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Abstract

Stochastic gradients have been widely integrated

into Langevin-based methods to improve their

scalability and efficiency in solving large-scale

sampling problems. However, the proximal sam-

pler, which exhibits much faster convergence

than Langevin-based algorithms in the determin-

istic setting (Lee et al., 2021), has yet to be

explored in its stochastic variants. In this pa-

per, we study the Stochastic Proximal Samplers

(SPS) for sampling from non-log-concave dis-

tributions. We first establish a general frame-

work for implementing stochastic proximal sam-

plers and establish the convergence theory ac-

cordingly. We show that the convergence to the

target distribution can be guaranteed as long as

the second moment of the algorithm trajectory

is bounded and restricted Gaussian oracles can

be well approximated. We then provide two im-

plementable variants based on Stochastic gradi-

ent Langevin dynamics (SGLD) and Metropolis-

adjusted Langevin algorithm (MALA), giving rise

to SPS-SGLD and SPS-MALA. We further show

that SPS-SGLD and SPS-MALA can achieve ϵ-
sampling error in total variation (TV) distance

within Õ(dϵ−2) and Õ(d1/2ϵ−2) gradient com-

plexities, which outperform the best-known result

by at least an Õ(d1/3) factor. This enhancement

in performance is corroborated by our empirical

studies on synthetic data with various dimensions,

demonstrating the efficiency of our proposed al-

gorithm.
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1. Introduction

Sampling from a target distribution p∗ ∝ exp(−f) is a

fundamental problem in many research fields such as statis-

tics (Neal, 1993), scientific computing (Robert et al., 1999),

and machine learning (Bishop & Nasrabadi, 2006). Here,

f : Rd → R is referred to as the negative log-density func-

tion or energy function of p∗. To solve this problem, the

Langevin-based sampling algorithms, based on discretizing

the continuous-time Langevin dynamics, are the most pop-

ular choices, including Unadjusted Langevin Algorithm

(ULA) (Neal, 1992; Roberts & Tweedie, 1996), Under-

damped Langevin Dynamic (ULD) (Cheng et al., 2018; Ma

et al., 2021; Mou et al., 2021). These algorithms have been

extensively investigated both theoretically and empirically.

Notably, Langevin-based algorithms are usually biased, i.e.,

the stationary distribution of ULA and ULD (which are also

Markov processes), will be different from the target distri-

bution p∗, and the error is governed by the discretization

step size. Thus, Metropolis-adjusted Langevin Algorithm

(MALA) (Roberts & Stramer, 2002; Xifara et al., 2014) was

designed to resolve this issue.

To achieve the unbiasedness for sampling, Proximal sampler,

similar to proximal point methods in convex optimization,

has been recently developed in Lee et al. (2021). In particu-

lar, the core idea of the proximal sampler is to first construct

a joint distribution

p∗(x,y) ∝ exp
(

− f(x)− ∥x− y∥2
/(2¸)

)

(1)

whose x-marginal distribution is the same as p∗. Then, the

iterations follow from the two stages:

• From a given x, sample y|x ∼ p∗(y|x) = N (x, I).

• From a given y, sample x|y ∼ p∗(x|y) satisfying

p∗(x|y) ∝ exp
(

− f(x)− ∥x− y∥2
/(2¸)

)

.

It can be noted that the second stage can be easily imple-

mented even in the non-log-concave setting (i.e., f(x) is

nonconvex), since the target distribution, i.e., p∗(x|y), is

strongly log-concave when ¸ is properly small. Under this

condition, the proximal sampler achieves a linear conver-

gence rate for different criteria (Chen et al., 2022) when the

proximal oracle can be accessed.

Despite the impressive performance of proximal samplers

in the deterministic setting, where full access to the function
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f(x) and its gradient ∇f(x) is available, their behavior

remains largely unexplored in the stochastic setting. In this

context, we can only access a stochastic version of f and

∇f(x) at each step. This is particularly relevant in scenarios

where the target distribution p∗ is formulated as the posterior

of a stochastic process based on multiple observations or

training data points. In such cases, the negative log-density

function takes the finite-sum form: f(x) = 1
n

∑n
i=1 fi(x),

where n denotes the number of observations and fi(x) de-

notes the corresponding negative log-density function1. To

reduce the high per-step computational complexity for cal-

culating the full gradient, the mini-batch stochastic gradient

has become a standard choice. In the realm of Langevin-

based algorithms, extensive research has been conducted

on their stochastic counterparts. Various stochastic gra-

dient Langevin algorithms, including stochastic gradient

Langevin dynamics (SGLD) (Welling & Teh, 2011) and

stochastic gradient ULD (SG-ULD) (Cheng et al., 2018),

have been developed. Moreover, the convergence guaran-

tees of these algorithms have been well-established for both

log-concave and non-log-concave target distributions.

However, to the best of our knowledge, no prior attempts

have been made to study the stochastic gradient proximal

sampler, encompassing both algorithm design and theoreti-

cal analysis. Consequently, there exists a considerable gap

in understanding how the proximal sampler can be effec-

tively adapted to the stochastic setting and what convergence

rates can be achieved. This unexplored research question

impedes the broader application of the proximal sampler in

various tasks, hindering its full potential utilization.

In this paper, we aim to systematically answer this ques-

tion by providing a comprehensive study of the stochastic

gradient proximal sampler. First, we provide a framework

for implementing stochastic proximal samplers, the idea

is to replace the original joint target distributions with a

randomized one:

p∗(x,y|b) ∝ exp
(

−fb(x)− ∥x− y∥2
/(2¸)

)

,

where b is the stochastic mini-batch that is randomly sam-

pled in different iterations. The two-stage alternating sam-

pling process for p∗(y|x,b) (a Gaussian-type distribution)

and x from p∗(x|y,b) (sampling a log-concave distribu-

tion) will be performed accordingly. By applying different

numerical samplers for p∗(x|y,b), we are able to design

various stochastic proximal samplers. Then, we develop

the theory to characterize the convergence of the stochastic

proximal samplers. The core of our analysis is to sharply

quantify the error propagation across multiple iterations. In

particular, the sampling error within one step stems from (1)

inexact target p∗(x|y,b) caused by stochastic mini-batch;

1We consider the average for consistency with Raginsky et al.
(2017); Zou et al. (2021).

(2) inexact sampling for p∗(x|y,b) caused by numerical

samplers. Then, by designing proper initialization when

sampling from p∗(x|y,b), the error propagation can be

controlled by the second moment of particles’ underlying

distributions rather than requiring the stationary points of

f as previous analysis (Altschuler & Chewi, 2023). When

p∗ only satisfies LSI, its negative log-density f will even

be nonconvex, which means finding an ϵ-approximate sta-

tionary points requires O(ϵ−4) oracles with stochastic gra-

dient descent, which is unacceptable in sampling tasks. Be-

sides, by controlling the second moment bound, we provide

the gradient complexity expectation for the convergence,

which is stronger than a high probability convergence shown

in Altschuler & Chewi (2023). Based on our theory, we

can develop the convergence guarantees for a variety of

stochastic proximal samplers, when the target distribution is

log-smooth and satisfies Log-Sobolev Inequality (LSI). We

summarize the main contributions of this paper as follows:

• We propose a framework for implementing stochastic

proximal samplers. We then provide a general theory to

characterize the convergence of stochastic proximal sam-

plers for a general class of target distributions (that can be

non-log-concave). We show that with feasible choices of

the mini-batch size and learning rate, the stochastic proxi-

mal samplers provably converge to the target distributions

with a small total variation (TV) distance. Notably, com-

pared with Altschuler & Chewi (2023), our framework

is more practical since it does not require the stationary

point information of f and replaces the high probability

convergence results with expectation ones.

• Based on the developed framework, we consider two

implementations of stochastic proximal samplers using

SGLD and warm-started MALA for sampling p∗(x|y,b),

giving rise to SPS-SGLD and SPS-MALA algorithms.

We prove that in order to achieve ϵ sampling error in

TV distance, the gradient complexities of SPS-SGLD

and SPS-MALA are Õ(dϵ−2) and Õ(d1/2ϵ−2) respec-

tively. Compared with the state-of-the-art Õ(d4/3ϵ−2)
results achieved by CC-SGLD (Das et al., 2023), the de-

veloped stochastic proximal samplers are faster by at least

an Õ(d1/3) factor.

• We conduct experiments to compare SGLD with SPS-

SGLD, where the latter one is implemented by using

SGLD to sample p∗(x|y, b) in the stochastic proximal

sampler framework. Empirical results show that SPS-

SGLD consistently achieves better sampling performance

than vanilla SGLD for various problem dimensions.

2. Related Work

This section primarily introduces related work by dividing

current gradient-based MCMCs into two categories. The
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first one is based on discretizing the continuous Langevin

dynamics. For the second type, including proximal samplers,

the SDE of particles varies a lot. Beyond the sampling

algorithms, we will also introduce the usage of the proximal

operator in optimization and how it relates to the sampling.

