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Abstract

There has been a surge of works bridging MCMC sampling and optimization, with a specific
focus on translating non-asymptotic convergence guarantees for optimization problems
into the analysis of Langevin algorithms in MCMC sampling. A conspicuous distinction
between the convergence analysis of Langevin sampling and that of optimization is that
all known convergence rates for Langevin algorithms depend on the dimensionality of the
problem, whereas the convergence rates for optimization are dimension-free for convex
problems. Whether a dimension independent convergence rate can be achieved by the
Langevin algorithm is thus a long-standing open problem. This paper provides an affirmative
answer to this problem for the case of either Lipschitz or smooth convex functions with
normal priors. By viewing Langevin algorithm as composite optimization, we develop a new
analysis technique that leads to dimension independent convergence rates for such problems.

Keywords: (Stochastic gradient) Langevin algorithm, convergence rates, Markov chain
Monte Carlo, composite optimization, stochastic optimization

1. Introduction

Two of the major themes in machine learning are point prediction and uncertainty quantifica-
tion. Computationally, they manifest in two types of algorithms: optimization and Markov
chain Monte Carlo (MCMC). While both strategies have developed relatively separately
for decades, there is a recent trend in relating both strands of research and translating
nonasymptotic convergence guarantees in gradient based optimization methods to those in
MCMC (Dalalyan] 017} [Dalalyan and Karagulyan] [2017} [Wibisono] 2018} [Mangoubi and]
[Smith] 2017} [Mangoubi and Vishnoi| 2018} [Bou-Rabee et al] 2018} [Ma et al] 2021]). In
particular, the Langevin sampling algorithm (Rossky et al] [1978 [Roberts and Stramer]
has been shown to be a form of gradient descent on the space of probabilities (Jordan|
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et al] [1998} [Wibisono] 018} [Bernton] 018} [Durmus et al] R019). Many convergence rates
on Langevin algorithm have emerged thenceforward, based on different assumptions on the
posterior distribution (e.g., [Durmus and Moulines| 2017} [Cheng and Bartlett] R018} [Dwived]
[et all] POI8} [Durmus and Moulines, P019} [Vempala and Wibisono], RP019} [Ma et al] 2019}
[Cheng et al] [2018a} [Chatterji et al) [2018} [Zou and Gu| [2019] to list a few). Because of the
high dimensional nature of machine learning problems, a common focus of the previous works
is the dimension dependence of the convergence rates. A number of works have focused on
designing more involved algorithms to improve the dimension dependence of the MCMC
convergence rates (Cheng et al] 2018bf [Dalalyan and Riou-Durand} 2018} [Ma et al} [2021}
[Shen and Led 019} [Mou et al] 021} [Lee et al] R018), as discussed in detail in Section

Despite the extensive effort, a conspicuous distinction between the convergence analysis
of Langevin sampling and that of gradient descent still remains: all known convergence
rates for Langevin algorithms depend on the dimensionality of the problem, whereas the
convergence rates for gradient descent are dimension-free for convex problems. This prompts
us to ask:

Can Langevin algorithm achieve dimension independent convergence rate under the usual
convex assumptions?

In order to answer this question formally, we make two assumptions on the negative
log-likelihood function. One is that the negative log-likelihood is convex. Another is that the
negative log-likelihood is either Lipschitz continuous or smooth. Such convexity and regularity
assumptions on the negative log-likelihood function correspond to a number of problems
arising from application, including regression tasks such as learning Bayesian generalized
linear models (McCullagh and Nelderf [1989 [Box and Tiaof [1992)), as well as classification
tasks such as inference with Bayesian logistic regression (Gelman et al] 2004)), one-layered
Bayesian neural network , or Bayesian support vector machine @ .
We also employ a known and tractable prior distribution that is strongly log-concave—often
times taken to be a normal distribution—to serve as a parallel to the Lo regularizer in
gradient descent.

Under such assumptions, we answer the above highlighted question in the affirmative. In
particular, we prove that a Langevin algorithm converges similarly as convex optimization
for this class of problems. In the analysis, we observe that the number of gradient queries
required for the algorithm to converge does not depend on the dimensionality of the problem
for either the Lipschitz continuous log-likelihood or the smooth log-likelihood equipped with
a ridge separable structure.

To obtain this result, we first follow recent works (Durmus et al| (2019) in particular)
and formulate the posterior sampling problem as optimizing over the Kullback-Leibler (KL)
divergence, which is composed of two terms: (regularized) entropy and cross entropy. We then
decompose the Langevin algorithm into two steps, each optimizing one part of the objective
function. With a strongly convex and tractable prior, we explicitly integrate the diffusion
along the prior distribution, optimizing the regularized entropy; whereas gradient descent over
the convex negative log-likelihood optimizes the cross entropy. Via analyzing an intermediate
quantity in this composite optimization procedure, we achieve a tight convergence bound
that corresponds to the gradient descent’s convergence for convex optimization on the
FEuclidean space. This dimension independent convergence rates for Lipschitz continuous
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log-likelihood and smooth log-likelihood endowed with a ridge separable structure carry over
to the stochastic versions of the Langevin algorithm.

2. Preliminaries

2.1 Two Problem Classes

We consider sampling from a posterior distribution over parameter w € R%, given the data
set z:

p(w|z) < p(z|w)m(w) oc exp (=U(w))

where the potential function U decomposes into two parts: U(w) = 871 (f(w) + g(w)).

While the formulation is general, in the machine learning setting, f(w) usually corresponds
to the negative log-likelihood, and g(w) corresponds to the negative log-prior. The parameter
B is the temperature, which often takes the value of 1/n in machine learning, where n is
the number of training data. The key motivation to consider this decomposition is that we
assume that ¢ is “simple” so that an SDE involving g can be solved to high precision. We
will take advantage of this assumption in our algorithm design.

Assumption on function g

A0 We assume that function g is m-strongly convex (g(w) — 3 |wl]|? is convex) ['| and can
be explicitly integrated.

Assumption on function f We assume that function f is convex (Assumption [Al]) and
consider two cases regarding its regularity.

e In the first case, we assume that function f is G-Lipschitz continuous (Assumption|A2y)).

e In the second case, we assume that function f is L-smooth (Assumption [A2g]). We then
instantiate the result by endowing it with a ridge separable structure (Assumptions

and .

The first case stems from Bayesian classification problems, where one has a simple strongly
log-concave prior and a log-concave and log-Lipschitz likelihood that encodes the complexity
of the data. Examples include Bayesian neural networks for classification tasks 7
Bayesian logistic regression (Gelman et al} [2004)), as well as other Bayesian classification
problems with Gaussian or Bayesian elastic net priors. In optimization
literature, this setting corresponds to the smooth-continuous composition and is frequently
examined in the stochastic composite optimization context (Lanf[2012}[Duchi and Ruan}[2018)).
The second case corresponds to the regression type problems, where the entire posterior is
strongly log-concave and log-smooth. In this case, one can separate the negative log-posterior
into two parts: S~ lg(w) = ”8721’” |w|* and =1 f(w) = (— log p(w|z) — ﬁ;m |wl|*), which

is convex and 7! L-smooth. We therefore directly let g(w) = 2 |wl|/? in Section

1. We also say that the density proportional to exp (—Bflg(w)) is B~ lm-strongly log-concave in this case.
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2.2 Objective Functional and Convergence Criteria

We take the KL divergence 3~ 'Q(p) to be our objective functional and solve the following
optimization problem:

ps =argmin Q(p), (1)

= w)n p(w) w = w w nplw
Q@)= [ o) R = By [ 0) + 9(u) + lnp(uw)].

