
` ← FindLargeCoordinates(`)

26: I ← I ∪ I(k)`

27: end for
28: if k ≡ 0 mod 2dlogme then
29: I ← [m] . Update x in full every 2dlogme steps
30: end if
31: xi ← x

(k)
i for all i ∈ I

32: return x
33: end procedure

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited3596

D
ow

nl
oa

de
d

10
/1

9/
24

 to
 1

08
.2

6.
19

2.
79

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

for all 0 ≤ j < s. Summing over all j = 0, 1, . . . , s− 1 gives

D
(k)
ii · |x

(k)
i − x

(k)
i | ≤ δ.

Hence, we have ‖D(x− x)‖∞ ≤ δ.
Fix some ` with k ≡ 0 mod 2`. We bound the number of coordinates in I

(k)
` . For any i ∈ I(k)` , we know

D
(j)
ii = D

(k)
ii for all j > k − 2` because xi did not change in the meanwhile. By definition of I(k)` , we have

D
(k)
ii ·

k−1∑
j=k−2`

|x(j+1)
i − x

(j)
i | ≥ D

(k)
ii · |x

(k)
i − x

(k−2`)
i | ≥ δ

2 dlogme
.

Using D
(j)
ii = D

(k)
ii for all j > k − 2` again, the above inequality yields

δ

2 dlogme
≤

k−1∑
j=k−2`

D
(j+1)
ii |x(j+1)

i − x
(j)
i |

≤

√√√√2`
k−1∑

j=k−2`
D

(j+1)2
ii |x(j+1)

i − x
(j)
i |2.(by Cauchy-Schwarz)

Squaring and summing over all i ∈ I(k)` gives

Ω

(
2−`δ2

log2m

)
|I(k)` | ≤

∑
i∈I(k)`

k−1∑
j=k−2`

D
(j+1)2
ii |x(j+1)

i − x
(j)
i |

2

≤
m∑
i=1

k−1∑
j=k−2`

D
(j+1)2
ii |x(j+1)

i − x
(j)
i |

2

≤ 2`β2,

where we use ‖D(j+1)(x(j+1) − x(j))‖2 ≤ β at the end. Hence, we have

|I(k)` | = O(22`(β/δ)2 log2m).

In other words, for each ` ≥ 0, we update |I(k)` |-many coordinates of x at step k when k ≡ 0 mod 2`. So we
conclude that for each ` ≥ 0, we update O(22`(β/δ)2 log2m)-many coordinates of x every 2` steps.

E.2 From change detection to sketch maintenance Now we discuss the implementation of FindLarge-
Coordinates(`) to find the set I(k)` in Algorithm 6 of Algorithm 6. We accomplish this by repeatedly sampling

a coordinate i with probability proportional to
(
D

(k)
ii (x

(k)
i − x

(k−2`)
i)

)2
, among all coordinates i where xi has

not been updated since 2` steps ago. With high probability, we can find all indices in I(k)` in this way efficiently.
To implement the sampling procedure, we make use of a data structure based on segment trees [10] along with
sketching based on the Johnson-Lindenstrauss lemma.

Formally, we define the vector q ∈ Rm where qi
def
= D

(k)
ii (x

(k)
i − x

(k−2`)
i) if xi has not been updated after the

(k − 2`)-th step, and qi = 0 otherwise. Our goal is precisely to find all large coordinates of q.
Let T be a constant-degree rooted tree with m leaves, where leaf i represents coordinate qi, which we call a

sampling tree. For each node u ∈ T , we define E(u) ⊆ [m] to be the set of indices of leaves in the subtree rooted
at u. We make a random descent down T , in order to sample a coordinate i with probability proportional to q2

i .
At a node u, for each child u′ of u, the total probability of the leaves under u′ is given precisely by

∥∥q|E(u′)

∥∥2
2
. We

can estimate this by the Johnson-Lindenstrauss lemma using a sketching matrix Φ. Then we randomly move from

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited3597

D
ow

nl
oa

de
d

10
/1

9/
24

 to
 1

08
.2

6.
19

2.
79

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Algorithm 6 Data structure AbstractMaintainApprox, Part 2
34: procedure FindLargeCoordinates(`)
35: . D: diagonal matrix such that

Dii =

{
D

(k)
ii if xi has not been updated after the (k − 2`)-th step

0 otherwise.

