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Abstract

We address the problem of learning Granger
causality from asynchronous, interdependent,
multi-type event sequences. In particular,
we are interested in discovering instance-level

causal structures in an unsupervised manner.
Instance-level causality identifies causal rela-
tionships among individual events, providing
more fine-grained information for decision-
making. Existing work in the literature either
requires strong assumptions, such as linear-
ity in the intensity function, or heuristically
defined model parameters that do not nec-
essarily meet the requirements of Granger
causality. We propose Instance-wise Self-
Attentive Hawkes Processes (ISAHP), a novel
deep learning framework that can directly
infer the Granger causality at the event in-
stance level. ISAHP is the first neural point
process model that meets the requirements
of Granger causality. It leverages the self-
attention mechanism of the transformer to
align with the principles of Granger causality.
We empirically demonstrate that ISAHP is ca-
pable of discovering complex instance-level
causal structures that cannot be handled by
classical models. We also show that ISAHP

achieves state-of-the-art performance in proxy
tasks involving type-level causal discovery and
instance-level event type prediction.

1 Introduction

Automated causal discovery from noisy time-series data
is a fundamental problem for machine learning in com-

Proceedings of the 27th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2024, Valencia,
Spain. PMLR: Volume 238. Copyright 2024 by the au-
thor(s).

plex domains. Granger causality (Granger, 1969b) is a
popular notion of (pseudo) causality in time series data.
While extensive prior work exists on Granger causality
from regular time series, with the vector autoregressive
model being a primary tool (see, e.g., (Shojaie and
Fox, 2022) for the latest review), relatively less work
has been done on analogous problems on discrete event

sequences. These event sequences often occur at irreg-
ular intervals. There could also be multiple types of
events interacting with each other. Together, they pose
significant challenges to Granger causality structure
learning tasks.

Recently, many have used point process model as a
vehicle for causal discovery of stochastic temporal
events (Xu et al., 2016; Eichler et al., 2017; Zhang
et al., 2020b). In particular, Hawkes process (Hawkes,
1971; Hawkes and Chen, 2021) is one of the basic build-
ing blocks for Granger-causal analysis of multi-type

event sequences (i.e., event data that come with a type
attribute, indicating what the event is). Thanks to
its additive structure over the historical events in the
event intensity function, the task of causal discovery
can be performed by maximum likelihood estimation
of the kernel matrix, which characterizes the causal
relationship among different event types.

However, causal structure among event types only pro-
vides coarse-grained information that is aggregated
over the event sequence. It lacks fine-grained details of
causal relationships among individual events. From a
practical perspective, extracting instance-level informa-
tion for causal analysis is critical. In medical diagnosis,
for example, we are interested in capturing precursor
events that may have caused a specific symptom of
patients. These precursors would be valuable for early
detection, screening, and treatment as a prevention.
Aggregated type-level causality would only reveal infor-
mation about generic symptoms categories, rather than
identifying the exact precursors that progress directly
into diseases.

For instance-level causal analysis, there are three lines
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of research to date. One is based on the classical
Hawkes process, typically through the minorization-
maximization (MM) framework (Veen and Schoenberg,
2008; Lewis and Mohler, 2011; Li and Zha, 2015; Wang
et al., 2017; Idé et al., 2021). But a classical Hawkes
model places the linearity assumption in the intensity
function, limiting its expressive power. Neural point
process models (Xiao et al., 2019; Zuo et al., 2020;
Zhang et al., 2020a) are designed to address this lim-
itation but they typically embed event history in the
form of a latent state vector losing instance-wise infor-
mation. As a result, the attention-based score does not
necessarily represent the Granger causality. The third
one is based on a post-processing step following max-
imum likelihood (Zhang et al., 2020b), which incurs
additional computational costs.

In this paper, we propose a novel deep Hawkes pro-
cess model, the “instance-wise self-attentive Hawkes
process (ISAHP),” that achieves better expressiveness
while also enabling direct instance-level Granger-causal
analysis. From a mathematical perspective, the key
design principle is to maintain an additive structure,
where causal interaction is represented as the summa-
tion of individual historical events. To capture com-
plex causal interactions potentially involving multiple
events, we leverage the self-attention mechanism of
the Transformer model (Vaswani et al., 2017). ISAHP
can directly capture instance-wise causal relationships
with its additive structure. We can also easily obtain
type-level causal relationships by simple aggregation.
To the best of our knowledge, ISAHP is the first deep
point process model that allows direct instance-wise
causal analysis without post-processing.