The minimizer that solves the optimization problem is the posterior distribution:
ps(w) o exp (=B (f(w) + g(w))) . (2)

We further define the entropy functional as

H(p)=p Ew~p In p(w),

so that the objective functional decomposes into the regularized entropy plus cross entropy:

Q(p) = (H(p) + IEwwp [g(w)] ) + Ewwp [f(w)] .

With this definition of the objective function, we state that the difference in @ leads to the
KL divergence.

Proposition 1 Let p be the solution of , and p’' be another distribution on w. We have
KL(p'[lp) = 87 QW) — QWp)].

This result establishes that the convergence in the objective 371Q(p’) is equivalent to the
convergence in KL-divergence. Therefore our analysis will focus on the convergence of
81QwM).

We also define the 2-Wasserstein distance between two distributions that will become
useful in our analysis.

Definition 2 Given two probability distributions p(x) and p'(y) on RY, and let TI(p, p') be the
class of distributions q(x,y) on R? x R? so that the marginals q(z) = p(x) and q(y) = p'(y).
The Wy Wasserstein distance of p and p’ is defined as
Wa(p,p')? = min Eq ..z — yl3.
0.0 = min Byl -}
A celebrated relationship between the KL-divergence and the 2-Wasserstein distance is known
as the Talagrand transport-entropy inequality (Otto and Villani] [2000)).

Proposition 3 Assume that probability density ps is m-strongly log-concave, and p' defines
another distribution on R:. Then p, satisfies the log-Sobolev inequality with constant m /2 EL
and yields the following Talagrand inequality:

W3 (ps,p') < "KL (p.||p").

2. This fact follows from the Bakry-Emery criterion (]Bakry and Emery|7 |1985D.
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Reference Convergence Criterion Iteration Complexity
Durmus et al.} [2019 Wa(pr,p)? < € Q (d%SLEZ
Chatterji et al| [2020 Wa(pr,p)? < e Q (%)

This work (Theorem W Wo(pr,p)? < %KL(ﬁTHp) <e Q (%)
Cheng and Bartlett] [2018 KL(pr|lp) < e Q (%g
This work (Theorem |12 KL(pr|lp) < e Q (% + @)

Table 1: Comparison with Previous Results on overdamped Langevin algorithm: d is the
parameter dimension, M is smoothness parameter of 571 g(w), m is strong convexity
parameter of 3~ g(w), G is the Lipschitz parameter of 57! f(w), L is the smoothness
parameter of 37! f(w), and H is an upper bound of the Hessian matrix of 57! f(w).
The first three rows correspond to the @—Lipschitz continuous likelihood whereas
the last two rows correspond to the L-smooth likelihood.

3. Related Works

We compare our results to those in previous work in Table[]] Some previous works have aimed
to sample from posteriors of the similar kind and obtain convergence in the KL divergence
or the squared 2-Wasserstein distance.

In the Lipschitz continuous case, where the negative log-likelihood is convex and G-
Lipschitz continuous, composed with an m-strongly convex and M-smooth negative log-prior

the convergence rate to achieve W3 (pr, p«) < € is Q (d%je (2;2) (Corollary 22 of [Durmus et al.

2019). Similarly, (Chatterji et al] [2020]) uses Gaussian smoothing to obtain a convergence rate
of O (%) (in Theorem 3.4), which improves the dependence on accuracy €. In (Moul

, , the Metropolis-adjusted Langevin algorithm is levaraged with a proximal
sampling oracle to remove the polynomial dependence on the accuracy e (in total variation
distance) and achieve a (d log(%)) convergence rate for a related composite posterior
distribution. Unfortunately, an additional dimension dependent factor is always introduced
into the overall convergence rate. This work demonstrates that if the m-strongly convex
regularizer is explicitly integrable, then the convergence rate for the Langevin algorithm to

G2
me

achieve KL(pr||p«) < € is dimension independent: T = Q ) This is proven in Theorem

for the full gradient Langevin algorithm, and in Theorem [§| for the stochastic gradient
Langevin algorithm. Using Proposition the result implies a bound of T' = 2 (G—2> to

m2e

achieve W2 (pr,p«) < e.

In the smooth case, where the negative log-posterior U is m-strongly convex and L-

smooth, the overdamped Langevin algorithm has been shown to converge in Q (%%) number

of gradient queries (Dalalyan| [2017} [Dalalyan and Karagulyan) [2017} [Cheng and Bartlett),
(2018} [Durmus and Moulines [2019} [Durmus et al} [2019)), while the underdamped Langevin
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algorithm converges in Q (ES/Q \/§> gradient queries ((Cheng et al.| [2018bf |[Ma et al [2021

T?L2

[Dalalyan and Riou-Durand} [2018)), to ensure that KL(pr|p«) < € and W3 (pr,ps) < €.
Using a randomized midpoint integration method for the underdamped Langevin dynamics,
b ()7

this convergence rate can be reduced to Q (m4/3 <
Wasserstein distance (Shen and Lee] [2019). This paper establishes that for overdamped

Litrace(H) to achieve
m2e

) for convergence in squared 2-

Langevin algorithm, the convergence rate can be sharpened to €2 (

KL(pr|ps) < €, where matrix H is an upper bound for the Hessian of function U.
Previous works have also focused on the ridge separable potential functions studied in
this work. There is a literature that requires incoherence conditions on the data vectors

and/or high-order smoothness conditions on the component functions to achieve a Q (g) 1/
convergence rate for W2 (pr,p.) < € using Hamiltonian Monte Carlo methods (Mangoubi
[and Smith] 017} [Mangoubi and Vishnoi, R018]). Making further assumptions that the

differential equation of the Hamiltonian dynamics is close to the span of a small number
of basis functions, this bound can be improved to polynomial in log(d) (Lee et al] [2018)).

Another thread of work alleviates these assumptions and achieves the 0 ((g) 4 convergence
rate for the general ridge separable potential functions via higher order Langevin dynamics
and integration schemes (Mou et al| [2021). We follow this general ridge separable setting and
assume that each individual log-likelihood is smooth. Under this assumption, we demonstrate
in this paper, by instantiating the bound for the general smooth case, that the Langevin
algorithm converges in €2 (%) number of gradient queries to achieve KL(pr|p«) < € (see

Corollary [13] and Corollary .

4. Langevin Algorithms

We consider the following variant of the Langevin Algorithm

Algorithm 1: Langevin Algorithm with Prior Diffusion

Input: Initial distribution py on RY, stepsize n;, 8 = 1
Draw wq from pg

=

2 fort=1,2,...,7 do
3 Sample w; from wy(n;) with the following SDE on R% and initial value
UA)/t(O) = W¢—-1
_ Ui " Tt
Tulm) =wir — [ Vol@s)ds+ /25 [ dB., 3)
0 0
where dB; is the standard Brownian motion on R<.
4 Let
Wy = Wy — ﬁtvf(@t) (4)
5 end
6 return wr

In this method, we assume that the prior diffusion equation can be solved efficiently.