36: . q
def
= D(x(k) − x(k−2`)) . vector to sample coordinates from

37:
38: I ← ∅ . set of candidate coordinates
39: for M`

def
= Θ(22`(β/δ)2 log2m log(m/ρ)) iterations do

40: . Sample coordinate i of q w.p. proportional to q2
i by random descent down T to a leaf

41: while true do
42: u← root(T), pu ← 1
43: while u is not a leaf node do
44: Sample a child u′ of u with probability

P(u→ u′)
def
=

‖ΦE(u′)q‖22∑
child u′′ of u ‖ΦE(u′′)q‖22

. let ΦE(u)
def
= ΦIE(u) for each node u

45: pu ← pu ·P(u→ u′)
46: u← u′

47: end while
48: break with probability paccept

def
=
∥∥q|E(u)

∥∥2 /(2 · pu · ‖Φq‖22)
49: end while
50: I ← I ∪ E(u)
51: end for
52: return {i ∈ I : qi ≥ δ

2dlogme}.
53: end procedure

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited3598

D
ow

nl
oa

de
d

10
/1

9/
24

 to
 1

08
.2

6.
19

2.
79

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

u down to child u′ with probability proportional to the estimated value. To tolerate the estimation error, when
reaching some leaf node representing coordinate i, we accept with probability proportional to the ratio between
the exact probability of i and the estimated probability of i. If i is rejected, we repeat the process from the root
again independently.

Lemma E.2. Assume that ‖D(k+1)(x(k+1) − x(k))‖2 ≤ β for all IPM steps k. Let ρ < 1 be any given failure
probability, and let M`

def
= Θ(22`(β/δ)2 log2m log(m/ρ)) be the number of samples Algorithm 6 takes. Then with

probability ≥ 1− ρ, during the k-th call of Approximate, Algorithm 6 finds the set I(k)` correctly. Furthermore,
the while-loop in Algorithm 6 happens only O(1) times in expectation per sample.

Proof. The proof is similar to Lemma 6.17 in [17]. We include it for completeness. For a set S of indices, let IS be
the m×m diagonal matrix that is one on S and zero otherwise.

We first prove that Algorithm 6 breaks with probability at least 1
4 . By the choice of w, Johnson–Lindenstrauss

lemma shows that ‖ΦE(u)q‖22 = (1± 1
9η)‖IE(u)q‖22 for all u ∈ T with probability at least 1− ρ. Therefore, the

probability we move from a node u to its child node u′ is given by

P(u→ u′) =

(
1± 1

3η

) ‖IE(u′)q‖22∑
u′′ is a child of u ‖IE(u′′)q‖22

=

(
1± 1

3η

) ‖IE(u′)q‖22
‖IE(u)q‖22

.

Hence, the probability the walk ends at a leaf u ∈ T is given by

pu =

(
1± 1

3η

)η ‖Iuq‖22
‖q‖22

= (1± 1

3η
)η
∥∥q|E(u)

∥∥2
‖q‖22

.

Now, paccept on Algorithm 6 is at least

paccept =

∥∥q|E(u)

∥∥2
2 · pu · ‖Φq‖22

≥
∥∥q|E(u)

∥∥2
2 · (1 + 1

3η)η
‖q|E(u)‖2
‖q‖22

· ‖Φq‖22
≥ ‖q‖22

2 · (1 + 1
3η)η‖Φq‖22

≥ 1

4
.

On the other hand, we have that paccept ≤ ‖q‖22
2(1− 1

3η)
η‖Φq‖22

< 1 and hence this is a valid probability.
Next, we note that u is accepted on Algorithm 6 with probability

pacceptpu =

∥∥q|E(u)

∥∥2
2 · ‖Φq‖22

.

