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Abstract

Optimization objectives in the form of a sum of
intractable expectations are rising in importance
(e.g., diffusion models, variational autoencoders,
and many more), a setting also known as “fi-
nite sum with infinite data.” For these problems,
a popular strategy is to employ SGD with dou-
bly stochastic gradients (doubly SGD): the ex-
pectations are estimated using the gradient esti-
mator of each component, while the sum is es-
timated by subsampling over these estimators.
Despite its popularity, little is known about the
convergence properties of doubly SGD, except
under strong assumptions such as bounded vari-
ance. In this work, we establish the convergence
of doubly SGD with independent minibatching
and random reshuffling under general conditions,
which encompasses dependent component gradi-
ent estimators. In particular, for dependent esti-
mators, our analysis allows fined-grained analy-
sis of the effect correlations. As a result, under
a per-iteration computational budget of b X m,
where b is the minibatch size and m is the num-
ber of Monte Carlo samples, our analysis sug-
gests where one should invest most of the budget
in general. Furthermore, we prove that random
reshuffling (RR) improves the complexity depen-
dence on the subsampling noise.

1. Introduction

Stochastic gradient descent (SGD; Robbins & Monro,
1951; Bottou, 1999; Nemirovski et al., 2009; Shalev-
Shwartz et al., 2011) is the de facto standard for solving
large scale optimization problems of the form of finite sums
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such as
minimize {F(x) A %2:‘:1 £ (%) } (1)
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When n is large, SGD quickly converges to low-accuracy
solutions by subsampling over components f71, ..., f,,. The
properties of SGD on the finite sum class have received an
immense amount of interest (Bottou et al., 2018) as it in-
cludes empirical risk minimization (ERM; Vapnik, 1991).

Unfortunately, for an emerging large set of problems in ma-
chine learning, we may not have direct access to the com-
ponents f1,..., f,. Thatis, each f; may be defined as an
intractable expectation, or an “infinite sum”

filx) = [Er,~¢fi (x;m), (2)
where we only have access to the noise distribution ¢
and the integrand f; (x;n), and n is a potentially con-
tinuous and unbounded source of stochasticity; a setting
Zheng & Kwok (2018); Bietti & Mairal (2017) have previ-
ously called “finite sum with infinite data.” Such problems
include the training of diffusion models (Sohl-Dickstein
et al., 2015; Ho et al., 2020; Song & Ermon, 2019), vari-
ational autoencoders (Kingma & Welling, 2014; Rezende
etal., 2014), solving ERM under differential privacy (Bass-
ily et al., 2014; Song et al., 2013), and also classical prob-
lems such as variational inference (Ranganath et al., 2014;
Titsias & Lazaro-Gredilla, 2014; Kucukelbir et al., 2017),
and variants of empirical risk minimization (Dai et al.,
2014; Bietti & Mairal, 2017; Shi et al., 2021; Orvieto et al.,
2023; Liu et al., 2021). In contrast to the finite sum set-
ting where SGD has traditionally been applied, our prob-
lem takes the form of

minimize { F(x) £ © X, Epeofi (i) §.
These optimization problems are typically solved us-
ing SGD with doubly stochastic gradients (doubly SGD;
coined by Dai et al. 2014; Titsias & Lazaro-Gredilla 2014),
so-called because, in addition to subsampling over f;,
stochastic estimates of each component f; are used.

Previous studies have relied on strong assumptions to an-
alyze doubly stochastic gradients. For instance, Kulun-
chakov & Mairal (2020); Bietti & Mairal (2017); Zheng
& Kwok (2018) have (i) assumed that the variance of each
component estimator is bounded by a constant, which con-
tradicts componentwise strong convexity (Nguyen et al.,
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2018) when X = R, (ii) or that the integrand V f; (x;7),
is L-Lipschitz smooth “uniformly” over 7. That is, for any
fixed n and i,

IVFi ) = Vi sl < Lix — i

holds for all (x,y) € X2. Unfortunately, this only holds
for additive noise and is otherwise unrealizable when n
has an unbounded support. Therefore, analyses relying on
uniform smoothness obscure a lot of interesting behavior.
Meanwhile, weaker assumptions such as expected smooth-
ness (ES; Moulines & Bach, 2011; Gower et al., 2021b)
have shown to be realizable even for complex gradient es-
timators (Domke, 2019; Kim et al., 2023). Therefore, a
key question is how these ES-type assumptions propagate
to doubly stochastic estimators. Among these, we focus on
the expected residual (ER; Gower et al., 2019) condition.

Furthermore, in practice, certain applications of doubly
SGD share the randomness n across the batch B. (See
Section 2.2 for examples.) This introduces dependence be-
tween the gradient estimate for each component such that
Vfi@en) L Vfj(x;n) fori, j € B. Little is known about
the effect of this practice apart from some empirical re-
sults (Kingma et al., 2015). For instance, when m Monte
Carlo samples of i and a minibatch of size b are used, what
is the trade-off between m and b? To answer this question,
we provide a theoretical analysis of doubly SGD that en-
compasses dependent gradient estimators.

Technical Contributions

* Theorem 1: For doubly stochastic estimators, we
establish a general variance bound of the form of

2
1 n 2
. 21 %

(V) +p

(Z Zin ai) s )

mb m b

where oiz is the variance of the estimator of Vf;, p €
[0,1] is the correlation between the estimators, and
72 is the variance of subsampling.

* Theorems 2 and 3: Using the general variance
bound, we show that a doubly stochastic estima-
tor subsampling over correlated estimators satisfy-
ing the ER condition and the bounded variance (BV;
Definition 2; bounded only on the solution set) con-
dition equally satisfies the ER and BV conditions as
well. This is sufficient to guarantee the convergence
of doubly SGD on convex, quasar convex, and non-
convex smooth objectives.

* Theorem 5: Under similar assumptions, we also
prove the convergence of doubly SGD with random
reshuffling (doubly SGD-RR), instead of indepen-
dent subsampling, on a strongly convex objective
with strongly convex components.

Practical Insights

* Should I invest in (increase) m or b? When depen-
dent gradient estimators are used, increasing m or b
does not have the same impact on the gradient vari-
ance as the subsampling strategy also affects the re-
sulting correlation between the estimators. Through
Lemma 9, our analysis provides insight into this ef-
fect. In particular, we reveal that reducing subsam-
pling variance also reduces Monte Carlo variances.
Therefore, for a fixed budget m X b, increasing b
should always be preferred over increasing m.

* Random Reshuffling Improves Complexity. Our
analysis of doubly SGD-RR reveals that, for strongly
convex objectives, random reshuffling improves
the iteration complexity of doubly SGD from
O (%ofnc + %asub) to (9(&03nC + %asub) Fur-
thermore, for dependent gradient estimators, dou-
bly SGD-RR is “super-efficient”: for a batch tak-
ing ©(mb) samples to compute, it achieves a n/b
tighter asymptotic sample complexity compared to
full-batch SGD.

2. Preliminaries

Notation We denote random variables (RVs) in serif
(e.g., x, x, X, B), vectors and matrices in bold (e.g., X,
x, A, A). For a vector x, we denote the ¢,-norm as
lIxIl, £ /(x,x) = VxTx, where (x,x) = x"x is the inner
product. Lastly, X L Y denotes independence of X and Y.

Table 1. Nomenclature

Symb. Description Ref.
F(x) Objective function Eq. (1)
fi(x) ith component of F Eq. (1)

V fg(x) Minibatch subsampling estimator of VF Eq. (4)
B Minibatch of component indices Eq. (3)

Vo Minibatch subsampling strategy Eq. (3)
bess  Effective sample size of 7 Eq. (5)
& (x) Unbiased stochastic estimator of V f; Eq. (7)
g; (x; n) Integrand of estimator g; (x) Eq. (7)
gz (x) Doubly stochastic estimator of VF Eq. (8)
Lo ER constant (Definition 1) of Assu. 5
L; ER constant (Definition 1) of g; Assu. 6
72 BV constant (Definition 2) of 7 Assu. 7
o? BV constant (Definition 2) of g; Assu. 7

2.1. Stochastic Gradient Descent on Finite-Sums

Stochastic gradient descent (SGD) is an optimization algo-
rithm that repeats the steps

X1 = Iy (%, — 7,8 (x1)),
where, T, is a projection operator onto X, (yt)iTz_ol is some
stepsize schedule, g (x) is an unbiased estimate of VF (x).
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Finite-Sum Problems. When the objective can be rep-
resented as a “finite sum” it is typical to approximate the
gradients of the objective as

VE() = L3 V0 = Eour | ;T Vi )] )

where B ~ 7 is an index set of cardinality |B| = b, or
“minibatch,” formed by subsampling over the datapoint in-
dices {1, ..., n}. More formally, we are approximating VF
using the (minibatch) subsampling estimator

1
Vig() 25 2 Vi), )
ieB
where the performance of this estimator, or equivalently, of
the subsampling strategy 7z, can be quantified by its vari-
ance

VIV fp ()] = — »

bes 1

S IVEi) = VE@IL, (5)

(unit) subsampling variance

where we say besr is the “effective sample size” of 7. For
instance, independent subsampling achieves bess = b, and
sampling without replacement, also known as “b-nice sam-
pling” (Gower et al., 2019; Richtarik & Takac, 2016; Csiba
& Richtarik, 2018), achieves bgss = (n—Db/n—p (Lemma 2).

2.2. Doubly Stochastic Gradients

For problems where the components are defined as in-
tractable expectations as in Eq. (2), we have to rely on an
additional Monte Carlo approximation step such as

VE@) = 2 Y Vi) = Ep [% > Epep Vi n)]]
i=1

ieB

m

1

=Eper, o | g 2. 2 Vfilen) |, (6)
ieB j=1

where n; ~ ¢ are m independently and identically dis-

tributed (i.i.d.) Monte Carlo samples from ¢.

Doubly Stochastic Gradient Consider an unbiased esti-
mator of the component gradient V f; such that

Eg (x) = Epepgi (x;n) = Vi (%), )
where g; (x; ) is the measurable integrand. Using these,

we can estimate VF through the doubly stochastic gradient
estimator

1
g(X) =) 8 (), (8)
ieB

We separately define the integrand g (x; 1) since, in prac-
tice, a variety of unbiased estimators of V f; can be ob-
tained by appropriately defining the integrand g;. For ex-
ample, one can form the m-sample “naive” Monte Carlo
estimator by setting

g:(m =~ XL Vfi(xm),

where ) = [y, ..., N ~ ®™.

Dependent Component Gradient Estimators. Notice
that, in Eq. (6), the subcomponents in the batch share the
Monte Carlo samples, which may occur in practice. This
means g; and g; in the same batch are dependent and, in
the worst case, positively correlated, which complicates
the analysis. While it is possible to make the estimators
independent by sampling m unique Monte Carlo samples
for each component (mb Monte Carlo samples in total) as
highlighted by Kingma et al. (2015), it is common to use
dependent estimators for various practical reasons:

1. ERM with Randomized Smoothing: In the ERM
context, recent works have studied the generalization
benefits of randomly perturbing the model weights be-
fore computing the gradient (Orvieto et al., 2023; Liu
et al.,, 2021). When subsampling is used, perturbing
the weights independently for each datapoint is com-
putationally inefficient. Therefore, the perturbation is
shared across the batch, creating dependence.

2. Black-Box Variational inference (Titsias & Lazaro-
Gredilla, 2014; Kucukelbir et al., 2017): Here, each
component can be decomposed as

JiGem) =2¢;0cm) +1(06n),
where ¢; is the log likelihood and r is the log-density
of the prior. By sharing (nj)Tzl, r only needs to be

evaluated m times. To create independent estimators,
it needs to be evaluated mb times instead, but r can be
expensive to compute.

3. Random feature kernel regression with doubly
SGD (Dai et al., 2014): The features are shared across
the batch '. This reduces the peak memory require-
ment from bmd,,, where d,, is the size of the random
features, to md,,.

One of the analysis goals of this work is to characterize the
effect of dependence in the context of SGD.

2.3. Technical Assumptions on Gradient Estimators

To establish convergence of SGD, contemporary analyses
use the “variance transfer” strategy (Moulines & Bach,
2011; Johnson & Zhang, 2013; Nguyen et al., 2018; Gower
et al,, 2019; 2021b). That is, by assuming the gradi-
ent noise satisfies some condition resembling smoothness,
it is possible to bound the gradient noise on some arbi-
trary point x by the gradient variance on the solution set
X, € argmin,_,. F (x).