Stochastic Gradient Langevin-based Algorithms. To im-

plement Langevin-based MCMCs with stochastic gradient

oracles, the first work is stochastic gradient Langevin dy-

namic (SGLD) Welling & Teh (2011). Dalalyan & Karag-

ulyan (2019) further establishes the convergence guarantee

of SGLD in Wasserstein-2 distance for strongly log-concave

targets. Besides, Durmus et al. (2019) analyzes SGLD from

a composite optimization perspective and obtains the con-

vergence of the KL divergence. To adapt SGLD to a broader

class of target distributions beyond log-concavity, Ragin-

sky et al. (2017); Xu et al. (2018) extend the theoretical

analysis of SGLD to distributions satisfying dissipative con-

ditions and proves the convergence when using large mini-

batch size. This result has been further improved by Zou

et al. (2021), which establishes the convergence guarantee

of SGLD for sampling non-log-concave distributions for

arbitrary mini-batch size. More recently, Das et al. (2023)

develops non-asymptotic Center Limit Theorems to quan-

tify the approximate Gaussianity of the noise introduced

by the random batch-based stochastic approximations used

in SGLD and its variants, which leads to the best known

convergence rate, i.e., Õ(d1.5ϵ−2) and Õ(d4/3ϵ−2), for dis-

tributions satisfying isoperimetric conditions.

Non-Langevin-based Algorithms. There are a number of

sampling algorithms are designed based on other Markov

processes beyond Langevin. To name a few, Hamiltonian

Markov Carlo (HMC) (Neal, 2010) is designed by simu-

lating the particles’ trajectory in the Hamiltonian’s system;

diffusion-based MCMCs (Huang et al., 2023; 2024) dis-

cretize the reverse process of an Ornstein–Uhlenbeck pro-

cess that initializes at p∗; proximal samplers alternatively

sample the marginal distributions of a joint distribution.

Dong et al. (2022) focus on ODE-based sampling.

In theory, the convergence rate of HMC has been established

in Bou-Rabee et al. (2020); Mangoubi & Smith (2017);

Mangoubi & Vishnoi (2018); Lee et al. (2018); Chen &

Vempala (2022); Durmus et al. (2017); Chen et al. (2020);

which achieves smaller sampling error than ULA for sam-

pling both strongly log-concave and non-log-concave tar-

gets. Chen et al. (2014); Zou & Gu (2021) further develops

a class of stochastic gradient HMC methods and proves the

convergence rates in the strongly log-concave setting. The

convergence rates of diffusion-based MCMCs are studied

in (Huang et al., 2023; 2024), which are demonstrated to be

faster than ULA and can be applied to more general settings

(e.g., beyond isoperimetric). For the proximal sampler, Lee

et al. (2021); Chen et al. (2022) provide its linear conver-

gence rate for different criteria under strongly log-concave

or isoperimetric conditions when the exact proximal oracle

exists. Liang & Chen (2022); Altschuler & Chewi (2023);

Fan et al. (2023) further extend the convergence results to

some inexact proximal oracles.

Notably, existing theory for non- Langevin-based algorithms

are mostly developed in the deterministic setting, while the

algorithmic implementation and theoretical analysis in the

stochastic setting remain largely understudied, especially

when the target distribution is non-log-concave. Our paper

provides the first attempts to study the proximal sampler’s

theoretical and empirical behaviors with only stochastic

gradient oracles, which paves the way for exploring other

non-Langevin-based algorithms in the stochastic setting.

Applications of the Proximal Operator. Before apply-

ing the proximal operator to the sampling algorithms,

it is introduced in optimization by the proximal point

method (Lemarechal, 2009; 1978; Liang & Monteiro, 2021;

2023; Mifflin, 1982; Rockafellar, 1976; Wolfe, 2009). The

proximal point method for minimizing the objective func-

tion f is the iteration of the proximal mapping

prox¸f (y) := arg min
x∈Rd

{

f(x) + ∥x− y∥2/(2¸)
}

with proper choice of ¸. Using the correspondence f and

exp(−f) between optimization and sampling, the proximal

sampler can be viewed as a sampling counterpart of the

proximal point method in optimization (Rockafellar, 1976).

3. Proposed Framework

This section will first introduce the notations commonly

used in the following sections. Then, we will specify the

assumptions that the target distribution p∗ is required in our

algorithms and analysis. After that, the proposed framework

and some fundamental properties, such as the error propa-

gation control when sampling from an inexact conditional

density p′
∗(x|y), will be shown.

3.1. Notations and Assumptions

We suppose the target distribution, i.e., p∗ ∝ exp(−f) with

a finite sum negative log-density, which means

f(x) :=
1

n

n
∑

i=1

fi(x) where ∀i, fi : Rd → R. (2)

We use letters, e.g., x and x, to denote vectors and random

vectors in R
d except for letters b and b, which denote sets

and randomized sets. The function fb denotes the energy

function deduced by mini-batch b, i.e.,

fb(x) :=
1

|b|

∑

i∈b

fi(x) where b ¦ {1, 2, . . . n}, (3)
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Results Algorithm Assumptions Metric Complexity

Raginsky et al. (2017) SGLD Dissipative, Component Smooth W2 Õ(poly(d)ϵ−4)

Zou et al. (2021) SGLD Dissipative, Warm Start, Component Smooth TV Õ(d4ϵ−2)

Das et al. (2023) AB-SGLD LSI, Finite-Sum, Smooth TV Õ(d3/2ϵ−2)

Das et al. (2023) CC-SGLD LSI, 6th moment, Smooth TV Õ(d4/3ϵ−2)

Theorem 4.1 SPS-SGLD LSI, Finite-Sum, Component Smooth TV Õ(dϵ−2)

Theorem 4.2 SPS-MALA LSI, Finite-Sum, Component Smooth TV Õ(d1/2ϵ−2)

Table 1. Comparison with prior works for SGLD. d and ϵ mean the dimension and error tolerance. Note that we do not list the assumptions

about the stochastic gradient since they vary greatly in different references, which will be discussed in our detailed theorems. The results

of our theorem based on [A3] and Ã2 = Θ(1). Compared with the state-of-the-art result, the sampling methods with the stochastic

proximal sampler have a better convergence rate with an Õ(d1/3) factor at least.

and ∇fb is the corresponding mini-batch gradient. The

notation | · | denotes the L1 norm or the number of elements

when the inner notation is a vector or a set, respectively.

The Euclidean norm (vector) and its induced norm (matrix)

are denoted by ∥ · ∥. For distributions p and q, we use

TV (p, q) and KL
(

p
∥

∥q
)

to denote their TV distance and

KL divergence, respectively.

Then, we show the assumptions required for p∗:

[A1] (Component Smooth) For any i ∈ {1, 2, . . . , n}, the

gradient of fi is L-smooth, which means

∥∇fi(x)−∇fi(y)∥ f L ∥x− y∥ .

[A2] (Log-Sobolev Inequality) The target distribution p∗

satisfies the following inequality

Ep∗

[

g2 log g2
]

− Ep∗
[g2] logEp∗

[g2] f
2

³∗
Ep∗
∥∇g∥2

with a constant ³∗ for all smooth function g : Rd → R

satisfying Ep∗
[g2] <∞.

[A3] (Bounded Variance) For any x ∈ R
d, the variance of

stochastic gradients is bounded, i.e.,

1

n

n
∑

i=1

∥∇fi(x)−∇f(x)∥2 f Ã2.

The component smoothness of the finite sum loss, i.e., [A1],

is also required in Raginsky et al. (2017); Zou et al. (2021).

[A2] is a kind of isoperimetric condition (Vempala &

Wibisono, 2019) which is strictly weaker than the strongly

log-concave assumption and even the dissipative assump-

tion (Raginsky et al., 2017). Besides, it implies the target

distribution p∗ to have a finite second moment M satisfy-

ing M = O(d), which is demonstrated in Appendix A.

[A3] recovers the standard uniformly bounded variance as-

sumption, i.e., Ã = Θ(1), following from Nemirovski et al.

(2009); Ghadimi & Lan (2012; 2013), and sampling refer-

ences sometimes allow Ã2 = Θ(d), e.g., Raginsky et al.

(2017); Dalalyan & Karagulyan (2019); Das et al. (2023).

Both of these cases will be considered in our analysis.

Algorithm 1 Stochastic Proximal Sampler

1: Input: The negative log density f of the target distribu-

tion, the initial particle x0 drawn from p0;

2: for k = 0 to K − 1 do

3: Sample x̂k+1/2 from p̂k+1/2|k(·|xk);

4: Draw the mini-batch bk from {1, 2, . . . , n};
5: Sample x̂k+1 from p̂k+1|k+1/2,b(·|x̂k+1/2,bk);

6: end for

7: Return: x̂K .

3.2. Stochastic Proximal Sampler

The stochastic proximal sampler (SPS) framework is

shown in Alg. 1. With the common notations intro-

duced in Section 3.1, we will explain p̂k+1/2|k(·|xk) and

p̂k+1|k+1/2,b(·|xk+1/2,bk), that are similar to standard

proximal samplers. Considering a joint target distribution

p∗(x,y) ∝ exp

(

− fb(x)−
∥x− y∥2

2¸

)

(4)

that is defined by the randomized mini-batch b and the

outer loop step size ¸, then Alg. 1 samples from p′
∗(y|x)

and p′
∗(x|y) alternatively. Specifically, at iteration k, sup-

pose x = xk, y = xk+1/2 and ¸ = ¸k, the conditional

probability density p′
∗(xk+1/2|xk) is equivalent to

pk+ 1
2

|k(x′|x) ∝ exp

(

−
∥x′ − x∥

2

2¸k

)

, (5)

which can be exactly implemented by Line 3 of Alg. 1

due to its Gaussianity. Besides, suppose x = xk+1 and

y = xk+1/2, the transition kernel p′
∗(xk+1|xk+1/2) can be

reformulated as

pk+1|k+ 1
2

,b(x′|x, b) ∝ exp

(

−fb(x′) −
∥x′ − x∥

2

2¸k

)

, (6)

which is desired to be implemented with Line 5 of Alg. 1.