Since ‖Φq‖22 remains the same in all iterations, this probability is proportional to
∥∥q|E(u)

∥∥2. Since the algorithm
repeats when u is rejected, on Algorithm 6, u is chosen with probability exactly

∥∥q|E(u)

∥∥2 /‖q‖2.
Now, we want to show the output set is exactly {i ∈ [n] : |qi| ≥ δ

2dlogme}. Let S denote the set of indices
where x did not update between the (k − 2`)-th step and the current k-th step. Then

‖q‖2 = ‖ISD(k)(x(k) − x(k−2`))‖2

≤
k−1∑

i=k−2`
‖ISD(k)(x(i+1) − x(i))‖2

=
k−1∑

i=k−2`
‖ISD(i+1)(x(i+1) − x(i))‖2

≤
k−1∑

i=k−2`
‖D(i+1)(x(i+1) − x(i))‖2

≤ 2`β,

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited3599

D
ow

nl
oa

de
d

10
/1

9/
24

 to
 1

08
.2

6.
19

2.
79

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

where we used ISD(i+1) = ISD(k), because xi changes whenever Dii changes at a step. Hence, each leaf u is
sampled with probability at least

∥∥q|E(u)

∥∥2 /(2`β)2. If |qi| ≥ δ
2dlogme , and i ∈ E(u) for a leaf node u, then the

coordinate i is not in I with probability at most(
1−

∥∥q|E(u)

∥∥2
(2`β)2

)M`

≤

(
1− 1

22`+2(β/δ)2 dlogme2

)M`

≤ ρ

m
,

by our choice of M`. Hence, all i with |qi| ≥ δ
2dlogme lies in I with probability at least 1− ρ. This proves that the

output set is exactly I(k)` with probability at least 1− ρ.

Remark E.2. In Algorithm 6, we only need to compute ‖ΦE(u)q‖22 for O(M`) many nodes u ∈ T . Furthermore,
the randomness of the sketch is not leaked and we can use the same random sketch Φ throughout the algorithm.
This allows us to efficiently maintain ΦE(u)q for each u ∈ T throughout the IPM.

E.3 Sketch maintenance In FindLargeCoordinates in the previous subsection, we assumed the existence
of a constant degree sampling tree T , and for the dynamic vector q, the ability to access ΦE(u)q at each node
u ∈ T and q|E(u) at each leaf node u.

In this section, we consider when the required sampling tree is the operator tree T supporting a tree operator
∆, and the vector q is x def

= ∆z +
∑
H∈T ∆(H)uH , where each of ∆, z and the uH ’s undergo changes at every

IPM step. We present a data structure that implements two features efficiently on T :

• access x|E(H) at every leaf node H,

• access ΦE(H)x at every node H, where ΦE(H) is Φ restricted to columns given by E(H).

Lemma E.3. Let T be a constant degree rooted tree with height η supporting tree operator ∆ with query complexity
Q. Let w = Θ(η2 log(mρ)) be as defined in Algorithm 6, and let Φ ∈ Rw×m be a JL-sketch matrix. Then
MaintainSketch (Algorithm 7) is a data structure that maintains Φx, where x is implicitly represented by

x
def
= ∆z +

∑
H∈T

∆(H)uH .

The data structure supports the following procedures:

• Initialize(operator tree T , implicit x): Initialize the data structure and compute the initial sketches in
O(Q(wm)) time.

• Update(H ⊆ T): Update all the necessary sketches in O(w ·Q(η|H|)) time, where H is the set of all nodes
H where uH or ∆H changed.

• Estimate(H ∈ T): Return ΦE(H)x.

• Query(H ∈ T): Return x|E(H).

If we call Query on N nodes, the total runtime is O(Q(wηN)).
If we call Estimate along a sampling path (by which we mean starting at the root, calling estimate at both

children of a node, and then recursively descending to one child until reaching a leaf), and then we call Query on
the resulting leaf, and we repeat this N times with no updates during the process, then the total runtime of these
calls is O(Q(wηN)).

We note that ∆z =
∑
H∈T ∆(H)z|FH . For simplicity, it suffices to give the algorithm for sketching the simpler

x
def
=
∑
H∈T ∆(H)uH .