ER Condition. In this work, we will use the expected
residual (ER) condition by Gower et al. (2021a):

'See the implementation at https://github.com/
zixul986/Doubly_Stochastic_Gradients
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Definition 1 (Expected Residual; ER). A gradient esti-
mator g of F : X' — R is said to satisfy ER (£) if

trVig (x) — g (x,)] < 2L (F(x) — F(x,)),

for some 0 < £ < oo and all x € X and all x,, €

argmin, ., F (x).

When f is convex, a weaker form can be used: We will
also consider the convex variant of the ER condition that
uses the Bregman divergence defined as

Dy (y,%) £ ¢ (¥) — ¢ (x) = (Vo (x),y — x),

V(x,y) € X2, where ¢ : X — R is a convex function.

Why the ER condition? A way to think about the ER
condition is that it corresponds to the “variance form”
equivalent of the expected smoothness (ES) condition by
Gower et al. (2021b) defined as

Ellg (x)— g (x)l; <2 (F(x)-F(x,)),  (ES)

but is slightly weaker, as shown by Gower et al. (2021a).
The main advantage of the ER condition is that, due to
the properties of the variance, it composes more easily:

Proposition 1. Let g satisfy ER (£). Then, the m-sample
i.i.d. average of g satisfy ER (£/m).

BV Condition. From the ER property, the gradient vari-
ance on any point x € XX can be bounded by the variance
on the solution set as long as the following holds:

Definition 2 (Bounded Gradient Variance). A gradient
estimator g of F : X — R satisfies BV (¢?) if

trV [g (x,)] < o?

for some 02 < oo and all x,, € arg max F (x).

xeX

2.4. Convergence Guarantees for SGD

Sufficiency of ER and BV. From the ER and BV condi-
tions, other popular conditions such as ES (Gower et al.,
2021b) and ABC (Khaled & Richtarik, 2023) can be estab-
lished with minimal additional assumptions. As a result,
we retrieve the previous convergence results on SGD es-
tablished for various objective function classes:

» strongly convex (Gower et al., 2019),
» quasar convex (+PL) (Gower et al., 2021a),
» smooth (+PL) (Khaled & Richtarik, 2023).

(Note: quasar convexity is strictly weaker than convex-
ity Guminov et al., 2023; PL: Polyak-Lojasiewicz.) (See
also the comprehensive treatment by Garrigos & Gower,
2023.) Therefore, ER and BV are sufficient conditions for
SGD to converge on problem classes typically considered
in SGD convergence analysis.

In this work, we will specifically focus on smooth and
strongly convex objectives:

Assumption 1. There exists some u, L satisfying 0 <
u < L < oo suc that the objective function F : X — R
is u-strongly convex and L-smooth as

F)=F ()2 (VF®),y =)+ Slx =yl

L 2
F(y)-F(x) <(VF(x),y —x)+ Ellx—yll2
hold for all (x, y) € X2

Also, we will occasionally assume that F is comprised of a
finite sum of convex and smooth components:

Assumption 2. The objective function F : X — Ris a
. 1
finite sum as F = - (fy + ... + f},), where each compo-
n
nent is L;-smooth and convex such that

2
IVfi(x) = Vfi MI; < 2L; Dy, (x,y)
holds for all (x, y) € X2.

Note that Assumption 2 alone already implies that F is con-
vex and L, ,x-smooth with L., = max{Li,...,L,}.

Why focus on strongly convex functions? We focus on
strongly convex objectives as the effect of stochasticity is
the most detrimental: in the deterministic setting, one only
needs O (log (1/¢)) iterations to achieve an e-accurate solu-
tion. But with SGD, one actually needs O (1/¢) iterations
due to noise. As such, we can observe a clear contrast be-
tween the effect of optimization and noise in this setting.

With that said, for completeness, we provide full proof of
convergence on strongly convex-smooth objectives:

Lemma 1. Let the objective F satisfy Assumption I and
the gradient estimator g satisfy ER (£) and BV (0'2).
Then, the last iterate of SGD is e-close to the global opti-
mum X, = argmin, .. F (x) such that E||xy — x*llj <
€ after a number of iterations at least

21 L 1
T > 2max (U——,L+ 10g<2||x0—x*||§—>
2e’ u €

u
and the fixed stepsize

= min <i 1 )
/= 202 2(L+ D))
See the full proof in page 22.

Note that our complexity guarantee is only O(1/elog (1/¢))
due to the use of a fixed stepsize. It is also possible to estab-
lish a O(1/¢) guarantee using decreasing stepsize schedules
proposed by Gower et al. (2019); Stich (2019). In prac-
tice, these schedules are rarely used, and the resulting com-
plexity guarantees are less clear than with fixed stepsizes.
Therefore, we will stay on fixed stepsizes.
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3. Main Results Table 2. Rosetta Stone
§3.1.1 §3.1.2
3.1. Doubly Stochastic Gradients
. . . . IR
First, while taming notational Xg © g
complexity, we will prove a gen- X o Vf;
eral result that holds for combin- X <« VF

ing unbiased but potentially correlated estimators through
subsampling. All of the later results on SGD will fall out
as special cases following the correspondence in Table 2.

3.1.1. GENERAL VARIANCE BOUND

Theoretical Setup. Consider the problem of estimating
the population mean X = % Z?zl X; with a collection of
RVs xq, ..., X, each an unbiased estimator of the compo-
nent X; = Ex;. Then, any subsampled ensemble

xz 2 %in with B~ 7,
ieB
where 7 is an unbiased subsampling strategy with an ef-
fective sample size of begg, is also an unbiased estimator of
Xx. The goal is to analyze how the variance of the compo-
nent estimators trVx; for i = 1, ..., n and the variance of 7
affect the variance of xg. The following condition charac-
terizes the correlation between the component estimators:

Assumption 3. The component estimators Xi,..., Xy
have finite variance tr'Vx; < oo for alli = 1,...,n and,
there exists some p € [0, 1] for all i # j such that

tr Cov (x;, ;) < p/trVx; [ trVx;.

Remark 1. Assumption 3 always holds with p = 1 as a
basic consequence of the Cauchy-Schwarz inequality.

Remark 2. For a collection of mutually independent esti-
mators Xi, ..., X, such that x; 1L x; for all i # j, Assump-
tion 3 holds with p = 0.

Remark 3. The equality in Assumption 3 holds with p = 0
for independent estimators, while it holds with p = 1 when
they are perfectly positively correlated such that, for all i #
J» there exists some constant e;; > 0 such that x; = a; ;X;

Theorem 1. Let the component estimators Xy, ... , X, sat-
isfy Assumption 3. Then, the variance of the doubly
stochastic estimator Xg is bounded as

trV [XB] < Vcom + Vcor + Vsuba

where
Vo = (é + 1%") (% Z?:l trV [xi]),
Vor = (12 (ZLA VTR
Vo = 7 Ty I — I3

Equality holds when the equality in Assumption 3 holds.

Proof. We start from the law of total (co)variance,

trV[xg] = E, [trV [x | B]] + trV, [E [xg | B]].

Variance of ensemble  Variance of subsampling

This splits the variance into the variance of the specific en-
semble of B and subsampling variance. The main challenge
is to relate the variance of the ensemble of B with the vari-
ance of the individual estimators in the sum

E, [tV [xz | B]] = E, [tr\/ [% s xi“ )

Since the individual estimators may not be independent, an-
alyzing the variance of the sum can be tricky. However, the
following lemma holds generally:

Lemma 9. Let xq, ..., Xy be a collection of vector-variate
RVs dependent on some random variable B satisfying As-
sumption 3. Then, the expected variance of the sum of
Xq, ..., Xp conditioned on B is bounded as

E [trv [zle % | B]| < oV IS]+p(ES)’ + (1 - p)E[V],
where

S=Y" uV[x[B] and V=Y. tV[x |B].

Equality holds when the equality in Assumption 3 holds.

Here, S is the sum of conditional standard deviations, while
V is the sum of conditional variances. Notice that the “vari-
ance of the variances” is playing a role: if we reduce the
subsampling variance, then the variance of the ensemble,
V com> also decreases.

The rest of the proof, along with the proof of Lemma 9, can
be found in Appendix B.3 page 23. O

In Theorem 1, V., is the contribution of the variance of
the component estimators, while V., is the contribution of
the correlation between component estimators , and Vg, is
the subsampling variance.

Monte Carlo with Subampling Without Replacement.
Theorem 1 is very general: it encompasses both the cor-
related and uncorrelated cases and matches the constants
of all of the important special cases. We will demonstrate
this in the following corollary along with variance reduc-
tion by Monte Carlo averaging of m i.i.d. samples. That is,
we subsample over x", ..., x,;"', where each estimator is an
m-sample Monte Carlo estimator:

malsm ()
D

@ (m)

where x;, ..., x;" are i.i.d replications with mean X; =

[Exi(] ). Then, the variance of the doubly stochastic estimator
n
i=1

o1 _
xg of the mean X = = ). X; defined as
n

m A l m
X =3 ZiesX

can be bounded as follows:

with B~ ,
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Corollary 1. For each j = 1,...,m, let x(J) (j)
isfy Assumption 3. Then, the variance of the doubly

1
stochastic estimator xg' of the mean X = - z b
n

=170
where 7T is b-mmtbatch sampling without replacement,
satisfy the following corollaries:

(i) p=1land1 <b < n:
n—>b 1
trV [xm] < (n—l(; Z?zl af)

)mb
nb—-1) /1 «n 2 n—b>
(n—l)mb<; Zi 10') * (n—l)bT2

(ii) p=1andb =1:

trV [x] < %(% p Gf) + 72
(i) p=1andb = n:
wv[xp] < (13 o)
(iv) o; =0foralli=1,...,n:
trV [xg‘] < ﬁfz,
(e =0 1 /1@n n—>b
trV [x'] < %<; Y1 O'iz) + (n——l)bTZ

where, foralli =1, ...
(@)

,handany j =1,...,m

O' = trV X; is invidual variance and

== Zi—1”7_‘i — .72||; is the subsampling variance.
o Ldi=

Remark 4 (For dependent estimators, increasing b also
reduces component variance.). Notice that, for case of
o = 1, Corollary 1 (i), the term with - Z
in a rate of O (1/mb). This means reducmg the subsamphng
noise by increasing b also reduces the noise of estimating
each component. Furthermore, the first term dominates the
second term as

2 is reduced

2
1 n 1 n 2
(; Y1 gi) =< 21 95>
as stated by Jensen’s inequality. Therefore, despite correla-
tions, increasing b will have a more significant effect since

. . 1 @n
it reduces both dominant terms — Zi—l cl.z and 72.
L Li=

Remark 5. When independent estimators are used, Corol-
lary 1 (v) shows that increasing b reduces the full variance
in a O(1/b) rate, but increasing m does not.

Remark 6. Corollary I achieves all known endpoints in the
context of SGD: For b = n (full batch), doubly SGD re-
duces to SGD with a Monte Carlo estimator, where there
is no subsampling noise (no 72). When the Monte Carlo
noise is 0, then doubly SGD reduces to SGD with a sub-
sampling estimator (no o;), retrieving the result of Gower
et al. (2019).

3.1.2. GRADIENT VARIANCE CONDITIONS FOR SGD

From Theorem 1, we can establish the ER and BV condi-
tions (Section 2.3) of the doubly stochastic gradient estima-
tors. Following the notation in Section 2.2, we will denote
the doubly stochastic gradient estimator as gg, which com-
bines the estimators gy, ..., 8, according to the subsampling
strategy B ~ 7, which achieves an effective sample size of
besr. We will also use the corresponding minibatch sub-
sampling estimator V f for the analysis.

Assumption 4. For all x € X, the component gradient
estimators g (X), ..., g, (x) satisfy Assumption 3 with
some p € [0,1].

Again, this assumption is always met with p = 1 and holds
with p = 0 if the estimators are independent.

Assumption 5. The subsampling estimator V fp satisfies
the ER (L) condition in Definition 1.

This is a classical assumption used to analyze SGD on finite
sums and is automatically satisfied by Assumption 2. (See
Lemma 10 in Appendix B.4.3 for a proof.)

Assumption 6.For all i = 1,..,n and x € X and
global minimizers x,, € argmin . F(x,), the com-
ponent gradient estimator g; satisfies at least one of the
following variants of the ER condition:

(ASYX) trV[g (x) — & (V)] < 2£,Dy;, (x, ),
where f; is convex.

(ATP) trV [g (x) — & ()] < 2£; (f; (%) — fi (%))
where f; (x) > f; (x,).

(B) trV (g (x) — & ()] < 2£; (F (x) = F (x,)).