Rather than exactly sampling from a target distribution,

e.g., pk+1|k+ 1
2

,b(x′|x, b), most samplers can only gener-

ate approximate samples that are close to the target ones
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in real practice. Therefore, we consider a Markov pro-

cess {x̂k} whose underlying distribution is defined as p̂k.

Given the same initialization p̂0 = p0, we denote the

two empirical transition kernels as p̂k+ 1
2

|k := pk+ 1
2

|k and

p̂k+1|k+ 1
2

,b(·|x, b) that satisfies

KL
(

p̂k+1|k+ 1
2

,b(·|x, b)
∥

∥pk+1|k+ 1
2

,b(·|x, b)
)

f ¶k. (7)

Here we assume that the conditional distribution of x̂k+1

given x̂k+1/2 is close to the ideal conditional distribu-

tion pk+1|k+1/2,b(x′|x, b) with up to ¶k approximation

error in KL divergence. In fact, as the distribution

pk+1|k+1/2,b(x′|x, b) is strongly log-concave when ¸k is

properly chosen, the condition Eq. 7 can be achieved by

applying standard numerical samplers such as SGLD and

MALA with provable guarantees (detailed implementations

will be discussed in the next section).

Then, the following theorem characterizes the error propa-

gation across multiple steps and provides general results on

the sampling error achieved by Alg. 1.

Theorem 3.1. Suppose Assumption [A1]-[A3] hold, and

Alg. 1 satisfies:

• We have ¸k f
1

2L for all k ∈ {0, 1, . . . ,K − 1}.

• The initial particle x̂0 is drawn from the standard Gaus-

sian distribution on R
d.

• Line 5 is implemented by some specific inner sampler,

achieving

KL
(

p̂k+1|k+ 1
2

,b(·|x, b)
∥

∥pk+1|k+ 1
2

,b(·|x, b)
)

f ¶k

for all k ∈ {0, 1, . . . ,K − 1}.

Then, we have

TV (p̂K , p∗) f

√

√

√

√

1

2

K−1
∑

i=0

¶i + Ã

√

√

√

√

K−1
∑

i=0

¸i

2|bi|

+

√

(1 + L2)d

4³∗
·

K−1
∏

i=0

(1 + ³∗¸i)
−1

.

(8)

Theorem 3.1 provides the general upper bound of the TV

distance between the underlying distribution of particles

returned by Alg. 1 and the target distribution p∗. The first

term in Eq 8 represents the accumulated error of the inexact

sampling from pk+1|k+ 1
2

,b(·|x, b), i.e., Line 5 of Alg 1.

The second term represents the approximation error using

stochastic gradients, and the last term represents the error

from deterministic proximal samplers. To achieve an ϵ-TV

distance to the target distribution p∗, one may have to choose

a small error tolerance of inexact sampling, i.e., ¶k = ϵ2,

to control the first term of Eq 8. Besides, it still requires a

large enough mini-batch size, i.e., |bi| = Θ(1/(Ãϵ)2) and

the mixing time, i.e.,
∑K−1

i=0 ¸i = Θ(log(1/ϵ)), to make the

last two terms of Eq 8 small, respectively.

Notably, the implementation of the proximal sampler

in Altschuler & Chewi (2023) also allows inexact sam-

pling from pk+1|k+ 1
2

,b(·|x, b) in the second stage update,

and requires the underlying distribution of returned parti-

cles, i.e., p̂k+1|k+ 1
2

,b(·|x, b) to satisfy Eq. 7 with a small

¶k. However, they only consider the deterministic setting,

i.e., b = {1, 2, . . . , n}, and requires initializing Line 5 of

Alg. 1 with certain stationary points x∗ of f . Hence, directly

applying their analysis may require finding stationary points

in each iteration, as the function fb changes, which may

take substantially more time. This is because, when p∗ only

satisfies LSI, the function fb may not be convex. Finding

an ϵ-approximate stationary point of a general non-convex

function requires O(ϵ−4) (Nesterov, 2013) for stochastic

gradient descent, which is unacceptable in sampling al-

gorithms. Therefore, the implementation of Altschuler &

Chewi (2023) still remains a concern without exact infor-

mation, or even only with inexact information, about the

stationary points of f .

In our analysis, combining proper Langevin-based MCMC

with a x̂k+1/2 mean Gaussian-type initialization, the gra-

dient complexity for achieving Eq. 7 will only depend

on log ∥x̂k+1/2∥
2 rather than stationary points x∗, which

will be explicitly shown in the next section. Considering

the expected gradient complexity, it requires to character-

ize Ep̂k+1/2
[log ∥x̂k+1/2∥

2], which can be readily upper

bounded by log[Ep̂k+1/2
[∥x̂k+1/2∥

2]]. This implies that we

further need to control the second moment of the particles.

This is conducted in the following lemma.

Lemma 3.2. Suppose Assumption [A1]-[A3] hold, and the

second moment of the underlying distribution of x̂k is Mk,

then we have

Mk+1 f 24Mk + 4¸k¶k + 24¸2
kÃ

2/|b|+ 28M + 24¸kd.

This bound may seem to be large as Mk exhibit an exponen-

tial increasing rate. However, we remark that only log(Mk)
will appear in our calculation of the gradient complexity

rather than Mk itself. Then, let K be the number of total

steps, which can be chose to be Õ(L/³∗), then MK will

be controlled by exp(K) and so that log(Mk) can be con-

trolled by K = Õ(L/³∗), which will not heavily affect the

total gradient complexity.

4. Implementations of SPS

This section mainly focuses on the detailed implementation

of the SPS. Specifically, since the target p̂k+1/2|k of Line

3 of Alg. 1 is a Gaussian-type distribution shown as Eq. 5,
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Algorithm 2 Inner Stochastic Gradient Langevin Dynamics:

InnerSGLD(x0, b, ¸, ¶)

1: Input: The output particle x0 of Alg. 1 Line 3, the

selected mini-batch b, the step size of outer loop ¸, the

required accuracy of the inner loop ¶;

2: Initialized the returned particle z = 0;

3: Draw the initial particle z0 from N (x0, ¸ · I)
4: for s = 0 to S − 1 do

5: Draw the mini-batch bs from b;

6: Update the particle

z
′
s ← zs +

√

2Äs ·

(

1−
Äs

4¸

)−1

À

where À ∼ N (0, I);

7: Update the particle

zs+1 ← z
′
s − Äs ·

(

∇fbs (z′
s) + ¸−1 · (z′

s − x0)
)

;

8: if s > S′ then

9: Update the returned particle:

z← z + z
′
s/(S − S

′ + 1);

10: end if

11: end for

12: Return: z.

we can obtain the sample exactly. Then, the key step is

to numerically sample from the distribution pk+1|k+1/2,b

to ensure that the distribution of the approximate samples,

i.e., p̂k+1|k+1/2,b satisfies Eq. 7. In particular, we will im-

plement this step, i.e., Line 5 of Alg. 1 using two inner

samplers: stochastic gradient Langevin dynamics (SGLD)

and warm-started Metropolis-adjusted Langevin Algorithm

(MALA), which give rise to two stochastic proximal sam-

pling algorithms. In what follows, we will introduce the im-

plementation details of these two algorithms and prove their

gradient complexities, i.e., the desired number of stochastic

gradient calculations to guarantee ϵ sampling error.

4.1. SGLD Inner Sampler

We consider implementing Line 5 of Alg. 1 with SGLD

inner sampler shown in Alg. 2, and name it SPS-SGLD.

We point out that the particle update of Alg. 2 is slightly

different from the standard SGLD update. In particular, our

update is performed with two steps and returns a trajectory

average, computed using the last S − S′ iterations, rather

than a single particle. The first step of the update, i.e., Line

6 of Alg. 2 performs the diffusion via the Gaussian process,

and the second step, i.e., Line 7 of Alg. 2 updates the particle

via drift term∇ log p̂k+1|k+1/2,b. With this implementation,

we show the gradient complexity for approaching the target

p∗ in the following theorem.

Theorem 4.1. Suppose [A1]-[A3] hold. With proper param-

eter settings at the following levels

¸k = Θ(L−1), K = Θ̃(»), ¶k = Θ̃(»−1ϵ2),

and bo = min
{

Θ̃(³−1
∗ Ã2ϵ−2), n

}

,

where » = L/³∗ for Alg. 1, if we choose Alg. 2 as the inner

sampler shown in Line 5 Alg. 1, set

Ä = min
{

Θ̃(»−1
ϵ

2(d + Ã
2)−1),

1

36

}

,

Ä
′ = min

{

Θ̃(L−1
Ä),

1

36

}

,

S
′ = Θ̃(L−1

Ä
−1), Äs = Ä when s ∈ [0, S

′],

S = Θ̃(S′ + (Ä ′)−1), Äs = Ä
′ when s ∈ [S′ + 1, S − 1],

and inner minibatch sizes satisfy |bs| = 1, for all s ∈
{0, 1, . . . S − 1}, the distribution of returned particles p̂K

in Alg. 1 satisfies TV (p̂K , p∗) < 3ϵ. In this condition, the

expected gradient complexity will be Θ̃(»3(d+ Ã2)ϵ−2).