We empirically demonstrate that ISAHP can discover
complex instance-level causal structures that cannot
be handled by the classical models and neural point
process models without post-processing. Furthermore,
our experiments show that ISAHP achieves state-of-
the-art performance in two proxy tasks, one involv-
ing type-level causal discovery and the other involv-
ing instance-level event type prediction. It confirms
that the instance- and type-level causal inference tasks
are coupled, and our proposed framework manages to
model them coherently and holistically.

2 Background

2.1 Type-Level Granger Causality

We are given a training data set D with S event se-
quences, each of which contains Ls events.

D ≜ {(tsi , k
s
i ) | i ∈ {1, . . . , Ls}, s ∈ {1, . . . , S}}. (1)

In the data set, each event is represented by its times-
tamp of occurrence t and a type attribute k. The
timestamps are sorted so that tsi ≥ tsj for i > j. We
assume that the total number of event types is K and
therefore ksi ∈ {1, . . . ,K}.

We formalize the problem of causal discovery from
event sequences as a unsupervised density estimation

task. Given the history of events Ht = {(tsi , k
s
i )ti<t},

temporal point processes are generally characterized
by a conditional distribution called the intensity func-
tion λk(t | Ht). The intensity function describes the
expected rate of occurrence for event type k at a fu-
ture time point t, and is assumed to have a specific
parametric form for causal discovery. For the classi-
cal multivariate Hawkes process (MHP), we assume a
simple linear form.

λk(t | Ht) = µk +
∑

i:ti<t

αk,ki
φk,ki

(t− ti) (2)

where µk is the background intensity for event type k,
{αk,ki

} forms a K ×K matrix called the kernel matrix
representing the type-level causal influence, and φk,ki

(·)
is the decay function of the causal influence.

The additive form in Eq. (2) naturally leads to causal
interpretation among event types. For example, if
α1,2 = 0, the probability of the next event occurrence
of type-1 is not affected at all by the type-2 events in
the history. This is indeed the definition of Granger-
non-causality in point processes (Xu et al., 2016). In
general, event A is said to be Granger-non-cause of
another event B if A does not affect the occurrence
probability of event B.

2.2 Instance-Level Granger Causality

Although MHP in Eq. (2) provides Granger causality
interpretations for event sequences, such a causality
structure is only at the type-level, instead of instance-

level. To obtain instance-level causality, a direct gen-
eralization of MHP for an event i with event type k
would be

λi,k(t | Ht) = µi,k +
∑

j:tj<t

αi,j,kφi,j,k(t− tj) (3)

where µi,k is the background intensity for event i with
event type k, {αi,j,k} forms a L× L×K tensor repre-
senting instance-level Granger causality, and φi,j,k(·)
is the decay function representing time-decay of the
causal influence. We assume a maximum sequence
length L = max({Ls}) and use padding for varying
length sequences.

For instance-level causal analysis, the unsupervised
causal discovery problem can be reduced to fitting the
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model parameters contained in the intensity function
λi,k(t | Ht). However, such an analysis is very chal-
lenging. First, capturing long-range causality between
events can be difficult due to the intricate nature of tem-
poral dependencies. Second, it requires a substantial
number of parameters to adequately parameterize the
model, increasing the risk of overfitting. In our model,
we use a particular parametric form for λi,k(t | Ht) and
regularization terms to mitigate the overfitting issue.

3 Related Work

Granger Causality. Granger causality (Granger,
1969a) was initially developed for causal discovery
in multivariate time series. Common approaches in
Granger causality use linear models such as Vector Au-
toregressive Model (VAR) with a group lasso penalty
(Arnold et al., 2007; Shojaie and Michailidis, 2010).
Neural Granger causality (Tank et al., 2021) relaxed
the linearity assumption and introduced sparsity regu-
larization in deep neural networks. Löwe et al. (2022)
studied an amortized setting and proposed a deep varia-
tional model to handle time series with different under-
lying graphs. However, most of existing studies focus
on time-series sampled at a regular time interval. For
event sequence data sampled at irregular time stamps,
two categories of prior works are directly relevant in
Granger causality: Multivariate Hawkes process (MHP)
and Neural Point Processes (NPP).