Proof. Let us consider the correctness of the data structure, starting with the helper function SumAncestors.
We implement it using recursion and memoization as it is crucial for bounding subsequent runtimes.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited3600

D
ow

nl
oa

de
d

10
/1

9/
24

 to
 1

08
.2

6.
19

2.
79

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Algorithm 7 Data structure for maintaining Φx, Part 1
1: data structure MaintainSketch
2: private : member
3: T : rooted constant degree tree, where at every node H, there is
4: S(H) ∈ Rw×|FH∪∂H| : sketched subtree operator Φ∆(H)

5: t(H) ∈ Rw : sketched vector Φ
∑
H′∈TH ∆(H′)uH′

6: Φ ∈ Rw×m : JL-sketch matrix
7: ∆ ∈ Rm×n : dynamic tree operator on T
8: uH at every H ∈ T : dynamic vectors
9:

10: procedure Initialize(tree T , Φ ∈ Rw×m, tree operator ∆, uH for each H ∈ T)
11: Φ← Φ, T ← T ,∆←∆,uH ← uH for each H ∈ T
12: S(H) ← 0, t(H) ← 0 for each H ∈ T
13: Update(V (T))
14: end procedure
15:
16: procedure Update(H def

= set of nodes admitting implicit representation changes)
17: for H ∈ PT (H) going up the tree level by level do
18: S(H) ←

∑
child D of H S(D)∆D

19: t(H) ← S(H)uH +
∑

child D of H t(D)

20: end for
21: end procedure
22:
23: procedure SumAncestors(H ∈ T)
24: if Update has not been called since the last call to SumAncestors(H) then
25: return the result of the last SumAncestors(H)
26: end if
27: if H is the root then return 0
28: end if
29: return ∆H(uP + SumAncestors(P)) . P is the parent of H
30: end procedure
31:
32: procedure Estimate(H ∈ T)
33: Let y be the result of SumAncestors(H)
34: return S(H)y + t(H)

35: end procedure
36:
37: procedure Query(leaf H ∈ T)
38: return uH + SumAncestors(H)
39: end procedure

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited3601

D
ow

nl
oa

de
d

10
/1

9/
24

 to
 1

08
.2

6.
19

2.
79

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

Claim 6. SumAncestors(H ∈ T) returns
∑

ancestor A of H ∆H←AuA.

Proof. At the root, there are no ancestors, hence we return the zero matrix. When H is not the root, suppose P
is the parent of H. Then we can recursively write

∑
ancestor A of H

∆H←AuA = ∆H

(
uP +

∑
ancestor A of P

∆P←AuA

)
.

The procedure implements the right hand side, and is therefore correct.

Assuming we correctly maintain S(H) def
= Φ∆(H) and t(H) def

= Φ
∑
H′∈TH ∆(H′)uH′ at every node H , Estimate

and Query return the correct answers by the tree operator decomposition given in Lemma B.1.
For Update, note that if a node H is not in H and it has no descendants in H, then by definition, the sketches

at H are not changed. Hence, it suffices to update the sketches only at all nodes in PT (H). We update the nodes
from the bottom of T upwards, so that when we are at a node H, all the sketches at its descendant nodes are
correct. Therefore, by definition, the sketches at H is also correct.

Now we consider the runtimes:
Initialize: It sets the sketches to 0 in O(wm) time, and then calls Update to update the sketches everywhere

on T . By the correctness runtime of Update, this step is correct and runs in Õ(Q(wm)) time.
Update(set of nodes H admitting implicit representation changes): First note that |PT (H)| ≤ η|H|.

For each node H ∈ H with children D1, D2, Algorithm 7 multiplies each row of S(D1) with ∆(D1,H), each row of
S(D2) with ∆D2 , and sums the results. Summing over w-many rows and over all nodes in PT (H), we see the total
runtime of Algorithm 7 is O(Q(wη|H|)).

Algorithm 7 multiply each row of S(H) with a vector and then performs a constant number of additions of
w-length vectors. Since S(H) is computed for all H ∈ PT (H) in O(Q(wη|H|)) total time, this must also be a
bound on their number of total non-zero entries. Since each S(H) is used once in Algorithm 7 for a matrix-vector
multiplication, the total runtime of Algorithm 7 is O(Q(wη|H|)).