Due to the space limitation, we only show an informal result

in this section, and the formal version will be deferred to

Theorem C.4 in Appendix C.1. Theorem 4.1 provides an

Õ(dϵ2) gradient complexity regardless of Ã2 = Θ(d) or

Ã2 = Θ(1). When Ã2 = Θ(d), the state-of-the-art results

are Õ(d3/2ϵ−2) and Õ(d4/3ϵ−2) under stronger variance

assumptions (Das et al., 2023). Compared with those results

provided in Das et al. (2023), our SPS-SGLD is faster by

at least an Õ(d1/3) factor with strictly weaker assumptions.

When Ã2 = Θ(1), the gradient complexity provided in Das

et al. (2023) will become Õ(dϵ2) which is the same as our

results.

Notably, in the proof of Theorem C.4, we demonstrate

that, with the Gaussian type initialization shown in Line

3 of Alg. 2, the relative Fisher information gap between

the underlying distribution of z0 and the target distribu-

tion p̂k+1|k+1/2,b can be upper bounded with a factor

log(∥x0∥
2+∥∇fb(0)∥2) which is independent of stationary

points of f and can be controlled by second moment with

Lemma 3.2 and variance of stochastic gradients from an

expectation perspective. This means the SPS-SGLD can be

easily implemented without initialization issues in previous

work, e.g., Altschuler & Chewi (2023).

4.2. Warm-started MALA Inner Sampler

We consider implementing Line 5 of Alg. 1 with warm-

started MALA inner sampler shown in Alg. 3, and name it

SPS-MALA where the functions g(z) and È(z′; z, Ä) are

defined as follows:

g(z) := − log pk+1|k+ 1
2

,b(z|x0, b) = fb(z) +
∥z − x0∥2

2¸
,

φ(z′; z, Ä) :=
∥z′ − (z − Ä∇g(z))∥

2

4Ä
.
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Algorithm 3 Inner Metropolis-adjusted Langevin algorithm:

InnerMALA(x0, b, ¸, ¶)

1: Input: The output particle x0 of Alg. 1 Line 3, the

selected mini-batch b, the step size of outer loop ¸, the

required accuracy of the inner loop ¶;

2: Draw the initial sampler z0 from InnerULD(x0, b, ¸)
by Alg. 4

3: for s = 0 to S − 1 do

4: Draw z
′
s from N (zs − Äs · ∇g(zs), 2ÄsI);

5: Define the threshold p to be

p := min

{

1,
exp (g(zs) + φ(z′

s; zs, Äs))

exp (g(z′
s) + φ(zs; z′

s, Äs))

}

;

6: Draw the sample p′ uniformly from [0, 1];
7: if p′ f p then

8: Update the particle zs+1 ← z
′
s

9: else

10: Update the particle zs+1 ← zs

11: end if

12: end for

13: Return: zS .

Inspired by Altschuler & Chewi (2023), SPS-MALA re-

quires InnerULD to provide warm starts, i.e., Line 2 of

Alg 3, where we defer the implementation of InnerULD

to Appendix A. Compared with general initialization, the

gradient complexity MALA can be improved from Õ(d)
to Õ(d1/2) with warm starts, and ULD can provide warm

starts within Õ(d1/2) gradient complexity. It means In-

nerMALA will be faster than InnerSGLD by an Õ(d1/2)
factor to achieve the KL convergence, i.e., Eq. 7. Hence,

SPS-MALA can be expected to improve the dimensional

dependence of SPS-SGLD. With this implementation, i.e.,

Alg. 3, the TV distance convergence of Alg. 1 can be pre-

sented in the following:

Theorem 4.2. Suppose [A1]-[A3] hold. With proper param-

eter settings at the following levels

¸k = Θ(L−1), K = Θ̃(»), ¶k = Θ̃(»−1ϵ2),

and bo = min
{

Θ̃(³−1
∗ Ã2ϵ−2), n

}

,

where » = L/³∗ for Alg. 1, if we choose Alg. 3 as the inner

sampler shown in Line 5 of Alg. 1, set

µ = Θ(L1/2), Ä = Θ̃(L−1/2d−1/2), and S = Θ̃(d1/2).

for Alg. 4, and

Ä = Θ̃(L−1d−1/2), and S = Θ̃(d1/2)

for Alg. 3, then the underlying distribution of returned

particles p̂K in Alg. 1 satisfies TV (p̂K , p∗) < 3ϵ. In

this condition, the expected gradient complexity will be

Θ̃
(

»3d1/2Ã2ϵ−2
)

.

Due to the space limitation, we only show an informal result

in this section, and the formal version will be deferred to

Theorem C.8 in Appendix C.2. Theorem 4.2 provides gra-

dient complexities of Õ(d1/2ϵ2) and Õ(d3/2ϵ2) for cases

when Ã2 = Θ(1) and Ã2 = Θ(d), respectively. When

Ã2 = Θ(1), the state-of-the-art result is Õ(dϵ−2) under the

lin-growth assumption (Das et al., 2023). Compared with

the result provided in Das et al. (2023), our SPS-MALA

is faster by an Õ(d1/2) factor with strictly weaker assump-

tions. However, the efficiency of SPS-MALA will be greatly

affected by the variance, i.e., Ã2 in [A3], through the mini-

batch size of Alg 1. Even when Ã2 = Θ(d), the complexity

of SPS-MALA will become Õ(d3/2ϵ2), which is the same

as AB-SGLD shown in Table. 1 with weaker assumptions.

Besides, it should be noted that Altschuler & Chewi (2023)

and Fan et al. (2023) provide high probability convergence

of the TV distance with an Õ(n»d1/2) gradient complexity,

while requiring the stationary points of f . Compared with

this result, we have an additional Õ(») factor besides re-

placing the number of training data n to the Θ̃(³−1
∗ Ã2ϵ−2)

batch size. This factor comes from our proof techniques

of removing the dependency of stationary points for SPS

framework by upper bounding second moments during the

entire Alg. 1, which is demonstrated in Section 4.1.

5. Experiments

In this section, we will first provide our experimental set-

tings. Then, for a fair comparison with SGLD, we imple-

ment the proximal sampler with SPS-SGLD and show their

sampling performance with different dimensions. More

experimental results are deferred to Appendix F.

Experimental Settings. Here, we consider the compo-

nent e−fi shares a similar definition in Zou et al. (2019),

i.e., e−fi(x) := e−∥x−b−µi∥2/2 + e−∥x−b+µi∥2/2, where

the number of input data n = 100, the dimension d ∈
{10, 20, 30, 40, 50}, the bias vector b = (3, 3, . . . , 3)·, and

the data input
√

d/10 · µi ∼ N (µ, Id×d) with µ =
(2, 2, . . . , 2). Here, we require the input data to shrink with

the growth of d, which keeps the distances between different

modes for each e−fi . Since Zou et al. (2019) had proven the

function fi is dissipative, which implies the LSI property of

e−fi and e−f , we omit the discussion about the property of

fi in this section.

For the common hyper-parameter settings of SGLD and

SPS-SGLD, we fix the number of stochastic gradient ora-

cles as 12000 and the mini-batch size for each iteration as 1.

We enumerate the step size of SGLD and the inner step size

of SPS-SGLD from 0.2 to 1.4. Besides, the inner loops’ iter-

ations and the outer loops’ step sizes are grid-searched with

[20, 40, 80] and [1.0, 4.0, 10.0]. Besides, we use the formu-

lation TV(p̂K , p∗) := 1
2d

∑d
i=1 TV(p̂K,i, p∗,i) to estimate

7
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Figure 1. The background of all graphs is the projection of the negative log density on a 2d plane, and nodes are the projection of particles

returned by different algorithms on the same plane. The first two rows show the distribution of particles’ projection after different

iterations of SGLD and SPS-SGLD with their optimal step sizes when d = 10.
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Figure 2. The graph in the left column shows the TV distance

estimation, i.e., TV(p̂K , p∗) when SGLD and SPS-SGLD chose

their optimal hyper-parameters under different dimensions. The

graph in the right column denotes the TV distance estimation when

SGLD and SPS-SGLD chose different step sizes and d = 10.

total variation distances between the target distribution and

the underlying distribution of returned particles, where p̂K,i
and p∗,i are the marginal distributions of the i-th coordinate.

For 1d distributions, their densities can be approximated by

the histogram of particles.

Experimental Results. We first show the optimal TV dis-

tance to the target distribution p∗ obtained by SGLD and

SPS-SGLD under different dimensions in the left column

of Fig. 2. Since we consider different problems when using

different dimensions, the sampling error does not necessar-

ily increase when d increases. It can be clearly observed

that the optimal TV distance of SPS-SGLD is at least 0.5
smaller than that of SGLD in all our dimension settings,

which means SPS-SGLD presents a significantly better per-

formance in this synthetic task. Specifically, we investigate

the changes in the TV distance with the growth of step sizes

for both SPS-SGLD and SGLD, and show the results in the

right column Fig. 2. Although the absolute values of these

two algorithms vary a lot, their changing trends are very

similar. When the step size is small, both SPS-SGLD and

SGLD describe the local landscape of a single mode well.