When the prior distribution is a standard normal distribution where g(w) = |wll3 on RY,
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we can instantiate equation to be:
_ 1— e—2m77t
Sample wi(n) ~ N (e_m”twt_l, BI) . (5)
m

In general, the diffusion equation can also be solved numerically for separable g(w) of

the form
d
w) =Y g;(w)),
j=1

where w = [wy,...,wy]. In this case, we only need to solve d one-dimensional problems,
which are relatively simple. For example, this includes the L; — Lo regularization arising
from the Bayesian elastic net (Li and Lin| [2010)),

m
g(w) = S [wll3 + efwlh,

among other priors that decompose coordinate-wise.

We will also consider the stochastic version of Algorithm [l the stochastic gradient
Langevin dynamics (SGLD) method, with a strongly convex function g(w). Assume that
function f decomposes into f(w) = 23"  #(w,z). Let D be the distribution over the
dataset €2 such that expectation over it provides the unbiased estimate of the full gradient:
E..pVuwl(w,z) = Vf(w). Then the new algorithm takes the following form and can be
instantiated in the same way as Algorithm

Algorithm 2: Stochastic Gradient Langevin Algorithm with Prior Diffusion

Input: Initial distribution py on R?, stepsize n;, § = 1/n

Draw wq from pg

fort=1,2,...,7T do

Sample wy from wy(n;) with the following SDE on R? and initial value
we(0) = wi—q

W N =

@lm) = wis — | Vg(@(s))ds + /28 /0 " s, (6)

0

where dB;, is the standard Brownian motion on R<.

4 Draw minibatch & where each z; € § are i.i.d. draws: z; ~ D. Let
Wy = W = Mg Z Vi l(we, ). (7)
|S‘ 2z €S
5 end
6 return wr

This algorithm becomes the streaming SGLD method where in each iteration we take
one data point z ~ D.

In the analysis of Algorithm [I} we will use p;—1 to denote the distribution of w;_1, and
Pt to denote the distribution of w;, where the randomness include all random sampling in
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the algorithm. When using samples along the Markov chain to estimate expectations over
function ¢(-), we take a weighted average, so that

o(p) Z Zﬁtﬁb we),

=1"s =1

which is equivalent to the expectation with respect to the weighted averaged distribution:

Similar to stochastic optimization (Polyak and Juditsky} [1992)), we prove in what follows
the convergence of weighted average of the distributions p; along the updates of and (E[)
towards the posterior distribution .

5. Langevin Algorithms in Lipschitz Convex Case

For the posterior p(w|z) o< (—7(f(w) 4+ g(w))), we assume that function f satisfies the
following two conditions common to convex analysis.

Assumptions for the Lipschitz Convex Case:

Al Function f:R? — R is convex.
A2y, Function f is G-Lipschitz continuous on R%: ||V f(w)|2 < G.

We also assume that function g : R — R is m-strongly convex. Note that we have assumed
that the gradient of function f exists but have not assumed that function f is smooth.

5.1 Full Gradient Langevin Algorithm Convergence in Lipschitz Convex Case

Our main result for Full Gradient Langevin Algorithm in the case that f is Lipshitz can be
stated as follows.

Theorem 4 Assume that function f satisfies the convex and Lipschitz continuous Assump-
tions and . Further assume that function g(w) satisfies Assumption . Then for pr
following the Langevin Algorithm[1] it satisfies ( for iy = (1 — e~™™") /m =2/ (m(t + 2))):

d 14 0.5¢
B7HQM:) — Qp.)] <
; T+ 0.25T(T + 1) !

By the convezity of the KL divergence, B~1Q, this leads to the convergence rate of

5G*
T=—,
Bme
for the averaged distribution pr = Zt 1 T+O+T?€F+l)ﬁt to convergence to € accuracy in the

KL-divergence.
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We devote the rest of this section to prove Theorem [4]

Proof [Proof of Theorem El] We take a composite optimization approach and analyze the
convergence of the Langevin algorithm in two steps. First we characterize the decrease of
the regularized entropy Eyp [g(w) + H (p)] along the diffusion step ().

Lemma 5 (For Regularized Entropy) We generalize Lemma 5 of (Durmus et al}[2019)
and have for p; being the density of wy following equation and p being another probability
density,

3(1 —e7") (Bunpilg(w) + H(Br)] = Bunplg(w) + H(p)]) < ™" W3 (pr—1,p) = W3 (P1, ),

m

where m is the strong convexity of g(w).

We then capture the decrease of the cross entropy E,~p [f(w)] along the gradient descent
step . This result follows and parallels the standard convergence analysis of gradient
descent (see [Zinkevichf 2003} [Zhang] [2004} for example).

Lemma 6 Given probability density p on R. Define

f(p) = Ewpr(w)a

then we have for p; being the density of wy following equation .'

2 () — f(p)] < W3 (Br, p) — Wilpe,p) + 77 G2

We then combine the two steps to prove the overall convergence rate for the Langevin
algorithm. It is worth noting that by aligning the diffusion step and the gradient descent
step (@) at py, we combine E,,z,[g(w) + H (py)] with f(p;) and cancel out W3 (p;, p) perfectly
and achieve the same convergence rate as that of stochastic gradient descent in optimization.

Proposition 7 Set i, = (1 — e ™) /m = 7 (7/fp + mt)~" for some 7 > 1 and 19 > 0.
Then

Znt Q) = Qp)] < 7l Wi (po,p) + G Z~2 "

Choosing 7 = 2 and p = p,, we have

4G*
pm(T +1)

T
> o 1000 - Q) < G W0 + (®

T +0.25T(T + 1) = BmiT(T +1)

The learning rate schedule of 7, = 1/mt (with 7 = 1) was introduced to SGD analysis for
strongly convex objectives in (Shalev-Shwartz et al] [2011)), which leads to a similar rate as
that of Proposition [7] but with an extra log(T') term than (8). The use of 7 > 1 has been
adopted in more recent literature of SGD analysis, as an effort to avoid the log(T") term (for
example, see (Lacoste-Julien et al}[2012])). The resulting bound in the SGD analysis becomes




FREUND, MA AND ZHANG

identical to that of Proposition [/} and this rate is optimal for nonsmooth strongly convex
optimization (Rakhlin et al] 2012)). In addition, it is possible to implement for Langevin
algorithm a similar scheme using moving averaging, as discussed in (Shamir and Zhang]
2013).

It can be observed that taking a large step size 79 will grant rapid convergence. The
largest one can take is to choose 79 = +o0o and consequently 790 = 1/m, leading to a
learning rate schedule of 7y = 2/(m - (¢t + 2)). In this case, we are effectively initializing
from p; o exp (—Bilg(w)). Choosing the same py o exp (—61g(w€, we can bound the
initial error W2 (po, p«) via the Talagrand inequality in Proposition [1] and the log-Sobolev
inequality (Bakry and Emery] [1985} [Ledoux] [2000) for the S~ !'m-strongly log-concave

distribution p:
2 2
G
Vlog < —,
po 2m2

‘Vlog Be( H HB IV f(w H < B7'G. Plugging this bound and 79 = 1/m into
equation , and noting that T' > 1, we arrive at our result that

2
2

8
W2 (po, ps) < KL

since

5G?
BmT"

d 1+ 0.5¢ o
; Tromrr L. [QP) - Q=

Proof [Proof of Proposition [7] We can add the inequalities in Lemma [5| and Lemma@ to
obtain:

QM) — QD)) < e ™ Wa(pr—1,p)? — Walps,p)* + 7G>

This is equivalent to

0 TQP) — Qp)) < (1 —mip)i;, " Wa(pe—1,p)* — i, Walpe, p)? + 77 7G>, (9)
We first show that
(L—mn)n, ™ <. (10)

Let s=t+7/(mny) > 1fort > 1, 7, = 7/(ms) and 7, = 7/(m(s — 1)). Therefore is
equivalent to
(1—7/s)s" <(s—1)".