Multivariate Hawkes process. As suggested by
Eq. (2), where the kernel matrix depends only on the
event types, maximum likelihood estimation with MHP
only leads to type-level causal analysis (Mei and Eisner,
2017; Xu et al., 2016; Achab et al., 2017). One approach
to deriving instance-level causality is to leverage the
MM algorithm (Veen and Schoenberg, 2008; Lewis and
Mohler, 2011; Li and Zha, 2015; Wang et al., 2017; Idé
et al., 2021), where the instance-level causal strength
is defined through a variational distribution of a lower
bound of the log likelihood function. One limitation
of this approach is that the instance-level causality is
defined only through the first term of Eq. (2). This is
reminiscent of Cox’s partial likelihood approach (Cox,
1975) for the proportional hazard model, and hence,
can be viewed as a heuristic. Another limitation is
the linearity assumption in the intensity function. In
complex domains, where nonlinear causal effects such as
synergistic effects may exist, the restrictive parametric
form can lead to a subnormal fit to the data.

Neural Point Processes. NPPs combine point pro-
cesses with deep neural networks. There are mainly
two approaches for NPP. The first approach is based
on recurrent neural networks (RNNs), while the other

leverages the transformer architecture. In both ap-
proaches, the intensity function is typically represented
as λki

(ti | hi−1) with hi−1 being the embedding vector
of the event history {(tj , kj)}

i−1
j=1 (Xiao et al., 2017).

The main advantage of the NPP-based approach is
that neural networks, as universal sequence approxima-
tors, eliminate the need for carefully choosing a specific
parametric form for the intensity function. However,
they lose reference to individual event instances be-
cause of the embedding of Hti into hi−1. As a re-
sult, retrieving instance-level dependencies generally
requires additional model assumptions. One approach
is to use the self-attention weights as a proxy of causal
strength (Xiao et al., 2019; Zuo et al., 2020; Zhang
et al., 2020a), and the other is to introduce an ad-hoc
dependency score defined independently of the maxi-
mum likelihood framework (Zhang et al., 2020b). In
both cases, it is not clear how those scores are related
to the notion of Granger causality.

While we also employ the transformer architecture, the
key difference from the existing works is that our model
is designed to maintain the additive structure in the
intensity function. This guarantees Granger-causality
in computing instance-level causal strengths, unlike
the self-attention weights in the existing transformer
Hawkes models. To the best of our knowledge, ISAHP is
the first neural point process model that allows direct
instance-level causal analysis.

4 Instance-wise Self-attentive Hawkes

Processes

In this section we present our Instance-wise Self-
Attentive Hawkes Processes (ISAHP) model.

Notation. Hereafter, vectors and matrices are denoted
in bold italic (such as v) and sans serif (such as WV ),
respectively. We use ¦ to denote the transpose of
vectors and matrices. All vectors are column vectors.
R and R+ denote the set of real numbers and non-
negative real numbers, respectively.

4.1 Intensity Function

ISAHP has two key features. First, it maintains the addi-
tive structure over the historical events in the intensity
function, similar to MHP. Therefore, ISAHP inherits
the interpretability of MHP for Granger causality. Sec-
ond, ISAHP adopts an instance-aware parameterization
of the kernel function. Specifically, we associate each
event with a latent embedding vector x = g(t, k) and
define the embedding function g(t, k) as:

g(t, k) = MLP[t− ti,MLP(k)]
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with the event type (as a K-dimensional one-hot vector
k) and the time difference (as ti − ti−1) for xi. We use
an MLP layer to embed the one-hot vector for event
type and concatenate it with the time difference to
form a M -dimensional embedding vector.

We assume the intensity function for an event embed-
ding x in the form of:

λ(x | Ht) = µ(x | Ht) +
∑

j:tj<t

α(x,xj)φ(t− tj | x,xj),

(4)
where µ is the background intensity, the function
α(x,xj) ∈ R

+ is the kernel function. The kernel func-
tion characterizes the instance-level causal influence
between events, generalizing the vanilla MHP, whose
kernel matrix depends only on event types. The decay
distribution φ(t − tj | x,xj) models the time decay
of causal influence. In general, φ can be any distribu-
tion depending on the statistical nature of the training
dataset D. In our experiments, we assume a “neural
exponential distribution”:

φ(t− tj | x,xj) = γ(x,xj)e
−γ(x,xj)(t−tj), (5)

where γ(x,xj) is the decay rate function. We use neural
networks to model the functions γ(x,xj), µ(x | Ht)
and α(x,xj), which will be discussed in later sections.