With the growth of step sizes, they can gradually cover all

modes, whereas SPS-SGLD achieves a lower TV distance

since it can cover modes and keep the local landscape well

with a smaller step size. Besides, we provide show distri-

butions of particles’ projections under different stochastic

gradient oracles when d = 10 and the optimal step sizes are

chosen in Fig. 1. According to the contour of the projected

negative log density of p∗, we note that SPS-SGLD can

cover all modes with a more accurate variance estimation

compared with SGLD. It demonstrates that SPS-SGLD gen-

erates more reasonable samples with different stochastic

gradient oracles from another perspective.

6. Conclusion

This paper is the first study about adapting stochastic gra-

dient oracles to unbiased samplers to draw samples from

unnormalized non-log-concave target distributions, i.e.,

p∗ ∝ e−f . Specifically, we provide a framework named

stochastic proximal samplers (SPS) to remove the unreal-

istic requirement about stationary points of f in previous

implementations (Altschuler & Chewi, 2023). Furthermore,

compared with biased samplers SGLD and its variants, two

implementations of the SPS framework can converge to the

target distribution p∗ with a lower gradient complexity with

an Õ(d1/3) factor at least, and this improvement is validated

by our experiments conducted on synthetic data.
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A. Additional Notations and Assumptions in Appendix

For the convenience of analysis, we define three Markov processes, i.e., {xk}, {x̃k} and {x̂k}, as follows. For the process

{xk}, we suppose its initialization x0 is drawn from the standard Gaussian of Rd. There are two transition kernels in this

process. The first provides the conditional probability of xk+1/2 when xk is given and can be presented as the same as Eq 5,

i.e.,

pk+ 1
2

|k(x′|x) ∝ exp

(

−∥x
′ − x∥2

2¸k

)

.

The second transition kernel denotes the conditional probability of xk+1 when xk+1/2 and a stochastic mini-batch b is

given and can be presented as the same as Eq 6, i.e.,

pk+1|k+ 1
2
,b(x

′|x, b) ∝ exp

(

−fb(x′)− ∥x
′ − x∥2

2¸k

)

.

For the process {x̃k}, we suppose the initialization x̃0 shares the same distribution as x0, and the transition kernel is defined

as
p̃k+ 1

2
|k := pk+ 1

2
|k and p̃k+1|k+ 1

2
,b(x

′|x, b) = pk+1|k+ 1
2
,b(·|x, {1, 2, . . . , N}). (9)

For the third process {x̂k}, it presents the actual Markov process obtained by implementing Alg 1. That is to say, the

initialization x̂0 shares the same distribution as x0. The transition kernel satisfies p̂k+ 1
2

|k := pk+ 1
2

|k and

KL
(

p̂k+1|k+ 1
2
,b(·|x, b)

∥
∥pk+1|k+ 1

2
,b(·|x, b)

)

f ¶k.

It should be noted that the transition kernel p̂k+1|k+ 1
2
,b(·|x, b) does not have a explicit form. Instead, it depends on the

sampling process at Line 5 of Alg 1. Although no explicit form is required, it still should be a good approximation of

pk+1|k+ 1
2
,b(x

′|x, b). At last, to simplify the notation, we denote φσ2 as the density function of the Gaussian distribution

N (0, Ã2I).

Assumption [A2] implies a bounded second moment:

Lemma A.1. Assume that density p∗ satisfies assumption [A2] that for any smooth function g(x) satisfying Ep∗
[g2] <∞:

Ep∗

[
g2 log g2

]
− Ep∗

[g2] logEp∗
[g2] f 2

³∗
Ep∗
∥∇g∥2

.

Then density p∗ has the following variance bound:

Ex∼p∗ [∥x− E[x]∥2] f 2d/³∗.

Proof. Consider a target distribution p∗ that follows [A2] and for the simplicity of notation denote a constant C = 1/(2³∗).

We then follow the Herbst argument and take the test function in [A2] to be g(x) = etf(x)/2, for an arbitrary t > 0 and a

function f so that ∥∇f(x)∥ f 1. We obtain from the substitution that

Ep∗

[

tf(x)etf(x)
]

− Ep∗ [etf(x)] logEp∗ [etf(x)] f CEp∗

[

t2etf(x) ∥∇f(x)∥2
]

f CEp∗

[

t2etf(x)
]

.

Denote F (t) = Ep∗

[
etf(x)

]
. We rewrite the above inequality as a differential inequality:

tF ′(t) f F (t) logF (t) + Ct2F (t),

or equivalently:
d

dt

(
1

t
logF (t)

)

f C.

Taking t→ 0, we know that the initial condition is 1
t logF (t)→ Ep∗

[f(x)]. Therefore, along the entire trajectory

1

t
logF (t) f Ep∗

[f(x)] + C · t.

12



Faster Sampling via Stochastic Gradient Proximal Sampler

Algorithm 4 Inner underdamped Langevin algorithm: InnerULD(x0, b, ¸, ¶)

1: Input: The output particle x0 of Alg. 1 Line 3, the selected mini-batch b, the step size of outer loop ¸, the required

accuracy of the inner loop ¶;

2: Initialize the particle with z0 ← x0 and the velocity v0 is sampled from N (0, I);

3: for s = 0 to S − 1 do

4: Draw sample (zs+1,vs+1) from the following Gaussian distribution N (g′(zs,vs),Σ) .
5: end for

6: Return: zS .

Plugging in the definition of F (t), that is

Ep∗

[

etf(x)
]

f exp
(
tEp∗ [f(x)] + C · t2

)
.

By Markov’s inequality, we obtain that for x ∼ p∗ and for any t > 0:

P (f(x)− E[f(x)] > ¼) f exp(Ct2 − ¼t).

Optimizing over t gives

P (f(x)− E[f(x)] > ¼) f exp

(

− ¼
2

4C

)

.

Taking f(x) = ïx,θð, for any ∥θ∥ = 1, gives the standard subGaussian tail bound:

P (|ïx− E[x],θð| > ¼) f 2 exp

(

− ¼
2

4C

)

,∀∥θ∥ = 1,

which means that random vector x ∼ p∗ is
√

2C-subGaussian. This also implies that x ∼ p∗ is
√

2C · d-norm-subGaussian,

leading to the following moment bound:

(E[∥x− E[x]∥p])1/p f
√

2pC · d.

We read off the second moment bound from the above inequality: Ex∼p∗ [∥x− E[x]∥2] f 4C · d = 2d/³∗.

Implementation of InnerULD: Specifically, The closed form of the update of ULD shown in Line 4 of Alg. 4 satisfies

g′ : Rd × R
d → R

d × R
d defined as

g′(z,v) :=
(
z + µ−1(1− a)v − µ−1

(
Ä − µ−1(1− a)

)
∇g(z), av − µ−1(1− a)∇g(z)

)
,

where a := exp(−µÄ), and

Σ :=

[
2
γ

(

Ä − 2
γ (1− a) + 1

2γ (1− a2)
)

· Id 2
γ

(
1
2 − a+ a2

)
· Id

2
γ

(
1
2 − a+ a2

)
· Id (1− a2) · Id

]

.

Such an iteration corresponds to the discretization of the following SDE

dzt =vtdt,

dvt =−∇g(zs; x0, b, ¸)dt− µvtdt+
√

2µdBt,

where Bt is a standard d-dimensional Brownian motion. This update is introduced in several references, including Cheng

et al. (2018); Altschuler & Chewi (2023).

13
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B. Lemmas for SPS Framework

Lemma B.1 (variant of data-processing inequality). Consider four random variables, x, z, x̃, z̃, whose underlying distribu-

tions are denoted as px, pz, qx, qz . Suppose px,z and qx,z denotes the densities of joint distributions of (x, z) and (x̃, z̃),

which we write in terms of the conditionals and marginals as

px,z(x,z) = px|z(x|z) · pz(z) = pz|x(z|x) · px(x)

qx,z(x,z) = qx|z(x|z) · qz(z) = qz|x(z|x) · qx(x).

then we have
KL
(
px,z

∥
∥qx,z

)
=KL

(
pz
∥
∥qz
)

+ Ez∼pz

[
KL
(
px|z(·|z)

∥
∥qx|z(·|z)

)]

=KL
(
px
∥
∥qx
)

+ Ex∼px

[
KL
(
pz|x(·|x)

∥
∥qz|x(·|x)

)]

where the latter equation implies

KL
(
px
∥
∥qx
)
f KL

(
px,z

∥
∥qx,z

)
.

Proof. According to the formulation of KL divergence, we have

KL
(
px,z

∥
∥qx,z

)
=

∫

px,z(x,z) log
px,z(x,z)

qx,z(x,z)
d(x,z)

=

∫

px,z(x,z)

(

log
px(x)

qx(x)
+ log

pz|x(z|x)

qz|x(z|x)

)

d(x,z)

=

∫

px,z(x,z) log
px(x)

qx(x)
d(x,z) +

∫

px(x)

∫

pz|x(z|x) log
pz|x(z|x)

qz|x(z|x)
dzdx

=KL
(
px
∥
∥qx
)

+ Ex∼px

[
KL
(
pz|x(·|x)

∥
∥qz|x(·|x)

)]
g KL

(
px
∥
∥qx
)
,

where the last inequality follows from the fact

KL
(
pz|x(·|x)

∥
∥p̃z|x(·|x)

)
g 0 ∀ x.