This inequality follows from the fact that for z = 1/s € [0,1] and 7 > 1: ¢(2) = (1 — 2)" is
convex in z, and thus (1 — 72) = ¥(0) + ¥'(0)z < ¢(z) = (1 — 2)".
By combining @D and , we obtain

BTRE) — QW) < T Walpi1.p)? — 7 Walpep)? + 7 7G2.

By summing over t = 1 to t =T, we obtain the bound. |

10
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5.2 Streaming SGLD Convergence in Lipschitz Convex Case

To analyze the streaming stochastic gradient Langevin algorithm, we assume that function f
decomposes:

1 n
) = 5 3t ) = Benpltw, )
1=
where D is the distribution over the data samples. In this case, we modify Assumption
and assume that the individual log-likelihood satisfies the Lipschitz condition.

Assumptions on individual loss ¢
A23% Function ¢ is Gy-Lipschitz continuous on R?: ||V£(w, 2)|j2 < Gy, ¥z € Q.

In the case that ¢(w, z) is Lipschitz, our main result for SGLD is the following counterpart
of Theorem [

Theorem 8 Assume that function f satisfies the convex assumption [Ad] and the Lipschitz
continuous assumption for the individual log-likelihood . Further assume that function
g(w) satisfies Assumption . Then for pr following the streaming SGLD Algom'thm@ it
satisfies ( formy = (1 — e ™M) /m =2/ (m(t + 2))):

T

140.5¢ . 5G?
Zl S G Q@) — Q)] < 5.

leading to the convergence rate of
2

~ PBme’

for the averaged distribution pr = Z?:l H&Ei%@ to convergence to € accuracy in the
KL-divergence.

This result corresponds to the convergence behavior of stochastic strongly convex optimization
with a bounded gradient oracle (Hazan and Kale} [2014} |[Agarwal et al} [2012). We devote the
rest of this section to prove Theorem

Proof [Proof of Theorem [8] Same as in the previous section, convergence of the regularized
entropy Ey~p [g(w)] + H(p) along equation () follows Lemma

For the convergence of the cross entropy E~p [f(w)] along equation @, the following
Lemma follows the standard analysis of SGD.

Lemma 9 Adopt A&sumption that £(w, z) is Gg-Lipschitz for all z € Q. Also adopt
Assumption that f(w) = E,pl(w, z) is convex. We have for all w € R%:

2B [U(Wr, 2) — €(w, 2)] < [ — w3 — Euyja, lwe — w3 + 57 GF. (11)

It implies the following bound, which modifies Lemma [6}

11
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Lemma 10 Given any probability density ¢ on R®. Define
K(q) = EquEZNDg(wa Z)a

then we have
2m:[0(pe) — L(p)] < WQ(ﬁt,p)z — Wa(ps, ) + 13 Ge-

Initializing from the prior distribution, we can follow the same proof as in Proposition [7]
and obtain a similar convergence rate as in the non-stochastic case.

Proposition 11 Set 7j; = (1 — e™™")/m = 1 - (7/70 + mt)~! for some 7 > 1 and 7j9 > 0.
Then

Z~1 Q) — Q)] < 15 Walpo.p +G52~2 "

We can choose 7 = 2, and then for p = p,, we have

T
1+ 0.5¢ I 4 2 AGT
— N 1 Wa(po, ps — (12
§T+O BT(T + 1 )5 [Q(pr) — Q(p:)] < B T(T + 1) 2(Pos Px) +Bm(T+ ) (12)
Following the same steps as in the full gradient case, we arrive at the result. |

6. Langevin Algorithms in Smooth Convex Case

For the posterior p(w|z) o< (—87(f(w) + g(w))), we make the following assumptions on
function f.

Assumptions for the smooth convex case:

A1l Function f:R? — R is convex and positive.
A2g Function f is L-Smooth on R%: ||V f(w) — Vf(w)||]2 < L|lw — w'[2.

We also assume that function ¢ : R* — R is m-strongly convex. Note that this is equivalent
to the cases where we simply assume the entire negative log-posterior to be S~ m-strongly
convex and (6*1(L + m))—smooth: one can separate the negative log-posterior into two

parts: @ |wl|* and <— log p(w|z) — @ ||wH2>, which is convex and 37! L-smooth. We
therefore directly let g(w) = |w||* in what follows.

12
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6.1 Full Gradient Langevin Algorithm Convergence in Smooth Convex Case

Our main result for Full Gradient Langevin Algorithm in the case that f is smooth can
be stated as follows. Compared to Theorem [4 the result of Theorem [I2]is useful for loss
functions such as least squares loss that are smooth but not Lipschitz continuous.

Theorem 12 Assume that function f satisfies the convexr and smooth Assumptzons AT]
(md- Also assume that V2f(w) < H. Further let function g(w) = 2 ||wH , and set

= (1—e ™) /m =2-((8L +mt)”" with fjy = 1/(4L). Then for pr following Algom'thm
and initializing from py o< exp(—B~1g), it satisfies:

QD) — Q(p)]

L (4L/m) +t/2
Z /m) +t/

£ (4L/m)T + T(T +1)/4

6412 L 16 L
<= .=t H) +2U(0 . =t H) +2U(0) ) .
= m2T(T + 1) <m2 race (H) + ()>+T+1 (m2 race (H) + U)

leading to the convergence rate of

T 64 s { L - trace (H) 2U(0) } |

m2e "€

(4L/m)+0.5¢
m)T+0.25T (T+1)

for the averaged distribution pr = Zthl @y Pt to convergence to € < 1 accuracy

wn the KL-diwergence.

Note that in the worst case, trace (H) can have dimension dependence. We discuss in the
following the ridge separable case where trace (H) does not depend on the dimension d of
the problem.

Ridge Separable Case Assume that function f decomposes into the following ridge-
separable form:

1 n
= Zsz w' %), (13)
=1

We make some assumptions on the activation function s; and the data points z;.

Assumptions in ridge separable case

R1 Vi € {1,...,n}, the one dimensional activation function s;(-) has a bounded second
derivative: |s](z)| < L, for any x € R.

R2 Vi € {1,...,n}, data point z; € R? has a bounded norm: Hzl||2 <R,.

Assumptions [RT] and [R2] combines to give a smoothness constant of LsR, for the individual
log-likelihood.

Corollary 13 We make the convexity Assumption [A1] on function f and let it take the
ridge-separable form (also let function g(w) = 5 |wl||?). Further adopt Assumptz’ons
and R on the activation functions and the data points, respectively. Then the convergence

13
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rate of Algorithm initializing from po x exp(—B~tg) (with step size 7y = (1 — e~ ™) /m =
2(8LsR, +mt)™") is

2 P2
T:64'max{LSRZ 2U(O)},

m2e’ €
for the averaged distribution to convergence to € accuracy in the KL-divergence 371Q.

Proof We first compute using the form of f that VZf(w) = 1 3% | s/ (w'2)z2 . From
Assumptions and , we know that V2f(w) < %LSZ Z" = H, where we denote matrix
Z =(z1,...,%n).