All other lines are not bottlenecks.
Overall Estimate and Query time along N sampling paths: We show that if we call Estimate along

N sampling paths each from the root to a leaf, and we call Query on the leaves, the total cost is O(Q(wηN)):
Suppose the set of nodes visited is given by H, then |H| ≤ ηN . Since there is no update, and Estimate is

called for a node only after it is called for its parent, we know that SumAncestors(H) is called exactly once for
each H ∈ H. Each SumAncestor(H) multiplies a unique edge operator ∆(H,P) with a vector. Hence, the total
runtime of SumAncestors is Q(|H|).

Finally, each Query applies a leaf operator to the output of a unique SumAncestors call, so the overall
runtime is certainly bounded by O(Q(|H|)). Similarly, each Estimate multiplies S(H) with the output of a unique
SumAncestors call. This can be computed as w-many vectors each multiplied with the SumAncestors
output. Then two vectors of length w are added. Summing over all nodes in H, the overall runtime is
O(Q(w|H|)) = O(Q(wηN)).

Query time on N leaves: Since this is a subset of the work described above, the runtime must also be
bounded by O(Q(wηN)).

F.1 Proof of 3.3 We combine the previous three subsections for the overall approximation procedure. It
is essentially AbstractMaintainApprox in Algorithm 6, with the abstractions replaced by a data structure
implementation. We omit the pseudocode and simply describe the functions.

Theorem F.1. (Approximate vector maintenance with tree operator [15]) Let 0 < ρ < 1 be a failure
probability. Suppose ∆ ∈ Rm×n is a tree operator with query complexity Q and supported on a constant-degree tree
T with height η. There is a randomized data structure MaintainApprox that takes as input the dynamic weights
w and the dynamic x implicitly maintained according to Theorem 3.2 at every step, and explicitly maintains the
approximation x to x satisfying

∥∥W−1/2(x− x)
∥∥
∞ ≤ δ at every step with probability 1− ρ.

Suppose ‖W(k)−1/2(x(k)−x(k−1))‖2 ≤ β for all steps k. Furthermore, suppose w is a function of x coordinate-
wise. Then, for each ` ≥ 0, x admits 22` coordinate changes every 2` steps. Over N total steps, the total cost of

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited3602

D
ow

nl
oa

de
d

10
/1

9/
24

 to
 1

08
.2

6.
19

2.
79

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

the data structure is

(3.3) Õ(η3(β/δ)2 log3(mN/ρ))

(
Q(m) +

N∑
k=1

Q(S(k)) +

logN∑
`=0

N

2`
·Q(22`)

)
,

where S(k) is the number of nodes H where ∆H or uH in the implicit representation of x changed at step k.

Proof. We apply Lemma E.1 using x maintained by MaintainRep and D
def
= W−1/2 from Solve. We create

O(logm) copies of MaintainSketch (Lemma E.3), so that for each 0 ≤ ` ≤ O(logm), we have one copy sketch`,x
which maintains sketches of ΦDx(k) at step k, and one copy sketch` which maintains sketches of ΦDx(k−2`)

at step k ≥ 2`, where D is defined so Di,i = Di,i if xi has not been updated after the k − 2`-th step, and
Di,i = 0 otherwise (as needed in Algorithm 6). Note that D can be absorbed into the tree operator in the implicit
representation of x, so Lemma E.3 does indeed apply.

To access skeches of the vector q def
= D(x(k) − x(k−2`)) as needed in FindLargeCoordinates in Algorithm 6,

we can simply access the corresponding sketch in sketch`,x and sketch`, and then take the difference.
We now describe each procedure in words, and then prove their correctness and runtime.
Initialize(T ,x,D, ρ, δ): This procedure implements the initialization of AbstractMaintainApprox to

approximate the dynamic vector x which is given implicitly. The initialization steps described in Algorithm 6
takes O(wm) time. Then, we initialize the O(logm) copies of MaintainSketch in O(Q(wm) logm) time by
Lemma E.3.

Update(x(new),D(new)): To implement Update, it suffices to update all the sketching data structures. Let
us fix `, and consider the update time for sketch`,x and sketch`.

