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Abstract

Thompson sampling (TS) is widely used in se-

quential decision making due to its ease of use

and appealing empirical performance. However,

many existing analytical and empirical results

for TS rely on restrictive assumptions on re-

ward distributions, such as belonging to conju-

gate families, which limits their applicability in

realistic scenarios. Moreover, sequential deci-

sion making problems are often carried out in a

batched manner, either due to the inherent nature

of the problem or to serve the purpose of reduc-

ing communication and computation costs. In

this work, we jointly study these problems in two

popular settings, namely, stochastic multi-armed

bandits (MABs) and infinite-horizon reinforce-

ment learning (RL), where TS is used to learn

the unknown reward distributions and transition

dynamics, respectively. We propose batched

Langevin Thompson Sampling algorithms that

leverage MCMC methods to sample from ap-

proximate posteriors with only logarithmic com-

munication costs in terms of batches. Our al-

gorithms are computationally efficient and main-

tain the same order-optimal regret guarantees of

O(log T ) for stochastic MABs, and O(
√
T ) for

RL. We complement our theoretical findings with

experimental results.

1. Introduction

Modern machine learning often needs to balance compu-

tation and communication budgets with statistical guar-

antees. Existing analyses of sequential decision making

have been primarily focused on the statistical aspects of
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the problems (Tian et al., 2020), less is known about their

computation and communication aspects. In particular, re-

gret minimization in multi-armed bandits (MABs) and re-

inforcement learning (RL) (Jaksch et al., 2010; Wu et al.,

2022; Jung et al., 2019) is often studied under the common

assumptions that computation can be performed perfectly

in time, and that communication always happens in real-

time (Li et al., 2022; Jin et al., 2018; Haarnoja et al., 2018).

A question of particular importance is whether optimal

decisions can still be made under reasonable computa-

tion and communication budgets. In this work, we study

the exploration-exploitation problem with low computation

and communication costs using Thompson Sampling (TS)

(Thompson, 1933) (a.k.a. posterior sampling). To allow

sampling from distributions that deviate from the standard

restrictive assumptions, and to enable its deployment in set-

tings where computing the exact posterior is challenging,

we employ Markov Chain Monte Carlo (MCMC) methods.

TS operates by maintaining a posterior distribution over

the unknown and is widely used owing to its strong em-

pirical performance (Chapelle and Li, 2011). However, the

theoretical understanding of TS in bandits typically relied

on the restrictive conjugacy assumptions between priors

and reward distributions. Recently, approximate TS meth-

ods for general posterior distributions start to be studied

(Mazumdar et al., 2020; Xu et al., 2022), where MCMC al-

gorithms are used in conjunction with TS to expand its ap-

plicability in fully-sequential settings. On the other hand,

to the best of our knowledge, how to provably incorporate

MCMC with posterior sampling in RL domains remains to

be untackled.

Moreover, previous analyses of TS have been restricted to

the fully-sequential settings, where feedback or reward is

assumed to be immediately observable upon taking actions

(i.e. before making the next decision). Nevertheless, it

fails to account for the practical settings when delays take

place in communication, or when feedback is only avail-

able in an aggregate or batched manner. Examples include

clinical trials where feedback about the efficacy of medi-

cation is only available after a nontrivial amount of time,

recommender systems where feedback from multiple users

comes all at once and marketing campaigns (Schwartz
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TS-based Algorithms
Batching
Scheme

MCMC
Method

Regret # of Batches

Stochastic
MAB

(Karbasi et al., 2021) Dynamic - O(log T ) O(log T )

(Mazumdar et al., 2020) - SGLD, ULA O(log T ) O(T )

This paper (Algorithm 2) Dynamic SGLD O(log T ) O(log T )

TS for RL
(PSRL)

(Osband et al., 2013) - - O(
√

T ) O(T/H)

(Ouyang et al., 2017) Dynamic - O(
√

T ) O(
√

T )

(Theocharous et al., 2017b) Static - O(
√

T ) O(log T )

This paper (Algorithm 3) Static SGLD, MLD O(
√

T ) O(log T )

Table 1: We compare our methods with existing TS-based algorithms in terms of batching schemes and MCMC methods adopted for
approximation. Performance is measured by regret, while communication cost is quantified with the number of batches. Here, T is
the time horizon, H is the fixed episode length in episodic MDP settings. Our methods achieve optimal performance, while reducing
computation and communication costs due to batching, and are applicable in broader regimes.

et al., 2017). This issue has been studied in literature by

considering static or dynamic batching schemes and by de-

signing algorithms that acquire feedback in batches, where

the learner typically receives reward information only at the

end of the batch (Karbasi et al., 2021; Kalkanli and Ozgur,

2021; Vernade et al., 2020; Zhang et al., 2020). Nonethe-

less, the analysis of approximate TS in batched settings is

unavailable for both bandits and RL.

In this paper, we tackle these challenges by incorporat-

ing TS with Langevin Monte Carlo (LMC) and batching

schemes in stochastic MABs and infinite-horizon RL. Our

algorithms are applicable to a broad class of distributions

with only logarithmic rounds of communication between

the learner and the environment, thus being robust to con-

straints on communication. We compare our results with

other works in Table 1, and summarize our main contribu-

tions as follows:

• For stochastic MABs with time horizon T , we present

Langevin Thompson Sampling (BLTS, Algorithm 2)

along with Theorem 3, which achieves the optimal

O(log T ) regret with O(log T ) batches1. The main

technical contribution here is to show that when feed-

back is obtained in a batched manner where the poste-

rior concentration is weaker (Theorem 1), the conver-

gence guarantee of SGLD continues to hold.

• For large-scale infinite-horizon MDPs, we present

Langevin Posterior Sampling for RL (LPSRL, Algo-

rithm 3) along with Theorem 4 to show that SGLD

with a static policy-switching2 scheme achieves the

optimal O(
√
T ) Bayesian regret with O(log T ) pol-

icy switches. For tabular MDPs, we show that LPSRL

incorporated with the Mirrored Langevin Dynamics

(MLD) achieves the optimal O(
√
T ) Bayesian regret

with O(log T ) policy switches. The use of approx-

1A T round game can be thought of as T many batches each of size 1.
2In MDP settings, the notion of a batch is more appropriately thought of as a policy-switch.

imate sampling leads to an additive error where the

true model and the sampled model are no longer iden-

tically distributed. This error can be properly handled

with the convergence guarantees of LMC methods.

• Experiments are performed to demonstrate the effec-

tiveness of our algorithms, which maintain the order-

optimal regret with significantly lower communica-

tion costs compared to existing exact TS methods.

2. Problem Setting

In this section, we introduce the problem setting with rele-

vant background information.

2.1. Stochastic Multi-armed Bandits

We consider the N -armed stochastic multi-armed bandit

problem, where the set of arms is denoted by A = [N ] =
{1, 2, . . . , N}. Let T be the time horizon of the game. At

t = 1, 2, . . . , T , the learner chooses an arm at ∈ A and

receives a real-valued reward rat
drawn from a fixed, un-

known, parametric distribution corresponding to arm at. In

the standard fully-sequential setup, the learner observes re-

wards immediately. Here, we consider the more general

batched setting, where the learner observes the rewards for

all timesteps within a batch at the end of it. We use Bk to

denote the starting time of the k-th batch, B(t) to represent

the starting time of the batch that contains time t, and K as

the total number of batches. The learner observes the set

of rewards {rat
}Bk+1−1
t=Bk

at the end of the k-th batch. Note

that the batched setting reduces to the fully-sequential set-

ting when the number of batches is T , each with size 1.

Suppose for each arm a, there exists a parametric reward

distribution parameterized by ¹a ∈ R
d such that the true

reward distribution is given by pa(r) = pa(r|¹∗a), where ¹∗a
is an unknown parameter3. To ensure meaningful results,

3Our results hold for the more general case of θa ∈ R
da , but for simplicity of exposition,
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we impose the following assumptions on the reward distri-

butions for all a ∈ A:

• Assumption 1: log pa(r|¹a) is L-smooth and m-

strongly concave in ¹a.

• Assumption 2: pa(r|¹∗a) is ¿ strongly log-concave in

r and ∇¹ log pa(r|¹∗a) is L-Lipschitz in r.

• Assumption 3: The prior ¼a(¹a) is concave with L-

Lipschitz gradients for all ¹a.

• Assumption 4: Joint Lipschitz smoothness of (the bi-

variate) log pa(r|¹a) in r and ¹a.

These properties include log-concavity and Lipschitz

smoothness of the parametric families and prior distribu-

tions, which are standard assumptions in existing literature

Mazumdar et al. (2020) and are satisfied by models like

Gaussian bandits (Honda and Takemura, 2013). For the

sake of brevity, We provide the mathematical statements of

these assumptions in Appendix B.

Let µa denote the expected value of the true reward distri-

bution for arm a. The goal of the learner is to minimize the

expected regret, which is defined as follows:

R(T ) := E

[
T∑

t=1

µ∗ − µat

]
=
∑

a∈A
∆aE [ka(T )] , (1)

where µ∗ = maxa∈A µa, ∆a = µ∗ − µa, and ka(t) repre-

sents the number of times arm a has been played up to time

t. Without loss of generality, we will assume that arm 1 is

the best arm. We discuss the MAB setting in Section 5.

2.2. Infinite-horizon Markov Decision Processes

We focus on average-reward MDPs with infinite horizon

(Jaksch et al., 2010; Wei et al., 2021), which is under-

explored compared to the episodic setting. It is a more

realistic model for real-world tasks, such as robotics and

financial-market decision making, where state reset is not

possible. Specifically, we consider an undiscounted weakly

communicating MDP (S,A, p,R) with infinite time hori-

zon4 (Ouyang et al., 2017; Theocharous et al., 2017b),

where S is the state space, A is the action space, p repre-

sents the parameterized transition dynamics, andR : S×A
→ R is the reward function. We assume that ¹ ∈ R

d pa-

rameterizes the transition dynamics and there exists a true

unknown ¹∗ governing the next state of the learner. At each

time t, the learner is in state st, takes action at, and transits

into the next state st+1, which is drawn from p(·|st, at, ¹∗).
We consider two sub-settings based on the parameteriza-

tion of the transition dynamics: the General Parameteriza-

we consider the ambient dimension for the parameters of each arm to be the same.
4It is known that weakly communicating MDPs satisfy the Bellman Optimality.

tion and the Simplex Parameterization. These sub-settings

require different assumptions and setups, which we elabo-

rate on in their respective sections (Section 6.2 and Section

6.3). In the MDP context, the notion of batch is more ap-

propriately thought of as a policy switch. Therefore, Bk

now represents the starting time of the k-th policy switch,

and we additionally define Tk as the number of time steps

between policy switch k and k + 1. We consider station-

ary and deterministic policies, which are mappings from

S → A. Let Ãk be the policy followed by the learner af-

ter the k-th policy switch. When the decision to update

and obtain the k-th policy is made, the learner uses the ob-

served data {st, at,R(st, at), st+1}Bk+1−1
t=Bk

collected after

the (k − 1)-th policy switch to sample from the updated

posterior and compute Ãk. The goal of the learner is to

maximize the long-term average reward:

JÃ(¹) = E

[
lim sup
T→∞

1

T

T∑

t=1

R(st, at)
]
.

Similar to other works (Ouyang et al., 2017; Osband et al.,

2013; Theocharous et al., 2017b), we measure the perfor-

mance using Bayesian regret5 defined by:

RB(T ) := E

[
T∑

t=1

(JÃ∗

(¹∗)−R(st, at))
]
, (2)

where JÃ∗

(¹∗) denotes the average long-term reward after

running the optimal policy under the true model.

It is known that weakly communicating MDPs satisfy the

following Bellman optimality (Bertsekas, 2012; Ouyang

et al., 2017; Wei et al., 2021) in infinite-horizon setting,

and there exists some positive number H such that the span

(Definition 2) satisfies sp(h(¹)) f H for all ¹ ∈ R
d.

Lemma 1 (Bellman Optimality). There exist optimal av-

erage reward J ∈ R and a bounded measurable function

h : S → R, such that for any s,∈ S, ¹ ∈ R
d, the Bellman

optimality equation holds:

J(¹) + h(s, ¹) = max
a∈A

{
R(s, a) + Es′∼p(·|s,a;¹)[h(s

′, ¹)]
}
. (3)

Here J(¹) = maxÃJ
Ã(¹) under ¹ and is independent

of initial state. Function hÃ(s, ¹) = limT→∞ E[
∑T

t=1

(R(st, Ã(st))− JÃ(st))|s1 = s] quantifies the bias of pol-

icy Ã w.r.t the average-reward under ¹, and h(s, ¹) =
hÃ∗

(s, ¹), where Ã∗ = argmaxÃ J
Ã(¹).

Definition 2. For any ¹ ∈ R
d, span of an MDP is de-

fined as sp(h(¹)) := sups,s′∈S |h(s, ¹) − h(s′, ¹)| =
maxs∈Sh(s, ¹)−mins∈Sh(s, ¹).

5In Bayesian regret, expectation is taken w.r.t the prior distribution of the true parameter θ∗ ,

the randomness of algorithm and transition dynamics.
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3. Related Work

Under the conjugacy assumptions on rewards, asymptotic

convergence of TS was studied in stochastic MABs by

Granmo (2010) and May et al. (2012). Later, finite-time

analyses with O(log T ) problem-dependent regret bound

were provided (Agrawal and Goyal, 2012; Kaufmann et al.,

2012; Agrawal and Goyal, 2013). However, in practice, ex-

act posteriors are intractable for all but the simplest mod-

els (Riquelme et al., 2018), necessitating the use of ap-

proximate sampling methods with TS in complex prob-

lem domains. Recent progress has been made in under-

standing approximate TS in fully-sequential MABs (Lu

and Van Roy, 2017; Mazumdar et al., 2020; Zhang, 2022;

Xu et al., 2022). On the other hand, the question of learn-

ing with TS in the presence of batched data has evolved

along a separate trajectory of works (Karbasi et al., 2021;

Kalkanli and Ozgur, 2021; Vernade et al., 2020; Zhang

et al., 2020). However, provably performing Langevin TS

in batched settings remains unexplored, and in this paper,

we aim at bridging these lines.