Each of these assumptions holds under different assump-
tions and problem setups. For instance, ACVX holds only
under componentwise convexity, while A" requires ma-
jorization f;(x) > f;(x,), which is essentially assum-
ing “interpolation” (Vaswani et al., 2019; Ma et al., 2018;
Gower et al., 2021a) in the ERM context. Among these,
(B) is the strongest since it directly relates the individual
components f1, ..., f,, with the full objective F.

We now state our result establishing the ER condition:

Theorem 2. Let Assumption 4 to 6 hold. Then, we have:
(i) If (ACVX) or (AI™P) hold, gg satisfies ER (£ 4).
(ii) If (B) holds, gg satisfies ER (£3).

where L., = max {Ll, s Ln},
= (L 412 L) (A L) 4 L
L= (beff 3 >Lmax e <1 beff) <n Ziei Ll) + beft
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a=(5+52) (2 2)

bef

+p(1_L)(1z;;1@)2+@.

begt n beff

See the full proof in page 25.

Remark 7. Assuming the conditions in Assumption 6 hold
with the same value of £;, the inequality

1 n 2 1 n
(; 2ic1 V[‘i) < = Xim £t £ Lnas
implies L5 < L4.

Meanwhile, The BV condition follows by assuming equiv-
alent conditions on each component estimator:

Assumption 7. Variance is bounded for all x, €
arg min, _,- F (x) such that the following hold:

1.1 Z?_l IV f; (x*)||§ < 72 for some 72 < oo and,
o L=

2. Vg (x,)] < Gl.z for some al.z < oo, for all i =
1,...,n.

Based on these, Theorem 1 immediately yields the result:

Theorem 3. Let Assumption 4 and 7 hold. Then, gg sat-
isfies BV (0'2), where

2o (P 1P iy o
o _<beff+ b ><n2i=1ai)
2

1 1 «n 2 T
- — ) (iy" o) + .
- p( beff) <" Ziz Ul) - bett

Equality in Definition 2 holds if equality in Assumption 4
holds.
See the full proof in page 27.
As discussed in Section 2.4, Theorems 2 and 3 are suffi-
cient to guarantee convergence of doubly SGD. For com-
pleteness, let us state a specific result for p = 1:

Corollary 2. Let the objective F satisfy Assumption 1
and 2, the global optimum x,, = argmin, .. F (x) be a
stationary point of F, the component gradient estimators
8i» - » 8 Satisfy Assumption 6 (B) and 7, and 7 be b-
minibatch sampling without replacement. Then the last
iterate of SGD with gg is e-close to X, as E||xr — x,, ||§ <
€ after a number of iterations of at least

1 21
T > 2max <Cvarg’ Cbias) log <2||xO —x*||zg>

for some fixed stepsize where

2
2 (1w L 1wn  [& 2L
CbiaS:E<_z_)+2(;Zi:1 7) +Eﬁ

ok
See the full proof in page 28.

3.2. Random Reshuffling of Stochastic Gradients

We now move to our analysis of SGD with random reshuf-
fling (SGD-RR). In the doubly stochastic setting, this cor-
responds to reshuffling over stochastic estimators instead
of gradients, which we will denote as doubly SGD-RR. In
practice, doubly SGD-RR is often observed to converge
faster than doubly SGD, even when dependent estimators
are used.

3.2.1. ALGORITHM
Doubly SGD-RR The algorithm is stated as follows:

©® Reshuffle and partition the gradient estimators into
minibatches of size b as P = {Pl,...,Pp}, where
p = n/b is the number of partitions or minibatches.
® Perform gradient descent fori = 1, ..., p steps as

X = Ty (% - vgp, (1)

® k < k + 1 and go back to step @.

(We assume n is an integer multiple of b for clarity.) Here,
i =1,..., p denotes the step within the epoch, k = 1,...,K
denotes the epoch number.

3.2.2. PROOF SKETCH

Why SGD-RR is Faster A key aspect of random reshuf-
fling in the finite sum setting (SGD-RR) is that it uses con-
ditionally biased gradient estimates. Because of this, on
strongly convex finite sums, Mishchenko et al. (2020) show
that the Lyapunov function for random reshuffling is not

. 2 .
the usual ||x;c - X, ||2, but some biased Lyapunov function

. 2
||x;( — xk ||2, where the reference point is

. i—1
X ATy (%, =y 0, Vfp (kD). (10)
Under this definition, the convergence rate of SGD is not

determined by the gradient variance anymore; it is de-
termined by the squared error of the Lyapunov reference

. 2
point, ||xt — X,||,- There are two key properties of this
quantity:
* The peak mean-squared error decreases at a rate of y2
with respect to the stepsize y.

» The squared error is 0 at the following two endpoints:
beginning of the epoch and at the end of the epoch.

For some stepsize achieving a O(1/T) rate on SGD, these
two properties combined result in SGD-RR attaining a
O(1/T?) rate at exactly the end of each epoch.

Is doubly SGD-RR as Fast as SGD-RR?  Unfortunately,
doubly SGD-RR does not achieve the same rate as SGD-
RR. Since stochastic gradients are used in addition to
reshuffling, doubly SGD-RR deviates from the path that
minimizes the biased Lyapunov function. Still, doubly
SGD-RR does have provable benefits.
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Figure 1. Trade-off between b and m on the gradient variance trVg (x,) under varying budgets m X b. The problem is a finite
sum of d = 10, n = 1024 isotropic quadratics with smoothness constants sampled as L; ~ Inv-Gamma(1/2,1/2) and stationary points
sampled as x; ~ N (Od, szld), where the gradient has additive noise of n ~ N (04,1;). Larger s means more heterogeneous data.

3.2.3. COMPLEXITY ANALYSIS

We provide the general complexity guarantee for doubly
SGD-RR on strongly convex objectives with u-strongly
convex components and fully correlated component esti-
mators (o = 1):

Theorem 4. Let the objective F satisfy Assumption I
and 2, where each component f; is additionally u-
strongly convex, and Assumption 6 (ACVX), 7 hold.
Then, the last iterate X1 of doubly SGD-RR is e-close
to the global optimum x, = argmax, .. F(x) such

2 . .
that E|lxr — x,|[; < € after a number of iterations of
at least

1 1 21
T 2 max (4CEPL + CHP L., Cy ) log (21122 - x.1122
for some fixed stepsize, where T = Kp = Kn/b,

Coias = (Lmax + L) /1

2 (1 n 0.2 1 n

i=1

Linax \/ET

@
N———

Csub

var

See the full proof in page 34.

Remark 8. When o; = 0 for all i = 1, ..., n, the anytime
convergence bound Theorem 5 in the Appendix reduces ex-
actly to Theorem 1 of Mishchenko et al. (2020). Therefore,
Theorem 5 is a strict generalization of SGD-RR to the dou-
bly stochastic setting.

Using m-sample Monte Carlo improves the constants as
follows:

Corollary 3. Let the assumptions of Theorem 4 hold.
Then, for 1 < b < n and m-sample Monte Carlo, the
same guarantees hold with the constant

2 (1802 2 (186
com _ _“ [ = i i et =t
o _mb(ng;;ﬂ)er(nzy)'

i=1

Remark 9. Compared to doubly SGD, doubly SGD-RR
improves the dependence on the subsampling noise 72 from
O(1/¢) to O(1//€). Therefore, random reshuffling does
improve the complexity of doubly SGD. Unfortunately, it
also means that it does not achieve a better asymptotic
complexity as in the finite sum setting. However, non-
asymptotically, if the subsampling noise dominates compo-
nent estimation noise, doubly SGD-RR will behave closely
toan O(1/ \/E) (or equivalently, O(1/T)) algorithm.

Remark 10. As was the case with independent subsam-
pling, increasing b also reduces component estimation
noise for RR-SGD. However, the impact on the complexity
is more subtle. Consider that the iteration complexity is

2(L 4 1)1 Yn 1
o((L+i)exe L) ap
where ¥, = max;—;_,0;/M, X, = T/u and ¥ =

max;—

,,,,, o Li/u. The 1/e term decreases the fastest with
m. Therefore, it might seem that increasing m is advanta-
geous. However, the 1/ \/E term has a O (\/ﬁ) dependence
on the dataset size, which would be non-negligible for large
datasets. As a result, in the large n, large € regime, increas-
ing b over m should be more effective.

Remark 11. Eq. (11) also implies that, for dependent es-
timators, doubly SGD-RR achieves an asymptotic speedup
of n/b compared to full-batch SGD with only component
estimation noise. Assume that the sample complexity of
a single estimate is @(mb) (@(mn) for full-batch). Then,
the sample complexity of doubly SGD-RR is O (b1/¢) and
O (nl/e) for full-batch SGD. However, the n/b seed-up
comes from correlations. Therefore, for independent es-
timators, the asymptotic complexity of the two is equal.

4. Simulation

Setup We evaluate the insight on the tradeoff between b
and m for correlated estimators on a synthetic problem. In
particular, we set

L
filxesm) = 21




Demystifying SGD with Doubly Stochastic Gradients

where the smoothness constants L; ~ Inv-Gamma(1l/2, 1/2)
and the stationary points x; ~ N (04, 5%1;) are sampled
randomly, where 0y is a vector of d zeros and I; isad X d
identity matrix. Then, we compute the gradient variance on
the global optimum, corresponding to computing the BV
(Definition 2) constant. Note that s? here corresponds to
the “heterogeneity” of the data. We make the estimators
dependent by sharing 1y, ..., i, across the batch.

Results The results are shown in Fig. 1. At low het-
erogeneity, there exists a “sweet spot” between m and b.
However, this sweet spot moves towards large values of b,
where, at high heterogeneity levels, the largest values of b
are more favorable. Especially in the low budget regime
where mb < n, the largest b values appear to achieve the
lowest variance. This confirms our theoretical results that
a large b should be preferred on challenging (large number
of datapoints, high heterogeneity) problems.

5. Discussions
5.1. Applications

In Appendix C, we establish Assumption 6 and 7 on the
following applications:

* ERM with Randomized Smoothing: In this prob-
lem, we consider ERM, where the model weights are
perturbed by noise. This variant of ERM has re-
cently gathered interest as it is believed to improve
generalization performance (Orvieto et al., 2023; Liu
et al., 2021). In Appendix C.1, we establish Assump-
tion 6 (ATTP) under the interpolation assumption.

* Reparameterization Gradient: In certain applica-
tions, e.g., variational inference, generative model-
ing, and reinforcement learning (see Mohamed et al.,
2020, §5), the optimization problem is over the pa-
rameters of some distribution, which is taken expecta-
tion over. Among gradient estimators for this prob-
lem, the reparameterization gradient is widely used
due to lower variance (Xu et al., 2019). For this, in
Appendix C.2, we establish Assumption 6 (ASVX) and
(B) by assuming a convexity and smooth integrand.

5.2. Related Works

Unlike SGD in the finite sum setting, doubly SGD has re-
ceived little interest. Previously, Bietti & Mairal (2017);
Zheng & Kwok (2018); Kulunchakov & Mairal (2020)
have studied the convergence of variance-reduced gradi-
ents (Gower et al., 2020) specific to the doubly stochas-
tic setting under the uniform Lipchitz integrand assump-
tion (g;(-;7) is L-Lipschitz for all ). Although this as-
sumption has often been used in the stochastic optimiza-
tion literature (Nemirovski et al., 2009; Moulines & Bach,
2011; Shalev-Shwartz et al., 2009; Nguyen et al., 2018), it
is easily shown to be restrictive: for some L-smooth f, (x),

Vfi(x;n) = Vfl- (x) + x1n is not L-Lipschitz unless the
support of 7 is compact. In contrast, we established results
under weaker conditions. We also provide a discussion on
the relationships of different conditions in Appendix A.

Furthermore, we extended doubly SGD to the case where
random reshuffling is used in place of sampling indepen-
dent batches. In the finite-sum setting, the fact that SGD-
RR converges faster than independent subsampling (SGD)
has been empirically known for a long time (Bottou, 2009).
While Giirbiizbalaban et al. (2021) first demonstrated that
SGD-RR can be fast for quadratics, a proof under gen-
eral conditions was demonstrated recently (Haochen & Sra,
2019): In the strongly convex setting, Mishchenko et al.
(2020) Ahn et al. (2020); Nguyen et al. (2021) establish
a0 (1 / \/E) complexity to be e-accurate, which is tight in
terms of asymptotic complexity (Safran & Shamir, 2020;
Cha et al., 2023; Safran & Shamir, 2021).