Hence the Lipschitz constant L < ||H||, < LyR., and
1
trace (H) = Ly - —trace <ZZT> < L4R,.
n

These two facts lead to the conclusion that L - trace (H) < L2R2. Plugging the bound into
Theorem [12] yields the convergence rate of

2 12
T=64- max{LSRZ 2U(0) } )

m2e’ ¢

We devote the rest of this section to the proof of Theorem
Proof [Proof of Theorem Same as in Section convergence of the regularized entropy
Ewn~p [g(w)] 4+ H(p) along equation (@] follows Lemma [

For the decrease of the cross entropy E,~, [f(w)] along the gradient descent step (ED,
we use the following derivation for L-smooth f. For p; being the density of w; following
equation @ and for p being another probability density,

21t (B, f (W) — By f ()] (14)
[Wa (Bt p)* — Wa(pr,0)?] + 07 B, |V F(w)]13

<
<[Wa(Be, p)* = Wa (e, )] + 27 E )y |V f (w) = VF(@)][3 + 207 B |V f (w13,

where ¢ € Iopt(pr, p) is the optimal coupling between distributions with densities p; and p.
With 7, = (1 — e™™")/m, we have

2m(Q(Br) — Q)] < (1 — mi)Wa(Pr—1,p)?* — Wa(ps, p)?
+ 207 E (10 |V f (W) = V f (w) 13 4 2077 By o |V f (w)[[3- (15)

We also have the following lemma.

Lemma 14 Let v, € Topi(pr, p) be the optimal coupling of py and p, and let p the solution
of . Then we have

E w0 ||V f () = V()3 < 2L[Q(Pr) — Q(p)]-

14
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We note that Lemma [14] and equation imply that

2 (1 — 2Ln;) [Q(pe) — Q(p+)]
<(1 — mij)Wa(pi-1,p+)* — Wa(pr, ps)? + 20 By, | V £ (w)]]3, (16)

where p, satisfies .
Next we bound the last term of equation at pi: By, |V £(w)]]3.

Lemma 15 Assume that

V() 2 H,  glw) = 3wl

Let
Wy = arg Hgl’l [f(w) + g(w)],

and p. o exp(—B(f(w) + g(w))) satisfy equation [@)). Then

28L
Buvmg. (V7)< 22 trace( ) + 22 s 2

With these lemmas, we are ready to prove the convergence rate of the Langevin algorithm

We note that similar to , the shrinking step size scheduling of ny = 7 - (7770 + mt)
satisfies: _

(1 — mﬁt) S ,:l_t .

Mi—1

Using this inequality and combining Lemma [15| and equation at p = p., we obtain that

207 (1= 2L7) [Q(Pr) — Q)]
< Wa(pr—1,p:)? = ;" Wa(pr, pe)® + 4077 [(ﬂ/m) trace (H) +m? [[w,]*| .

Summing over t =1,...,T,
T
2 0T (1= 2Li) [Q(B) — Q(py)]
t=1

T
<Fls " Wa(po,ps)? + 4 [(BL/m) trace (H) + m? ||w*||2] Sow
t=1

~1
Denote A = 4 [(5L/m) trace (H) + m? Hw*HZ] and take gy = 7 - <ﬁlo —i—mt) . Since 1 —
2L > 1 —2n9L > 0.5, we have for 7 = 2,
d 1
my  (1/ (mijo) +1/2) [Q(P) — Q(p:)] <

— Wa(po,p)? + AT,
t=1 Mo

15



FREUND, MA AND ZHANG

or

(17)

T
1/ (mino) +t/2 _ 4 9 4A
- < —————Wa(po, p« _.
523 T lmino) + (T + 1772 QP = Qe < a3y Walbo.p)™ + Dy
Inspired by the Lipschitz continuous case, we take po(w) o< exp (—ﬁ_lg(w)). Then by the
Talagrand and log-Sobolev inequalities,

2
Walpo. ps)? < DKL (pullpo) < 25,

m 2m

2 2
foue2[] = s [i-oscon]

Po

Applying Lemma [T to the above inequality, we obtain that

Walpo,pa)? <~ ((BL/m) trace () + m? )

Then taking 1y = if we obtain that the weighted-averaged KL divergence is upper bounded:

T

1/ (mij) +1t/2 .
; T/ (mio) +0T(T n 1)/45 Q@) — Q(ps)]

64 L2
~mPT(T +1)

16

L
S = H -1 P )
<m2trace( )+ 87 m[Jw,|| >+T+1

L _
: <m2trace (H)+ 8 'm ||w*||2> .

Since L < trace (H), Ve < 1, the weighted-averaged KL divergence

T
Z sléomj—OT?thl)/ BHQD:) — Qps)] < e,

when we set

m2e ’ €

. -1 2
TZ64-max{L trace (H) B~ 1m |jws| }

Plugging in the bound that m [Jw.||* < 2f(0) = 28U(0) gives the final result.

6.2 SGLD Convergence in Smooth Convex Case

Similar to the Lipschitz continuous case, we assume that function f decomposes:

— %Zﬁ(w, zi) = E.up[l(w, 2)],
i=1

where D is the distribution over the data samples. Making the following assumption, which
modifies Assumption that the individual log-likelihood satisfies the smooth condition
yields the convergence rate for the SGLD method.

16
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Assumptions on individual loss ¢

A2§G Function ¢ is Lg-smooth on R%: Vz € Q,

Uy, 2) = Uz, 2) + VU(z,2) " (y — z) + 21L£ IV ey, 2) = Ve(z, 2)|*.

ASEG The stochastic gradient variance at the mode w, is bounded:

E.p [[Ve(we, 2) - Vf(w,)]?] <0

Assumption ensures that the stochastic estimates of f are Ly smooth.

Under the above assumptions, we obtain in what follows the convergence rate for the
SGLD method with minibatch size |S|. This result is the counterpart of its full gradient
version in Theorem

Theorem 16 We make the convexity Assumptions on function f and the reqularity
Assumptions [A23%| and |A3SG| on its components £. Also assume that V?f(w) < H. Let
function g(w) = Z||w||*. Then taking 7, = (1—e™™") /m = 2 - (8L, R, +mt)™", the
convergence rate of the SGLD Algomthm@ initializing from po o< exp(—B"1g) is

T Q<max {Lgtrace(H) uwo 1 v })

m2e 7 e |S|Bme

to achieve an accuracy of

T
Z ;CvomZOTTTt/fU 7377 1QE) ~ Q) < e

Comparing with the full gradient case, the last term corresponds to the strongly convex
stochastic optimization with unbounded gradient oracle (Ghadimi and Lan} [2012).

Ridge Separable Case Assume that the individual component ¢ take the following form
so that function f becomes ridge-separable:

Uw,z) = si(w! ). (18)

To ensure bounded stochastic gradient variance at the mode of the posterior, we additionally
assume that at the mode wy, the derivatives of the activation functions are bounded.

Assumption in ridge separable case on bounded variance

R35C 3b, > 0, so that ‘s;(wjzl)’ < bs, Vi € {1,...,n}, where w, = argmin,, [f(w) + g(w)].