With a similar technique, it can be obtained that

KL
(
px,z

∥
∥qx,z

)
=

∫

px,z(x,z) log
px,z(x,z)

qx,z(x,z)
d(x,z)

=

∫

px,z(x,z)

(

log
pz(z)

qz(z)
+ log

px|z(x|z)

qx|z(x|z)

)

d(x,z)

=

∫

px,z(x,z) log
pz(z)

qz(z)
d(x,z) +

∫

pz(z)

∫

px|z(x|z) log
px|z(x|z)

qx|z(x|z)
dzdx

=KL
(
pz
∥
∥qz
)

+ Ez∼pz

[
KL
(
px|z(·|z)

∥
∥p̃x|z(·|z)

)]
.

Hence, the proof is completed.

Lemma B.2 (strong log-concavity and smoothness of inner target functions). Using the notations presented in Section A,

for any k ∈ {0, 1, . . . ,K − 1}, x ∈ R
d, and b ¦ {1, 2, . . . , n}, suppose ¸k < 1/L, then the target distributions of inner

loops, i.e., pk+1|k+1/2,b(·|x, b), satisfy

(−L+ ¸−1
k ) · I ¯ −∇2

x′ log pk+1|k+1/2,b(x
′|x, b) ¯ (L+ ¸−1

k ) · I

Proof. For any k ∈ {0, 1, . . . ,K − 1}, x ∈ R
d, and b ¦ {1, 2, . . . , n}, we have

pk+1|k+ 1
2
,b(x′|x, b) = C(b, ¸k,x)−1 · exp

(

−fb(x′)− ∥x
′ − x∥2

2¸k

)

,

which implies

−∇2
x′ log pk+1|k+1/2,b(x

′|x, b) = ∇2fb(x′) + ¸−1
k · I.

14



Faster Sampling via Stochastic Gradient Proximal Sampler

Since we have [A1], it has

(−L+ ¸−1
k ) · I ¯ ∇2fb(x′) + ¸−1

k · I ¯ (L+ ¸−1
k ) · I.

Hence, the proof is completed.

Lemma B.3. Using the notations presented in Section A, for any k ∈ {0, 1, . . . ,K − 1}, x ∈ R
d and b ¦ {1, 2, . . . , n},

suppose it has ¸ < 1/L, then we have

KL
(

p̃k+1|k+ 1
2
,b(·|x, b)

∥
∥pk+1|k+ 1

2
,b(·|x, b)

)

f 1

2(¸−1 − L)
· Ex′∼p̃

k+1|k+ 1
2

,b

[

∥∇f(x′)−∇fb(x′)∥2
]

Proof. We abbreviate pk+1|k+1/2,b(·|x, b) and p̃k+1|k+1/2,b(·|x, b) as p and p̃ for convenience. According to the definition

of p, i.e., Eq 6, and p̃, i.e., Eq 9, we have

p(x′) = C(b, ¸,x)−1 · exp

(

−fb(x′)− ∥x
′ − x∥2

2¸

)

p̃(x′) = C(¸,x)−1 · exp

(

−f(x′)− ∥x
′ − x∥2

2¸

)

.

According to Lemma B.2, we have

−∇2 log p(x′) °
(
−L+ ¸−1

)
I,

which means the density function p is strongly log-concave when ¸ < 1/L. According to Lemma E.2, the density function

p satisfies LSI with a constant (¸−1 − L). Then, with the definition of LSI, we have

KL
(
p̃
∥
∥p
)
f 1

2(¸−1 − L)
· Ex′∼p̃

[∥
∥
∥
∥
∇ log

p̃(x′)

p(x′)

∥
∥
∥
∥

2
]

=
1

2(¸−1 − L)
· Ex′∼p̃

[

∥∇f(x′)−∇fb(x′)∥2
]

Hence, the proof is completed.

Lemma B.4. Using the notations presented in Section A and considering Alg 1, if ¸i f 1/(2L) for all i ∈ {0, 1, . . . ,K−1},
then we have

TV (p̃K , pK) f Ã

√
√
√
√

K−1∑

i=0

¸i
2|bi|

where | · | denotes the sample size in each mini-batch loss.

Proof. According to Pinsker’s inequality, we have

TV (pK , p̃K) f
√

1

2
KL
(
p̃K
∥
∥pK

)
.

Let pk+1,k+1/2,b and p̃k+1,k+1/2,b denote the density of joint distribution of (xk+1,xk+1/2,bk) and (x̃k+1, x̃k+1/2, b̃k)
respectively, which we write in term of the conditionals and marginals as

pk+1,k+ 1
2
,b(x

′,x, b) =pk+1|k+ 1
2
,b(x

′|x, b) · pk+ 1
2
,b(x, b) = pk+ 1

2
,b|k+1(x, b|x′) · pk+1(x′)

p̃k+1,k+ 1
2
,b(x

′,x, b) =p̃k+1|k+ 1
2
,b(x

′|x, b) · p̃k+ 1
2
,b(x, b) = p̃k+ 1

2
,b|k+1(x, b|x′) · p̃k+1(x′).

In this condition, we have

KL
(
p̃k+1

∥
∥pk+1

)
f KL

(

p̃k+1,k+ 1
2
,b

∥
∥pk+1,k+ 1

2
,b

)

= KL
(

p̃k+ 1
2
,b

∥
∥pk+ 1

2
,b

)

+ E(x̃,b̃)∼p̃
k+ 1

2
,b

[

KL
(

p̃k+1|k+ 1
2
,b(·|x̃, b̃)

∥
∥pk+1|k+ 1

2
,b(·|x̃, b̃)

)]

= KL
(

p̃k+ 1
2

∥
∥pk+ 1

2

)

+ Ex̃∼p̃
k+ 1

2

[

KL
(

p̃b|k+ 1
2
(·|x̃)

∥
∥pb|k+ 1

2
(·|x̃)

)]

+ E(x̃,b̃)∼p̃
k+ 1

2
,b

[

KL
(

p̃k+1|k+ 1
2
,b(·|x̃, b̃)

∥
∥pk+1|k+ 1

2
,b(·|x̃, b̃)

)]

,
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which follows from Lemma B.1. Respectively, for the first and the second equation, we plug

x := x̃k+1, z :=
(
x̃k+ 1

2
, b̃k
)
, x̃ := xk+1 and z̃ :=

(
xk+ 1

2
,bk
)

and

x = x̃k+ 1
2
, z := b̃k, x̃ := xk+ 1

2
and z̃ := bk,

to Lemma B.1. Here, we should note the choice of b̃k is introduced as an auxiliary random variable, which is independent

with the update of x̃k for all k ∈ {0, 1, . . . ,K − 1}. Then, by requiring

p̃b|k+ 1
2
(·|x) = pb|k+ 1

2
(·|x) = pb ∀x ∈ R

d and ¸k f 1/(2L). (10)

we have

KL
(
p̃k+1

∥
∥pk+1

)
f KL

(

p̃k+ 1
2

∥
∥pk+ 1

2

)

+ E(x̃,b̃)∼p̃
k+ 1

2
,b

[

KL
(

p̃k+1|k+ 1
2
,b(·|x̃, b̃)

∥
∥pk+1|k+ 1

2
,b(·|x̃, b̃)

)]

f KL
(

p̃k+ 1
2

∥
∥pk+ 1

2

)

+
1

2 · (¸−1
k − L)

· E(x̃,b̃)∼p̃
k+ 1

2
,b

[

Ex′∼p̃
k+1|k+ 1

2
,b

(·|x̃,b̃) ∥∇f(x′)−∇fb̃(x′)∥2
]

f KL
(

p̃k+ 1
2

∥
∥pk+ 1

2

)

+ ¸k · E(x̃,b̃)∼p̃
k+ 1

2
,b

[

Ex′∼p̃
k+1|k+ 1

2
,b

(·|x̃,b̃) ∥∇f(x′)−∇fb̃(x′)∥2
]

(11)

where the second inequality follows from Lemma B.3 and the last inequality follows from the choice of step size satisfies ¸k.

Then, we consider the upper bound for the second term of RHS of Eq 11 and have

E(x̃,b̃)∼p̃
k+ 1

2
,b

[

Ex′∼p̃
k+1|k+ 1

2
,b

(·|x̃,b̃) ∥∇f(x′)−∇fb̃(x′)∥2
]

=

∫

p̃k+1,k+ 1
2
,b(x

′, x̃, b̃) · ∥∇f(x′)−∇fb̃(x′)∥2
d(x′, x̃, b̃).