In the Hawkes-type model, event occurrence proba-
bility consists of two components: The spontaneous
effect (the µ term) and the causal effects (the α term).
While it is true that µ includes the elements of A in
average/aggregation, the individual causal effects are
best captured by explicitly including the α’s. Regular-
ized MLE further resolves this issue near-optimally (c.f.
(Eichler et al., 2017)) and, hence, admits the reason-
able interpretation that αx,xj

= 0 indicates Granger
non-causality at the instance level.

4.2 Self-attentive Architecture

In multi-type event sequences, there may exist short-
term temporal dependencies that the classical linear
Hawkes models can capture, or non-trivial long-range
temporal dependencies involving multiple event in-
stances. To capture such dependencies, we introduce
a neural architecture based on self-attention Vaswani
et al. (2017) to parametrize Eq. (4). Fig. 1 illustrates
the model architecture. The embedding approach fol-
lows the standard key-value-query formalism of the
transformer.

Self-Attention. The embedding vectors {xj}
L
j=1 are

linearly transformed to be the “value” vector:

vj = W
¦

V xj , or V = W
¦

V X, (6)

where X ≜ [x1, . . . ,xL] ∈ R
M×L and V ≜

[v1, . . . ,vL] ∈ R
MV ×L. WV ∈ R

M×MV is learned from
the data.

We capture the dependency among the events through
“self-attention” A(x,xj) ∈ R, defined by

A(x,xj) =
exp

(

x
¦
Kxj

)

I(t > tj)
∑

l:tl<t exp (x
¦Kxl)

, (7)

where t is the timestamp associated with x, and I(t >
tj) is the indicator function that assumes the value 1 if
the argument is true and 0 otherwise. K ∈ R

M×M is a
learnable parameter matrix. Following the notation of
the transformer, K corresponds to WQW

¦

K , where WQ

and WK are the transformation matrix for the queries
and keys. As shown in Fig. 1, the self-attention weights
are represented as an L× L matrix A = [Ai,j ] during

training with Ai,j ≜ A(xi,xj). For K types of events,
we use multi-head attention with K different heads.

4.3 Kernel matrix, background intensity, and

decay rate functions

Now we infer γ(x,xj), µ(x | Ht) and α(x,xj) in Eq. (4)
and Eq. (5) according to the self-attentive architecture.
For the background intensity function, we use the fol-
lowing form:

µ(x | Ht) = µ̄k + σ



(wµ
k )

¦
∑

j:tj<t

A(x,xj)vj



 . (8)

Here, µ̄k is the background intensity, and k is the
event type encoded in x. The second term represents
instance-specific effects in the background intensity,
where σ(·) denotes an activation function. In our im-
plementation, we used the sigmoid function. This term
represents the averaged effect of causal interactions
among the events. w

µ
k ∈ R

MV is learned from data.

For the impact and decay rate functions, we adopt the
following instance-specific formulation:

α(x,xj) = σ+

(

A(x,xj)(w
α
k )

¦
vj

)

,

γ(x,xj) = σ+

(

A(x,xj)(w
γ
k)

¦
vj + bγk

)

. (9)

where σ+(·) is the softplus function applied element-
wise on the vector argument, and the parameter vectors
and matrices {wα

k ,w
γ
k , b

γ
k}

K
k=1 are learned from the

data. The input of these MLPs is A(x,xj)vj , which
can be viewed as a relevant component of vj in terms of
the impact on the target event represented by x. To see
how this model generalizes the vanilla MHP, imagine
that σ+(·) were the identity function. Then we have
α(x,xj) → A(x,xj)w̃

α
k,j , where w̃α

k,j ≜ (wα
k )

¦
vj . By

construction, the attention weight A(x,xj) represents
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Figure 1: Instance-wise Self-attentive Hawkes Processes (ISAHP) architecture. The input is an event sequence
identified by timestamp and event type. the output is an intensity function parameterized by background intensity,
kernel matrix, and decay rate.

the similarity between x and xj . On the other hand,
w̃α

k,j can be interpreted as the relevance of vj to type-
k events computed through the vector inner product.
Compared to MHP’s αk,kj

, which depends only on the
event types, ISAHP looks at events at a finer granularity
by using the embedding vectors.