Moving to the more complex decision-making frameworks

based on MDPs, TS is employed in model-based meth-

ods to learn transition models, which is known as Poste-

rior Sampling for Reinforcement Learning (PSRL) (Strens,

2000). When exact posteriors are intractable, MCMC

methods have been empirically studied for performing

Bayesian inference in policy and reward spaces in RL

(Brown et al., 2020; Imani et al., 2018; Bojun, 2020; Guez

et al., 2014). MCMC is a family of approximate poste-

rior inference methods that enables sampling without exact

knowledge of posteriors (Ma et al., 2015; Welling and Teh,

2011). However, it is unclear how to provably incorporate

MCMC methods in learning transition models for RL.

Furthermore, the analysis of undiscounted infinite-horizon

MDPs (Abbasi-Yadkori and Szepesvári, 2015; Osband and

Van Roy, 2016; Ouyang et al., 2017; Wei et al., 2020; 2021)

poses greater challenges compared to the well-studied

episodic MDPs with finite horizon and fixed episode length

(Osband et al., 2013). Previous works on infinite-horizon

settings include model-based methods that estimate envi-

ronment dynamics and switch policies when the number

of visits to state-action pairs doubles (Jaksch et al., 2010;

Tossou et al., 2019; Agrawal and Jia, 2017; Bartlett and

Tewari, 2012). Nevertheless, under such dynamic schemes,

the number of policy switches can be as large as O(
√
T ),

making it computationally heavy and infeasible for con-

tinuous states and actions. To enable TS with logarith-

mic policy switches while maintaining optimal regret, we

build upon an algorithmically-independent static scheme as

in Theocharous et al. (2017b), and incorporate Langevin

Monte Carlo (LMC) methods to sample from inexact pos-

teriors.

4. SGLD for Langevin Thompson sampling

In the MAB and MDP settings, ¹ parameterizes the un-

known reward or transition distributions respectively. TS

maintains a distribution over the parameters and updates

the distribution to (the new) posterior upon receiving new

data. Given p(X|¹), prior ¼(¹), and n data samples

{Xi}ni=1
6, let Än be the posterior distribution after re-

ceiving n data samples which satisfies: Ä(¹|{Xi}ni=1) ∝
exp(

∑n
i=1 log p(Xi|¹) + log ¼(¹)). In addition, con-

sider the scaled posterior Än[µ] for some scaling pa-

rameter µ, which represents the density proportional to

exp(µ(
∑n

i=1 log p(Xi|¹) + log ¼(¹))).

The introduction of MCMC methods arises from the need

for sampling from intractable posteriors in the absence

of conjugacy assumptions. We resort to a gradient-

based MCMC method that performs noisy updates based

on Langevin dynamics: Stochastic Gradient Langevin

Dynamics (SGLD). Algorithm 1 presents SGLD with

bached data to generate samples from an approxima-

tion of the true posterior. For a detailed exposition,

please refer to (Welling and Teh, 2011; Ma et al., 2015)

and Appendix A. Algorithm 1 takes all available data

{Xs}ns=1 at the start of a batch b as input, subsamples

data, performs gradient updates by computing ∇Û(¹) =
− n

|D|
∑

Xs∈D∇ log p(Xs|¹)−∇ log ¼(¹), and outputs the

posterior for batch b.

Algorithm 1 SGLD with Batched Data

Input: prior ¼(¹), data {Xs}ns=1, sample from last batch

¹b−1, total iterations N , learning rate ¸, parameters
L, scaling parameter µ.

Initialization: ¹0 ← ¹b−1

for i = 1, . . . , N do
Subsample D ¦ {Xs}ns=1

Compute ∇Û(¹i¸) over D

Sample ¹(i+1)¸ ∼ N (¹i¸ − ¸∇Û(¹i¸), 2¸I)

Output: ¹b ∼ N
(
¹N¸,

1
nLµ I

)

In the batched setting, new data is received at the end of a

batch, or when making the decision to perform a new policy

switch. Due to the way that the learner receives new data

and the fact that the batch data size may increase exponen-

tially7, the posterior concentrates slower. This differs from

the fully-sequential problem where the distribution shift of

successive true posteriors is small owing to data being re-

ceived in an iterative manner. We show that in batched

settings, with only constant computational complexity in

terms of iterations, SGLD is able to provide strong conver-

gence guarantee as in the fully-sequential setting (Mazum-

dar et al., 2020). Theorem 1 shows the convergence of

6Here data {Xi}
n
i=1 can be rewards for some arms or actual transitions of state-action pairs

depending on the setting.
7Data received in batch k can be doubled compared to the previous batch.
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SGLD in the Wasserstein-p distance can be achieved with

a constant number of iterations and data.

Theorem 1 (SGLD convergence). Suppose that the para-

metric reward/transition families, priors, and true re-

ward/transition distributions satisfy Assumptions 1-4. Let

» := max{L/m,L/¿}, |D| = O(»2), ¸ = O(1/n»L),
and N = O(»2), then for any ¶ ∈ (0, 1), the following

holds with probability g 1− ¶:

Wp (Ä̃n, Än) f
√

12

nm
(d+ logQ+ (32 + 8d»2)p)1/2

for all p g 2, and where Q := max¹
¼(¹)
¼(¹∗) measures the

quality of prior distribution.

Än denotes the true posterior corresponding to n data sam-

ples and Ä̃n is the approximate posterior outputted by Algo-

rithm 1. We also note that similar concentration bounds can

be achieved by using the Unadjusted Langevin Algorithm

(ULA) for batched data, which adopts full-batch gradient

evaluations and therefore leads to a growing iteration com-

plexity. The proofs of Theorem 1 are adapted to the batched

setting, which differs from (Mazumdar et al., 2020).

5. Batched Langevin Thompson Sampling for

Bandits

In this section, we introduce Langevin Thompson Sam-

pling for batched stochastic MAB setting in Algorithm 2,

namely, BLTS. It leverages SGLD and batching schemes to

learn a wide class of unknown reward distributions while

reducing communication and computation costs. We have

previously discussed the results of SGLD in Section 4 for

both MABs and MDPs. Here, we focus on the batching

strategy in Algorithm 2 for bandits, and discuss the result-

ing regret guarantee.

5.1. Dynamic Doubling Batching Scheme

BLTS keeps track of the number of times each arm a has

been played until time t with ka(t). Initially, all {ka}a∈A
are set to 0. The size of each batch is determined by

{ka}a∈A and the corresponding integers {la}a∈A. Once

ka reaches 2la for some arm a, BLTS makes the decision

to terminate the current batch, collects all rewards from the

batch in a single request, and increases la by 1. BLTS thus

starts a new batch whenever an arm is played twice as many

times as in the previous batch, which results in growing

batch sizes. As the decision to move onto the next batch

depends on the sequence of arms that is played, it is con-

sidered as “dynamic”. This batching scheme is similar to

the one used in Karbasi et al. (2021). The total number of

batches that BLTS carries out satisfies the following theo-

rem, and its proof can be found in Appendix D.

Theorem 2. BLTS ensures that the total number of batches

is at most O(N log T ) where N = |A|.

Gao et al. (2019) showed that Ω(log T/ log log T ) batches

are required to achieve the optimal logarithmic dependence

in time horizon T for a batched MAB problem. This shows

that the dependence on T in the number of batches BLTS

requires is at most a factor of log log T off the optimal. We

now state and discuss the BLTS algorithm.

5.2. Regret of BLTS Algorithm

In Algorithm 2, denote by ¹ka the output of Algorithm 1 for

arm a at batch k. At the end of each batch, new data is

acquired all at once and the posterior is being updated. It

is important to note that upon receiving new data when we

run Algorithm 1 for each arm, only that arm’s data is fed

into Algorithm 1. For each a ∈ A, assume the existence of

linear map ³a such that EX∼pa(X|¹a)[X] = ³⊺

a ¹a ∀¹a ∈
R

d, where ∥³a∥ is bounded. Theorem 3 shows the regret

guarantee of BLTS.

Theorem 3. Assume that the parametric reward families,

priors, and true reward distributions satisfy Assumptions 1

through 4 for each arm a ∈ A. Then with the SGLD param-

eters specified as per Algorithm 1 and with µ = O(1/d»3)
(for » := max{L/m,L/¿}), BLTS satisfies:

R(T ) f
∑

a>1

C
√
Q1

m∆a

(
d+ logQ1 + d»2 log T + d2»2

)

+
C

m∆a

(
d+ logQa + d2»2 log T

)
+ 4∆a,

where C is a constant and Qa := max¹
¼a(¹)
¼a(¹∗) . The total

number of SGLD iterations used by BLTS is O(»2NlogT ).

Discussion We show that BLTS achieves the optimal

O
(

log T
△

)
regret bound with exponentially fewer rounds of

communication between the learner and the environment.

Result of Theorem 3 relies on both the statistical guarantee

provided by SGLD and the design of our batching scheme.

In bached setting, one must carefully consider the trade-off

between batch size and the number of batches. While it is

desirable to reuse the existing posterior for sampling within

a batch, the batching scheme must also ensure new data is

collected in time to avoid significant distribution shifts. In

addition, the use of SGLD allows BLTS to be applicable

in a wide range of general settings with a low computation

cost of O(»2N log T ).

In the regret bound of Theorem 3, Qa measures the quality

of prior for arm a. Specifically, if the prior is properly cen-

tered such that its mode is at ¹∗a, or if the prior is uninfor-

mative or flat everywhere, then logQa = 0. In Section 7,

we show that using either favorable priors or uninformative

priors provides similar empirical performance as existing

methods.
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Algorithm 2 Batched Langevin Thompson Sampling

(BLTS)

Input: priors ¼a(¹) ∀a ∈ A, scaling parameter µ, inputs
for SGLD subroutine N, ¸, L.

Initialization: ka ← 0, la ← 0, na ← 0, Ä̃a,k = Ä̃a,0 =
¼a ∀a ∈ A, batch index k ← 0.

for t = 1, . . . , T do

Sample ¹a,t ∼ N
(
¹ka ,

1
naLµ I

)
∀a ∈ A

Choose action at = argmaxa∈A ³⊺

a¹a,t
Update ka(t) ← ka(t) + 1

if kat
= 2la(t) then

la(t) ← la(t) + 1
Terminate batch k and observe rewards {rai

}ti=Bk

for a ∈ A do
Update na with the number of new samples

Run Algorithm 1 to obtain Ä̃a,k+1 and ¹k+1
a

Update batch index k ← k + 1

6. Batched Langevin Posterior Sampling For

RL

In RL frameworks, posterior sampling is commonly used

in model-based methods to learn unknown transition dy-

namics and is known as PSRL8. In infinite-horizon settings,

PSRL operates by sampling a model and solving for an op-

timal policy based on the sampled MDP at the beginning of

each policy switch. The learner then follows the same pol-

icy until the next policy switch. In this context, the concept

of a batch corresponds to a policy switch.

Previous analyses of PSRL have primarily focused on tran-

sition distributions that conform to well-behaved conjugate

families. Handling transitions that deviate from these fam-

ilies and computing the corresponding posteriors has been

heuristically left to MCMC methods. Here, we provably

extend PSRL with LMC and introduce Langevin Poste-

rior Sampling for RL (LPSRL, Algorithm 3) using a static

doubling policy-switch scheme. Analyses of PSRL have

crucially relied on the true transition dynamics ¹∗ and the

sampled MDPs being identically distributed (Osband et al.,

2013; Osband and Van Roy, 2016; Russo and Van Roy,

2014; Ouyang et al., 2017; Theocharous et al., 2017b).

However, when the dynamics are sampled from an approx-

imation of the true posterior, this fails to hold. To address

the issue, we introduce the Langevin posterior sampling

lemma (Lemma 3), which shows approximate sampling

yields an additive error in the Wasserstein-1 distance.

Lemma 3. (Langevin Posterior Sampling). Let tk be the

beginning time of policy-switch k, Htk := {sÄ , aÄ}tkÄ=1 be

the history of observed states and actions till time tk, and

¹k ∼ Ä̃tk be the sampled model from the approximate pos-

terior Ä̃tk at time tk. Then, for any Ã(Htk)-measurable

8We also depart from using TS for the RL setting and stick to the more popular posterior

sampling terminology for RL.

function f that is 1-Lipschitz, it holds that:

∣∣∣E[f(¹∗)|Htk ]− E[f(¹k)|Htk ]
∣∣∣ fW1(Ä̃tk , Ätk). (4)

By the tower rule,

∣∣∣E[f(¹∗)]− E[f(¹k)]
∣∣∣ fW1(Ä̃tk , Ätk).

As demonstrated later, this error term can be effectively

controlled and does not impact the overall regret (Theorems

4 and 6). It only requires the average reward function JÃ(¹)
to be 1-Lipschitz, as specified in Assumption 59. Let us

consider the parameterization of the transition dynamics p
with ¹ ∈ R

d, where ¹∗ ∈ R
d denotes the true (unknown)

parameter governing the dynamics. We explore two distinct

settings based on these parameterizations:

• General Parameterization (Section 6.2): In this set-

ting, we consider modeling the full transition dynam-

ics using ¹∗ ∈ R
d, where d j |S||A|. This parame-

terization can be particularly useful for tackling large-

scale MDPs with large (or even continuous) state and

action spaces. Towards this end, we consider S ∼= R.

Examples of General Parameterization include lin-

ear MDPs with feature mappings (Jin et al., 2020),

RL with general function approximation (Yang et al.,

2020), and the low-dimensional structures that govern

the transition (Gopalan and Mannor, 2015; Yang and

Wang, 2020). We provide a real-world example that

adopts such parameterization in Appendix E.3.

Despite Theocharous et al. (2017b) studies a similar

setting, their work confines the parameter space to R.

To accommodate a broader class of MDPs, we gen-

eralize the parameter space to R
d. As suggested by

Theorem 4, our algorithm retains the optimal O(
√
T )

regret with O(log T ) policy switches, making it appli-

cable to a wide range of general transition dynamics.