Lastly, Dai et al. (2014); Xie et al. (2015); Shi et al. (2021)
provided convergence guarantees for doubly SGD for ERM
of random feature kernel machines. However, these analy-
ses are based on concentration arguments that doubly SGD
does not deviate too much from the optimization path of
finite-sum SGD. Unfortunately, concentration arguments
require stronger assumptions on the noise, and their analy-
sis is application-specific. In contrast, we provide a general
analysis under the general ER assumption.

5.3. Conclusions

In this work, we analyzed the convergence of SGD with
doubly stochastic and dependent gradient estimators. In
particular, we showed that if the gradient estimator of each
component satisfies the ER and BV conditions, the doubly
stochastic estimator also satisfies both conditions; this im-
plies convergence of doubly SGD.

Practical Recommendations An unusual conclusion of
our analysis is that when Monte Carlo is used with
minibatch subsampling, it is generally more beneficial
to increase the minibatch size b instead of the number
of Monte Carlo samples m. That is, for both SGD
and SGD-RR, increasing b decreases the variance in a
rate close to 1/b when (i) the gradient variance of the
component gradient estimators varies greatly such that
2

(% Z?:l cr,-) < % Z:;l o7 or when (ii) the estimators are
independent as p = 0. Surprisingly, such a benefit persists
even in the interpolation regime 72 = 0. On the contrary,
when the estimators are both dependent and have similar
variance, it is necessary to increase both m and b, where a
sweet spot between the two exists. However, such a regime
is unlikely to occur in practice; in statistics and machine
learning applications, the variance of the gradient estima-
tors tends to vary greatly due to the heterogeneity of data.
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Figure 2. Implications between general gradient variance con-
ditions for some unbiased estimator g(x) = Vf(x;n) of
Vf(x) = Eg(x). The dashed arrows (- - ») hold if f is fur-
ther assumed to be QFG; the dotted arrow (-----») holds if the
integrand f(x; ) is uniformly convex such that it is convex with
respect to x for any fixed 7. (1), (5), (9), (13) are established by
Gower et al. (2021a, Theorem 3.4); (2) is proven in Proposition 3;
(3) is proven in Proposition 7; (4) is proven in Proposition 6; (7)
is proven in Proposition 4; (8) is proven in Proposition 5; (6) is
proven by Nguyen et al. (2018, Lemma 2) but we restate the proof
in Proposition 8; (11) is proven in Proposition 2; (10), (12) hold
trivially if x, € argmin,_,. f (x) are all stationary points.

A. Gradient Variance Conditions

In this section, we will discuss some additional aspects of
the ER and ES conditions introduced in Section 2.3. We
will also look into alternative gradient variance conditions
that have been proposed in the literature and their relation-
ship with the ER condition.

A.1. Definitions

For this section, we will use the following additional defi-
nitions:

Definition 3 (Quadratic Functional Growth; QFG). We
say f : X — R satisfies u-quadratic functional growth
if there exists some u > 0 such that

Clle = x5 < £ 0= £ ()

holds for all x € X', where x,, € argmin, .- f (X).

This condition implies that f grows at least as fast as
some quadratic and is weaker than the Polyak-ELojasiewicz.
However, for any convex function f that satisfies this con-
dition also means that f is u-strongly convex (Karimi et al.,

15

2016).

Definition 4 (Uniform Smoothness). For the unbiased
estimator g (x) = Vf (x;n) of VF(x) = EVf(x;n) =
EVf (x; n), we say the integrand V f; (x; ) satisfies uni-
form L-smoothness if there exist some L < oo such that,
for any fixed ),

VS Gem) =V (5m)||, < Ll =21l
holds for all (x,x’) € X? simultaneously.

As discussed in Sections 1 and 5.2, this condition is rather
strong: it does not hold for multiplicative noise unless the
support is bounded.

Definition 5 (Uniform Convexity). For the unbiased es-
timator g (x) = Vf(x;n) of VF(x) = EVf (x;n), we
say the integrand f (x;n) is uniformly convex if it is con-
vex for any 7 such that, for any fixed 7,

fosn—f(xsn) <(Vf@n,x—x')

holds for all (x,x) € X? simultaneously.

A.2. Additional Gradient Variance Conditions

For some estimator g of V f, the following conditions have
been considered in the literature:

* Strong growth condition (SG):

2 2
Ellg @Il; < pllVF I3
* Weak growth condition (WG):

2
Ellg ll; < p (f () — f (%))
¢ Quadratic variance (QV):
2 2
Ellg @l < allx —x.[l; + 8
* Convex expected smoothness (CES):
2
Ellg (x) — g WIl; <2£Dy (x,y)
* Convex expected residual (CER):
trV[g (x) — g (¥)] < 2LDy (x,y)
* Quadratic expected smoothness (QES):
2 2
Ellg (x) —g Wll, < £2llx - yll;
* ABC:
2 2
Ellg @I, <A ()= f(x.) +BIVf X, +C

Here, x, € argmin, ,. f (X) is any stationary point of f
and the stated conditions should hold for all (x, y) € X2.
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Figure 3. Implications of assumptions on the components
f1s-> f, to the minibatch subsampling gradient estimator
Vfgof F = : (f1+ .+ fn)- (1), (4) are established by Gower
et al. (2021a, nTheorem 3.4), while (3) trivially follows from the
fact that x,-convexity is strictly weaker than (global) convexity,
and (2) was established by Gower et al. (2019, Proposition 3.10).

SG was used by Schmidt & Roux (2013) to establish the
linear convergence of SGD for strongly convex objectives,
and O(1/T) convergence for convex objectives; WG was
proposed by Vaswani et al. (2019) to establish similar guar-
antees to SG under a verifiable condition; QV was used
to establish the non-asymptotic convergence on strongly
convex functions by Wright & Recht (2021), while con-
vergence on general convex functions was established by
Domke et al. (2023), including stochastic proximal gradi-
ent descent; QES was used by (Moulines & Bach, 2011) to
establish one of the earliest general non-asymptotic conver-
gence results for SGD on strongly convex objectives; ABC
was used by Khaled & Richtarik (2023) to establish conver-
gence of SGD for non-convex smooth functions. (See also
Khaled & Richtérik (2023) for a comprehensive overview
of these conditions.) The relationship of these conditions
with the ER condition are summarized in Fig. 2.

As demonstrated in Fig. 2 and discussed by Khaled &
Richtarik (2023), the ABC condition is the weakest of all.
However, the convergence guarantees for problems that ex-
clusively satisfy the ABC condition are weaker than others.
(For instance, the number of iterations T has to be fixed a
priori.) On the other hand, the ER condition retrieves most
of the strongest known guarantees for SGD; some of which
were listed in Section 2.4.

A.3. Establishing the ER Condition

For subsampling estimators, it is possible to establish
some of the gradient variance conditions through gen-
eral assumptions on the components. See some examples
in Fig. 3. Here, we use the following definitions:

Definition 6. For the finite sum objective F =
L (f1 + ... + f,), we say interpolation holds if, for all
n

i=1,..,n,

fi(e) < fi(®),

holds for all x € X', where x,, € argmin,_,. F (x).

Definition 7.For the finite sum objective F =
1

= (f1+ ... + f), we say the components are x,-convex
n

if, foralli =1,...,n,

fi(x*)_fi(x)s<vfi(x*)’x* _x>

holds for all x € XX, where x,, € arg min F (x).

xeX

This assumption is a weaker version of convexity; convex-
ity needs to hold with respect to x, only. It is closely re-
lated to star (Nesterov & Polyak, 2006) and quasar convex-
ity (Hinder et al., 2020; Guminov et al., 2023).

A.4. Proofs of Implications in Fig. 2

We prove new implication results between some of the
gradient variance conditions discussed in Appendix A.2.
In particular, the relationship between the QES and QV
against other conditions has not been considered before.

Proposition 2. Let g be an unbiased estimator of V f.

Then,
[g is CES]=>[g is CER]

Proof. The result immediately follows from the fact that

2
trV[g (x) — g (¥')] < E[lg x) - g (*')]],
holds for all x,x’ € X. O

Proposition 3. Let g be an unbiased estimator of Vf.
Then,

gis SG
+ =={g is QV with p = 0

f is L-smooth

Proof. Notice that, by definition, V f (x,) = 0. Then,

Ellg ®)ll; < plIVf ®)II3

2
= plIVFf x) = Vf (Il
applying L-smoothness of f,

2
< L2P||x - x*”z-
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Proposition 4. Let g (x) = V f (x; n) be an unbiased es-
timator of Vf (x) = EVf (x; n). Then,

[Integrand is uniformly L—smooth]=)[QES]

Proof. The result immediately follows from the fact that
the integrand f (x;7) is L-smooth with respect to x uni-
formly over 7 as

Elle ) — g ()|, = E[|VS ) = V£ (x5 m)|,
<L?x — x’||§.
L]

Proposition 5. Let g (x) = V f (x; n) be an unbiased es-
timator of Vf (x) = EV f (x; n). Then,

Integrand is uniformly L-smooth |

+ ==(ES)

[ is uniformly convex

Proof. Since the integrand f (x;%) is both uniformly
smooth and convex with respect to x for a any fixed 5, we
have

[Vf Gesm) = Vf (2'm)],
<2L(f () — f (X5m) —(Vf(x'sn),x —x')).

Then,

Ellg () - g (x5

=EVfGin - VF(xnl;

<2LE(f (51) = f (s m) = (VS (ka3 m), x = X'))

=2L (f () = f (%) = (VS (x.),x —x'))

=2L (f (%) = f (x.))

holds for all x € X. O

Proposition 6. Let g be an unbiased estimator of VF.

Then,
[g is OV with B = o]=>[QES]

Proof. From the classic inequality (a + b)* < 2a? + 2b2,
we have

Ellg®) — g )3 < 2Ellg@l; + 2 Ellgx )l

Now, since QV holds with 8 = 0, we have [E||g(x*)||§ =0.
Therefore,

2 2 2
Ellg(x) — g (x5 < 2Ellg™)ll; < 2allx —x.|I5,

where we have applied QV at the last inequality. O

17

Proposition 7. Let g be an unbiased estimator of V f.
Then,

gis QVwithf =0)
+
f is uw-QFG

(W)

Proof. The result immediately follows from QV as

2 2
Ellg@ll; < allx — x5,
applying u-quadratic functional growth,

<22 (F ) - f ().
u
O

Proposition 8. Let g be an unbiased estimator of V f.
Then,

—(55)

Proof. From QV, we have

2 2
Ellg(x) — g (xll; < £2[lx — .,
and u-quadratic functional growth yields

2
< Fw- @),
u
O

The strategy applying QFG when proving Propositions 7
and 8 establishes the stronger variant of the ER condition:
Assumption 6 (B). However, the price for this is that one
has to pay for an excess ¥ = £/u factor, and this strategy
works only works for quadratically growing objectives.
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B. Proofs

B.1. Auxiliary Lemmas (Lemmas 2 to 6)

Lemma 2. Consider a finite population of n vector-
variate random variables X1, ..., X,. Then, the variance
of the average of b samples chosen without replacement

—b
[ ZXB} b(n—l) o,

where B = {By, ..., Bp} is the collection of random indices
of the samples and c? is the variance of independently
choosing a single sample.

Proof. From the variance of the sum of random variables,

we have
b

tr\/[ZXBi] Ztr\/ xB]+ZZCov<xB,xB)

i=1 i=1i#j

and noticing that the covariance is independent of the index
in the batch,

= btrV[xg | + b(b —1)C, (12)

where C = Cov (XB[ s Xg; ) Using the fact that the variance
is 0 for b = n, we can solve for C such that

1
-1 trv [XBi] ’

which is negative, and a negative correlation is always
great. Plugging this expression to Eq. (12), we have

b
trVv lz Xg,

i=1

] =btrV[xg |- b(b - 1) tr\/ [xs.]

= b(l - %) trV [xBi]
=b(Z_11))tr\/[xBi].

Dividing both sides by b? yields the result.

18

Lemma 3. Let xq, ..., X, be vector-variate random vari-
ables. Then, the variance of the sum is upper-bounded
as

trV in] < (Z?zl ViV [Xi]->2 (13)
i=1
<y tVx]. (14)

The equality in Eq. (13) holds if and only if x; and x; are
constant multiples such that there exists some a;; > 0
such that

X; = al‘ij

foralli, j.

Proof. The variance of a sum is

z] =303 trCov (x, %)

i=1 j=1
From the Cauchy-Schwarz inequality for expectations,

trV

tr Cov (x;, x;) = E(x; — [Exl-)T(xj - Ex;)
< Ellx; — Exil|,Ellx; — Exjl,

=V trV [x]y/ trV [ x;].