4.4 Maximum Likelihood Estimation

We learn Eq. (4) based on maximum likelihood esti-
mation. To present the final objective function, we
restore the sequence index s hereafter. The main
outcome of the unsupervised causal discovery task is
αs
i,j ≜ α(xs

i ,x
s
j), which quantifies the instance-level

causal influence of the j-th event on the i-th event. As
judged from Eq. (4), αs

i,j = 0 meets the definition of
Granger-non-causality.

As a side product, the type-level causal dependency,
denoted by ᾱk,k′ , can be obtained as the average of
instance-level causal influence:

ᾱk,k′ ≜
1

Nk,k

S
∑

s=1

Ls
∑

i=1

i
∑

j=0

δks
j
,kδks

i
,kα

s
i,j . (10)

where δks
j
,k etc. is Kronecker’s delta that is 1 if ksj = k

and 0 otherwise. Nk,k′ is the total counts of the event

type pair (k, k′) in the dataset, defined by Nk,k′ ≜
∑S

s=1

∑Ls

i=1

∑i

j=0 δks
j
,kδks

i
,k.

The final loss function to be minimized is now given by

L =

K
∑

k=1

K
∑

k′=1

(

ω1|ᾱk,k′ |+ ω2σ
2
k,k′

)

+

S
∑

s=1

Ls
∑

i=1

[

[

∫ tsi

ts
i−1

dt′λ(t′,xs
i | Hts

i
)]−lnλ(tsi ,x

s
i | Hts

i
)

]

.

(11)

where ω1, ω2 are the regularization strengths treated
as hyperparameters. In the first term of Eq. (11),

we have introduced regularization terms for numerical
stability and consistency within the same event type
pair. Specifically, the type-level regularization (TLR)
term ω1|ᾱk,k′ | is L1 regularization on the mean of αs
sharing the same event type pair. We also include the
variance regularization term (Namkoong and Duchi,
2017; Huang et al., 2020), with σ2

k,k′ defined as

σ2
k,k′ ≜

1

Nk,k

∑

s,i,j

δks
j
,kδks

i
,k(α

s
i,j − ᾱk,k′)2, (12)

to control the variability within the event instances of
the same event type pair (k, k′). As we increase the
hyperparameter ω2, ISAHP is encouraged to provide a
generative process that is similar to the vanilla MHP for
a given decay model. The second term of Eq. (11) corre-
sponds to the negative log-likelihood function, where we
used the well-known relationship between the intensity
function and the log-likelihood (See, e.g., (Daley et al.,
2003)). The integral can be performed analytically for
the neural exponential distribution.

5 Experiments

We evaluate Granger causality inference at both the
type level and the instance level. We aim to verify that
(a) ISAHP outperforms other baselines for the type-level
causality discovery task; (b) there is a positive correla-
tion between performances in the type-level Granger
causality inference and the instance-level event type
prediction, allowing ISAHP to accurately predict the
type of next event instance; (c) ISAHP can capture
complex synergistic causal effects over multiple event
types at the instance level.

5.1 Experimental Set-up

Datasets. For empirical validation, we used two
datasets of different sizes: Synergy and Memetracker
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(MT). These two datasets were chosen since they con-
tain non-linear causal interactions that are challenging
for classical models hence motivating a new solution ap-
proach. Out of those benchmark datasets from (Zhang
et al., 2020b), they are the only datasets with non-
linear causality that require instance-level causality
analysis. The details of the data set and statistics are
summarized in Appendix 7.2.

Baselines. We compared ISAHP with six baselines:
Three belong to the category of the classical MHP and
three from the NPP family.

• HExp: MHP in Eq. (2) with the exponential decay
model.

• HSG: MHP with a Gaussian mixture decay (Xu
et al., 2016), which is known as the state-of-the-art
parametric model for Granger causality in classical
MHP.

• CRHG: A sparse Granger-causal learning framework
based on a cardinality-regularized Hawkes process
(CRHG) (Idé et al., 2021). Note that CRHG is
designed to learn from a single event sequence.
To incorporate this baseline into type-level causal-
ity analysis, we concatenate sequences from the
dataset to form a long sequence.

• RPPN: Recurrent Point Process Networks (RPPN)
(Xiao et al., 2019). An RNN (recurrent neural
network)-based NPP that supports Granger causal-
ity inference based on an added attention layer.

• SAHP: Self-Attentive Hawkes Process (SAHP)
(Zhang et al., 2020a). A transformer-based NPP
that enables Granger causality analysis based on
the attention mechanism. It directly uses the self-
attention from its transformer architecture to ag-
gregate the influence from historical events in de-
termining the intensity function for the next event.