Lemma E.1 shows that throughout Solve, there are O(22`(β/δ)2 log2m)-many coordinate updates to x every
2` steps. Since D is a function of x coordinate-wise, xi = x

(k−1)
i for all i where D

(k)
ii 6= D

(k−1)
ii by Algorithm 6.

The diagonal matrix D is the same as D, except Dii is temporarily zeroed out for 2` steps after xi changes at a
step. So, the overall number of coordinate changes to D is O(22`)-many every 2` steps.

Let S(k) denote the number of nodes H where ∆H or uH in the implicit representation of x changed at step
k. Additionally, since the sketching data structures maintain some variant of Dx (where D is viewed as absorbed
in the tree operator), every coordinate change in D implies an edge operator update. Now we apply Lemma E.3
to conclude that the total time for all Update calls for sketch`,x and sketch` over N steps is:

O(1) ·

(
N∑
k=1

Q
(
wηS(k)

)
+
N

2`
·Q(wη · 22`)

)
≤ O(wη) ·

(
N∑
k=1

Q(S(k)) +
N

2`
·Q(22`)

)
.

We then sum this over all ` to get the total update time for the sketching data structures.
Approximate: There are two operations to be implemented in the subroutine FindLargeCoordinates(`):

Accessing ΦE(u)q at a node u, and accessing q|E(u) at a leaf node u. For the first, we call sketch`,x.Estimate(u)−
sketch`.Estimate(u). For the second, we call sketch`,x.Query(u)− sketch`.Query(u).

To set xi as x
(k)
i for a single coordinate at step k as needed in Algorithm 6, we find the leaf node H containing

the edge e, and call sketch0,x.Query(H). This returns the sub-vector x(k)|E(H), from which we can extract x(k)
i

and set xi to be the value. This line is not a bottleneck in the runtime.
We compute the total runtime over N Approximate calls. For every ` ≥ 0, we call FindLargeCoordi-

nates(`) once every 2` steps, for a total of N/2` calls. In a single call, M`
def
= Θ(22`(β/δ)2 log2m log(mN/ρ))

sampling paths are explored in the sketch` and sketch`,x data structures by Lemma E.2, where a sampling path
correspond to one iteration of the while-loop. This takes a total of O(Q(wηM`)) time by Lemma E.3. Therefore,
for every fixed `, the total time for all FindLargeCoordinates(`) calls is

N

2`
·O (Q(wηM`)) .

The total time for all LargeCoordinates calls is obtained by summing over all values of ` = 0, . . . , logN . To
achieve overall failure probability at most ρ, it suffices to set the failure probability of each call to be O(ρ/N).

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited3603

D
ow

nl
oa

de
d

10
/1

9/
24

 to
 1

08
.2

6.
19

2.
79

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

We sum up the initialization time, update and approximate time for all values of ` = 0, . . . , logN and over N
total steps of Solve, to get the overall runtime of the data structure:

Õ(Q(wm)) +O(wη)
N∑
k=1

Q(S(k)) +O(wη)

logN∑
`=0

N

2`
(
Q(22`) +Q(M`)

)
= Õ(η3(β/δ)2 log3(mN/ρ))

(
Q(m) +

N∑
k=1

Q(S(k)) +

logN∑
`=0

N

2`
·Q(22`)

)
.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited3604

D
ow

nl
oa

de
d

10
/1

9/
24

 to
 1

08
.2

6.
19

2.
79

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

	Introduction
	Previous work
	Technical overview

	Preliminaries
	Overview of RIPM framework
	Robust interior point method
	Projection operators
	Operators on a tree

	Implicit representations of the solution
	Solution approximation
	Main theorem for the RIPM framework

	From separator tree to projection operators
	Separator tree
	Nested dissection using a separator tree
	Projection operators definition
	Maintenance of projection operators
	Projection operator complexities

	Proofs of main theorems
	Proof of thm:main
	Proof of thm:k-multicommodity-flow
	Proof of thm:treewidth

	Robust interior point method
	Maintaining the implicit representation
	Maintaining vector approximation
	Reduction to change detection
	From change detection to sketch maintenance
	Sketch maintenance
	Proof of 3.3