This implies
n n n
V| xi] => > trCov (x;, x;)
i=1 i=1j=1
n n
<AV X/ eV [x]
i=1j=1

15)

The equality statement comes from the property of the
Cauchy-Schwarz inequality. Lastly, Eq. (14) follows from
additionally applying Jensen’s inequality as

Zn: trV [x;] )

33 (Ve

nZtr\/ [x]-

i=1

o) o

An equivalent proof strategy is to expand the quadratic in
Eq. (15) and apply the arithmetic mean-geometric mean in-
equality to the cross terms. [
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Lemma 4 (Lemma A.2; Garrigos & Gower, 2023). For
a recurrence relation given as

T

rr <1 —yu) ro+ By,
for some constant 0 <y < 1/C,
rpr <¢€

can be guaranteed by setting

= min(i l) d
r= 28°Cc) "
T > l max <ZB l, C) log <2r_0) R
U € €
where u,B > 0 and 0 < C < u are some finite constants.

Proof. First, notice that the recurrence

T
rr <(1—yu) ro+ By ,
N—o— |

bias variance

is a sum of monotonically increasing (variance) and de-
creasing (bias) terms with respect to y. Therefore, the
bound is minimized when both terms are equal. This im-
plies that r; < € can be achieved by solving for

A-yw'rp<: and By<:
2 2
First, for the variance term,
€ €
< = < —.
By<; < r=3p

1

)

For the bias term, as long as y <

"
€
A-yw'ro<s
& Tlog(1—yu) slogi
2rg
log =
log (1 —yw)
2}’0
- log -

T2 ————————=
log(1/ (1 —yw)
Furthermore, using the bound log1/x > 1—x for 0 < x <
1, we can achieve the guarantee with
1 2r,
T>—1log (—0> .
YU €
Therefore, 1/y determines the iteration complexity. Plug-

ging in the minimum over the constraints on y yields the
iteration complexity. O
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Lemma 5. For a recurrence relation given as
rr < (1 —yp) ro+ Ay* + By,
for some constant 0 <y < 1/C,
rpr <¢€

can be guaranteed by setting

_ min —B+VBZz+2A4¢ 1 d
S oA e an
T > lmax ZBl+\/2AL,C log<2r—0>,
u € \/g €

where u, A,B > 0and 0 < C < u are some finite con-
stants.

Proof. This theorem is a generalization of Lemma A.2 by
Garrigos & Gower (2023). First, notice that the recurrence

rr < (1 —yw) ro+ Ay + By,

bias variance

is a sum of monotonically increasing (variance) and de-
creasing (bias) terms with respect to y. Therefore, the
bound is minimized when both terms are equal. This im-
plies that r; < € can be achieved by solving for

(L—yu)ry < % and Ay?+By <

ST

First, for the variance term,
2 e
Ay“+By £ 5
& Ay’+By-— % <0

The solution to this equation is given by the positive solu-
tion of the quadratic equation as

—B+1VB2+2A¢
2A )

O0<y <

. 1 L .
For the bias term, as long as y < —, the solution is identical
)%

to Lemma 4. Therefore,
1 2ry
T>—Io (—) 16)
YH & € (

can guarantee the bias term to be smaller than ¢/2, while
1/y determines the iteration complexity. Plugging in the
minimum over the constraints on y,

,(—B+
y = min

a7)

B2 +24¢ 1
2A C
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yields the iteration complexity.

Now, since the quadratic formula is not very interpretable,
let us simplify the expression for 1/y using the bound

a
————— < -b+Vb2+a,
2Vb2 +a

which holds for any a,b > 0 and is tight for ¢ — 0. With
our constants, this reads

Ace

VB2 + 2A¢

and therefore

< —B + VB2 4 2A¢,

24 . 2VB2+24¢
—B+VB2+24c ¢
_ 2B+124¢
€

—28lyvaal.
€ €

Therefore, for the stepsize choice of Eq. (17),

1 1
2A—, = ).
77)

Plugging this into Eq. (16) yields the statement.

1
— < min (23l +
y €

20

Lemma 6. Let F : X — R be a finite sum of convex

functions as F = l(fl + ..+ fn), where f; : X - R.
n

Then,

1 n
ﬁZ;Dfi (x,x") = Dg (x,x"),
i=
forany x,x' € X.

Proof. The result immediately follows from the definition
of Bregman divergences as

1 n
ﬁZ;Dfi (x,x")
i=

£ 3109~ 1) (V11 () 5 %)
sgp)-{2500
—<%gwi (), x - x')

=F(x)—F(x')—(VF(¥'),x —x')
=D (x,x).
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B.2. Convergence of SGD (Lemmas 1, 7 and 8)

Lemma 7. Let F : X — R be L-smooth function. Then,

the expected squared norm of a gradient estimator g sat-
isfying both ER (£) and BV (0?) is bounded as

Ellg @)I2 < 4(£ + L) (F (x) — F (x,)) + 202,

for any x € X and x,, € arg max F (x).

xeX

Proof. The proof is a minor modification of Lemma 2.4
by Gower et al. (2019) and Lemma 3.2 by Gower et al.
(2021a).

By applying the bound (a + b)* < 2a? + 2b% we can
“transfer” the variance on x to the variance of x,. That
is,
2 2
Ellg ®Il; = Ellg (x) — g (x.) + g (x.)Il;
2 2
<2 Ellg (x) — g (x.ll; +2 Ellg (x)ll;

Vi

Vs

The key is to bound V5. It is typical to do this using
expected-smoothness-type assumptions such as the ER as-
sumption. That is,

V) =Ellg(x) - g xl;
=trV[g (x) — g (x,)] + (VF (x) — VF (x,)),
from the L-smoothness of F,
SuV(gx)—g )] +2L(F (x)—F(x,)),
and the ER condition,
<2L(F(x)—F(x,))+2L(F (x) — F (x,))
=2(L+L)(F(x)—F(x,)).

Finally, V, immediately follows from the BV condition as

2
V,=Elg (x*)”z <o’

21

Lemma 8. Let the objective function F satisfy Assump-
tion 1 and the gradient estimator g be unbiased and sat-
isfy both ER (£) and BV (02). Then, the last iterate of
SGD guarantees

2 7 2 207
E{ller =271 ] < (@ = )l — 2015 + =7

where x,, = arg min

wex F (%) is the global optimum.

Proof. Firstly, we have

2
41 = 215

2
= [|Tly (x; — 78 (%)) — H(x*)||2,
and since the projection onto a convex set under a Eu-
clidean metric is non-expansive,

2

< th e (xt) - x*||2
2 2
= |lx, — .1, — 2y (g (%), %, — x.) + 7*llg (x5

Denoting the o-algebra formed by the randomness and the
iterates up to the tth iteration as F; such that (#),.,, forms
a filtration, the conditional expectation is

E [Ihersn — .15 | 7]
= I, — x5 — 27 (E[g (%) | 1%, — x.)
+7°E[llg xolly 1 7]
= I, = %115 — 27 (VF (%) . %, — x.)

2
+7°E[llg xoly 1 7],
applying the u-strong convexity of F,

2 K 2
< e —xall; = 27 (F e = F () + S - 1)
2
+7°E[llg olly | 7

= (1 =y lIx, — x5 = 27 (F (x,) — F (x,))
+7°E[llg ol | 7|

From Lemma 7, we have

2
E [llg olly | 7] < (4(£ + L) (F (x) = F (%)) +202).
Therefore,

E [Iheis — x5 1 7

< (= ym) e, — %115 — 27 (F (x,) = F (%))
+72(4(L + L) (F (x,) — F (x,)) + 20?)

= (1 =y % — x>
—2y (1= 2y (L + L)) (F (%) — F (x,)) + 2202,
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and with a small-enough stepsize satisfying y <

i ' 2(L+L)’
can guarantee a partlal contraction as

2
<A =y llxe = x,|l5 + 27202
Note that the coefficient 1 — yu is guaranteed to be strictly

smaller than 1 since 4 < L, which means that we indeed
have a partial contraction.

Now, taking full expectation, we have
2 2
Ellx;s1 — Xl < @ —yw) Ellx, — x| + 2y%02.
Unrolling the recursion from 0 to T — 1, we have

2 T 2
Ellxr —x.[l5 <A —yu) Ellxg — x.|[5
T-1
+27%% Y. 1 —yw).
t=0

T 2 202
<A-yw [E||x0—x*||2+7y.

where the last inequality follows from the asymptotic
bound on geometric sums. [

22

Lemma 1. Let the objective F satisfy Assumption 1 and
the gradient estimator g satisfy ER (£) and BV (a?).
Then, the last iterate of SGD is e-close to the global opti-
mum X, = argmin, .. F (x) such that E|[x — x*llg <
€ after a number of iterations at least
2
1 £L+L 1
T > 2max <U——, >log<2||x0—x*||§—>
pure u €
and the fixed stepsize

V= 202°2(L + L))"

Proof. We can apply Lemma 4 to the result of Lemma 8
with the constants

202

ro=lxo— x5 B= S and C=2(6+1D).

Then, we can guarantee an €-accurate solution with the
stepsize

1
202 2(L +L)>

and a number of iterations of at least

. (€
y=m1n<

1 2072 21
T>—max|—,2(L+L)]|lo <2x - X, —)
# (M ( )) g (2l - .15

2
2 max (U—z, £ +L)log <2||x0 —x*||§l>.
p2 ¢




Demystifying SGD with Doubly Stochastic Gradients

B.3. General Variance Bound (Theorem 1)

Lemma9. Let xq, ..., X, be a collection of vector-variate
RVs dependent on some random variable B satisfying As-
sumption 3. Then, the expected variance of the sum of
X1, --- » Xp conditioned on B is bounded as

E [tV [zle % | B]| < pVIS] +p(ES)’ + (1 - p)E[V],

where
tV[x [B] and V =Y. tV[x |B].
Equality holds when the equality in Assumption 3 holds.

Proof. From the formula for the variance of sums,

V[x; | B] +ZZtrCov(xL, i 1B).

Mo-

1

I
MQ‘

i=1 i=1 j#i
b

SZ [x | B] +ZZp\/tr\/[xl|B\/tr\/ xJ|B
i=1 i=1j#i

b
=(1-p) ) Vx| B8]

i=1

b b
+p > Y AuVx | Bly/ttV[x; | B

i=1j=1

—<1—p>2trv[xl 1B1+p (X0,

i=1
=(1-p)V+pS2

trv xllB)

Then, it follows that

b
E|trV [Z X
i=1

B”gp[E[s2]+(1—p)[E[V]

2
= pV[S] + p(ES)’ + (1 — p)E[V],
from the basic property of the variance:

V[S] = E[$?] - (ES)*.

Since Assumption 3 is the only inequality we use, the
equality in the statement holds whenever the equality in
Assumption 3 holds. O

Theorem 1. Let the component estimators Xq, ... , X,, sat-
isfy Assumption 3. Then, the variance of the doubly
stochastic estimator Xg is bounded as

trV [XB] < Vcom + Vcor + Vsub’
where

Vcom:<£+1bp>(nz tr\/[xl]>

Vcor=p<1_b_ff>( Zl 1 Vtr\/[xl)
11
Vb = b—“;Z |xl_x||2

Equality holds when the equality in Assumption 3 holds.

Proof. Starting from the law of total covariance, we have

Vxg] = Egor [trV [xg | B]] +trVp.  [E [xg | B]]. (18)

Ensemble Variance Subsampling Variance

Ensemble Variance Bounding the variance of each en-
semble is key. From Lemma 9, we have

i

lEB
< pVS +p(ES)> + (1 — p)EV, (19)

E[trV[xg | B]] = E|trV

=E|aV|)] (=

X;
ieB

where

s&y w[ ] = VI,

ieB leB
V= Ztr\/[bxl]— 2Z:tr\/[xi].
ieB ieB

In our context, S is the batch average of the standard devi-
ations, and V is the batch average of the variance (scaled
with a factor of 1/b).