• CAUSE: Causality from attributions on sequence of
events (CAUSE) (Zhang et al., 2020b). An RNN-
based framework for inferring Granger causal-
ity. It includes a post-training step to infer the
instance-level Granger causality using an attribu-
tion method called the integrated gradient. Note
that ISAHP does not require any post-training step
and can directly infer the instance-level Granger
causality based on its additive intensity function.

Evaluation Metrics We conducted three different
experiments to validate the proposed ISAHP in addition
to an ablation study to validate TLR. While the main
motivation of ISAHP is instance-level Granger causal
analysis, we include proxy tasks involving type-level

inference as well as instance-level event-type prediction,
due to the scarcity of ground truth data on instance-
level causality.

(1) Type-level Granger causal discovery. We used the
area under the curve (AUC) of the true positive vs. false
positive curve and Kendall’s τ coefficient to measure
the accuracy of the inferred Granger causality matrix
compared to the ground truth. (2) Next event-type
prediction. This can be reduced to a multi-class clas-
sification problem given its timestamp. We used the
classification accuracy to measure the performance.
(3) Instance-level causal discovery. We picked a rep-
resentative sequence pair involving synergistic causal
interactions to highlight qualitative differences from
the baselines. We also conducted statistical analysis
by measuring the ratio between synergistic and non-
synergistic contribution scores. For (1) and (2), we
follow the setting of (Zhang et al., 2020b) and report
the average results based on five-fold cross-validation.

Implementation Details and Hyperparameter

Configurations The ISAHP hyperparameter settings
for Synergy and MT experiments are shown in Ap-
pendix 7.3. These optimal hyperparameter settings
were selected based on five-fold cross-validation. We
use the Adam optimizer for training. The implementa-
tion details for other baselines are in Appendix 7.3.

5.2 Experimental Results

Type-level Causality Analysis We evaluate the
performance of type-level Granger causality inference.
Table 1 exhibits the accuracy measures for Granger
causality inference using AUC and Kendall’s τ for
ISAHP as well as 6 baselines. We see that ISAHP gener-
ally outperforms all baselines. For AUC, it is the best
among all methods. For Kendall’s τ , it is the best for
the Synergy dataset and is almost tied with the best
method (SAHP) for the MT dataset. Note that ISAHP
always has the smallest variance, indicating that ISAHP
is the most robust.

For the MHP baselines (HExp, HSG, CRHG), we see
that they perform poorly for both Synergy and MT.
This is expected to some extent as Synergy involves
synergistic effects between multiple causes and MT
is based on a real-world dataset including non-linear
effects. The underlying data generation mechanisms
do not adhere to the linearity assumption of the (type
level) intensity functions of these models.

For the two NPP baselines (RPPN, SAHP) that use the
self-attention weights for (pseudo) causal attribution,
we observe that their performance is quite unstable.
SAHP reaches the start-of-the-art performance on MT
dataset for Kendall’s τ and is the second best on AUC,
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Table 1: Results for Granger causality discovery on two datasets with ground-truth causality. For both AUC and
Kendall’s τ , larger values are better. The result shows that the proposed method, ISAHP, is the most accurate
and robust overall.

Synergy MT

AUC Kendall’s τ AUC Kendall’s τ

HExp 0.885 ± 0.014 0.361 ± 0.013 0.616 ± 0.021 0.061 ± 0.011

HSG 0.306 ± 0.063 -0.182 ± 0.059 0.705 ± 0.015 0.105 ± 0.007

CRHG 0.515 ± 0.033 0.014 ± 0.031 0.611 ± 0.01 0.079 ± 0.006

CAUSE 0.761 ± 0.068 0.244 ± 0.064 0.739 ± 0.042 0.127 ± 0.022

RPPN 0.827 ± 0.017 0.307 ± 0.016 0.437 ± 0.008 -0.031 ± 0.004

SAHP 0.182 ± 0.119 -0.298 ± 0.112 0.832 ± 0.012 0.251 ± 0.016

ISAHP 0.967 ± 0.007 0.438 ± 0.006 0.835 ± 0.002 0.247 ± 0.001

Table 2: Prediction accuracy in next-event-type pre-
diction. The higher, the better. ISAHP outperforms all
the baselines.