• Simplex Parameterization (Section 6.3): Here, we

consider the classical tabular MDPs with finite states

and actions. For each state-action pair, there exists a

probability simplex ∆|S| that encodes the likelihood

of transitioning into each state. Hence, in this case,

¹∗ ∈ R
d with d = |S|2|A|. This structure necessitates

sampling transition dynamics from constrained distri-

butions, which naturally leads us to instantiate LPSRL

with the Mirrored Langevin Dynamics (Hsieh et al.,

2018) (See Appendix A for more discussions). As

proven in Theorem 6, LPSRL with MLD achieves the

optimal O(
√
T ) regret with O(log T ) policy switches

for general transition dynamics subject to the proba-

bility simplex constraints.

9Mathematical statement is in Appendix B.
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6.1. The LPSRL Algorithm

LPSRL (Algorithm 3) use SamplingAlg as a subroutine,

where SGLD and MLD are invoked respectively depend-

ing on the parameterization. Unlike the BLTS algorithm in

bandit settings, LPSRL adopts a static doubling batching

scheme, in which the decision to move onto the next batch

is independent of the dynamic statistics of the algorithm,

and thus is algorithmically independent.

Let tk be the starting time of policy-switch k and let

Tk := 2k−1 represent the total number of time steps be-

tween policy-switch k and k + 1. At the beginning of each

policy-switch k, we utilize SamplingAlg to obtain an

approximate posterior distribution Ä̃tk and sample dynam-

ics ¹k from Ä̃tk . A policy Ãk is then computed for ¹k with

any planning algorithm10. The learner follows Ãk to se-

lect actions and transit into new states during the remaining

time steps before the next policy switch. New Data is col-

lected all at once at the end of k. Once the total number of

time steps is being doubled, i.e., t reaches tk + Tk − 1, the

posterior is updated using the latest data D, and the above

process is repeated.

Algorithm 3 Langevin PSRL (LPSRL)

Input: MCMC scheme SamplingAlg initiated with
prior ¼(¹).

Initialization: time step t← 1, D ← ∅
for batch k = 1, . . . ,KT do

Tk ← 2k−1

tk ← 2k−1

Run SamplingAlg and sample ¹k from posterior:

¹k ∼ Ä̃tk(¹|D)
Compute optimal policy Ãk based on ¹k

for t = tk, tk + 1, · · · , tk + Tk − 1 do
Choose action at ∼ Ãk
Generate immediate rewardR(st, at), transit into
new state st+1

D ← D ∪ {st, at,R(st, at), st+1}tk+Tk−1
t=tk

6.2. General Parametrization

In RL context, to study the performance of LPSRL instan-

tiated with SGLD as SamplingAlg, Assumptions 1-4

are required to hold on the (unknown) transition dynam-

ics, rather than the (unknown) rewards as in the bandit set-

ting. Additionally, similar to Theocharous et al. (2017b),

the General Parameterization requires p(·|¹) to be Lips-

chitz in ¹ (Assumption 6). Mathematical statements of all

assumptions are in Appendix B. We now state the main the-

orem for LPSRL under the General Parameterization.

Theorem 4. Under Assumptions 1 − 6, by instantiating

SamplingAlg with SGLD and setting the hyperparam-

eters as per Theorem 1, with p = 2, the regret of LPSRL

10We assume the optimality of policies and focus on learning the transitions. When only sub-

optimal policies are available in our setting, it can be shown that small approximation errors in

policies only contribute additive non-leading terms to regret. See details in (Ouyang et al., 2017).

(Algorithm 3) satisfies:

RB(T ) f CH log T

√
T

m
(d+ logQ+ (32 + 8d»2)p)1/2,

where C is some positive constant, H is the upper bound

of the MDP span, and Q denotes the quality of the

prior. The total number of iterations required for SGLD

is O(»2 log T ).

Discussion. LPSRL with SGLD maintains the same

order-optimal regret as exact PSRL in (Theocharous et al.,

2017b). Similar to Theorem 3, the regret bound has explicit

dependence on the quality of prior imposed to transitions,

where logQ = 0 when prior is properly centered with its

mode at ¹∗, or when it is uninformative or flat. Let ¹k,∗ be

the true posterior in policy-switch k. Our result relies on

¹∗ and ¹k,∗ being identically distributed, and the conver-

gence of SGLD in O(log T ) iterations to control the addi-

tive cumulative error in
∑KT

k=1 TkW1(Ä̃tk , Ätk) arising from

approximate sampling.

6.3. Simplex Parametrization

We now consider the tabular setting where ¹∗ specifi-

cally models a collection of |A| transition matrices in

[0, 1]|S|×|S|. Each row of the transition matrices lies in a

probability simplex ∆|S|, specifying the transition proba-

bilities for each corresponding state-action pair. In particu-

lar, if the learner is in state s ∈ S and takes action a ∈ A,

then it lands in state s′ with p(s′) = p(s′|s, a, ¹∗). In or-

der to run LPSRL on constrained space, we need to sample

from probability simplexes and therefore appeal to the Mir-

rored Langevin Dynamics (MLD) (Hsieh et al., 2018) by

using the entropic mirror map, which satisfies the require-

ments set forth by Theorem 2 in Hsieh et al. (2018). Under

Assumptions 5 and 6, we have the following convergence

guarantee for MLD and regret bound for LPSRL under the

Simplex Parameterization.

Theorem 5. At the beginning of each policy-switch k, for

each state-action pair (s, a) ∈ S × A, sample transition

probabilities over ∆|S| using MLD with the entropic mir-

ror map. Let ntk be the number of data samples for any

(s, a) at time tk, then with step size chosen per Cheng and

Bartlett (2018), running MLD with O(ntk) iterations guar-

antees that W2(Ä̃tk , Ätk) = Õ
(√
|S|/ntk

)
.

Theorem 6. Suppose Assumptions 5 and 6 are satisfied,

then by instantiating SamplingAlg with MLD (Algo-

rithm 4), there exists some positive constant C such that

the regret of LPSRL (Algorithm 3) in the Simplex Parame-

terization is bounded by

RB(T ) f CH|S|
√
|A|T log(|S||A|T ),
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where C is some positive constant, H is the upper bound

of the MDP span. The total number of iterations required

for MLD is O(|S|2|A|2T ).

Discussion. In simplex parameterization, instantiating

LPSRL with MLD achieves the same order-optimal regret,

but the computational complexity in terms of iterations for

MLD is linear in T as opposed to log T for SGLD in the

General Parameterization. Nevertheless, given that the sim-

plex parameterization implies simpler structures, we natu-

rally have fewer assumptions for the theory to hold.

7. Experiments

In this section, we perform empirical studies in simulated

environments for bandit and RL to corroborate our theo-

retical findings. By comparing the actual regret (average

rewards) and the number of batches for interaction (max-

imum policy switches), we show Langevin TS algorithms

empowered by LMC methods achieve appealing statistical

accuracy with low communication cost. For additional ex-

perimental details, please refer to Appendix F.

7.1. Langevin TS in Bandits

We first study how Langevin TS behaves in learning the

true reward distributions of log-concave bandits with differ-

ent priors and batching schemes. Specifically, we construct

two bandit environments11 with Gaussian and Laplace re-

ward distributions, respectively. While both environments

are instances of log-concave families, Laplace bandits do

not belong to conjugate families.

7.1.1. GAUSSIAN BANDITS

We simulate a Gaussian bandit environment with N = 15
arms. The existence of closed-form posteriors in Gaussian

bandits allows us to benchmark against existing exact TS

algorithms. More specifically, we instantiate Langevin TS

with SGLD (SGLD-TS), and perform the following tasks:

• Compare SGLD-TS against both frequentist and

Bayesian methods, including UCB1, Bayes-UCB, de-

caying ϵ-greedy, and exact TS.

• Apply informative priors and uninformative priors for

Bayesian methods based on the availability of prior

knowledge in reward distributions.

• Examine all methods under three batching schemes:

fully-sequential mode, dynamic batch, static batch.

Results and Discussion. Figure 1(a) illustrates the cumu-

lative regret for SGLD-TS and Exact-TS with favorable

priors. Table 2 reports the regret upon convergence along

11Our theories apply to bandits with a more general family of reward distributions.

SGLD-
TS

Exact-
TS

UCB1
Bayes-
UCB

Batches

Fully
sequential

99.66±
13.09

99.07±
12.23

154.13+
−4.10

160.55±
25.75

650.0±
0.0

Static
batch

148.52±
39.28

145.94±
31.46

155.17±
5.06

231.80±
52.11

9.0±
0.0

Dynamic
batch

99.80±
15.62

98.71±
12.10

153.31±
3.83

214.43±
0.5

22.93±
1.50

Table 2: Average regret with the standard deviation under differ-
ent batching schemes. The last column quantifies communica-
tion cost w.r.t the total number of batches for interaction. BLTS
(SGLD-TS under dynamic batching scheme) achieves order-
optimal regret with low communication cost.

with the total number of batches in interaction. Note that

SGLD-TS equipped with dynamic batching scheme imple-

ments Algorithm 2 (BLTS). Empirical results demonstrate

that SGLD-TS is comparable to Exact-TS under all batch-

ing schemes, and is empirically more appealing compared

to UCB1 as well as Bayes-UCB. While static batch incurs

slightly lower communication costs compared to dynamic

batch, results show that all methods under dynamic batch

scheme are more robust with smaller standard deviation.

Our BLTS algorithm thus well balances the trade-off be-

tween statistical performance, communication, and com-

putational efficiency by achieving the order-optimal regret

with a small number of batches.

7.1.2. LAPLACE BANDITS

To demonstrate the applicability of Langevin TS in scenar-

ios where posteriors are intractable, we construct a Laplace

bandit environment with N = 10 arms. It is important to

note that Laplace reward distributions do not have conju-

gate priors, rendering exact TS inapplicable in this setting.

Therefore, we compare the performance of SGLD-TS with

favorable priors against UCB1. Results presented in Figure

1(b) reveal that, similar to the Gaussian bandits, SGLD-TS

with dynamic batching scheme achieves comparable per-

formance as in the fully-sequential setting and significantly

outperforms UCB1, highlighting its capability to handle di-

verse environments. In addition, the static batching scheme

exhibits larger deviations compared to the dynamic batch-

ing, which aligns with results in Table 2.

7.2. Langevin PSRL in Average-reward MDPs

In MDP setting, we consider a variant of RiverSwim en-

vironment (Strehl and Littman, 2008), which is a common

testbed for provable RL methods. Specifically, it models

an agent swimming in the river with five states, two ac-

tions (|S| = 5, |A| = 2). In this tabular case, LPSRL (Al-

gorithm 3) employs MLD (Algorithm 4 in Appendix A)

as SamplingAlg, namely, MLD-PSRL. We benchmark

the performance of MLD-PSRL against other mainstream

8
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Figure 1: (a) Regret in Gaussian Bandits (N = 15): expected regret is reported over 10 experiments with informative priors. Results
show SGLD-TS under dynamic batching scheme achieves optimal performance as in the sequential case without using approximate
sampling. Results with uninformative priors yield the same conclusions (See Appendix F). (b) Regret in Laplace Bandits (N = 10): re-
gret is reported over 10 experiments with informative priors. As in Gaussian Bandits, SGLD-TS with dynamic batching scheme achieves
optimal regret and outperforms UCB1. (c) Average reward in RiverSwim: expected average reward is reported over 10 experiments.
MLD-PSRL achieves optimal average reward upon convergence with a small number of policy switches.

model-based RL methods, including TSDE (Ouyang et al.,

2017), DS-PSRL (Theocharous et al., 2017b) and DB-

PSRL (exact-PSRL(Strens, 2000) with dynamic batch).

Note that MLD-PSRL and DS-PSRL adopt the static dou-

bling policy switch scheme discussed in section 6. Dy-

namic doubling policy switch scheme adopted by both DB-

PSRL and TSDE is akin to the one we use in bandit set-

ting, but based on the visiting counts of state-action pairs.

We simulate 10 different runs of experiment, and report the

average rewards obtained by each method in Figure 1(c).

Mechanisms used by each method are summarized in Ta-

ble 3, along with the average rewards achieved and maxi-

mum number of policy switches incurred.

MLD-
PSRL

DS-
PSRL

DB-
PSRL

TSDE
Optimal
policy

Static ps
√ √

Dynamic ps
√ √

Linear growth
√

Avg. reward
4.01±
0.11

4.02±
0.08

2.41±
0.91

4.01±
0.17

4.15±
0.04

Max. switches
12.0±
0.0

12.0±
0.0

15.33±
1.70

94.0±
3.56

-

Table 3: We report the average reward and the maximum num-
ber of policy switches all methods over 10 different runs. MLD-
PSRL instantiates Alogrithm 3 in Section 6, which achieves order-
optimal performance with small number of policy switches.

Results and Discussion. We demonstrate that MLD-PSRL

achieves comparable performance compared to existing

PSRL methods while significantly reducing communica-

tion costs through the use of static policy switches. In

contrast, as illustrated in Figure 4 (Appendix F) and Ta-

ble 3, TSDE achieves near-optimal performance but re-

quires high communication costs. Additionally, our empir-

ical results reveal that the static policy switch in the MDP

setting outperforms the dynamic policy switch alone. This

observation aligns with existing findings that frequent pol-

icy switches in MDPs can harm performance. Moreover,

compared to DS-PSRL, MLD-PSRL is applicable to more

general frameworks when closed-form posterior distribu-

tions are not available12.

8. Conclusion

In this paper, we jointly address two challenges in the de-

sign and analysis of Thompson sampling (TS) methods.

Firstly, when dealing with posteriors that do not belong to

conjugate families, it is necessary to generate approximate

samples within a reasonable computational budget. Sec-

ondly, when interacting with the environment in a batched

manner, it is important to limit the amount of communica-

tion required. These challenges are critical in real-world

deployments of TS, as closed-form posteriors and fully-

sequential interactions are rare. In stochastic MABs, ap-

proximate TS and batched interactions are studied inde-

pendently. We bridge the two lines of work by providing

a Langevin TS algorithm that works for a wide class of re-

ward distributions with only logarithmic communication.