Notice that S is an b-sample average of the standard devia-
tions. Therefore, if 7 is an unbiased subsampling strategy,
we retrieve the population average standard deviation as

Z VirV[x]

ieB

lEB~7T [ lEB~7T [

Z ViV [x].
3
(20)

Under a similar reasoning, the variance of the standard de-
viations follows as

\/B~7r [5]

= Vgon

Z VirV[x]

leB
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1
bert \/1~Umf0rm{1 ..... n} [V trV [x; ]

1 —Ztr\/ [x] (Z\/tr\/[xl) » (2D

bets

where the last identity is the well-known formula for the
variance: VX = EX?
ance follows as

— (EX )2. Likewise, the average vari-

EprV =

[EBN,, DotV xl]]

ieB

Z trV [ x;]

lEB
1{1<
—| = tr\/[x-])

Plugging Egs. (20) to (22) into Eq. (19), we have

b2

7 [EB~77

(22)

Egr [trV [xg | B]]
< pVS + p(ES)* + (1 — p) EV

Zmui( zﬁwaj

betr | 1 1

%%wamo
i=1
1-p/(1 z
+ T(E ;tr\/ [Xi])
1— 18
+ TP) (ﬁ ;tr\/ [xl-])

n 2

i=1

- ( P
bett

+p(1_L> 1
begs / \ 1

Subsampling Variance The subsampling noise is
straightforward. For this, we will denote the minibatch
subsampling estimator of the component means as

Xg 2 le

leB

(23)

Since each component estimator X; is unbiased, the expec-
tation conditional on the minibatch B is

S

lEB

xB|B

Therefore,

trVpr [E[xg | B]] = trVp. ., [X5]

24

1 (1< 2
=—(=2lx—-xl3). @4
bet (”; TR

Combining Eqgs. (23) and (24) into Eq. (18) yields the re-
sult. Notice that the only inequality we used is Eq. (19),
Lemma 9, in which equality holds if the equality in As-
sumption 3 holds. O
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B.4. Doubly Stochastic Gradients

B.4.1. EXPECTED RESIDUAL CONDITION
(THEOREM 2)

Theorem 2. Let Assumption 4 to 6 hold. Then, we have:

(i) If (ACVX) or (AI™P) hold, gg satisfies ER (£ 4).
(ii) If (B) holds, gg satisfies ER (Lp).

where L, = max {Ll, s Ln},

L‘,A=(i+1;”>Lmax+p<1—L)(iZ:’=ILi>+@

beg b beg bet

Ls = (bff + l%) (i Z;A")
ro(1m ) (P EVE) +

begt eff

Proof. From Theorem 1, we have

trV [gg (x) — gg (x)]

1_
s(bp +T)< Ztr\/ g (x) - g(x*)])

+p(1-5) (% > VuVig () —a (x*>]>

bett P
+ bitr\/ [V /s (x) — VF (%)],

eff
where Assumption 5 yields

<(2 +1‘Tp)(%§trwg,-(x>—gi(x*)]>

bett
éTvar
1 1< ’
+p(1- ) (2 ZVeVig e - & Gl
begt (" ; l l
éT‘COV

20
+ SR (F ()~ F (x,)

eff

P -p 1 )
=|— T 1—-—|T
(beff +— b > var + p ( beff cov

o5 (1 ()~ F (x.)). 25)

bett

Proof of (i) with (A€VX)  Since Assumption 6 (A®VX) re-
fn tobe convex, F is also convex. Therefore,

quires fq, ...,
we can use the identity in Lemma 6 and

Df (x,x,) = F (x) = F (x.).

With that said, under (ACVX), we have

o S 3 2V ()~ ()

= —ZZL Dy, (x,x,),

i=1
applying L, > L foralli=1,...,n,

1 n
< 2'L"maxz Z Dfi (x9 x*)
i=1

and Lemma 6,
= 2L DF (%, %) . (26)

For Ty, since

2

=( Z\/trv[gl x)-g (x*n)

is monotonic w.r.t. the variance, we can apply (ASVX) as

2
2 n
< ﬁ<;,/LiDﬂ_ (x,x*)> )

Now, applying the Cauchy-Schwarz inequality yields

33 o)

i=1

1 n
= Z(EZLi) Dr (x,x.). (27)
Plugging Eqs. (26) and (27) into Eq. (25), we have
trV [g (x) — g (%]

) e e )
< + — )Ty +p(1——T
< beff b var Io beff cov

2L
+ R (F ()~ F (1))

eff

1 —
< <L + _P) 2L maxDp (x’x*)
bett b

+p (1 — L)z(%i@) Dr (x,x,)
i=1

bett

1
+ b—ZLsubDF (x,x,).
eff

P 1-p 1\(1<
<(beff+ 57 oo beff)<n§‘:l)

1
+ b_'csub ) Dr (x,x..)
eff

p 1-p 1\(1<
<<beff T )Lmax+p< beff)<n;1:l)
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1

+ _
bett

sub) (F(x) F(x*))

Proof of (i) with (A'™") From Assumption 6 (AITP), we
have

Z trV[g (x) — g (x.)]

var

< EZZCi(fi(x)—fi(x*))’
i=1

applying £,.x > £; foralli =1,.

Lmax— Z (fi () = fi (%))

l 1

= 2Lmax (F (%) = F (X)) - (28)

Similarly,
2

Teoy = ( Z trv[g; (x) — gl(x*)])

:I>—'

applying (A'™P),
2

< %(Z VL (i) — f; (x*))) :
i=1

and applying the Cauchy-Schwarz inequality,

<2 (2 z:,-) (Z fi)— fi (x*))
i=1

i=1

iz

=2 (% >, Li) (F(x)—F(x,)).
i=1

Zfl (x) = fi (s ))

i=1

(29)

Plugging Egs. (28) and (29) into Eq. (25), we have

trV[g (x) — g (x,)]

P —p 1
S(bff"' b )Tvar+p<1_b_ff>Tcov
e [S
L
R E @) - F ()
[S
P 1-p
< <b_ff + T) 2’Cmax (F (x)F(x*))
e

1 1<
+p(1—@)z(zézsi)(F(x)—F(x*»

+ Lzzsub (F (x) = F (x.)).

bett
Vopare1- ) (155
max T P beff n4_1 i

0
=2( (= +
( bet

I-p
b

26

1

+ _
bett

sub ) (F (x) F (x*))
Proof of (ii) From Assumption 6 (B), we have

var

Ztr\/ (g (%) — & (x,)]
< ;ZZLi(F (x) —F (x.))

:(

(30)

3|>—A

)(F () —F(x.)).

And,

2

—

S|
I S
—_

Z Vg (x) - gl(x*n)

2

s%(Z 2, (F () — F(x*»)
=2<%ZVZ-> (F®-F). 6D
i=1

Plugging Eqs. (30) and (31) into Eq. (25), we have
trv[g (x) — g (x.)]

S( P +1%)2<125i)(F(x)—F(x*))

bett

p(l——) ( ZF) (F (1) — F (x.))

+ 2L (F(x) - F (x.)).
f

+ L sub> (F ()~ F (x.)).
eff
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B.4.2. BOUNDED VARIANCE CONDITION
(THEOREM 3)

Theorem 3. Let Assumption 4 and 7 hold. Then, gg sat-
isfies BV (c?), where

2 (L l_p) Lyn 2
7 _<beff+ b ("zizlai)
1 1 «n 2 T
+p<1—beff)(;z:i=1cri) +

best
Equality in Definition 2 holds if equality in Assumption 4
holds.

2

Proof. For any element of the solution set x, =

argmin, ,- F (x), by Theorem 1, we have

trV[gg (x,)] < ( bpff + IT)( Ztr\/ ¥ (x*)])

2
1)\[1<
+P<1—@) (Eg tr\/[gi(x*)])

+ V[V e (x,)].
et

Applying Assumption 7, we have

(a7 i)
) (15

B.4.3. COMPLEXITY ANALYSIS (COROLLARY 2)

Lemma 10. Let the objective function F satisfy As-
sumption 2, 7 be sampling b samples without re-
placement, and all elements of the solution set x, €
argmin, .- F (x) be stationary points of F. Then, the
subsampling estimator V fg satisfies the ER condition as

trVpr [Vfe(X) = V[ (x,)]
n—>b
< 2mLmax (F(x)—F(x,)),

where Ly, = max{Ly,...,L,}

Proof. Consider that, for any random vector x,
V[ x2] < Ellx|I3

holds. Also, sampling without replacement achieves besr =
(n—1)b

. Therefore, we have

trVp . [Vfg (X) = Vg (x.)]
n—>b
b n— )tr\/ [Vfi(x) = Vfi(x,)]

n—

b= )( Z IVfi () = Vi <x*)||2),
and from Assumption 2,

n—>
m( ZZL sz (x x*))

Using the bound L, > Li foralli=1,..,n,
n-b (1«
L2Lpax——=\| =), Dr. (x,x,) ],
= maxb(n_l)(n; fl( *))
applying Lemma 6,
n—b
max 3, (n—-1)
and since x, is a stationary point of F,

n—>b
= szmax F(x) - F(x,).

=2L Dp (x,x.),
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Corollary 2. Let the objective F satisfy Assumption [
and 2, the global optimum x,, = argmin, .- F (x) be a
stationary point of F, the component gradient estimators
&1 - 8 satisfy Assumption 6 (B) and 7, and 7 be b-
minibatch sampling without replacement. Then the last
iterate of SGD with gg is e-close to X, as E||xp — x, ||§ <
€ after a number of iterations of at least

1 1
T > 2max <Cvarg, Cbias) log <2||x0 _x*“§E>
for some fixed stepsize where
2(1& 9 180\ 22
Cvarz—(—Z—‘>+2<—Z—l) + o=,
b\nZw oK bu
2{1 L Y
Cows = = [ =S Z w2y /& .
bias b(”;#>+ (nEpl P +b,u

Proof. From Assumption 2 and the assumption that x, is
a stationary point, Lemma 10 establishes that V f satisfies
the ER (L) holds with

n—b
——— L ax-
(n—1b ™

sub =
Therefore, Assumption 5 holds. Furthermore, since the
component gradient estimators satisfy Assumption 6 (B)

and Assumption 3 always hold with p = 1, we can apply
Theorem 2 which estblishes that gg satisfies ER (£) with
e

() wEe)
n—b

+ ———Lax-
(n—1)b ™

n—>ob

Furthermore, under Assumption 7, Theorem 3 shows that
BV (¢?) holds with

2

2 g 2| nb=Di1

° (n—l)b(nz ) (n—1)b(ng;“l)
Lon=b
(n—1)b

Since both ER (£) and BV (¢?) hold and F satisfies As-
sumption 1, we can now invoke Lemma 1, which guaran-
tees that we can obtain an e-accurate solution after

21
)mqmm—mmg

o2 1 £L+L

ry )
p* €

N——r
Cvar

TZZmax(

N——
Chias

iterations and fixed stepsize of

v= 202 2L+ D))

28

The constants in the lower bound on the number of required
iterations can be made more precise as

n—>b 1 z 52
n(b—1) lz":ﬁ n-b 7
(n—=1b\n = u (n—1)b u2
. _ n-b (1 nﬁ
bias (n—1b ”,:1/‘
2
n(b—l) n—b L
TS nZ # MCESYY

Using the fact that (n—b)/n < (n—1)/n < 2foralln > 2
yields the simplified constants in the statement. O
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B.5. Random Reshuffling of Stochastic Gradients

B.5.1. GRADIENT VARIANCE CONDITIONS
(LEMMA 11, LEMMA 12)

Lemma 11. Let the objective function satisfy Assump-
tion 2, B be any b-minibatch of indices such that
B C {1,...,n} and the component gradient estimators
&1, 8y satisfy Assumption 6 (ASVX).  Then, gg is
convex-smooth in expectation such that

2
[EgaHgB (%) —gp (x*)”z < 2(Lmax + Linax) DfB (x,x,),
for any x € X, where
X, = argmin F (x),
xex
Lonax = max{Lq,...,L,},

L.y = max{Ly,...,L,}.