Synergy MT

HExp 0.349 ± 0.013 0.862 ± 0.004

HSG 0.364 ± 0.009 0.835 ± 0.006

CAUSE 0.37 ± 0.012 0.905 ± 0.004

RPPN 0.364 ± 0.01 0.748 ± 0.056

SAHP 0.343 ± 0.013 0.459 ± 0.033

ISAHP 0.471 ± 0.008 0.974 ± 0.002

but performs the worst on the Synergy dataset. Sim-
ilarly, RPPN has a relatively good performance on
Synergy but is the worst on the MT dataset. These
results indicate that using attention as attribution can
be unstable depending on the data characteristics and
there is no guarantee on the performance. One key is-
sue is that they do not directly use the self-attention to
parameterize the intensity function. Instead, they per-
form matrix multiplication between the self-attention
scores and the value tensor. This step fuses information
from the historical events and masks the pairwise causal
relationships at the instance level. Similar results have
been observed and studied recently (Serrano and Smith,
2019; Jain and Wallace, 2019). This contrasts with our
approach that directly uses the attention scores to pa-
rameterize the intensity function, which is one of our
key contributions.

Note that CAUSE is the second most robust baseline.
However, it requires additional computational overhead
with the post-training step which makes O(SK/B)
invocations of a rather expensive attribution procedure,
as we discussed earlier.

Instance-Level Event Type Prediction We con-
sider the event type prediction at the instance level.

In Table 2, we compare all the methods in terms of
the classification accuracy score. It is clear that ISAHP

performs better than all baselines on both datasets.
Specifically, ISAHP reaches 27.3% relative improvement
over the second-best method on the Synergy dataset
and 7.62% relative improvement on the MT dataset.

Another interesting finding is that although SAHP
performs well on the type-level Granger causality dis-
covery for the MT dataset, its event-type prediction
accuracy for the same dataset is the worst. A similar
phenomenon is observed for RPPN on the Synergy
dataset. This is another indication that naively using
attention for causal attribution can be unstable.

Instance-level Causality Analysis One of the key
advantages of ISAHP is that it can perform accurate
instance-level causality analysis. Here we present anec-
dotal evidence of this characteristic, together with sta-
tistical analysis. Fig 2 top exhibits two similar event
sequences we sampled from the Synergy dataset. Each
of them has four events on the timeline. Each event
has been assigned a numerical label indicating its event
type. The first and second events of the first sequence
(on the left) have a synergistic effect on the third event
(as indicated by the red square arrow). In contrast,
in the second sequence (on the right), the first and
second events have causal relationships with the third
event, but independently (indicated by the black ar-
rows). To be more precise, the ground truth PGEM
model used to generate the data contains a type-level
causal relationship (0 ∧ 1) → 3 but not (0 ∧ 2) → 3.

Table 3: Averaged ratio between synergistic and non-
synergistic instance-level contribution score on se-
quences with patterns ′0#32′, ′0#43′, and ′0#23′. A
higher ratio means better performance.

’0#32’ ’0#43’ ’0#23’

HExp 1 1 1

HSG 1 1 1

SAHP 0.997 0.994 1.025

ISAHP 1.253 1.155 1.151
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Figure 2: Instance-level causality analysis. The weight of the edge from the first event to the third is what we
compare for the synergistic (left) and non-synergistic (right) sequences. Red numbers represent successful cases
and blue numbers represent failure cases. ISAHP is the only one that successfully captures the synergistic effect at
the instance level.

Table 4: Ablation study on type-level regularization.

Synergy

TLR ACC AUC Kendall’s τ

× 0.344 ± 0.011 0.903 ± 0.127 0.378 ± 0.119

✓ 0.471 ± 0.008 0.967 ± 0.007 0.438 ± 0.006

MT

× 0.95 ± 0.007 0.814±0.005 0.232±0.004

✓ 0.974 ± 0.002 0.835 ± 0.002 0.247 ± 0.001

We would expect an effective causal attribution method
to differentiate between the contribution from the first
event to the third event under the synergistic and non-
synergistic contexts. Fig 2 shows that ISAHP success-
fully assigns larger contribution scores in the synergistic
case: The weight of the edge (from the first event to the
third) is 1.3 for the synergistic case on the left, while
the edge weight for the non-synergistic case on the right
is 0.74. On the other hand, all 3 baselines, Hexp, HSG,
and SAHP fail. Hexp and HSG are not able to capture
the synergistic effects (they assign identical weights in
both cases) because they are parameterized to infer
Granger causality at the type level. SAHP is intended
to infer Granger causality at the instance level, but
assigns essentially identical weights in the two cases.