In the case of undiscounted infinite-horizon MDP settings,

to the best of our knowledge, we are the first to provably

incorporate approximate sampling with the TS paradigm.

This enhances the applicability of TS for RL problems with

low communication costs. Finally, we conclude with exper-

iments to demonstrate the appealing empirical performance

of the Langevin TS algorithms.
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Appendices

A. MCMC Methods

A.1. Unconstrained Approximate Sampling

Suppose a target distribution Ä is parameterized by ¹ ∈ R
d, and observed data {Xi}ni=1 are independently identically

distributed. A posterior distribution defined up to a normalization factor can be expressed via the Gibbs distribution form:

Ä(¹|X1, . . . , Xn) ∝ ¼(¹)

n∏

i=1

p(Xi; ¹) = exp (−U(¹)) ,

where ¼(¹) is the prior distribution of ¹, p(Xi; ¹) is the likelihood function, and U(¹) := − log (¼(¹)) −∑n
i=1 log (p(Xi; ¹)) is the energy function.

Typical MCMC methods require computations over the whole dataset, which is inefficient in large-scale online learning.

To overcome this issue, we adopt SGLD (Welling and Teh, 2011) as one of the approximate sampling methods, which

is developed upon stochastic optimization over mini-batch data D ¦ {Xi}ni=1. The update rule is based on the Euler-

Murayama discretization of the Langevin stochastic differential equation (SDE):

d¹t =
1

2

(
∇ log (¼(¹0)) +

n

|D|
∑

i∈D

∇ log (p(xi; ¹t))

)
dt+

√
2dBt,

where Bt is a Brownian motion. To further improve computation, we reuse samples from previous batches to warm start

the Markov chains (Algorithm 1). The resulting dependent structure in samples will complicate our analysis.

A.2. Constrained Approximate Sampling

While the convergence of SGLD methods is well-studied, it is only applicable to unconstrained settings. To enable sam-

pling from constrained non log-concave distributions, such as probability simplex in transition dynamics of MDPs, repa-

rameterization can be used in conjunction with SGLD. Alternatively, one can adopt MLD (Hsieh et al., 2018) which

utilizes mirror maps for sampling from a dual unconstrained space (Algorithm 4). Let the probability measure of ¹ be

dÄ = e−U(¹)d¹, where dom(U ) is constrained. Suppose there exist a mirror map h that maps Ä to some unconstrained

distribution d¿ = e−W (É)dÉ, denoted by ∇h#Ä = ¿. Then MLD has the following SDE:

{
dÉt = −(∇W ◦ ∇h)(¹t)dt+

√
2dBt

¹t = ∇h∗(Ét)
, (5)

where h∗ is the dual of h, and (∇h)−1 = ∇h∗.

Algorithm 4 Mirrored Langevin Dynamics (MLD)

Input: S,A, mirror map h, observed transitions {Xs}ns=1, total iterations N
for i = 1, . . . , N do

Subsample D ¦ {Xs}ns=1

Sample Éi+1 ∼ ∇h#e−U from the unconstrained dual space
Compute constrained sample ¹i+1 = ∇h∗(Éi+1)

Output: ¹N

In tabular settings of MDP, MLD needs to be run against each row of the |A|×|S|matrices to generate a sampled transition

from simplex ∆|S| for each state-action pair. In this case, entropic mirror map will be adopted as h, which is given by

h(¹) =

|S|∑

i=1

¹i log ¹i + (1−
|S|∑

i=1

¹i) log(1−
|S|∑

i=1

¹i), where 0 log 0 := 0. (6)
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B. Assumptions

Here we explicitly mention all of the assumptions required in the paper. Assumptions 1-4 are required for SGLD to

converge (Algorithm 1 and Theorem 1), Assumptions 5 and 6 are required in Section 6.

Assumption 1 (Assumption on the family p(S|¹) for approximate sampling). Assume that log p(s|¹) is L-smooth and

m-strongly concave over ¹:

− log p(s|¹′)−∇¹ log p(s|¹′)¦(¹ − ¹′) +
m

2
∥¹ − ¹′∥2 f − log p(s|¹)

f − log p(s|¹′)−∇¹ log p(s|¹′)¦(¹ − ¹′) +
L

2
∥¹ − ¹′∥2 ∀¹, ¹′ ∈ R

d, s ∈ S

Assumption 2 (Assumption on true reward/transition distribution p(S|¹∗)). Assume that p(S; ¹∗) is strongly log-concave

in S with some parameter ¿, and that ∇¹ log p(s|¹∗) is L-Lipschitz in S:

−(∇s log p(s|¹∗)−∇s log p(s
′|¹∗))¦(s− s′) g ¿ ∥s− s′∥2 , ∀s, s′ ∈ R

∥∇¹ log p(s|¹∗)−∇¹ log p(s
′|¹∗)∥ f L ∥s− s′∥ , ∀s, s′ ∈ R

Assumption 3 (Assumption on the prior distribution). Assume that log ¼(¹) is concave with L-Lipschitz gradients for all

¹ ∈ R
d:

∥∇¹¼(¹)−∇¹¼(¹
′)∥ f L ∥¹ − ¹′∥ , ∀¹, ¹′ ∈ R

d

Assumption 4 (Joint Lipschitz smoothness of log p(S|¹)).

∥∇¹ log p(s|¹)−∇¹ log p(s
′|¹)∥ f L ∥¹ − ¹′∥+ L ∥s− s′∥ , ∀¹, ¹′ ∈ R

d, s, s′ ∈ R

Assumption 5 (1- Lipschitzness of J(¹) in ¹). The optimal average-reward function J satisfies

∥J(¹)− J(¹′)∥ f ∥¹ − ¹′∥, ∀¹, ¹′ ∈ R
d

where J(¹) = maxÃ J
Ã(¹).

Assumption 6 (Lipschitzness of transition in ¹ for RL). There exists a constant Lp such that the transition for each

state-action pair is Lp-Lipschtiz in parameter space:

∥p(·|s, a, ¹)− p(·|s, a, ¹′)∥ f Lp ∥¹ − ¹′∥ , ∀¹, ¹′ ∈ R
d, s, a ∈ S ×A

C. Convergence of SGLD with Batched Data

In this section, we prove the convergence of SGLD in sequential decision making frameworks under the batch scheme,

which is stated with precise hyperparameters as Theorem 7. We first state the supporting lemmas, followed by the proof of

the convergence theorem.

Lemma C.4 (Lemma 5 in (Mazumdar et al., 2020)). Denote Û as the stochastic estimator of U . Then for stochastic

gradient estimate with k data points, we have,

E

[∥∥∥∇Û(¹)−∇U(¹)
∥∥∥
p ∣∣¹
]
f 2

np/2

kp/2

(√
dpL∗

a√
¿a

)p

.
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Lemma C.5 (Lemma 6 from (Mazumdar et al., 2020)). For a fixed arm a with n samples, suppose we run Algorithm 1

with step size ¸ f m̂
32L̂2

for N iterations to generate samples from posterior Ä∗n ∝ exp(−U), in which U is m̂−strongly

convex and L̂−Lipschitz smooth. If at each step i ∈ [N ], the p-th moment between the true gradient and the stochastic

gradient satisfies E
[
∥∇U(¹i¸)−∇Û(¹i¸)∥p | ¹i¸

]
f ∆p, then:

W p
p (Ä̃i¸,n, Ä

∗
n) f

(
1− m̂

8
¸

)pi

W p
p (Ä0, Ä

∗
n) + 25p

L̂p

m̂p
(dp)p/2(¸)p/2 + 22p+3∆p

m̂p

where Ä0 = Ä̃0¸,n.

Theorem 7 (SGLD convergence). Fix an arm a ∈ A and suppose that Assumptions 1-4 are met for it. Let » :=
max{L/m,L/¿}, nk be the number of available rewards for arm a when running SGLD for the k-th time, Äa,nk

be

the exact posterior of arm a after observing nk samples, and Ä̃a,nk
be the corresponding approximate posterior obtained

by SGLD. If E¹∼Äa,nk
[∥¹ − ¹∗∥p]1/p f D̃√

nk
is satisfied by the posterior, then with mini-batch size s = 32L2

m¿ = O(»2),

step size ¸ = mnk

32L2(nk+1)2 = O( 1
L»nk

), and the number of steps N = 1280L2(nk+1)2

m2n2
k

= O(»2), SGLD in Algorithm 1

converges in Wasserstein-p distance:

Wp (Ä̃a,nk
, Äa,nk

) f 2D̃√
nk

, ∀D̃ g
√

32dp

m
, p g 2.

Proof of Theorem 7 The proof follows similarly to that of Theorem 6 in (Mazumdar et al., 2020). Compared to the

analysis in (Mazumdar et al., 2020), our proof is based on induction on the batches, as opposed to induction on the number

of samples, as for us, SGLD is only executed at the end of the batch. Let Bk be the k-th batch. Now for the base case, i.e.

when k = 1, we have that nk = 1. And therefore the claim follows by the initialization of the algorithm (this is similar to

the fully sequential case in (Mazumdar et al., 2020)).

Now, suppose that the claim holds for batch k − 1. That is, suppose that all the necessary conditions are met and that

Wp

(
Ä̃a,nk−1

, Äa,nk−1

)
f 2D̃√

nk−1
.

Taking the initial condition Ä0 = Ä̃a,nk−1
in Lemma C.5, we get that:

W p
p (Ä̃i¸,nk

, Ä∗nk
) f

(
1− m̂

8
¸

)pi

W p
p (Ä̃a,nk−1

, Ä∗nk
) + 25p

L̂p

m̂p
(dp)p/2(¸)p/2 + 22p+3∆p

m̂p
.

Now we know that:

Wp(Ä
∗
nk
, Ä̃a,nk−1

) fWp(Ä
∗
nk
, Ä∗nk−1

) +Wp(Ä
∗
nk−1

, Ä̃a,nk−1
)

f D̃√
nk

+
D̃√
nk−1

+
2D̃√
nk−1

f 8D̃√
nk

where the first inequality follows from triangle inequality, the second one follows from the assumption on the posterior and

the induction hypothesis, and the last one just upper bounds the expression while also using the fact that nk f 2nk−1. This

shows us that we can get the same upper bound as is seen in the fully sequential proof. The main point to note is that the

proof has enough looseness in it, so that despite collecting at most double the data, the same bounds hold. With the choice

of hyperparameters, taking i = N and using Lemma C.4 leads us to the conclusion that Wp (Ä̃a,nk
, Äa,nk

) f 2D̃√
nk

.

■

We now state the concentration results provided by SGLD in Lemma C.6, which shows the probability that the sampled

parameters (from the approximate posterior) are far away from the true dynamics is small. Lemma C.6 extends Lemma 11

in (Mazumdar et al., 2020) to the batched settings.
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Lemma C.6 (Concentration of SGLD in bandits). For a fixed arm a ∈ A, say that it is pulled nk−1 times till batch k − 1
and nk times till batch k (where nk f 2nk−1). Suppose that Assumptions 1-4 are satisfied, then for ¶ ∈ (0, 1), with

parameters as specified in Theorem 7, the sampled parameter ¹ka generated in the k-th batch satisfies,

P¹k
a∼Ä̃a,nk

[µ]

(
∥¹ka − ¹∗a∥2 >

√
36e

nkm

(
d+ logQa + 2Ã log 1/¶ + 2(Ã +

md

18Lµ
) log 1/¶

) ∣∣∣∣∣ Zk−1

)
< ¶,

where Zk−1 = {
∥∥¹k−1

a − ¹∗a
∥∥
2
f C(nk) }, C(nk) =

√
18e
nkm

(d+ logQa + 2Ã log 1/¶)0.5, Ã = 16 + 4dL2

¿m .

Proof of Lemma C.6 The proof follows exactly as Lemma 11 from (Mazumdar et al., 2020) by replacing the notations in

fully-sequential settings by those in batched settings, i.e., ¹a,t by ¹ka , ¹a,t−1 by ¹k−1
a .

■

D. Proofs of Langevin Thompson Sampling in Multi-armed Bandits

In this section, we provide the regret proofs of BLTS algorithm in the stochastic multi-armed bandit (MAB) setting, which

are discussed in Section 5. In particular, we discuss the information exchange guarantees under dynamic batching scheme

and its communication cost. We then utilize the convergence of SGLD in Appendix C and the above results to prove the

problem-dependent regret bound in MAB setting.

D.1. Notations

We first introduce the notation being used in this section, which is summarized in Table 4.

Symbol Meaning

A set of arms in bandit environment

N number of arms in bandit environment, i.e., |A|
T time horizon

K total number of batches

B(t) starting time of the batch containing timestep t

Bk starting time of the k-th batch

la
trigger of dynamic batches (a batch is formed when ka(t) = 2la ), a monotonically-increasing

integer for arm a

ka(t) the number of times that arm a has been pulled up to time t

pa(r|θa) reward distribution of arm a parameterized by θa ∈ R
d

θa parameter of reward distribution for arm a ∈ A
µa expected reward of arm a, µa := E[ra|θ∗a]
µ̂a estimated expected reward of arm a, µ̂a := E[∥θa∥]
Qa quality of prior for arm a, Qa := maxθ

pa(θ)
pa(θ∗a)

κ condition number of parameterized reward distribution, κ := max{L/m,L/ν}
λa(θa) prior distribution over θa ∈ R

d

U energy function of posterior distribution ρ : ρ ∝ e−U

L Lipschitz constant of the true reward distribution and likelihood families pa(r|θ∗) in r

m strong log-concavity parameter of pa(r; θ) in θ for all r

ν strong log-concavity parameter of pa(r; θ) in r

Table 4: Notations in multi-armed bandit setting.
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D.2. Communication cost of Dynamic Doubling Batching Scheme

In batched setting, striking a balance between batch size and the number of batches is critical to achieving optimal per-

formance. More specifically, it is crucial to balance the number of actions taken within each batch, with the frequency of

starting new batches to collect new data and update the posteriors. According to Lemma D.1, dynamic doubling batching

scheme guarantees an arm that has been pulled k times has at least k/2 observed rewards, indicating that communication

between the learner and the environment is sufficient under this batching scheme.