Proof. Notice that, for this Lemma, we do not assume that
the minibatch B is a random variable. Therefore, the only
randomness is the stochasticity of the component gradient
estimators gy, ... , 8-

Now, from the property of the variance, we can decompose
the expected squared norm as
2
[EHgB (x) — 8B (x*)Hz
2
=tV [gg (X) — g (X )]+ [|Vf5 (¥) = Vfp (xII; -

Vsub

Vcom

First, the contribution of the variances of the component
gradient estimators follows as

Vcom tr\/qo [g (x) — & (x*)]

1
=tV |3 D &) - x|,
ieB
applying Eq. (14) of Lemma 3,
1
<72V, (g () — g (x)],
ieB
and then Assumption 6 (ACVX),
1
< E Z 2Ll Dfl (x,x*).
ieB
Now, since L, > £; foralli=1,...,n,

1
< 2Lmaxy 2, Dy, (%, %,)

i€eB

(32)

= 2L Dy (X, %)

On the other hand, the squared error of subsampling (it is
not the variance since we do not take expectation over the

29

batches) follows as

Ve = IV f5 %) = V(x|
2

=Y Vi) = Vi Gx)

i€EB

5

2

by Jensen’s inequality,
1 2
<3 2 VA @) = Vil
ieB
from Assumption 2,
1
< 5 Z 2L;Dy, (x,x,)
ieB
and since Ly, > L; foralli=1,...,n,
1
< 2Lmax5 z Dfi (x, x>:<)
ieB
= 2Ly Dy, (%, %)

Combining the bound on Vi, and V,, immediately
yields the result. O
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Lemma 12. For any b-minibatch reshuffling strategy, the
squared error of the reference point of the Lyapunov
function (Eq. (10)) under reshuffling is bounded as

r’n

—T

; 2
L
Ellxl —x.l; < 22

foralli=1,...,p, where x, € argmin__.. F (x).

xeX

Proof. The proof is a generalization of Mishchenko et al.
(2020, Proposition 1), where we sample b-minibatches
instead of single datapoints. Recall that P denotes the
(possibly random) partitioning of the n datapoints into b-
minibatches Py, ... ,Pp. From the definition of the squared
error of the Lyapunov function in Eq. (10), we have

; 2
E ”x* - x*”z
2
i—1
=E |||y [ % — Z VVfPi (2,) | — My (x) ’
k=0
2
and since the projection onto a convex set under a Eu-
clidean metric is non-expansive,
i-1 2
<E| [ = 2 rVee @) —x,
k=0 5
i-1 2
=E[|[> rVSn x| |-
k=0 2

introducing a factor of i in and out of the squared norm,

. 2
R =
= SE[|l7 2 rVSe @)
i
k=0 5
2
2.2 i—-1
Yl 1
== Ell37 D Vip ()
k=0 5

. 1 «i-1 .
Now notice that T Zj:() V fp, (x,) is a sample average of
ib samples drawn without replacement. Therefore, it is an
unbiased estimate of VF (x,). This implies
2

; 2]yl 19
Elbe, —x.ll,[ = —=-E |5 D VEp (%)
k=0

2
2:2 [
a
= —1trV
3 tr

=

=2 Vx|,
| © k=0

and from Lemma 2 with a sample size of ib,

2:2 . n
_vi® n—ib 1 . 2
=2 moppaz Vil

30

ri(z-i) |
=mr.

Notice that this is a quadratic with respect to i, where the
maximum is obtained by i = #/2b. Then,

2
2 n

y —_—

< <2b> )
2(n—1)

_ y2n? ”
8b2(n—1)

1) <2foralln > 2,

r’n ,

4b2

: 2
E Il - .15

>

and using the bound n/(n —

<
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B.5.2. CONVERGENCE ANALYSIS (THEOREM 5)

Theorem 5. Let the objective F satisfy Assumption [
and 2, where, each component f; is additionally u-
strongly convex and Assumption 6 (AVX), 7 hold. Then,
the last iterate xt of doubly SGD-RR with a stepsize sat-
isfying ¥ < 1/ (Lax + Linax) guarantees

2 2
0 Kp|[50 b .2
Ellxg,y = %ll, S oPllxy —x.l, + Coal v* + Clar' v
where p = n/b is the number of epochs, x, =
argmin, .- F (x), r = 1 — yu is the contraction coef-
ficient,

2
41«
O'?) + ; (E ;O’i) 5 and
(% > IvS, (x*>||§> .
i=1

4 (1<
cr-%(13
ub\n i3

sub __ leax i
var — 4 /1 b2

Proof. The key element of the analysis of random reshuf-
fling is that the Lyapunov function that achieves a fast con-
. 12 ; 2

- xi:r1||2 not [lx;*! — x|, This stems
from the well-known fact that random reshuffling results in
a conditionally biased gradient estimator.

vergence is ||x

Recall that P denotes the partitioning of the n datapoints
into b-minibatches Py, ..., Pp. As usual, we first expand the
Lyapunov function as

i+1 _

. 2
1
et —

= (el — 7 g (el) — T el — 7 ¥, e[,

and since the projection onto a convex set under a Eu-
clidean metric is non-expansive,

. . . 2
< (e, — 7 £, (i) = 6k =7 Vi, I
. 2 . . .
= I}, = %[, = 27 (x}, — X\, , gp,(x}) = V£, (x.))

. 2
+72llge, () = Vfp, (I

Taking expectation over the Monte Carlo noise conditional
on the partitioning P,

. . 2
Ep ™ — 21
. .2 . . .
= |l = xL[, = 27 (x}, = x , E,lgp,(x))] = Vfp, (x.))
+72Ey g, (x) = V. fp, (x|
. .2 . . .
= |l = X1 = 27 (x), =X, , Vi, (x}) = Vfp, (x.))

4 2
+7°Eyllgn,(x)) — Vfp el

31

From the three-point identity, we can more precisely char-
acterize the effect of the conditional bias such that

(% =%, . Vfp () = Vip (x.))
=Dy, (xi,x;;) + Dy, (x;'(,x*) =Dy, (xL, x,).

For the gradient noise,

. 2
Eollgr, (x,) — Vfp, el
. 2
= Eollgp,(x;) — gp, (x.) + &p, (%) = VS5, (X,
- 2
< 2F,||gp, (x) — g, (X.)II, + 2, llgp, (x.) = Ve, (x5

) 2
=2E,lgp, (x) — &gp, (XN, + 211V, [&r, (x,)],
and from Lemma 11,

< 4(Lmax + Limax) Dfpl. (x]ic:x*) + 2trV,, [gPi (x*)]

Notice the variance term trV, [gpl_ (x*)]. This quanti-
fies the amount of deviation from the trajectory of singly
stochastic random reshuffling. As such, it quantifies how
slower we will be compared to its fast rate.

Now, we will denote the o-algebra formed by the random-
ness and the iterates up to the ith step of the kth epoch as
F), such that (F) Jk>1,i»1 is a filtration. Then,

. . 2 .
1 1
By g [nx;: — x| f,g]

; ;2
< el — x|
-2y (Dfpi (xi,x;'{) +Dy, (xL,x*) — Dy, (xi,x*))
+47? (Lmax + Limax) DfPi (x;'ca X,)
+2/2V,, (g, (x,)]

Now, the u-strong convexity of the component functions
. ; 2
imply Dy, (xﬁk,x;{) < %Hx?{ - xfk||2. Therefore,
. )
< I, — x|
— 2y (5%l = I, + Dy, (¢l ) — Dy, (6L x.)
14 zllxk x*llz fp; xk,x* fp; Xis X
+ 47/2 (Lmax + Limax) Dfpi (x;.(’ x.)
+ 2721V, [gp, (%)),
and reorganizing the terms,
i ig?
= A=y lx, — >,
=2y (1 = 2y (Lmax + Limax)) Dfpi (x;{, X.)
+2y Dfpl. (xfk’x*)
+ 22tV (g (x,)] .
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Taking full expectation,

. . 2
Efle,tt — x|

i P2
S A=y Ellxy — x|,
-2y (1 -2y (Lmax + Lmax)) E [Dfp (x Xy )]
+2yE [DfPi (x*,x*)]
+27°E [V, [gp, (x)]]
and as long as y < 1/(2 (Lmax + Lmax))
. .2 .
< (- ywElx, - x| +27E[Dy, (+h,x.)]

—_——
Terr

+ 277 E[trV,, g, (x.)]]. (33)

~——— ———
Tvar

Bounding T,.,, From the definition of the Bregman diver-
gence and L-smoothness, for all j = 1, ..., n, notice that we
have

Dp, (v x)=f;(0)—f;(x) - (Vfj(x),y—x)

L 2
< Slly = xll5. (34)

for all (x,x”) € X2. Given this, the Lyapunov error term

7 Z Dy, (xk’x*>]

Jez

E[Dy, (¥,.x.)]=E

can be bounded using L-smoothness by Eq. (34),

) =) x*nj]

;eP
2
—x.

(35)

<E

and Ly, > L; foralli =1, ...,

<_[E[

Linax i
= D%E|x,

> Xk

JEP;

2
_x*llz'

; 2
The squared error ||x;c - X, ||2 is bounded in Lemma 12 as

2
i o2 At
E|lx}, —x*||2 <e€g = m‘r < 0. (36)
Bounding T,,, Now, let’s take a look at the variance

term. First, notice that, by the Law of Total Expectation,

E [V, [g5, (v.)]] = E[E [0V, [, )] 1 P1].

Here,
E[trV, [gr, (x.0] | P]

32

is the variance from selecting b samples without replace-

Db ch

ment. We can thus apply Lemma 9 with begp =
that

E [tr\/q, [gpi (x)] | P]

n—>b 1

<_—— " |z
“(n—-1)b|n“

j=1

z nb-1f1
2,5 |+ HCEEY n s

which we will denote as

= g2 (37)

for clarity. Also, notice that g2 no longer depends on the
partitioning.

Per-step Recurrence Equation Applying Egs. (35)
and (37) to Eq. (33), we now have the recurrence equation

. . 2 ; L2
i+1 i+1 i i
[E“xk — Xy ”2 S(l—}/,u)[Eka—x*Hz

2
+ Linax€r ¥ + 20772,

Now that we have a contraction of the Lyapunov function

i1 _ i+l - ~
Ellx, x || , it remains to convert this that the Lya-

2 .
punov function bounds our objective E[|x,"" — X, ||2. This

can be achieved by noticing that, at the end of each epoch,
we have X, —x, = xi — x% ., and equivalently, we have
X — X, = xg — x? at the beginning of the epoch. The fact
that the relationship with the original objective is only guar-
anteed at the endpoints (beginning and end of the epoch) is
related to the fact that the bias of random reshuffling starts
increasing at the beginning of the epoch and starts decreas-

ing near the end.

i+1

Per-Epoch Recurrence Equation Nevertheless, this im-
plies that by simply unrolling the recursion as in the analy-
sis of regular SGD, we obtain a per-epoch contraction of

2 2
Ellxy,, — Xll, < (A= Y Ellx) = x|,
p-1 ,
+ (Lmaxeﬁﬂy + 20'27/2) > A —uy)
i=0
And after K epochs,
0 2 PK 1,0 2
Eflxg .y = %ll, < (1 =y Ellxg — x|l
p-1 pK-1 )
+ (LmaxeZyy +20272) | S A=) || 2 a =]
i=0 j=0

Note that T = pK.
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As done by Mishchenko et al. (2020), the product of sums
can be bounded as

p-1 ) T-1 )
Da-w)|| D a-u?
i=0 j=0

p—1T-1

=3 > A=) A - u)”

i=0 j=0
p—-1T-1

=> S a-u)

i=0 j=0
Tp-1

= > Q-u)

i=0

A —py)

o

<
0

IA
3|~ I

Then,

2
x|

[E||x°
2

K+1

K 2 1
< A=y Ellxg = %l + ” (Lmaxeﬁﬂy + 26272)

2
K 2 & 207
= 1=y Ellxg — x|l + 87 T

Plugging in the value of e§f1 from Eq. (36), we have

2 2
0 pK 0
B, — %) < (1 -y Bl - x|
2
Lmaxnasub 2 2;'2)/
4b2u po
This implies
2 2
b
Ell,y = Xll, <r<YPIx) —xl, + CR v? + CRr s

wherer =1 —yu,

1L n1< 2
b max 2 VT (x
C\S/lallr — Z_ﬁ (n & || fl( *)”2) ,and

2
com_ 2 n—=b ln 2 Ewln ,
Cyar _,u(n—l)b nZO'i +/,[(n—1)b I’l;al '

i=1

Applying the fact that (n — b)/n < (n —1)/n < 2 for all
n > 2 yields the simplified constants in the statement. [J
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B.5.3. COMPLEXITY ANALYSIS (THEOREM 4)

Theorem 4. Let the objective F satisfy Assumption |
and 2, where each component f; is additionally u-
strongly convex, and Assumption 6 (ASVX), 7 hold.
Then, the last iterate X1 of doubly SGD-RR is e-close
to the global optimum x, argmax, . F (X) such

2 . .
that E|lxr — x,|[; < € after a number of iterations of
at least

4C\C1Sa)£n_ + C\s}g}a\}_ Cblas) 1Og (2 ||x - x*” )
for some fixed stepsize, where T = Kp = Kn/b,

Coias = (Lmax + L) /:“

T >max<

2 n 2
2109 1¢ 0
com _ — _ _t _ -t
w-3(:53) < (5%)
Csub — LmaXﬁT

var

Proof. From the result of Theorem 5, we can invoke
Lemma 5 with

:Lmaxn 2
4b2u
2 n=b (1< nb-1[1< ’
= — — 2 + —_ . ,
7 (n—l)b( 2”) (n—1)b(ni§“l)

C = Lmax + Limax-

Then, an € accurate solution in expectation can be obtained

after

2B 1 V2A 1 ZLpx+L 1
T > max 2Ly —, max max log <2V§—)

Ho€ H“ \/E K €

N——r N——r

écl écz

iterations with a stepsize of
B2+ 2A4¢ 1

, (—B+
y = min

To make the iteration complexity more precise, the terms
C4, C, can be organized as
(E

2A ’E)'

2

2) n-b_
K (n—=1)b

nb-1)[1<
<n—1>b(ﬁ§‘”> g)
2
_A4(n=b (15 o) nb-D 1<
e (2 w55 ()
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Applying the fact that (n — b)/n < (n — 1)/n < 2 for all
n > 2 yields the simplified constants in the statement. [
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C. Applications
C.1. ERM with Randomized Smoothing
C.1.1. DESCRIPTION

Randomized smoothing was originally considered by
Polyak & d Aleksandr Borisovich (1990); Nesterov (2005);
Duchi et al. (2012) in the nonsmooth convex optimization
context, where the function is “smoothed” through random
perturbation. This scheme has recently renewed interest
in the non-convex ERM context as it has been found to im-
prove generalization performance (Orvieto et al., 2023; Liu
et al., 2021). Here, we will focus on the computational as-
pect of this scheme. In particular, we will see if we can ob-
tain similar computational guarantees already established
in the finite-sum ERM setting, such as those by Gower et al.
(2021a, Lemma 5.2).