(12)

The density p̃k+1,k+ 1
2
,b(x

′, x̃, b̃) of the joint distribution satisfies

p̃k+1,k+ 1
2
,b(x

′,x, b) =p̃k+1|k+ 1
2
,b(x

′|x, b) · p̃k+ 1
2
,b(x, b)

=p̃k+1|k+ 1
2
(x′|x) · p̃k+ 1

2
(x) · p̃b|k+ 1

2
(b|x)

=p̃k+1|k+ 1
2
(x′|x) · p̃k+ 1

2
(x) · pb(b),

(13)

where the second equation establishes since the choice of b̃k will not affect the update of x̃k shown in Eq 9. Besides, the

last inequality follows from Eq 10 and the fact that the choice of bk is independent with the choice of xk shown in Line 4 of

Alg 1. Combining Eq 12 and Eq 13, we have

E(x̃,b̃)∼p̃
k+ 1

2
,b

[

Ex′∼p̃
k+1|k+ 1

2
,b

(·|x̃,b̃) ∥∇f(x′)−∇fb̃(x′)∥2
]

=
∑

b¦1,2,...,n

∫

p̃k+1|b(x
′)pb(b) ∥∇f(x′)−∇fb̃(x′)∥2

dx′

=

∫

p̃k+1(x′)Ebk
[∥∇f(x′)−∇fbk

(x′)∥] dx′ f Ã2

|bk|
,

(14)

where the last inequality follows from [A3] and Lemma E.1. Hence, Eq 11 satisfies

KL
(
p̃k+1

∥
∥pk+1

)
fKL

(

p̃k+ 1
2

∥
∥pk+ 1

2

)

+ Ã2 · ¸k|bk|
. (15)

Then, consider the first stage of the update, we have

KL
(

p̃k+ 1
2

∥
∥pk+ 1

2

)

fKL
(
p̃k
∥
∥pk
)

+ Ex̃∼p̃k

[

KL
(

p̃k+ 1
2

|k(·|x̃)
∥
∥pk+ 1

2
|k(·|x̃)

)]

= KL
(
p̃k
∥
∥pk
)
, (16)
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where the first inequality follows from Lemma B.1 by setting

x = x̃k+ 1
2
, z := x̃k, x̃ := xk+ 1

2
and z̃ := xk,

and the second equation establishes since {xk} and x̃k share the same update in the first stage shown in Eq 5 and Eq 9.

Combining Eq 15 and Eq 16, we have

KL
(
p̃k+1

∥
∥pk+1

)
f KL

(
p̃k
∥
∥pk
)

+ Ã2 · ¸k|bk|
,

which implies

KL
(
p̃K
∥
∥pK

)
f Ã2 ·

K−1∑

i=0

¸i
|bi|

with the telescoping sum. Hence, the proof is completed.

Lemma B.5. Using the notations presented in Section A, we have

TV (p̂K , pK) f

√
√
√
√1

2

K−1∑

i=0

¶i

where ¶ denotes the error tolerance of approximate conditional densities shown in Eq 7.

Proof. According to Pinsker’s inequality, we have

TV (p̂k+1, pk+1) f
√

1

2
KL
(
p̂k+1

∥
∥pk+1

)
.

Let pk+1,k+1/2,b and p̂k+1,k+1/2,b denote the density of joint distribution of (xk+1,xk+1/2,bk) and (x̂k+1, x̂k+1/2, b̂k)
respectively, which we write in term of the conditionals and marginals as

pk+1,k+ 1
2
,b(x

′,x, b) =pk+1|k+ 1
2
,b(x

′|x, b) · pk+ 1
2
,b(x, b) = pk+ 1

2
,b|k+1(x, b|x′) · pk+1(x′)

p̂k+1,k+ 1
2
,b(x

′,x, b) =p̂k+1|k+ 1
2
,b(x

′|x, b) · p̂k+ 1
2
,b(x, b) = p̂k+ 1

2
,b|K+1(x, b|x′) · p̂k+1(x′).

In this condition, we have

KL
(
p̂k+1

∥
∥pk+1

)
f KL

(

p̂k+1,k+ 1
2
,b

∥
∥pk+1,k+ 1

2
,b

)

= KL
(

p̂k+ 1
2
,b

∥
∥pk+ 1

2
,b

)

+ E(x̂,b̂)∼p̂
k+ 1

2
,b

[

KL
(

p̂k+1|k+ 1
2
,b(·|x̂, b̂)

∥
∥pk+1|k+ 1

2
,b(·|x̂, b̂)

)]

= KL
(

p̂k+ 1
2

∥
∥pk+ 1

2

)

+ Ex̂∼p̂
k+ 1

2

[

KL
(

p̂b|k+ 1
2
(·|x̂)

∥
∥pb|k+ 1

2
(·|x̂)

)]

+ E(x̂,b̂)∼p̂
k+ 1

2
,b

[

KL
(

p̂k+1|k+ 1
2
,b(·|x̂, b̂)

∥
∥pk+1|k+ 1

2
,b(·|x̂, b̂)

)]

where the first and the second equations are established by plugging

x := x̂k+1, z :=
(
x̂k+ 1

2
, b̂k
)
, x̃ := xk+1 and z̃ :=

(
xk+ 1

2
,bk
)

and

x = x̂k+ 1
2
, z := b̂k, x̃ := xk+ 1

2
and z̃ := bk,

to Lemma B.1, respectively. Then, by requiring

p̂b|k+ 1
2
(·|x) = pb|k+ 1

2
(·|x) = pb ∀x ∈ R

d, (17)
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we have

KL
(
p̂k+1

∥
∥pk+1

)
f KL

(

p̂k+ 1
2

∥
∥pk+ 1

2

)

+ E(x̂,b̂)∼p̂
k+ 1

2
,b

[

KL
(

p̂k+1|k+ 1
2
,b(·|x̂, b̂)

∥
∥pk+1|k+ 1

2
,b(·|x̂, b̂)

)]

f KL
(

p̂k+ 1
2

∥
∥pk+ 1

2

)

+ ¶k

(18)

where the last inequality follows from Eq 7. Besides, considering the first stage of the update, we have

KL
(

p̂k+ 1
2

∥
∥pk+ 1

2

)

fKL
(
p̂k
∥
∥pk
)

+ Ex̂∼p̂k

[

KL
(

p̂k+ 1
2

|k(·|x̂)
∥
∥pk+ 1

2
|k(·|x̂)

)]

= KL
(
p̂k
∥
∥pk
)
, (19)

where the first inequality follows from Lemma B.1 by setting

x = x̂k+ 1
2
, z := x̂k, x̃ := xk+ 1

2
and z̃ := xk,

and the second equation establishes since xk and x̂k share the same update in the first stage shown in Eq 5 and Eq 7.

Combining Eq 18 and Eq 19, we have

KL
(
p̂k+1

∥
∥pk+1

)
f KL

(
p̂k
∥
∥pk
)

+ ¶k,

which implies

KL
(
p̃K
∥
∥pK

)
f
K−1∑

i=0

¶i

with the telescoping sum. Hence, the proof is completed.

Lemma B.6. Suppose Assumption [A1]-[A3] hold, and Alg. 1 satisfy:

• The step sizes have ¸i f 1/(2L) for all i ∈ {0, 1, . . . ,K − 1}.
• The initial particle x̂0 is drawn from the standard Gaussian distribution on R

d.

• The transition kernel at Line 5 of Alg. 1, i.e., p̂k+1|k+ 1
2
,b(·|x, b), satisfies Eq 7 and ¶k = 0.

Then, we have

TV (p̂K , p∗) f Ã

√
√
√
√

K−1∑

i=0

¸i

2|bi|
+

√

(1 + L2)d

4³∗
·

K−1∏

i=0

(1 + ³∗¸i)
−1

.

Proof. When ¶k = 0, the Markov process {x̂k} shares the same underlying distribution as the Markov process {xk} . We

consider to upper bound the total variation distance between pK and p∗ which satisfies

TV (pK , p∗) f TV (pK , p̃K) + TV (p̃K , p∗) . (20)

According to Lemma B.4, by requiring ¸i f 1/(2L) for all i ∈ {0, 1, . . . ,K − 1}, we have

TV (pK , p̃K) f Ã

√
√
√
√

K−1∑

i=0

¸i
2|bi|

. (21)

Besides, for TV (p̃K , p∗) in Eq 20, we have

TV (p̃K , p∗) f
√

1

2
KL
(
p̃K
∥
∥p∗

)

f
√

1

2
KL
(
p̃0

∥
∥p∗

)
·
K−1∏

i=0

(1 + ³∗¸i)
−1 f

√

(1 + L2)d

4³∗
·
K−1∏

i=0

(1 + ³∗¸i)
−1

(22)

where the first inequality follows from Pinsker’s inequality, the second follows from Lemma E.3, and the last inequality

follows from Lemma E.4 when we set p0 as the standard Gaussian in R
d. Finally, plugging Eq 21 and Eq 22 to Eq 20, the

proof is completed.
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Proof of Theorem 3.1. Using the notations presented in Section A, we consider to upper bound the total variation distance

between p̂K+1 and p∗ which satisfies

TV (p̂K , p∗) f TV (p̂K , pK) + TV (pK , p∗) .

According to Lemma B.5, we have

TV (p̂K , pK) f

√
√
√
√1

2

K−1∑

i=0

¶i. (23)

Besides, we have

TV (pK , p∗) f Ã

√
√
√
√

K−1∑

i=0

¸i
2|bi|

+

√

(1 + L2)d

4³∗
·
K−1∏

i=0

(1 + ³∗¸i)
−1

(24)

with Lemma B.6. Here, we should note the gradient complexity of Alg 1 will be dominated by Line 5, i.e., the inner sampler

which requires GC(|bk|, ¶k) at the k-th iteration. Therefore, the total gradient complexity will be

O
(
K−1∑

i=0

GC(|bi|, ¶i)
)

and the proof is completed.