Lemma D.1. Let t be the current time step, B(t) be the starting time of the current batch, ka(t) be the number of times

that arm a has been pulled up to time t. For all a ∈ A, the dynamic batch scheme ensures:

1

2
ka(t) f ka(B(t)) f ka(t).

Proof of Lemma D.1 By the mechanism of our batch scheme, a new batch will begin when the number of times of any

arm a ∈ A being pulled is doubled. It implies that the number of times that an arm is pulled within a batch is less than the

number of times that it has been pulled at the beginning of this batch. At any time step t f T :

ka(t)− ka(B(t)) f ka(B(t)),

which gives 1
2ka(t) f ka(B(t)). On the other hand, ka(B(t)) f ka(t) holds due to the fact that B(t) f t.

■

Next, we show that by employing the dynamic doubling batching scheme, BATS algorithm achieves optimal performance

using only logarithmic rounds of communication (measured in terms of batches).

Theorem 2. BLTS ensures that the total number of batches is at most O(N log T ) where N = |A|.

Proof of Theorem 2 Denote by Bk the starting time of the k-th batch, and let la(Bk) be the trigger integer for arm a
at time Bk, K be the total number of rounds to interact with environment, namely, batches. Then for each arm a ∈ A,

ka(T ) f T , and

ka(T ) =

K−1∑

k=1

ka(Bk+1)− ka(Bk) f
K−1∑

k=1

ka(Bk) =

K−1∑

k=1

2la(Bk)−1 f
K−1∑

l=0

2l,

where the second and third step result from the dynamic batching scheme. Thus for each arm a, we have

K f log(T + 1).

The proof is then completed by multiplying the above result by N arms. ■

D.3. Regret Proofs in Multi-armed Bandit

With the convergence properties shown in Appendix C, we proceed to prove the regret guarantee of Langevin TS with

SGLD. The general idea of our regret proof is to upper bound the total number of times that the sub-optimal arms are

pulled over time horizon T . We remark that the dependence of approximate samples across batches complicates our

analysis of TS compared to the existing analyses in bandit literature.

We first decompose the expected regret according to the events of concentration in approximate samples ¹a,t and the events

of estimation accuracy in expected rewards of sub-optimal arms.

For approximate samples ¹, define event E¹,a(Bk) = {∥¹a,k − ¹∗a∥ < C(nk)} , which is guaranteed to happen with prob-

ability at least (1 − ¶2) by Lemma C.6 for some ¶2 ∈ [0, 1]. Let E¹,a(T ) =
⋂T

t=1 E¹,a(t), E¹,a(K) =
⋂K

k=1 E¹,a(Bk),
where K is the total number of batches. Without loss of generality, we take ∥³a∥ = 1 for all arms in EX∼pa(X|¹a)[X] =
³⊺

a ¹a f ∥¹a∥ in the subsequent proofs

Let µ̂a(t) be the estimate of the expected reward for arm a at time step t, and denote the filtration up to time B(t) as

FB(t) := {a(Ä), ra(Ä),ka(B(Ä)) | Ä f B(t)}. For any sub-optimal arm a ̸= 1, define event Eµ,a(t) = {µ̂a(t) g µ1 − ϵ}
with probability pa,ka(B(t))(t) := P(µ̂a(t) g µ1 − ϵ|FB(t)) for some ϵ ∈ (0, 1), which signifies the estimation of arm a is

close to the true optimal expected reward.
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Lemma D.2 (Regret Decomposition). Let µa be the true expected reward of arm a, µ∗ = maxa∈A µa, ∆a := µ∗ − µa.

The expected regret of Langevin TS with SGLD satisfies:

RT f
∑

a∈A

(
R1 +R2 + 2

)
∆a,

where R1 := E

[∑T
t=1 I(a(t) = a,Ec

µ,a(t)) | E¹,a(K) ∩ E¹,1(K)
]
, R2 := E

[∑T
t=1 I(a(t) = a,Eµ,a(t)) | E¹,a(K) ∩ E¹,1(K)

]
.

Proof of Lemma D.2. Recall that

RT =
∑

a∈A
∆a · E [ka(T )] , ∆a = µ∗ − µa.

For any sub-optimal arm a ̸= 1, consider the event space F¹ = {{E¹,a(T )∩E¹,1(T )}, {E¹,a(T )∩E¹,1(T )}C}, in which

E¹,a(T ) ∩ E¹,1(T ) denotes the event that all approximate samples of arm a and optimal arm 1 are concentrated.

To bound the regret, we bound the largest number of times that each sub-optimal arm will be played:

E [ka(T )] = E

[
T∑

t=1

I(a(t) = a,Eµ,a(t) ∪ Ec
µ,a(t), E¹,a(T ) ∩ E¹,1(T ))

]
+ E

[
T∑

t=1

I(a(t) = a, (E¹,a(T ) ∩ E¹,1(T ))
c
)

]

f E

[
T∑

t=1

I(a(t) = a,Eµ,a(t) ∪ Ec
µ,a(t)) | E¹,a(T ) ∩ E¹,1(T )

]
+ E

[
T∑

t=1

I(a(t) = a, (E¹,a(T ) ∩ E¹,1(T ))
c
)

]
.

where the second inequality results from P (E¹,a(T ) ∩ E¹,1(T )) f 1.

For any arm a ∈ A in each batch, approximate samples are independently generated from the identical approximate dis-

tribution Ä̃a(¹a|Ra). Thus, approximate samples for arm a are independent within the same batch, while being dependent

across different batches, implying
{
P(E¹,a(T )) =

∏T
t=1 P(E¹,a(t)|E¹,a(1), . . . , E¹,a(t− 1)) =

∏K−1
k=1 P(E¹,a(Bk+1)|E¹,a(Bk))

Tk+1

P(Ec
¹,a(T )) = P(

⋃T
t=1 E

c
¹,a(t)) =

∑T
t=1 P(E

c
¹,a(t)) =

∑K
k=1 TkP(E

c
¹,a(Bk))

,

where Tk := Bk+1−Bk is the number of time steps in the k-th batch, namely, the length of the batch. By Lemma C.6, for

each arm a in batch Bk, P(Ec
¹,a(Bk)) f ¶2, (1− ¶2) f P(E¹,a(Bk)) f 1, which gives:

{
P[E¹,a(T ) ∩ E¹,1(T )] f P[E¹,a(K) ∩ E¹,1(K)]

P[Ec
¹,a(T ) ∪ Ec

¹,1(T )] f P[Ec
¹,a(T )] + P[Ec

¹,1(T )] f 2¶2
∑T

k=1 Tk = 2¶2T
.

Setting ¶2 = 1/T 2 gives,

E

[
T∑

t=1

I(a(t) = a, (E¹,a(T ) ∩ E¹,1(T ))
c
)

]
= E

[
T∑

t=1

I(a(t) = a) | E¹,a(T )
c ∪ Ec

¹,1(T )

]
P

[
Ec

¹,a(T ) ∪ Ec
¹,1(T )

]

f 2¶2TE

[
ka(T ) | E¹,a(T )

c ∪ E¹,1(T )
c

]
f 2¶2T

2 f 2.

Plugging in the results to the definition of regret yields,

R(T ) f
∑

a∈A
∆a ·

(
E

[
T∑

t=1

I(a(t) = a,Eµ,a(t) ∪ Ec
µ,a(t))

∣∣∣ E¹,a(T ) ∩ E¹,1(T )

]
+ 2

)

f
∑

a∈A
∆a ·

(
E

[
T∑

t=1

I(a(t) = a,Eµ,a(t) ∪ Ec
µ,a(t))

∣∣∣ E¹,a(K) ∩ E¹,1(K)

]
+ 2

)

f ∑
a∈A

∆a ·
(
E

[
T∑

t=1

I(a(t) = a,Eµ,a(t))
∣∣∣ E¹,a(K) ∩ E¹,1(K)

]

︸ ︷︷ ︸
R1

+E

[
T∑

t=1

I(a(t) = a,Ec
µ,a(t))

∣∣∣ E¹,a(K) ∩ E¹,1(K)

]

︸ ︷︷ ︸
R2

+2

)
.

■
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We then proceed to bound R1 and R2 respectively in Lemma D.3 and Lemma D.4, the key to maintaining optimal regret is

to maximize the probability of pulling the optimal arm by ensuring the event Eµ,a(t) takes place with low probability for

all sub-optimal arms.

Lemma D.3 (Bound term R1). It can be shown that,

R1 f E

[
T∑

t=1

(
1

p1,k1(B(t))(t)
− 1

) ∣∣∣∣ E¹,1(K)

]
.

Proof of lemma D.3. Note that arm a is played at time t if and only if µ̂a′ f µ̂a, ∀a′ ∈ A. Thus for a sub-optimal arm a,

the following event relationship holds: {a(t) = a,Ec
µ,a(t)} = {a(t) = a,Ec

µ,a(t),∩a′ ̸=aE
c
µ,a′(t)} ¦ {∩a′∈AEc

µ,a′(t)},
and {Eµ,1(t),∩a′ ̸=1E

c
µ,a′(t)} = {a(t) = 1, Eµ,1(t),∩a′ ̸=1E

c
µ,a′(t)} ¦ {a(t) = 1}. We then have,

{
P
[
a(t) = a,Ec

µ,a(t) | FB(t)

]
f P

[⋂
a′∈A Ec

µ,a′(t) | FB(t)

]
= P

[⋂
a′ ̸=1 E

c
µ,a′(t) | FB(t)

](
1− P

[
Eµ,1(t) | FB(t)

])

P
[
a(t) = 1 | FB(t)

]
g P

[
Eµ,1(t) | FB(t)

]
P
[⋂

a′ ̸=1 E
c
µ,a′(t) | FB(t)

]

Recall that p1,k1(B(t))(t) := P[Eµ,1(t) | FB(t)]. Combining the above two equations shows that the probability of pulling

a sub-optimal arm a is bounded by the probability of pulling the optimal arm with an exponentially decaying coefficient:

P
[
a(t) = a,Ec

µ,a(t) | FB(t)

]
f
(

1

p1,k1(B(t))(t)
− 1

)
P
[
a(t) = 1 | FB(t)

]
. (7)

Therefore, R1 is upper bounded accordingly:

R1 = E

[
T∑

t=1

E
[
I(a(t) = a,Ec

µ,a(t) | FB(t)

] ∣∣∣∣ E¹,a(K)
⋂

E¹,1(K)

]

= E

[
T∑

t=1

P
[
a(t) = a,Ec

µ,a(t) | FB(t)

] ∣∣∣∣ E¹,a(K)
⋂

E¹,1(K)

]

f E

[
T∑

t=1

(
1

p1,k1(B(t))(t)
− 1

)
P
[
a(t) = 1 | FB(t)

] ∣∣∣∣ E¹,a(K)
⋂

E¹,1(K)

]

= E

[
T∑

t=1

(
1

p1,k1(B(t))(t)
− 1

)
I
[
a(t) = 1

] ∣∣∣∣E¹,1(K)

]

f E

[
T∑

t=1

(
1

p1,k1(B(t))(t)
− 1

) ∣∣∣∣ E¹,1(K)

]
.

■

Lemma D.4 (Bound term R2). It can be shown that,

R2 f 1 + E

[
T∑

t=1

I

(
pa,ka(B(t))(t) >

1

T

) ∣∣∣∣ E¹,a(K)

]
.

Proof of Lemma D.4. The proof closely follows (Agrawal and Goyal, 2012). Let T := {t | pa,ka(B(t))(t) >
1
T }. R2 term

can be rewritten as:

R2 = E

[
∑

t∈T
I(a(t) = a,Eµ,a(t))

∣∣∣∣ E¹,a(K)
⋂

E¹,1(K)

]
+ E

[
∑

t/∈T
I(a(t) = a,Eµ,a(t))

∣∣∣∣ E¹,a(K)
⋂

E¹,1(K)

]

f E

[
∑

t∈T
I(a(t) = a)

∣∣∣∣ E¹,a(K)
⋂

E¹,1(K)

]

︸ ︷︷ ︸
I

+E

[
∑

t/∈T
I(Eµ,a(t))

∣∣∣∣ E¹,a(K)
⋂

E¹,1(K)

]

︸ ︷︷ ︸
II

.
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It follows that the first term satisfies,

I = E

[
T∑

t=1

I(a(t) = a, pa,ka(B(t))(t) >
1

T
)

∣∣∣∣ E¹,a(K)

]
f E

[
T∑

t=1

I(pa,ka(B(t))(t) >
1

T
)

∣∣∣∣ E¹,a(K)

]
,

and the second term satisfies,

II = E

[
∑

t/∈T
E

[
I(Eµ,a(t))

∣∣ FB(t)

] ∣∣∣∣ E¹,a(K)
⋂

E¹,1(K)

]
= E

[
∑

t/∈T
pa,ka(B(t))(t)

∣∣∣∣ E¹,a(T )
⋂

E¹,1(T )

]
f 1,

where the last inequality holds as pa,ka(B(t))(t) f 1/T for t /∈ T . ■

Lemma D.5. Assume that the prior and reward distributions satisfy Assumptions 1-4. Then at each time step t f T , if

there are k1(B(t)) observed rewards for arm 1, then Algorithm 1 ensures:

E

[
1

p1,k1(B(t))(t)

]
f 36

√
Q1,

where Q1 = max¹∈Rd
p1(¹)
p1(¹∗

1 )
measures the quality of the prior distribution, Q1 g 1.

Proof of Lemma D.5 For completeness, we provide the proof of this lemma, which closely follows the proof of Lemma

18 in (Mazumdar et al., 2020).

For each arm a, upon running SGLD with batched data in batch k, by Cauchy-Schwartz inequality, we have,

P
(
³T
a (¹

k
a − ¹a,N¸) g ³T

1 (¹
∗
a − ¹a,N¸)− ϵ

)
g P (Z g ∥¹∗a − ¹a,N¸∥) ,

where Z ∼ N (0, 1
nLµ I). Let Ã2 = 1

nLµ I , by anti-concentration of Gaussian random variables, for the optimal arm 1,

p1,k1(B(t))(t) g
√

1

2Ã

{
Ãt

t2+Ã2 e
− t2

2σ2 , t > Ã;

0.34, otherwise.