Assumption ensures that the stochastic gradient variance is bounded at the mode.
Then we have the following corollary instantiating Theorem [I6]

17
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Corollary 17 We make the convexity Assumption [A1] on function f and let it take the
ridge-separable form (L3)) (also let function g(w) = 2 |wl||?). Purther adopt Assumptzons

E and|[R35C| Then taking 7, = (1 — e™1) /m = 2- (8LyR. + mt) ™", the convergence rate
of Algorithm E initializing from py o< exp(—B"1g) is

2 2 2
TzQ(max{Lst U n R:b; }):

m2e’ € |S| me
to achieve an accuracy of
T

L (miio) + /2y
> i) + 0T+ D¢ 10~ Qe <<

Proof [Proof of Corollary Since function ¢ takes form , we can compute that
Vi(w,z) = si(szi)ziz;. Using Assumptions and the smoothness Ly, = L R,.
Same as in Corollary , we know that V2f(w) <X ~L,ZZ" = H. Therefore,

1
trace (H) = Ls - —trace (ZZT> < LR,
n

leading to the fact that Ly - trace (H) < L2R2.
For the stochastic gradient bound b at w,, we apply Assumptions and to obtain

|Vl (wy, 2;) — VE(wy, 24) shw,] z)z — s;(w*sz)sz < 24/ R.bs.

We thus have
|Vl(wy, z) = Vf(w)| = HV€ w, z;) ZV€ w, zj H < 2v/R.b,,

leading to the fact that
Eowp [[V6(w,, 2) = Vf(w)?] < 4R.02,

Therefore, the stochastic gradient variance bound in Assumption b = 2v/R,bs. Plugging
these bounds into Theorem [16] proves the corollary. |

We devote the rest of this section to the proof of Theorem
Proof |Proof of Theorem We first note that because each £(-,z;) is Ly-smooth, the
stochastic estimate of function f,

Z (w, z;) (19)
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is Ly-smooth:

2 2
1 1
5] > Viy,z) = Vi, z)| < 5B > IVEy, z:) — Vi, z)|
ZiES ZiES
1
<3 D IVey, =) = Vi, z)|?
Z;ES
2L, N
< Ta 2 (v m) = b, z) = Ve, 2) T (y - )
2z ES

= 2L, (f(y) = F@) = V(@) (v - ).
We thereby invoke the next lemma.

Lemma 18 Assume that function f is convex, and that its stochastic estimate fis Ly-smooth.
Then

W3 (pe, p) < W5 (Be, p) — 277 (£ (1) — f(p))
+ 7 (ALQEH) - Q] + 2E(a, 1y [Bs [V 5)[])
where f(q) = Ey~gf(w), and v¢ € Topi(pr,p) is the optimal coupling between py and p.
Taking 7y = (1 — e”™") /m and combining Lemma [5] and Lemma [18] we obtain that
21 (1 = 2 L) (Q(pr) — Q(p))
<MW (pr-1,p) — W3 (Pt p) + 27 B (5 0y [Es va(w', S)HQ] : (20)
We then adapt Lemma [T5] to the stochastic gradient method.

Lemma 19 (Stochastic Gradient Counterpart of Lemma [15) Assume that
m
Vi f(w) = H,  g(w) = [lwl}.

Let
Wy = argrrgn [f(w) + g(w)],

and p be the solution of . Then for Lg-smooth function ]7 defined in , at p = px and
consequently vy € Topt (D, P+ ),

~ 2
E (5 1) [Es Hv f(w’,S)H }

Ly 2

an trace(H) + 2m? |[w,||® + 2Eg va(w*,S) ~Vf(w)

<

19
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For the last piece of information, we establish the variance of the stochastic gradient at
the mode, Eg Hva(w*,S) — Vf(wy)

set and are unbiased estimators of V f(w,) = %Z?Zl Vi(wy, zj), we have

2
. For samples z; that are i.i.d. draws from the data
2

2

Es Z (wy, 2;) Z Vi (wy, 25)

2z €S

=|S| - E.up ||| Ve(w,, 2 Zw (ws, 27)| | <|S]- b2,

Leading to the bound that
2

LES Z Vil(wy, z) ZV@ Wy, 25) < b2

~ 2
B ||V (we,8) - Vi), = 5 > S

Plugging this result and Lemma into equation at p = p,, we obtain the final
bound that

27 (1 =2 LsR.) (Q(pr) — Q(p«)) < (1 — mipy) W22(Pt—17p*) - Wg(ptvp*)

L b?
+ 47 (antrace(H) + m? ||w, | + ’S|>

This leads to a convergence rate, similar to the full gradient case, of

T_0 (max (Lgtmce(f-[)7 B~lm ||w*||2 g1 bz)) |

m2e € " |S| me

so that the weighted-averaged KL divergence:
T

> ) L 50 - Q)] <
t=1

mij) +T(T +1)/4
Since m [Jwy|* < 2£(0) = 26U(0),
T—q (max <Lgtrace(H) U(O)’ 1 b? )) ‘

m2e 7 e S| Bme

We compare our analysis with some of the existing works in the smooth case to shed light
on the intuition of our approach. In many previous works (e.g., [Dalalyan| [2017} [Dalalyan]
[and Karagulyan] 017} [Durmus and Moulines] 019} [Cheng and Bartlett] R018} [Ma et al]
, the Langevin algorithm updates according to

wy = wi—1 — VU (wi—1) + \/§Bm
Mt Mt
= Wt—-1 — / VU(wt_l)ds + \/5/ dBS, (21)
0 0

20
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where we denote U(w) = 871 (f(w) + g(w)). It is analyzed via comparing against the
following continuous diffusion process

we(ne) = w1 — " VU (w(s))ds + \@/nt dBs; we(0) = we—q (22)
0 0

during the t-th update. The diffusion process converges exponentially, while the
Langevin algorithm contains discretization error, posing restriction on the step sizes.
This discretization error is caused by the gradient V f being evaluated at different positions (at
w¢—1 in equation versus at wy(s) in equation ) The discrepancy leads to the following
bound in the smooth case: E ||VU (w(s)) — VU (w_1)||* < L?/82 - E |Jw(s) — ws_1]|*. One
can observe that the difference E [|w(s) — w1 ||* contains a component E || By||? that is the
variance of a standard normal random variable, contributing to the dimension dependence
arising from the existing analyses.

From a gradient flow perspective, the Langevin algorithm dictates that the dis-
tribution ps of random variable wy(s) follows the transport of probability mass along the
vector flow: —V In %, when V In 5 : EZB is the strong subdifferential of the KL divergence,
KL(ps||ps) = B71Q(ps). It can be observed that the numerator and the denominator of the
strong subdifferential of KL(ps||p«) are evaluated at two different positions, w¢(s) and w;_1.
This discrepancy of gradient evaluation suggests that we should split the objective functional
() into two parts and employ a composite optimization perspective. In this approach, the
tight analysis hinges upon aligning the left-hand-side of both Lemma [5| and equation
(or Lemma [f] in the Lipschitz continuous case) at the same intermediate variable w; and its
associated probability p;. If we only focus on the output of the algorithm, w;, the two terms
Ew~p [9(w) + H(p)] and Ey~p [f(w)] will be evaluated at different distributions. This leads
to an extra suboptimal dimension dependent term for every iteration.