To further verify the superior performance of ISAHP,
we perform statistical analysis by traversing the dataset
to identify all sub-sequences that match the pat-
terns ′0#32′, ′0#43′, and ′0#23′, where event type
# ∈ {0, 1, 2, 3, 4}. The synergistic effect occurs only
when # = 1. Table 3 shows the ratio of the average
inferred instance-level contribution of events with type
0 to events with type 3 in the presence and absence
of a synergistic effect. The results show that ISAHP

always has the optimal performance compared with the
baselines. ISAHP is able to achieve that because of the
tight coupling between the type level and instance level
causal learning. In effect, ISAHP captures synergistic
effects at the type level using its additive structure at
the instance level.

Ablation Study Finally, we conducted an ablation
study on type-level regularization (TLR) to verify that
including TLR does improve ISHAP’s performance.
For each dataset, we compared TLR and non-TLR
cases for both type-level causality analysis and type
prediction, based on AUC, Kendall’s τ , and accuracy
(ACC). The results in Table 4 show that including TLR
does improve the model performance for both datasets.

6 Concluding Remarks

We address the problem of discovering instance-level
causal structures from asynchronous, interdependent,
multi-type event sequences in an unsupervised man-
ner. We proposed a novel self-attentive deep Hawkes
model, which enjoys the ability of instance-level causal
discovery and the high expressiveness of deep Hawkes
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models. It is the first neural point process model that
can be directly used for instance-level causal discovery
to the best of our knowledge. Our empirical evalua-
tion showed that the proposed instance-aware model
significantly improved the performance of type-level
tasks as well, suggesting that instance- and type-level
causal inference tasks are tightly coupled. One of the
important future research topics is to conduct further
empirical validation of its performance in instance-level
causal analysis, while addressing the challenge due to
the scarcity of instance-level ground truth data.
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7 SUPPLEMENTARY MATERIAL

7.1 Time Complexity Analysis

ISAHP can directly infer Granger causality at the event instance level through a forward pass during the evaluation
phases. Compared with NPP benchmark CAUSE, ISAHP no longer requires a post-training process, which would
take O(SK/B) invocations of the (integrated gradient) attribution process, where S is the number of sequences,
K is the number of event types, and B is the batch size. ISAHP avoids this computation which can be taxing
when the number of sequences is large.

7.2 Statistics of datasets

Synergy: A synthetic dataset with complex type-level interaction including a synergistic causal dependency
triggered by a pair of event types on the third event type. We used it to test whether ISAHP can reproduce
such complex type-level interactions through its pairwise kernel function. The data is generated by a proximal
graphical event model (PGEM) (Bhattacharjya et al., 2018). The ground-truth causality matrix is binary and
based on the dependency graph of the PGEM simulator.

MemeTracker (MT): A larger-scale real-world dataset, where each sequence represents how a phrase or quote
appeared on various online websites over time. We chose the top 25 websites as our event types from August
2008. The ground-truth causality matrix is weighted and approximated by whether one site contains any URL
links to another site (Achab et al., 2017; Xiao et al., 2019).

The dataset statistics are summarized in Table 5, where S is the number of sequences, K is the number of event
types, Ls is the sequence length for each sequence s.

Table 5: Statistics of datasets used.

Dataset S K
∑

S

s=1
Ls Ground Truth

Synergy 1,000 5 16,101 Binary

MT 8,703 25 90,787 Binary

7.3 Implementation Details and Hyperparameter Configurations

For MHP baselines (HExp, HSG), we use the implementations provided by the tick package (Bacry et al., 2017).
For RPPN and CAUSE, the implementation is from (Zhang et al., 2020b). For SAHP, we use the implementation
by (Zhang et al., 2020a). The hyperparameters for these baselines were tuned by cross-validation. Specifically, we
tuned the learning rate, batch size, and hidden size. The tuned hyperparameter configurations for ISAHP are
shown in Table 6.

Table 6: Hyperparameter configurations for ISAHP.

Hyperparameter Synergy MT

Learning rate 0.001 0.001
Batch Size 8 16
Hidden Size 10 50
Number of Attention Heads 2 2
ω1 0.025 0.
ω2 0.25 5.
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