Taking expectations of both sides and by Cauchy-Schwartz inequality,

E

[
1

p1,k1(B(t))(t)

]
f 3
√
2Ã +

√
2ÃnLµ

√
E [∥¹∗1 − ¹1,Nh∥2]

√
E
[
enLµ∥¹∗

1−¹1,Nh∥2
]
+
√
2ÃE

[
e

nLγ
2 ∥¹∗

1−¹1,Nh∥2
]
.

By the convergence guarantee of SGLD in Theorem 7,

E
[
∥¹∗1 − ¹1,Nh∥2

]
f 18

mn

(
d+ logQ+ 32 +

8dL2

¿m

)
.

Note that ∥¹∗1 − ¹1,Nh∥2 is a sub-Gaussian random variable, when µ f m
32LÃ ,

E[enLµ∥¹∗
1−¹1,Nh∥2

] f 3/2
(
e

4nLγD
m + 2.5

)
.

Combining the above results together completes the proof. ■

With Lemma D.5, we now proceed to prove the terms in R1 and R2 that lead us to the final regret bound.

Lemma D.6. Assume that Assumptions 1-4 are satisfied. Let Ã = 16+ 4dL2

¿m , µ = m
32LÃ . running Algorithm 2 with samples

generated from approximate posteriors using Algorithm 1, we have,

E

[
T∑

t=1

(
1

p1,k1(B(t))(t)
− 1

) ∣∣∣∣ E¹,1(K)

]
f 20736e

m∆2
a

√
Q1

(
d+ logQ1 + 4Ã log T + 12dÃ log 2

)
+ 1. (8)

E

[
T∑

t=1

I

(
pa,ka(B(t))(t) >

1

T

) ∣∣∣∣ E¹,a(K)

]
f 576e

m∆2
a

(
d+ logQa + 10dÃ log(T )

)
. (9)
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Proof of lemma D.6. For ease of notation, let the number of observed rewards in batch k for arm a ∈ A be nk. By

definition,

p1,nk
= P

(
µ̂1(t) g µ1 − ϵ

∣∣FB(t)

)
g 1− P

(
∥¹1 − ¹∗1∥ > ϵ

∣∣FB(t)

)

With concentration property of approximate samples in Lemma C.6, it suggests the increasing number of observed rewards

for the optimal arm leads to the increasing probability of being optimal. Thus by Lemma D.1, at any time step t f T ,

p1,k1(B(t))(t) g p
1,

k1(t)
2

(t).

Concentration is achieved only when sufficient number of rewards is observed, we thus require:

P¹1∼Ä̃1,nk
[µ] (∥¹1 − ¹∗1∥ g ϵ) f exp

(
− 1

6dÃ

(
mnkϵ

2

36e
− D̄1

))
, (10)

where D̄1 = d+ logQ1 +4Ã log T, Ã = 16+ 4dL2

¿m . Choose ϵ = (µ1−µa)/2 = ∆a/2, and consider the time step t when

arm 1 satisfies:

k1(t) = 2+log2 2l,, where l =
144e

m∆2
a

(
D̄1 + 6dÃ log 2

)
.

As k1(t) g 2l, the number of observed rewards is guaranteed to be at least 36e
mϵ2 D̄, and P¹1∼Ä̃1,nk

[µ] (∥¹1 − ¹∗1∥ g ϵ) f 1/2.

Thus, the individual term in R1 follows:

E

[
T∑

t=1

(
1

p1,k1(B(t))(t)
− 1

) ∣∣∣∣ E¹,1(K)

]

f E

[
T∑

t=1

(
1

p
1,

k1(t)
2

(t)
− 1

) ∣∣∣∣ E¹,1(K)

]

f E




T−1∑

k1(t)=0

(
1

p
1,

k1(t)
2

(t)
− 1

) ∣∣∣∣ E¹,1(K)




f E



2+log2 2l,∑

k1(t)=0

(
1

p
1,

k1(t)
2

(t)
− 1

) ∣∣∣∣ E¹,1(K)


+ E




T−1∑

k1(t)=2+log2 2l,+1

(
1

p
1,

k1(t)
2

(t)
− 1

) ∣∣∣∣ E¹,1(K)


 . (11)

In early stage when concentration has not been achieved, using results from Lemma D.5,

E



2+log2 2l,∑

k1(t)=0

(
1

p
1,

k1(t)
2

(t)
− 1

) ∣∣∣∣ E¹,1(K)


 f 2+log2 2l,36

√
B1 f 2 · 2l · 36

√
B1. (12)

When sufficient rewards for the optimal arm has been accumulated,

E




T−1∑

k1(t)=2+log2 2l,+1

(
1

p
1,

k1(t)
2

(t)
− 1

) ∣∣∣∣ E¹,1(K)




f E




T−1∑

k1(t)=0

(
1

p
1,

k1(t)
2

(t)
− 1

) ∣∣∣∣ E¹,1(K)




f
T−1∑

k1(t)=0

1

exp
(
− 1

6dÃ1

(
m1ϵ2

36e ·
k1(t)
2

)) − 1

f
∫ ∞

z=0


 1

exp
(
− mϵ2

432edÃ1
z
) − 1


 dz
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f 2 · 144e
m∆2

a

· 6dÃ log 2 + 1. (13)

Substituting equation (12) and (13) back to (11) yields,

E

[
T∑

t=1

(
1

p1,k1(B(t))(t)
− 1

) ∣∣∣∣ E¹,1(K)

]
f 4l · 36

√
Q1 + 2 · 144e

m∆2
a

· 6dÃ log 2 + 1

f 36
√
Q1

576e

m∆2
a

(
D̄1 + 12dÃ log 2

)
+ 1.

Similarly, for R2 term with event Eµ,a(t) = {µ̂a(t) g µ1 − ϵ}, let ϵ = (µ1 − µa)/2 = ∆a/2,

pa,ka(B(t))(t) = P(µ̂a(t)− µa g µ1 − µa − ϵ|FB(t))

= P(µ̂a(t)− µa g
∆a

2
|FB(t))

f P(µ̂a(t)− µa g
∆a

2
|F ka(t)

2
)

= p
a,

ka(t)
2

(t),

which gives

E

[
T∑

t=1

I

(
pa,ka(B(t))(t) >

1

T

) ∣∣∣∣ E¹,a(K)

]

f E

[
T∑

t=1

I

(
P(µ̂a(t)− µa g

∆a

2
|F ka(t)

2
) >

1

T

) ∣∣∣∣ E¹,a(K)

]

f E

[
T∑

t=1

I

(
P(|µ̂a(t)− µa| g

∆a

2
|F ka(t)

2
) >

1

T

) ∣∣∣∣ E¹,a(K)

]

f E

[
T∑

t=1

I

(
P¹a∼Ä̃

a,
ka(t)

2

(
∥¹a − ¹∗a∥ g

∆a

2

)
>

1

T

) ∣∣∣∣ E¹,a(K)

]
.

With the same form of posterior as in equation 10, P¹a∼Ä̃
a,

ka(t)
2

(
∥¹a − ¹∗a∥ g ∆a

2

)
f 1

T for arm a ̸= 1 holds, when

ka(t) > 2 · 2 · 144e
m∆2

a

(
D̄a + 6dÃ log(T )

)
.

Here, the number of observed rewards is guaranteed to be at least 2+log2 l,, where l = 144e
m∆2

a

(
D̄a+6dÃ log(T )

)
. Therefore,

using the fact that d > 1, we have,

E

[
T∑

t=1

I

(
pa,ka(B(t))(t) >

1

T

) ∣∣∣∣ E¹,a(K)

]
f 576e

ma∆2
a

(
D̄a + 6dÃa log(T )

)
.

■

We are ready to prove the final regret bound by combining results from the above Lemmas.

Theorem 3. Assume that the parametric reward families, priors, and true reward distributions satisfy Assumptions 1

through 4 for each arm a ∈ A. Then with the SGLD parameters specified as per Algorithm 1 and with µ = O(1/d»3) (for

» := max{L/m,L/¿}), BLTS satisfies:

R(T ) f
∑

a>1

C
√
Q1

m∆a

(
d+ logQ1 + d»2 log T + d2»2

)
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+
C

m∆a

(
d+ logQa + d2»2 log T

)
+ 4∆a,

where C is a constant and Qa := max¹
¼a(¹)
¼a(¹∗) . The total number of SGLD iterations used by BLTS is O(»2NlogT ).

Proof of Theorem 3. The proof is a direct result by combining Lemma D.2, D.3, D.4,D.6, which gives,

RT f
∑

a∈A
∆a ·

(
R1 +R2 + 2

)

f
(
∑

a∈A
4 · 36

√
Q1

144e

m∆a

(
d+ logQ1 + 4

(
16 +

4dL2

m¿

)
(log T + 3d log 2)

)
+∆a

+∆a + 4
144e

m∆a

(
d+ logQa + 10d

(
16 +

4dL2

m¿

)
log(T )

)
+ 2∆a

)

f
∑

a>1

C
√
Q1

m∆a

(
d+ logQ1 + d»2 log T + d2»2

)
+

C

m∆a

(
d+ logQa + d2»2 log T

)
+ 4∆a.

■

E. Proofs of Langevin Posterior Sampling for Reinforcement Learning

In this section, we will present the regret proofs for Langevin Posterior Sampling algorithms in RL frameworks under

different types of parameterization, and conclude with a real-world example where the General Parameterization from

Section 6.2 is applicable.

E.1. Communication cost of Static Doubling Batching Scheme

We first show that under the static doubling batching scheme in RL setting, LPSRL algorithm achieves optimal performance

using only logarithmic rounds of communication (measured in terms of batches, or equivalently policy switches).

Theorem 8. Let Tk be the number of time steps between the (k − 1)-th policy switch and the k-th policy switch, and KT

be the total number of policy switches for time horizon T . LPSRL ensures that

KT f log T + 1.

Proof of Theorem 8. By design of Algorithm 3,at the k-th policy switch, Tk = 2k−1. Since the total number of time steps

is determined by time horizon T , we can easily obtain KT = +log T ,. ■

E.2. Regret Proofs in Average-reward MDPs

In this section, we proceed to prove the theorems in Section 6. To focus on the problem of model estimation, our results

are developed under the optimality of policies13.

While analyses of Bayes regret in existing works of PSRL crucially depend on the true transition dynamics ¹∗ being iden-

tically distributed as those of sampled MDP (Russo and Van Roy, 2014), we show that in Langevin PSRL, sampling from

the approximate posterior instead of the true posterior will introduce a bias that can be upper bounded using Wasserstein-1
distance.

Lemma 3. (Langevin Posterior Sampling). Let tk be the beginning time of policy-switch k, Htk := {sÄ , aÄ}tkÄ=1 be the

history of observed states and actions till time tk, and ¹k ∼ Ä̃tk be the sampled model from the approximate posterior Ä̃tk
at time tk. Then, for any Ã(Htk)-measurable function f that is 1-Lipschitz, it holds that:

∣∣∣E[f(¹∗)|Htk ]− E[f(¹k)|Htk ]
∣∣∣ fW1(Ä̃tk , Ätk). (4)

By the tower rule,

∣∣∣E[f(¹∗)]− E[f(¹k)]
∣∣∣ fW1(Ä̃tk , Ätk).

13If only suboptimal policies are available in our setting, it can be shown that small approximation errors in policies only contribute additive non-leading terms to regret. See details in (Ouyang et al.,

2017).
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Proof of Lemma 3 Notice that both Ä̃tk and Ätk are measurable with respect to Ã(Htk). Therefore, condition on history

Htk , the only randomness under the expectation comes from the sampling procedure for approximate posterior, which

gives,

E[f(¹k)|Htk ] =

∫

Rd

f(¹)Ä̃tk(d¹)

=

∫

Rd

f(¹)(Ä̃tk − Ätk + Ätk − ¶(¹∗) + ¶(¹∗))(d¹)

f E[f(¹k,∗)|Htk ]− E[f(¹∗)|Htk ] + E[f(¹∗)|Htk ] +W1(Ä̃tk , Ätk)

= E[f(¹∗)|Htk ] +W1(Ä̃tk , Ätk). (14)

The third inequality follows from the fact that givenHtk , Ätk is the posterior of ¹k,∗ and the definition of dual representation

for W1 with respect to the 1-Lipschitz function f . The last equality follows from the standard posterior sampling lemma

in the Bayesian setting (Osband et al., 2013; Osband and Van Roy, 2014), which suggests that at time tk, given the sigma-

algebra Ã(Htk), ¹
k,∗ and ¹∗ are identically distributed:

E[f(¹k,∗)|Htk ] = E[f(¹∗)|Htk ].

Following the same argument, condition onHtk , we also have,

E[f(¹∗)|Htk ] = E[f(¹k,∗)|Htk ] =

∫

Rd

f(¹)(Ätk + Ä̃tk − Ä̃tk)(d¹) f E[f(¹k)|Htk ] +W1(Ä̃tk , Ätk). (15)

Combining Equation (14) and (15) yields Equation (4). Applying the tower rule concludes the proof. ■

Corollary 1 (Tabular Langevin Posterior Sampling). In tabular settings with finite states and actions, by running an

approximate sampling method for each (s, a) ∈ S ×A at time tk, it holds that for each policy switch k ∈ [KT ],
∣∣∣E[f(¹∗)|Htk ]− E[f(¹k)|Htk ]

∣∣∣ f
∑

(s,a)∈S×A
W1(Ä̃tk(s, a), Ätk(s, a)),

where Ä̃tk(s, a) are the corresponding true posterior and approximate posterior for (s, a) at time tk.

Proof of Corollary 1 Since we run the approximate sampling algorithm for each state-action pair at the beginning of each

policy switch k, the total approximation error is equal to the sum of approximation error for each (s, a). ■

We first provide a general regret decomposition in Lemma E.2, which holds for any undiscounted weakly-communicating

MDPs with infinite horizon, where approximate sampling is adopted and the transition is Lipschitiz.