7. Conclusion

This paper investigated the convergence of Langevin algorithms with strongly log-concave
posteriors. We assume that the strongly log-concave posterior can be decomposed into two
parts, with one part being simple and explicitly integrable with respect to the underlying SDE.
This is analogous to the situation of proximal gradient methods in convex optimization. Using
a new analysis technique which mimics the corresponding analysis of convex optimization,
we obtain convergence results for Langenvin algorithms that are independent of dimension,
both for Lipschitz and for a large class of smooth convex problems in machine learning. Our
result addresses a long-standing puzzle with respect to the convergence of the Langevin
algorithms. We note that the current work focused on the standard Langevin algorithm,
and the resulting convergence rate in terms of € dependency is inferior to the best known
results leveraging underdamped or even higher order Langevin dynamics such as
[et al] R0I8D} [Dalalyan and Riou-Durand] 2018} [Shen and Lee] 2019} [Ma et al] 2021} [Mou]
, which corresponds to accelerated methods in optimization. It thus remains
open to investigate whether dimension independent bounds can be combined with these
accelerated methods to improve e dependence as well as condition number dependence.
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8. Proofs of the Supporting Lemmas

8.1 Proofs of Lemmas in the Lipschitz Continuous Case
8.1.1 PrROOF oF LEMMA [H

Before proving Lemma [5] we first state a result in (Theorem 23.9 of 2009) that
establishes the strong subdifferential of the Wasserstein-2 distance.

Lemma 20 Assume that pe, fir solve the following continuity equations

0 of s
LAV (Gu) =0, LV (Gn) =0,

Then
1d

§$W22(Mt7ﬂt) = _/<@'¢t7§t> dp — / <@1&taét> dfu,
where Yy and @t are the optimal transport vector fields:

exp(Vhy) gt = fit, eXP(@ﬁt)#ﬂt = .

Writing p; and p; as the density functions of u; and i, we take & = —3Vlogp; — Vg and
& = 0 so that pu follows the Fokker-Planck equation equation associated with process
and [i; = v is a constant measure. This leads to the following equation

1d 9 . = v
55 WRnew) = [ (39 10gp. + V9, (F0), ) dn

For p being the probability measure associated with its density p, define relative entropy
B (i), where F(u) = Eyep[g(w)] + H(p). We can then use the fact that the relative

entropy B~'F is B~ 'm-geodesically strongly convex (see Proposition 9.3.2 of (Ambrosiol
2008))) to prove the following Lemma.

Lemma 21 For p being the density of p,
F(v) = F(u) — =Wi(u,v) > [ (V1 Vg, (V). ) d
(V) = F(u) = 5 W3 (uv) 2 [ (BVIogp + Vg, (V) ) du.

Proof Let u; be the geodesic between p and v. f~!m-geodesic strong convexity of 371 F
states that (see Proposition 9.3.2 of (Ambrosio et al] P00S)):

_fTm

B () <tB'F(v) + (1 —t)87 ' F(u) (1 — W3 (p,v),

and consequently

m

2

By the definition of subdifferential (c.f. 2009] Theorem 23.14) we also have along the
diffusion process defined by equation :

F(u) — F(p)
t

< F(v) = F(p) — 5 (1= t)W5(p,v).

lim irilg w > /<5V logp + Vg, (@¢)Z> ds.
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Taking the limit of t — 0, we obtain the result. |

Proof [Proof of Lemma [5] Combining Lemma [20[ and we obtain that

375 V2 (s, v) = / <6V10gps + Vg, (WJ)ZS> dps < F(v) — F(ps) — %Wg(ﬂsﬂj)- (23)

Along the Fokker-Planck equation associated with process [3), £ F(us) = —E,, |||3V log ps + Vg||§} <
0, meaning that F'(us) is monotonically decreasing. We obtain from equation (23] for s € [0, t],

1d m m
icTWQQ(“S’”) < sup [F(v) — F(us)] — = Walps,v) = F(v) — F(u) — W3 (s, v).
s s€[0,4] 2 2

Applying the Gronwall’s inequality, we arrive at the conclusion that
2
= (1= e ™) (F(u) = F)) < ¢ W3 (a0, v) — Wi )

Taking du; = pidzx, dug = pi—1dz, dv = pdx, and At = 7, finishes the proof. |

8.1.2 PROOF OF LEMMA [@]

Proof [Proof of Lemma |§[| We first state a point-wise result along the gradient descent

step (ED:
2 (f (W) — f(w)) < @y — wlf3 — [lwe — wl3 + 77 G2 (24)
This is because

Jwe — w5 = ||y — mV (i) — w3
= i — wl|2 = 2 (V f (@), W — w) + n? |V f ()|
< |l — wl3 — 2 (f () — f(w)) + 172G,

where the last step follows from the convexity and Lipschitz continuity of f.

We then denote the measures corresponding to random variables w; and w; to be: wy ~
and w; ~ [i;. From the definitions, we know that they have densities p; and p;.

Denote an optimal coupling between fi; and p (where measure p has density p, which is
the stationary distribution) to be v € T'op(fit, ). We then take expectations over (i, w)
on both sides of equation :

20 (f(Pe) = £(P) = 20E (i )y [f (02) — f(w)]
< E(ar )y 100 = wll3] = By wyon [lwe — wli3] + 07 G?
= Wg(ﬁhp) - E(ﬁ)t,w)w’y [Hwt - w”%] + 77t2G2
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From the relationship w; = w; — 9,V f (w;), we know that the joint distribution of (wy,w) is
(id — .V f, id)# v. Note that ¥ = (id — n,V f, id)# ~ also defines a coupling, and therefore

E (e, wjnr [0 = wII3] = By [lwr — wlf3]

> R inf E(wt,w)~§ [”wt - w”%} = W22(pt>p)'
FET (pe,)

Therefore,

20 (f(Be) — f(p)) < W3 (B, p) — W5 (pe, p) + 17 G

|

8.1.3 PrRoOFs OF LEMMA [Q AND [[(] FOR THE STREAMING SGLD ALGORITHM [2]

Proof [Proof of Lemma@ﬂ By the definitions of w; and 1wy,

lwe — w3 = [l — 0 VE(iy, ) — w3
= || — w3 — 2m (VE( @y, 21), D — w) + 07 | VE(r, 24) |3
We now take expectation with respect to z;, conditioned on wy, to obtain
2 ~ 2 N -
E.,a, lwe — wlls < @ — w3 — 20 (V f (@), @ — w) + 0} G7
- 2 -
< e — wlly = 20 (f (@) — f(w)) + 0 GF.
The last step follows from the convexity of f. Therefore, the desired bound follows. |

Proof [Proof of Lemma We first denote the measures corresponding to random variables
wy and Wy to be: wy ~ uy and Wy ~ fi;. From the definitions, we know that they have
densities p; and p;.

Denote an optimal coupling between fi; and p (where measure p has density p, which is
the stationary distribution) to be v € I'gp(fir, ). We then take expectations over ~y (0, w)
on both sides of Eq. , Vz e

277tE(1Dt,w)N’Y [EZ [g(ﬁ)t? Z) - E(w7 Z)H
< Efa )y 10 = 0[13] = By )y [Baog [lwe — wl3|@]] + 77 G}
= W5 (Bt P) = E(ayw)y [Bu [wr — wl3|@]] + nf G

From the relationship wy = w; — 0, VL(wy, 2¢), we know that conditional on z;, the joint
distribution of (wy, w) is (id — 7 V¢, id) 4 . Note that ¥ = (id — 7, V¢, id) . v also defines a
coupling, and therefore

E (i, w)~y [Buy [[lwe — wl3] @] ]
=E., [E(@z,w)N’Y [Ewt [Hwt - wH%‘@ta Zt]”
=E., [Eww)~s [lwe — wll3]z]]

> inf  E(y, wios _ 2] _ 12 ).
_fyely&t,ﬂ) (wew)~s [lwe = wll3] 5 (Pt p)
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Plugging this result and the Lipschitz assumption on ¢ in, we obtain that

2m[0(Br) — £(p)] < Wa(Pr, p)? — Walpe, p)? + 177G}

8.2 Proofs of Lemmas in the Lipschitz Smooth Case

8.2.1 PrROOFS OF LEMMAS [[4] AND [[8] FOR THE FULL GRADIENT LANGEVIN
ALGORITHM [

Proof |Proof of Lemma By the geodesic convexity of the entropy function H(p) =
BEynp [In p(w)],

H@) - )2 6 [ (Vinp), (T4 - id) (@) pla’) du’
where Tz? * is the optimal transport from p to p;. Using optimal coupling u; € II(p, p),
H(pt) — H(p) > BBy mp, [(VInp(w'),w —w")] .
In addition, convexity of f and g implies that

Ew,w’w,ut [g(w) - g(w,)] > Ew,w’wut [<Vg(w/), w — w’>]

and
By’ moprs [f(w) — f(w,)] > B /oy [<Vf(w/)> w = w,>] .