Consider the canonical ERM problem, where we are given
a dataset D = {(x;, yl-)}?:1 € (X x ¥)" and solve

mi{,}ie%ize L(w)= %; ¢ (fw>),y)+h(w),

where (x;,y;) € X X Y are the feature and label of the
ith instance, f, : X — Yisthemodel, ¢ : YX Y —
R is a non-negative loss function, and h : W — Risa
regularizer.

For randomized smoothing, we instead minimize
1 n
L(w)= > Ri(w),
i=1

where the instance risk is defined as

ri(w) = [Ee~¢€ (fwse (*i),21)

for some noise distribution € ~ ¢. The goal is to obtain
a solution w* = argmin L (w) that is robust to such
perturbation.

wew

The integrand of the gradient estimator of the instance risk
is defined as

9i (W;n) = Vil (fwre Xi),¥1)

0fwie (X;)
= s (Fuve (%), 31),
where it is an unbiased estimate of the instance risk such
that
Eg (w) = VR, ().
The key challenge in analyzing the convergence of SGD

in the ERM setting is dealing with the Jacobian M.

Even for simple toy models, analyzing the Jacobian wiltuhout
relying on strong assumptions is hard. In this work, we
will assume that it is bounded by an instance-dependent
constant.
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C.1.2. PRELIMINARIES

We use the following assumptions:

Assumption 8.

(a) Let the mapping § — ¢ (P,y) is convex and L-
smooth for any y; Vi =1, ..., n.

(b) The Jacobian of the model with respect to its param-
eters for all i = 1, ..., n is bounded almost surely as

<G;

‘ Swte (Xi)
2

ow

forallw € W.

(c) Interpolation holds on the solution set such that, for
all w, € argmin,,, L (w), the loss minimized as

4 (fw*+e (x:) :yi) =t (fw*+e (x;) ayi) =0

for all (x;,y;) € D.

(a) holds for the squared loss, (c) basically assumes that
the model is overparameterized and there exists a set of op-
timal weights that are robust with respect to perturbation.
The has recently gained popularity as it qualitatively ex-
plains some of the empirical phenomenons of non-convex
SGD (Vaswani et al., 2019; Gower et al., 2021a; Ma et al.,
2018). (b) is a strong assumption but is commonly used
to establish convergence guarantees of ERM (Gower et al.,
2021a).

Remark 12. Under Assumption 8 (c), Assumption 7 holds
with arbitrarily small O'l.z, 2.
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C.1.3. THEORETICAL ANALYSIS Proposition 10. Let Assumption 8 hold. Then, Assump-
tion 5 holds.
Proposition 9. Let Assumption 8 hold. Then, Assump-
; ITP
tion 6 (A**F) holds. Proof
1 2
Proof. = D lIVR; () = VR, (w,);
2 1 2
Ellg: (w) - & (w.)ll; = - i, [Eg (w) — Egi (w,)ll5,
0fwte (Xi) and from Jensen’s inequality,
e e UCO R s inequality :
2 < ;Zl=1IE||gl (w)_gl(w*)llz
— W{l (fw*+€ ),y We can now reuse Proposition 9 as
2 n
from the interpolation assumption (Assumption 8 (c)), < 2 Z 2LGi2 (R; (w) — R; (w,))
n“
0 x 2
= [EH—qu'e( l)f (fw+e (Xi), Y1) and taking G,y > G; foralli =1,.
2
0 f wre (x; ) <2LG2 (R; (w) — R; (w,))
<E L 15 (fw+e (xl) yl)| ax Z *
applying Assumpuon 8 (b), = 2LGp,x (L (w) — L (w,)).
2
< GiZ[E}tJ, (fw+e (xi)»yi)‘ . O

and then the interpolation assumption (Assumption 8 (c)),

= GiZ[E‘fl (fw+e (xi) ’yi) —t' (fw*+e (xi) ’yi)|-
From Assumption 8 (a),

< 2LGE(E (Fuowe (60) 90 = € (fur ve (1), 1)
- <€’ (fw*+e (x;) ’yi) s frwore (Xi) — fw*+e (x1)>)

and interpolation (Assumption 8 (c)),
= 2LGi2 ([Ef (fwre (x:1),y)) — EC (fw*+e (%) ayi))
= 2LG} (R; (w) — R; (w,)) .
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C.2. Reparameterization Gradient
C.2.1. DESCRIPTION

The reparameterization gradient estimator (Kingma &
Welling, 2014; Rezende et al., 2014; Titsias & Lazaro-
Gredilla, 2014) is a gradient estimator for problems of the
form of

fi (W) = Ezog, ti(2),

where ¢ R4:~R {5 some integrand, such that the

derivative is taken with respect to the parameters of the
distributiong,, we are integrating over. It was indepen-
dently proposed by Kingma & Welling (2014); Rezende
et al. (2014) in the context of variational expectation max-
imization of deep latent variable models (a setup com-
monly known as variational autoencoders) and by Tit-
sias & Lazaro-Gredilla (2014) for variational inference of
Bayesian models.

Consider the case where the generative process of ¢, can
be represented as

d
Z~qQy © z2=Tu,W); u~g,

where 4 is equivalence in distribution, ¢ is some base dis-
tribution independent of w, and J, is a reparameterization
function measurable with respect to ¢ and differentiable
with respect to all w € W. Then, the reparameterization
gradient is given by the integrand

gi(w,u) =V, ¢;(Ty W),

which is unbiased, and often results in lower variance (Ku-
cukelbir et al., 2017; Xu et al., 2019) compared to alterna-
tives such as the score gradient estimator. (See Mohamed
et al. (2020) for an overview of such estimators.)

The reparameterization gradient is primarily used to solve
problems in the form of

minimize F (w) = Z‘{ fi (w) + h(w)
=Ezq,li(2) + h(w),

where h is some convex regularization term.

Previously, Domke (2019, Theorem 6) established a bound
on the gradient variance of the reparameterization gradi-
ent (Kingma & Welling, 2014; Rezende et al., 2014; Titsias
& Lazaro-Gredilla, 2014) under the doubly stochastic set-
ting. This bound also incorporates more advanced subsam-
pling strategies such as importance sampling Gower et al.
(2019); Gorbunov et al. (2020); Csiba & Richtarik (2018);
Needell et al. (2016); Needell & Ward (2017). However, he
did not extend the analysis to a complexity analysis of SGD
and left out the effect of correlation between components.
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C.2.2. PRELIMINARIES

The properties of the reparameterization gradient for when
quw is in the location-scale family were studied by Domke
(2019).

Assumption 9. We assume the variational family
0£{q, |lwe W}

satisfies the following:

(a) Q is part of the location-scale family such that
Twm)=Cu+m.

(b) The scale matrix is positive definite such that C > 0.

(c) u = (ul,...,udz) constitute of i.i.d. components,
where each component is standardized, symmetric,
and finite kurtosis such that Ey; = 0, [Eul.2 1,

[Eui3 =0, and [Eu? = k¢, where k(p is the kurtosis.

Under these conditions, Domke (2019) proves the follow-
ing:

Lemma 13 (Domke, 2019; Theorem 3). Let Assump-
tion 9 hold and € ; be L;-smooth. Then, the squared norm
of the reparameterization gradient is bounded:

Ellg w2 < (d + 1) Im = Zil2 + (d + k) lICII}

forallw = (m,C) € W and all stationary points of €;
denoted with Z;.
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Similarly, Kim et al. (2023) establish the QES condition as
part of Lemma 3 (Kim et al., 2023). We refine this into
statement we need:

Lemma 14. Let Assumption 9 hold and € ; be L;-smooth.
Then, the squared norm of the reparameterization gradi-
ent is bounded:

2
E|le (w) — & (w)|[, < L2 (d + k) lw — will;
forallw,w’ € W.
Proof.

E||g: (w) — & (w))
= EllVat; (T () = Vil (T oy @)
2

|07 (u) 0T w (4)

= [EHTVI% (g.w (u)) - WVfl (‘Tw’ (Z)) 5
0T w Tafw/

= E(Vfl (Tw (U)) - sz (Tw/ (u)))T< auEU)> awEU)

X(VE; (Tw () = VE; (Tw (W)
As shown by Kim et al. (2023, Lemma 6), the squared Jaco-
bian is an identity matrix scaled with a scalar-valued func-

tion independent of w, J+ (u) = ||u||§ + 1, such that
2
=By (W) IV (T (u)) = VE; (T ()3,
applying the L;-smoothness of ¢;,
2
= L]y () |7 (0) = T ()l
and Kim et al. (2023, Corollary 2) show that,
2
<L} (d+ky) lw—w].

O

Lastly, the properties of ¢; are known to transfer to the ex-
pectation f; as follows:

Lemma 15. Let Assumption 9 hold. Then we have the
following:

(i) Let €; be L; smooth. Then, f; is also L;-smooth
(ii) Let €; be convex. Then, f; and F are also convex.
(iii) Let€; be u-strongly convex. Then, f; and F are also

u-strongly convex.

Proof. (i) is proven by Domke (2020, Theorem 1), while a
more general result is provided by Kim et al. (2023, Theo-
rem 1); (ii) and (iii) are proven by Domke (2020, Theorem
9) and follow from the fact that h is convex. O
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C.2.3. THEORETICAL ANALYSIS

We now conclude that the reparameterization gradient fits
the framework of this work:

Proposition 11. Let Assumption 9 hold and €; be convex
and L;-smooth. Then, Assumption 5 holds.

Proof. The result follows from combining Lemma 15 and
Lemma 10. O

From Lemma 13, we satisfy 7.

Proposition 12. Let Assumption 9 hold, €; be L;-smooth,
the solutions w, € argmin ., F (w) and the station-
ary points of €;, Z, be bounded such that ||w,||, < o
and ||Z||, < oo. Then, Assumption 7 holds.

Proof. Lemma 13 implies that, as long as the w,, and Z are
bounded, we satisfy the component gradient estimator part
of Assumption 7, where the constant is given as

_ 12 2
o} =L} (d+ 1) |lm, — zll, + L7 (d + k) IC.|I5

where w,, = (m,,C,). O
From Lemma 14, we can conclude that the reparameteriza-
tion gradient satisfies Assumption 6:

Proposition 13. Let Assumption 9 hold and €; be
L;-smooth and u-strongly convex.  Then, Assump-
tion 6 (ASVX) and Assumption 6 (B) hold.

Proof. Notice the following:

1. Assumption 4 always holds for p = 1.

From the stated conditions, Lemma 15 establishes that
both f; and F are u-strongly convex.

. p-strong convexity of f and F implies that both are
u-QFG (Karimi et al., 2016, Appendix A).

The reparameterization gradient satisfies the QES
condition by Lemma 14.

Item 1, 2 and 3 combined imply the ES condition by Propo-
sition 8, which immediately implies the ER condition with
the same constant. Therefore, we satisfy both Assump-
tion 6 (ACVX), Assumption 6 (B) where the ER constant

L, is given as ,

Li
Lizﬁ(d-i-k(P)'
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