Lemma E.2 (Regret decomposition.). For a weakly-communicating MDP with infinite time-horizon T , the Bayesian regret

of Algorithm 3 instantiated with any approximate sampling method can be decomposed as follows:

RB(T ) f E

[ KT∑

k=1

TkW1(Ä̃tk , Ätk)
]
+H(log T + 1) +HLpE

[ KT∑

k=1

tk+1−1∑

t=tk

∥∥¹∗ − ¹k
∥∥
]
, (16)

where Lp is a Lipschitz constant, and H is the upper bound of span of MDP.

Proof of Lemma E.2 We adopt the greedy policy with respect to the sampled model, which gives at = argmaxa∈A

r(st, a) at each time step t. By Bellman Optimality equation in Lemma 1,

JÃk(¹k) + hÃk(s, ¹k) = R(st, at) +
∫

s′∈S
p(s′|st, at; ¹k)hÃk(s′, ¹k)ds′, ∀t ∈ [tk, tk+1 − 1]. (17)

We then follow the standard analyses in RL literature (Osband et al., 2013; Osband and Van Roy, 2014) to decompose the

regret into sum of Bellman errors. Plug in Equation (17) into the definition of Bayesian regret, we have,

RB(T ) = E

[
T∑

t=1

JÃ∗

(¹∗)−R(st, at)
]
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= E

[
KT∑

k=1

tk+1−1∑

t=tk

JÃ∗

(¹∗)−R(st, Ãk(st))

]

= E

[ KT∑

k=1

tk+1−1∑

t=tk

J∗(¹∗)− JÃk(¹k)
]

︸ ︷︷ ︸
(i)

+E

[
KT∑

k=1

tk+1−1∑

t=tk

(∫

s′∈S
p(s′|st, Ãk(st); ¹

k)hÃk(s′, ¹k)ds′ − hÃk(st, ¹
k)

)]

︸ ︷︷ ︸
(ii)

(18)

Term (i). By the property of approximate posterior sampling in Lemma 3 and the non-negativity of Wasserstein distance,

(i) f |(i)| f E

[ KT∑

k=1

tk+1−1∑

t=tk

∣∣∣J∗(¹∗)− JÃk(¹k)
∣∣∣
]
f E

[ KT∑

k=1

tk+1−1∑

t=tk

W1(Ätk , Ä̃tk)
]
= E

[ KT∑

k=1

TkW1(Ä̃tk , Ätk)
]
. (19)

We remark that this term differs from the exact PSRL where no approximate sampling method is used. To ensure the final

regret is properly bounded, approximate sampling method being used must provide sufficient statistical guarantee of Ä̃tk
and Ätk in terms of Wasserstein-1 distance.

Term (ii). We further decompose term (ii) into the model estimation errors.

(ii) = E

[ KT∑

k=1

tk+1−1∑

t=tk

(∫

s′∈S
p(s′|st, Ãk(st); ¹

k)hÃk(s′, ¹k)ds′ − hÃk(st, ¹
k) + hÃk(st+1, ¹

k)− hÃk(st+1, ¹
k)
)]

= E

[ KT∑

k=1

tk+1−1∑

t=tk

(
hÃk(st+1, ¹

k)− hÃk(st, ¹
k)
)]

︸ ︷︷ ︸
∆h

+ E

[ KT∑

k=1

tk+1−1∑

t=tk

∫

s′∈S

(
p(s′|st, Ãk(st), ¹

k)− p(s′|st, Ãk(st), ¹
∗)
)
hÃk(s′, ¹k)ds′

]

︸ ︷︷ ︸
∆err

.

To bound ∆h, note that for each k ∈ [1,KT ], sp(h(¹
k)) f H , and by Theorem 8,

∆h = E

[ KT∑

k=1

tk+1−1∑

t=tk

(
hÃk(st+1, ¹

k)− hÃk(st, ¹
k)
)]

= E

[ KT∑

k=1

(
hÃk(stk+1

, ¹k)− hÃk(stk , ¹k)
)]

f E
[
sp(h(¹k))KT

]

f H(log T + 1). (20)

Thus, combining Equation (18),(19), (20), and by Lemma E.3, we conclude the proof.

■

Lemma E.3 (Bound estimation error). Let ∆err = E

[∑KT

k=1

∑tk+1−1
t=tk

∫
s′∈S

(
p(s′|st, Ãk(st), ¹

k)− p(s′|st, Ãk(st), ¹
∗)
)

hÃk(s′, ¹k)ds′
]
. Suppose Assumption 6 holds, then

∆err f HLpE

[ KT∑

k=1

tk+1−1∑

t=tk

∥∥¹∗ − ¹k
∥∥
]
. (21)
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Proof of Lemma E.3 Recall that Ãk is the optimal policy under ¹k, thus h(·, ¹k) = hÃk(·, ¹k), and span is properly

bounded in weakly-communicating MDPs: sp(h(¹)) f H for any ¹ ∈ R
d. Then by Assumption 6 and Cauchy-Schwartz

inequality,
∫

s′∈S

(
p(s′|st, Ãk(st), ¹

k)− p(s′|st, Ãk(st), ¹
∗)
)
hÃk(s′, ¹k)ds′

f
∥∥p(·|st, Ãk(st), ¹

k)− p(·|st, Ãk(st), ¹
∗)
∥∥ ∥∥h(·, ¹k)

∥∥
∞

= HLp

∥∥¹∗ − ¹k
∥∥ .

Plugging the result into the definition of ∆err concludes the proof. ■

The above regret decomposition in Lemma E.2 holds regardless of the approximate sampling methods being employed. To

derive the final regret bounds, we discuss in the context of General Parmeteration and Simple parameterization respectively.

E.2.1. GENERAL PARAMETRIZATION

The first term in Equation (16) corresponds to the accumulating approximation error over the time horizon T due to the

use of approximate sampling method. Upper bounding this term relies on the statistical guarantee provided by the adopted

approximate sampling method, which is the main novelty of LPSRL. In this section, we focus on the regret guarantee under

the general parameterization.

To maintain the sub-linear regret guarantee, the convergence guarantee provided by SGLD is required to effectively upper

bound the approximation error in the first term of Lemma E.2.

Lemma E.4. Suppose Assumptions 1-4 are satisfied. Under the general parameterization of MDP, by instantiating LPSRL

with SGLD, it holds that for any p g 2,

KT∑

k=1

TkW1(Ä̃tk , Ätk) f
√

24T (log T + 1)

m
(d+ logQ+ (32 + 8d»2)p)1/2 . (22)

Proof of Lemma E.4 By design of Algorithm 3 and the convergence guarantee of SGLD in Theorem 1, we have,

KT∑

k=1

TkW1(Ä̃tk , Ätk) f
log T+1∑

k=1

2k−1Wp(Ä̃tk , Ätk)

f
log T+1∑

k=1

2k−1

√
12

2k−1m
(d+ logQ+ (32 + 8d»2)p)1/2

=

√
12

m
(d+ logQ+ (32 + 8d»2)p)1/2

log T+1∑

k=1

√
2k−1

f
√

24T (log T + 1)

m
(d+ logQ+ (32 + 8d»2)p)1/2.

Here, the first inequality follows from the fact that Wp g Wq for any p g q. The second equality directly follows from

Theorem 1, and the last inequality follows from the Cauchy-Schwartz inequality.

■

To further upper bound ∆err in Lemma E.3 under the General Parameterization, we establish the following concentration

guarantee provided by SGLD under the static doubling batching scheme adopted by LPSRL.

Lemma E.5 (Concentration of SGLD). For any policy-switch k ∈ [KT ], instantiating LPSRL with SGLD guarantees that

E

[
Tk∥¹∗ − ¹k∥2

]
f 960d

m
log T.

Proof of Lemma E.5 At time tk, denote ¹k,∗ the parameter sampling from the true posterior Ätk , and ntk the total number

of available observations. By the triangle inequality,

∥∥¹∗ − ¹k
∥∥2 f 3(

∥∥¹∗ − ¹k,∗
∥∥2 +

∥∥¹k,∗ − ¹k
∥∥2).
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Taking expectation and multiplying both sides by 2k−1 yields,

E[Tk∥¹∗ − ¹k∥2] f 3E[Tk∥¹∗ − ¹k,∗∥2] + 3E[Tk∥¹k,∗ − ¹k∥2]. (23)

Under the General parameterization, we follow Assumption A2 in (Theocharous et al., 2017b) to focus on the MDPs that

have proper concentration, which suggests the true parameter ¹∗ and the mode of the posterior ¹k,∗ satisfies

E
[
∥¹∗ − ¹k,∗∥2

]
f 32d

mntk

log T.

We provide an example in Appendix E.3 to show this assumption can be easily satisfied in practice. Let D̃2 := 32d
m log T ,

then by Theorem 7 adapted to the MDP setting (i.e. with a change in notation), we have,

W 2
2 (Ä̃tk , Ätk) f

4D̃2

ntk

.

Note that ntk =
∑k−1

k′=1 Tk′ and by design of Algorithm 3, ntk f Tk f 2ntk . Combining the above results and Equation

(23), we have

E
[
Tk∥¹∗ − ¹k∥2

]
f 30D̃2 f 960d

m
log T, ∀D̃2 g 32d

m
log T.

■

With all the above results, we are now ready to prove the main theorem for LPSRL with SGLD.

Theorem 4. Under Assumptions 1 − 6, by instantiating SamplingAlg with SGLD and setting the hyperparameters as

per Theorem 1, with p = 2, the regret of LPSRL (Algorithm 3) satisfies:

RB(T ) f CH log T

√
T

m
(d+ logQ+ (32 + 8d»2)p)1/2,

where C is some positive constant, H is the upper bound of the MDP span, and Q denotes the quality of the prior. The

total number of iterations required for SGLD is O(»2 log T ).

Proof of Theorem 4 First we further upper bound ∆err using the concentration guarantee provided by SGLD. We first

note that by Cauchy–Schwarz inequality,

KT∑

k=1

tk+1−1∑

t=tk

∥∥¹∗ − ¹k
∥∥ =

T∑

t=1

∥∥¹∗ − ¹k
∥∥ f

√√√√T

T∑

t=1

∥¹∗ − ¹k∥2 =

√√√√T

KT∑

k=1

Tk ∥¹∗ − ¹k∥2. (24)

Combining Equation (21) in Lemma E.3 and (24), by Theorem 8, Lemma E.3 and E.5, we have,

∆err f HLp

√√√√TE
[ KT∑

k=1

Tk ∥¹∗ − ¹k∥2
]

f HLp

√
TKT max

k
E

[
Tk ∥¹∗ − ¹k∥2

]

f HLp

√
960d

m
TlogT (log T + 1)

f H(log T + 1)

√
960d

m
T . (25)

Then combining Lemma E.2, E.4 and Equation 25, we have,

RB(T ) f H(log T + 1) +H(log T + 1)

√
960d

m
T +

√
24T (log T + 1)

m
(d+ logQ+ (32 + 8d»2)p)1/2
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f (1 +
√
960 +

√
24)H(log T + 1)

√
T

m
(d+ logQ+ (32 + 8d»2)p)1/2

f 38H(log T + 1)

√
T

m
(d+ logQ+ (32 + 8d»2)p)1/2.

■

E.2.2. SIMPLEX PARAMETRIZATION

We now discuss the performance of LPSRL under simplex parametrization. Similar to the General Parameterization, the

regret guarantee of LPSRL relies on the convergence guarantee of MLD, which is presented in the following theorem.

Theorem 5. At the beginning of each policy-switch k, for each state-action pair (s, a) ∈ S × A, sample transition

probabilities over ∆|S| using MLD with the entropic mirror map. Let ntk be the number of data samples for any (s, a) at

time tk, then with step size chosen per Cheng and Bartlett (2018), running MLD with O(ntk) iterations guarantees that

W2(Ä̃tk , Ätk) = Õ
(√
|S|/ntk

)
.

Proof of Theorem 5 Theorem 5 follows from Theorems 2 and 3 from Hsieh et al. (2018) with step sizes given as per

Theorem 3 from Cheng and Bartlett (2018). ■

Instantiating Algorithm 3 with MLD provides the following statistical guarantee to control the approximation error in terms

of the Wasserstein-1 distance.

Lemma E.6. Under the simplex parameterization of MDPs, we run MLD for each state-action pair (s, a) ∈ S ×A at the

beginning of each policy-switch k ∈ [KT ] for Õ(|S||A|ntk) iterations. Suppose Assumption 5 and 6 are satisfied, then by

instantiating LPSRL (Algorithm 3) with MLD (Algorithm 4) as SamplingAlg, we have,

KT∑

k=1

TkW1(Ä̃tk , Ätk) f |S|
√
8|A|T log T . (26)

Proof of Lemma E.6 By Corollary 1, in tabular settings, the error term in the Wasserstein-1 distance can be further de-

composed in terms of state-action pairs, suggesting

W1(Ä̃tk , Ätk) =
∑

(s,a)∈S×A
W1(Ä̃tk(s, a), Ätk(s, a)).

Then by design of Algorithm 3, we have,

KT∑

k=1

TkW1(Ä̃tk , Ätk) =

KT∑

k=1

Tk

∑

s,a

W1(Ä̃tk(s, a), Ätk(s, a))

f
log T+1∑

k=1

Tk

∑

s,a

W2(Ä̃tk(s, a), Ätk(s, a))

f
log T+1∑

k=1

Tk|S||A|max
s,a

W2(Ä̃tk(s, a), Ätk(s, a)), (27)

where the first inequality follows from the fact that Wp gWq for any p g q.