Adding the above three inequalities, and note that the following holds point-wise
BV Inp(w') + Vg(w') + Vf(w') =0,
we obtain that
H(p:) — H(p) + Ewurmp [9(w) = g(w)] 2 —Eppwrmp, [(V ('), 0 —0')]
and that
Q1) = QD) = Buyurmop [f () = f ()] = Buprpse [(VF (W), w0 = )] (25)

Since the potential function f(w) is convex and L-smooth,

1
flw) > f(w') + V() (w—w)+ S IIVFw') - V. (w)f3. (26)
Combining equations and , we obtain the desired bound. |
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Proof [Proof of Lemma From smoothness and convexity, we have
IVf(w)]* < 2|V f(w) = Vf(w)l* + 2|V f(w)]*
<AL [fw)  flwn) = V() (w = wa)] + 295 (wa) 2.
Taking expectation over w on both sides, we obtain that
Eup V1 ()] < AL Eupmp [£(0) — F() =V Fw) T (w — )] + 2]V fw ). (27)

We now upper bound Ey,p, [f(w) — f(w.) — Vf(ws) T (w — w,)]. Let py be the normal
distribution N (wy, (8/m)I), and define

Af(w) = f(w) = flw) = Vf(we) " (w—w,),
Ag(w) = g(w) — glw,) — Vg(ws) " (w — ws),

then p, can be expressed as

ps(w) o exp(=FHAf(w) + Ag(w)))
oc exp(—A7 A f(w) + Inpo(w)),

which is the solution of

_ : p(w)
p» = argmin Ew~p {Af(w) + Bln po(wJ .
Therefore
Bup. A1) < By |Af(w) + 510 2]

0 1By exp(—57 A ()
< —BInEy~p, exp(—0.58" (w — wy) " H(w — w,))
=0.561n|I + H/m| < 0.58trace(H/m), (28)

where equality (i) follows from the fact that both sides equal to —f31n Z, where Z is the
normalization constant of exp (—B‘lAf(w)).

We then upper bound ||Vf(wy)||>. Since w, is the minimum of f + g, Vf(w,) =
—Vg(wy) = —mw,. Hence

IV f(wa) I < m? . (29)

Plugging inequalities and into inequality proves the desired result that

Vf(w)|* < 2ﬁWLtrace(H) + 2m? ||w.|*.

wavp*
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8.2.2 PRrROOFS oF LEMMA [I8] AND [[9 FOR THE SGLD ALGORITHM [2
Proof [Proof of Lemma By the definitions of w; and 0y,

~ 2
Jwn = wl = || @ = mV Fn, 8) — w||
~ ~ 2
= | = wll3 = 2n0 (V Fin, S), 50 = w) + ¢ [V F (0, 5)||
We now take expectation with respect to S, to obtain
ot 00— w3 = 50— wl — 200 (9 F(@0), 0 — w) + s ||V e, ) |

2
< e = wll3 — 20 (F (i) = flw ))+77tlEsHVf @ S),. 60

~ 2
We then upper bound Eg HV f (g, S)H2 by introducing variable w’ that is distributed

according to p and couples optimally with the law of w;:
~ 2 ~ ~ 2 ~ 2
Es ||V Fn, )| < 2Bs Vi) - Vi, s)|| +2Es||Viw.s)| . 6y

For function fbeing Ly-smooth,

F@,8) > f(w',8) + V(w8 (w—w') + ;LEHVRw’,& — V(i S)|3

Taking expectation over the randomness of minibatch assignment S on both sides leads to
the fact that

F(@e) = f(w') + V(') (w—w') + ;LeEsHVJ?(w’,S) - V(. S)|5-

Combining this equation with equation , we adapt Lemma [14]to the stochastic gradient
method:

E [Esuvf(w’,&—vf(wt, S)I3] < 2LdQG) - Q-

Applying this result to equation (31) and taking expectation of (w;,w’) ~ us on both
sides, we obtain:

s [Bs [V F01,5)}| < 42000 - QI+ 28y B [VFw )]
Therefore,
E iy | Betie 1100 = 013] < By (1180 = wl3] = 20 (£@0) = £ (9)

17 (AL40QG) - QI+ iy [Bs [VF5)[]).
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leading to the final result that
W22(pt7p) < E(ﬁ)t,w/)"’ﬂt [Ewt\i)t Hwt - ’LUH;}
< W5 (Pe,p) — 200 (f () — f(p))

07 (L0 - QU + oy B [VF 5[ ]).

Proof |Proof of Lemma Similar to the proof of Lemma we have

Es |V F(w,5)|| <2EsIV (!, 8) - VFw, )1 + 2Es]|9 Flwe, S}

§4L€ [f(w) - f(w*) - Vf(w*)T(w - w*):| + 2E8”vf(w*’8)”%

Taking expectation on both sides, we obtain that
~ 2
E ey [Es |Vit.s)| } < ALEump | (W) = Fw.) = Vf () (w = w,)]
~ 2
+2E3HVf(w*,S)H . (32)

We now upper bound Eynp [f(w) — f(ws) — Vf(wi) " (w — w,)]. Let pp be the normal
distribution N (wy, (8/m)I), and define

Af(w) = f(w) = f(ws) = VF(w) " (w—w.), (33)
Ag(w) = g(w) = g(w.) = Vg(ws) " (w - wy), (34)
then p can be expressed as
p ocexp(=B7HAf(w) + Ag(w))),

which is the solution of

p(w) ] .

p = arg H;in Ew~p [Af(w) + Bln po(@)

Therefore

BumpAf(0) <Euny | () + 510 2L

po(w
= — BInEynp, exp(—B7 A f(w))

< — BInEypmp, exp(—0.58"1(w — wy) " H(w — w,))

=0.581In|I + H/m| < 0.50trace(H/m). (35)

~—

Since EsV f(ws,S) = V f(wy), we can decompose Eg HVf(w*,S)H2 as follows:
Es |V F(w., )| = IV f@a)l? + Bs [V £w.) ~ Vi, )]
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Since wy is the minimum of f + g, Vf(w,) = —Vg(w,) = —mw,. Hence
~ 2 ) ) ~ 2
Es ||V F(w.,8)| = m? w.l + Es |7/ (w.) - VF(w.,8)| (36)
Plugging inequalities and into inequality proves the desired result that

By [Bs |97 )]
28L,

m

<

~ 2
trace(H) + 2m?2 |[w.||? + 2Es HVf(w*) — Y f(ws, S)H .
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