The convergence guarantee provided by Theorem 5 for MLD suggests, for each state-action pair (s, a) ∈ S × A, upon

running MLD for Õ(|S||A|ntk) iterations, where ntk is the number of data available for (s, a) at time tk, we have

W2(Ä̃tk(s, a), Ätk(s, a)) f
√

1

|A|ntk

. (28)
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At time tk, let ntk be the total number of available observations, which gives ntk =
∑k−1

k′=1 Tk′ and tk = ntk + 1. By

design of Algorithm 3, ntk f Tk f 2ntk . Then combining Equation (27) and (28) gives,

KT∑

k=1

Tk

∑

s,a

W1(Ä̃tk(s, a), Ätk(s, a)) f
log T+1∑

k=1

|S|
√
2|A|Tk

f
log T+1∑

k=1

|S|
√
|A|2k

f |S|

√√√√|A|(log T + 1)

log T+1∑

k=1

2k

f |S|
√
8|A|T log T ,

where the third inequality follows from the Cauchy-Schwarz inequality.

■

Lemma E.6 suggests the approximation error in the first term of Lemma E.2 can be effectively bounded when instantiating

SamplingAlg with MLD.

Lemma E.7 (Concentration of MLD). For any policy-switch k ∈ [KT ], we run MLD (Algorithm 4) for each state-action

pair (s, a) ∈ S ×A at time tk for Õ(|S||A|ntk) iterations. Then instantiating LPSRL with MLD guarantees that

E[Tk∥¹k,∗ − ¹k∥2] f 2|S|2|A|.

Proof of Lemma E.7 By tower’s rule and the triangle inequality, we have

E
[
Tk∥¹k,∗ − ¹k∥2

]
= E

[
E
[
Tk∥¹k,∗ − ¹k∥2

] ∣∣∣Htk

]

f E

[
TkW

2
2 (Ä̃tk , Ätk)

∣∣∣Htk

]

f E

[
Tk(|S||A|)2 max

s,a
W 2

2 (Ä̃tk(s, a), Ätk(s, a))
∣∣∣Htk

]
. (29)

where the last inequality follows from the fact that in tabular setting, W 2
2 (Ä̃tk , Ätk) =

(∑
s,a W2(Ä̃tk(s, a), Ätk(s, a))

)2
.

By the convergence guarantee of MLD in Theorem 5, for each state-action pair (s, a) ∈ S × A, upon running MLD for

Õ(|S||A|ntk) iterations, we have

W2(Ä̃tk(s, a), Ätk(s, a)) f
√

1

|A|ntk

. (30)

Combining Equation (29) and (30) and the fact that ntk f Tk f 2ntk concludes the proof.

■

With the concentration guarantee between sample ¹k and ¹k,∗, as well as the concentration guarantee between ¹k,∗ and ¹∗

in exact PSRL, we are able to effectively upper bound the model estimation error ∆err in tabular settings.

Lemma E.8 (Bound ∆err in tabular settings). With the definition of model estimation error ∆err in Lemma E.3, in tabular

setting, the following upper bound holds for ∆err,

∆err f 66H|S|
√
|A|T log(2|S||A|T ), (31)

where Lp is the Lipschitz constant for transition dynamics.

Proof of Lemma E.8 By the triangle inequality and Lemma E.3,

∆err f HLpE

[ KT∑

k=1

tk+1−1∑

t=tk

∥∥¹∗ − ¹k
∥∥
]
f HLp

(
E

[ KT∑

k=1

tk+1−1∑

t=tk

∥∥¹∗ − ¹k,∗
∥∥
]
+ E

[ KT∑

k=1

tk+1−1∑

t=tk

∥∥¹k,∗ − ¹k
∥∥
])

. (32)
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Bound The first term. The first term can be upper bounded using standard concentration results of exact PSRL algorithms

in Bayesian settings. Define the event

E¹ =
{
¹ : ∀(s, a) ∈ S ×A,

∥∥∥¹(·|s, a)− ¹̂k(·|s, a)
∥∥∥
1
f ´k(s, a)

}
, (33)

where ¹̂k is the empirical distribution at the beginning of policy switch k, ´k(s, a) :=
√

14|S| log(2|S||A|tkT )
max(1,ntk

(s,a)) following

(Jaksch et al., 2010; Ouyang et al., 2017; Osband et al., 2013) by setting ¶ = 1/T . Then event E¹ happens with probability

at least 1− ¶. Note that for any vector x, ∥x∥2 f ∥x∥1, and by the triangle inequality, we have

∥∥¹∗ − ¹k,∗
∥∥ f

∑

s′∈S

∣∣∣¹∗(·|s, a)− ¹k,∗(·|s, a)
∣∣∣ f 2(´k(st, at) + 1{¹∗ /∈Eθ}).

At any time t ∈ [tk, tk + Tk − 1], nt f 2ntk for any state-action pair (st, at), and by the fact that tk f T , we have

E

[ KT∑

k=1

tk+1−1∑

t=tk

´k(st, at)
]
f

KT∑

k=1

tk+1−1∑

t=tk

√
28|S| log(2|S||A|tkT )
max(1, nt(st, at))

f
T∑

t=1

√
56|S| log(2|S||A|T )
max(1, nt(st, at))

. (34)

It then suffices to bound
∑T

t=1 1/
√
max(1, ntst, at). Note that

T∑

t=1

1√
max(1, nt(st, at))

=
∑

(s,a)

T∑

t=1

1(st,at)=(s,a)√
max(1, nt(s, a))

f 4
∑

(s,a)

∫ nT+1(s,a)

z=0

z−1/2dz

f 4

√
|S||A|

∑

(s,a)

nT+1(s, a)

f 4
√
|S||A|T . (35)

On the other hand, by definition of ´k(s, a), P(¹
∗ /∈ E¹}) f 1/(Tt6k), which yields

E

[
KT∑

k=1

tk+1−1∑

t=tk

1{¹∗ /∈Eθ}

]
f E

[
KT∑

k=1

TkP(¹
∗ /∈ E¹})

]
f

∞∑

k=1

k−6 f
∞∑

k=1

k−2 f 2. (36)

Combining Equation (34), (35) and (36), we have,

HLpE

[ KT∑

k=1

tk+1−1∑

t=tk

∥∥¹∗ − ¹k,∗
∥∥
]
f 64HLp|S|

√
|A|T log(2|S||A|T ) (37)

Bound the second term. The second term arises from the use of approximate sampling. Note that by Cauchy–Schwarz

inequality, this term in Equation (32) satisfies,

KT∑

k=1

tk+1−1∑

t=tk

∥∥¹k,∗ − ¹k
∥∥ =

T∑

t=1

∥∥¹k,∗ − ¹k
∥∥ f

√√√√T

T∑

t=1

∥¹k,∗ − ¹k∥2 =

√√√√T

KT∑

k=1

Tk ∥¹k,∗ − ¹k∥2. (38)

It then relies on the concentration guarantee provided by MLD for LPSRL under the static policy switch scheme. By

Lemma E.7, we have,

HLp

√√√√TE
[ KT∑

k=1

Tk ∥¹∗ − ¹k∥2
]
f HLp

√
TKT max

k
E

[
Tk ∥¹∗ − ¹k∥2

]
f HLp|S|

√
4|A|T log T . (39)

Combining Equation (37) and (39) concludes the proof.

■
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With all the above results, we now proceed to prove the regret bound for LPSRL with MLD.

Theorem 6. Suppose Assumptions 5 and 6 are satisfied, then by instantiating SamplingAlg with MLD (Algorithm 4),

there exists some positive constant C such that the regret of LPSRL (Algorithm 3) in the Simplex Parameterization is

bounded by

RB(T ) f CH|S|
√
|A|T log(|S||A|T ),

where C is some positive constant, H is the upper bound of the MDP span. The total number of iterations required for

MLD is O(|S|2|A|2T ).

Proof of Theorem 6 By Lemma E.2, E.6 and E.8, we have

RB(T ) f H(log T + 1) + 66H|S|
√
|A|T log(2|S||A|T ) + |S|

√
8|A|T log T

f 2H log T + 66H|S|
√
|A|T log(2|S||A|T ) + 4|S|

√
|A|T log T

f 72H|S|
√
|A|T log(2|S||A|T ).

By Lemma E.6, for each state-action pair (s, a) ∈ S × A and policy-switch k ∈ [KT ], the number of iterations required

for MLD is O(|S||A|2k−1). This suggests that for each state-action pair, the total number of iterations required for MLD

is O(|S||A|T ) along the time horizon T . Summing over all possible state-action pairs, the computational cost of running

MLD in terms of the total number of iterations is O(|S|2|A|2T ). ■

E.3. General Parameterization Example

Following (Theocharous et al., 2017a;b) we consider a points of interest (POI) recommender system where the system

recommends a sequence of points that could be of interest to a particular tourist or individual. We will let the points

of interest be denoted by points on R. Following the perturbation model in (Theocharous et al., 2017a;b), the transition

probabilities are p(s|¹) = p(s)1/¹ if the chosen action is s and it is p(s)/z(¹) otherwise. Here s is a state or a POI and

z(¹) =
∑

x ̸=s p(x)

1−p(s)1/θ
. Furthermore, to fully specify p we consider p(s|¹) = 1√

2Ã
e−s2/2¹. One can see that Assumptions 1-4

are satisfied due to the Gaussian-like nature of the transition dynamics and the satisfiability of Assumption 5 follows from

Lemma 5 in (Theocharous et al., 2017b).

F. Experimental Details

F.1. Additional Discussions of Langevin TS in Gaussian Bandits

Figure 2: Left:(a) Expected regret for informative priors. Right:(b) Expected regret for uninformative priors. Results are reported over
10 experiments. In both scenarios, SGLD-TS under dynamic scheme achieves optimal performance as in sequential case without using
approximate sampling.

In this section, we present additional empirical results for the Gaussian bandit experiments. In particular, we examine

both informative priors and uninformative priors for Gaussian bandits with N = 15 arms, where each arm is associated

with distinct expected rewards. We set the true expected rewards of all arms to be evenly spaced in the interval [1, 20],
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Figure 3: Left:(a) expected communication cost of three batching schemes: fully-sequential mode, dynamic batch, and static batch.
Right:(b) expected communication cost under dynamic batching scheme for Gaussian bandits.

and the ordering of values is shuffled before assigning to arms. All arms share the same standard deviation of 0.5. We

investigate the performance of SGLD-TS against UCB1, Bayes-UCB, and exact-TS under different interaction schemes:

fully-sequential mode, dynamic batch scheme, and static batch scheme.

In the first setting, we assume prior knowledge of the ordering of expected rewards and apply informative priors to facilitate

the learning process. Gaussian priors are adopted with means evenly spaced in [14, 20], and inverted variance (i.e., preci-

sion) set to 0.375. The priors are assigned according to the ordering of the true reward distributions. Note that the exact

knowledge of the true expected values is not required. In TS algorithms, the selection of arms at each time step is based

on sampled values, therefore efficient learning is essential even with the knowledge of the correct ordering. The expected

regret of all methods is reported over 10 experiments and results are illustrated in Figure 2(a). Results of both Figure 1(a)

and Figure 2(a) demonstrate that SGLD-TS achieves optimal performance similar to exact-TS with conjugate families. Its

appealing empirical performance in comparison to other popular methods (e.g., UCB1 and Bayes-UCB), along with its

ability to handle complex posteriors using MCMC algorithms, make it a promising solution for challenging problem do-

mains. Additionally, the introduction of the dynamic batch scheme ensures the computational efficiency of SGLD-TS. As

depicted in Figure 3(a)(b) and Table 2 (column labeled ”batches”), communication cost is significantly reduced from linear

to logarithmic dependence on the time horizon, as suggested by Theorem 2. Furthermore, in bandit environments, our

dynamic batch scheme exhibits greater robustness compared to the static batch scheme for both frequentist and Bayesian

methods.

Furthermore, we explore the setting where prior information is absent, and uninformative priors are employed. In this case,

we adopt the same Gaussian priors as N (14.0, 8.0) for all arms. Similar to the first setting, the same conclusion can be

drawn for SGLD-TS from Figure 2(b).

F.2. Experimental Setup for Langevin TS in Laplace Bandits

In order to demonstrate the performance of Langevin TS in a broader class of general bandit environments where closed-

form posteriors are not available and exact TS is not applicable, we construct a Laplace bandit environment consisting of

N = 10 arms. Specifically, we set the expected rewards to be evenly spaced in the interval [1, 10], and shuffle the ordering

before assigning each arm a value. The reward distribution of each arm shares the same standard deviation of 0.8. We

adopt favorable priors to incorporate the knowledge of the true ordering in Laplace bandits. It is important to note that

our objective is to learn the expected rewards, and arm selection at each time step is based on the sampled values rather

than the ordering. In particular, we adopt Gaussian priors with means evenly spaced in [4, 10] (ordered according to prior

knowledge). The inverted variance (i.e., precision) for all Gaussian priors is set to 0.875. We conduct the experiments 10

times and report the cumulative regrets in Figure 1(b).

By employing Langevin TS in the Laplace bandit environment, we aim to showcase the algorithm’s effectiveness and

versatility in scenarios where posteriors are intractable and exact TS cannot be directly applied.
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Figure 4: Number of interactions in RiverSwim over 10 experiments. Static policy switch scheme requires the least number of commu-
nication.

F.3. Experimental Setup for Langevin PSRL

In MDP setting, we consider a variant of RiverSwim environment being frequently used empirically (Strehl and Littman,

2008), in which the agent swimming in the river is modeled with five states, and two available actions: left and right. If the

agent swims rightwards along the river current, the attempt to transit to the right is going to succeed with a large probability

of p = 0.8. If the agent swims leftwards against the current, the transition probability to the left is small with p = 0.2.

Rewards are zero unless the agent is in the leftmost state (r = 2.0) or the rightmost state (r = 10.0). The agent is assumed

to start from the leftmost state. We implement MLD-PSRL and exact-PSRL under two policy switch schemes, one is the

static doubling scheme discussed in section 6, and the other is the dynamic doubling scheme based on the visiting counts

of state-action pairs. To ensure the performance of TSDE, we adopt its original policy switch criteria based on the linear

growth restriction on episode length and dynamic doubling scheme. We run experiments 10 times, and report the average

rewards of each method in Figure 1(c).

G. Societal Impacts

Our work focuses on sequential decision making in general reward/transition settings and with reduced communication

costs. It is a theoretical work and there is no negative societal impact.
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