C. Theorems for Different Implementations

C.1. Stochastic Gradient Langevin Dynamics Inner Samplers

Lemma C.1. Using the notations presented in Alg 2, asume [A1]-[A3], for any Äs ∈ (0, 1
36 ], we have

2Äs ·KL
(

q′
s

∥
∥pk+1|k+ 1

2
,b(·|x0, b)

)

f
(

1− Äs
4¸

)

·W 2
2 (qs, pk+1|k+ 1

2
,b(·|x0, b))

−W 2
2 (qs+1, pk+1|k+ 1

2
,b(·|x0, b)) +

4Ä2
s Ã

2

|bs|
+

6Ä2
s d

¸

where qs, q
′
s and q∗ denotes underlying distribution of zs, z′

s and the ideal output particles.

Proof. This proof only considers the KL divergence behavior for the k-th inner sampling subproblem, i.e., Line 5 of Alg 1.

The target distribution of the inner loop, i.e., pk+1|k+1/2,b(·|x0, b) will be abbreviated as

q∗(z) := C−1
q · exp(−g(z)) = C−1

q · exp

(

−fb(z)− ∥z − x0∥2

2¸

)

.

Since InnerSGLD sample mini-batch bs from b for all s ∈ {1, 2, . . . , S}, we define

gbs
(z) := − 1

|bs|
∑

i∈bs

fi(z)− ∥z − x0∥2

2¸
.

Combining Lemma B.2 and the choice of the step size, i.e., ¸ f 1/2L, we have

(2¸)−1 · I ¯ ∇2g(z) = ∇2q∗(z) ¯ (3/2¸) · I.
Suppose the underlying distribution of zs and z′

s are qs and q′
s respectively. Besides, the KL divergence between qs and q∗ is

KL
(
qs
∥
∥q∗

)
=

∫

qs(z) log
qs(z)

q∗(z)
dz =

∫

qs(z) log qs(z)dz

︸ ︷︷ ︸

H(qs)

+

∫

qs(z) (g(z) + logCq) dz

︸ ︷︷ ︸

E(qs)

.

Then we consider the dynamics of entropyH and energy E functionals with the iteration presented as

z′
s = zs +

√

2Äs ·
(

1− Äs
4¸

)−1

À where À ∼ N (0, I),

zs+1 = z′
s − Äs∇gbs

(z′
s) .
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Energy functional dynamics We start with the following inequality

W 2
2 (qs+1, q∗) f E(z′

s,z∗)∼γ′
s

[

Ezs+1∼q′
s+1|s

(·|z′
s) ∥zs+1 − z∥2

]

,

where µ′
s denotes the optimal coupling between the densities q′

s and q∗, and q′
s+1|s(·|z′

s) denotes the density function for

zs+1 when z′
s = z′

s. According to the change of variables, the inner expectation on the RHS satisfies

Ezs+1∼q′
s+1|s

(·|z′
s) ∥zs+1 − z∥2

=
∑

bs¦b

pb(bs) · ∥z′
s − Äs∇gbs

(z′
s)− z∥2

= ∥z′
s − z∥2 − 2Äs ï∇g(z′

s),z
′
s − zð+ Ä2

sEbs
∥∇gbs

(z′
s)∥

2

f
(

1− Äs
2¸

)

· ∥z′
s − z∥2 − 2Äs · (g(z′

s)− g(z)) + Ä2
sEbs

∥∇gbs
(z′
s)∥

2
,

(25)

where the last inequality follows from the strong convexity of g, i.e.,

g(z)− g(z′
s) g ï∇g(z′

s),z − z′
sð+

1

4¸
· ∥z − z′

s∥
2
.

Taking the expectation for both sides of Eq 25, we have

E(z′
s,z)∼γ′

s

[

Eq′
s+1|s

(·|z′
s) ∥zs+1 − z∥2

]

f
(

1− Äs
2¸

)

W 2
2 (q′

s, q∗)− 2Äs · (E(q′
s)− E(q∗))

+ Ä2
s · E(z′

s,z)∼γ′
s

[

Ebs
∥∇gbs

(z′
s)∥

2
]

.

(26)

Then, we start to upper bound the last term of Eq 26, and have

E(z′
s,z)∼γ′

s

[

Ebs
∥∇gbs

(z′
s)∥

2
]

= E(z′
s,z)∼γ′

s

[

Ebs
∥∇gbs

(z′
s)−∇gbs

(z) +∇gbs
(z)∥2

]

f 2E(z′
s,z)∼γ′

s

[

Ebs
∥∇gbs

(z′
s)−∇gbs

(z)∥2
]

+ 2E(z′
s,z)∼γ′

s

[

Ebs
∥∇gbs

(z)−∇g(z) +∇g(z)∥2
]

f 2 ·
(

3

2¸

)2

· E(z′
s,z)∼γ′

s
∥z′
s − z∥2

+ 4E(z′
s,z)∼γ′

s

[

Ebs
∥∇gbs

(z)−∇g(z)∥2
]

+ 4Ez∼q∗

[

∥∇g(z)∥2
]

.

(27)

For the first term, with the definition of µ′
s, we have

E(z′
s,z)∼γ′

s
∥z′
s − z∥2

= W 2
2 (q′

s, q∗).

For the second one, suppose we sample bs uniformly from b sharing the same sampler number for all s ∈ {1, 2, . . . , S},
i.e., bin. Then, for any z ∈ R

d, we have

Ebs
∥∇gbs

(z)−∇g(z)∥2
= Ebs

[

∥∇fbs
(z)−∇f(z)∥2

]

f Ã2

bin

which follows from Lemma E.1. It then implies

E(z′
s,z)∼γ′

s

[

Ebs
∥∇gbs

(z)−∇g(z)∥2
]

f Ã2

bin
.

For the last term, we have

Ez∼q∗

[

∥∇g(z)∥2
]

f 3d

2¸

which follows from Lemma E.6. In these conditions, Eq 27 can be represented as

E(z′
s,z)∼γ′

s

[

Ebs
∥∇gbs

(z′
s)∥

2
]

f 9

2¸
·W 2

2 (q′
s, q∗) +

4Ã2

bin
+

6d

¸
.
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Plugging this inequality into Eq 26, we have

W 2
2 (qs+1, q∗) f

(

1− Äs
2¸

+
9Ä2
s

¸

)

·W 2
2 (q′

s, q∗)− 2Äs · (E(q′
s)− E(q∗)) +

4Ä2
s Ã

2

bin
+

6Ä2
s d

¸
,

which is equivalent to

2Äs · (E(q′
s)− E(q∗)) f

(

1− Äs
2¸

+
9Ä2
s

¸

)

·W 2
2 (q′

s, q∗)−W 2
2 (qs+1, q∗) +

4Ä2
s Ã

2

bin
+

6Ä2
s d

¸
.

By requiring
9Ä2
s

¸
f Äs

4¸
ô Äs f

1

36
,

we have

2Äs · (E(q′
s)− E(q∗)) f

(

1− Äs
4¸

)

·W 2
2 (q′

s, q∗)−W 2
2 (qs+1, q∗) +

4Ä2
s Ã

2

bin
+

6Ä2
s d

¸
. (28)

Entropy functional bound According to Lemma E.7, we have

2 ·
((

1− Äs
4¸

)−1

· Äs
)

· (H(q′
s)−H(q∗)) fW 2

2 (qs, q∗)−W 2
2 (q′

s, q∗),

which is equivalent to

2Äs · (H(q′
s)−H(q∗)) f

(

1− Äs
4¸

)

·W 2
2 (qs, q∗)−

(

1− Äs
4¸

)

·W 2
2 (q′

s, q∗). (29)

Therefore, combining Eq 28 and Eq 29, we have

2Äs ·KL
(
q′
s

∥
∥q∗

)
f
(

1− Äs
4¸

)

·W 2
2 (qs, q∗)−W 2

2 (qs+1, q∗) +
4Ä2
s Ã

2

bin
+

6Ä2
s d

¸
. (30)

Hence, the proof is completed.

Corollary C.2. Using the notations presented in Alg 2, asume [A1]-[A3]. Define:

Äs := Ä f min

{

¶

16
·
(

2Ã2¸

bin
+ 3d

)−1

,
1

36

}

, S g log
2W 2

2 (q1, pk+1|k+ 1
2
,b(·|x0, b))

¶
· 4¸Ä−1,

where bin denotes the uniformed minibatch size of sampled in Line 5 of Alg 2. Then, the underlying distribution of particles

at S-th iteration, i.e., qS , satisfies W 2
2 (qS , pk+1|k+ 1

2
,b(·|x0, b)) f ¶.

Proof. Similar to Lemma C.1, the target distribution of the inner loop, i.e., pk+1|k+1/2,b(·|x0, b) will be abbreviated as

q∗(z) := C−1
q · exp(−g(z)) = C−1

q · exp

(

−fb(z)− ∥z − x0∥2

2¸

)

.

and we define the minibatch loss as follows

gbs
(z) := − 1

|bs|
∑

i∈bs

fi(z)− ∥z − x0∥2

2¸
.

Then, using Lemma C.1 and since the KL divergence is non-negative, for all s ∈ {0, 2, . . . , S − 1}, we have

W 2
2 (qs+1, q∗) f

(

1− Äs
4¸

)

·W 2
2 (qs, q∗) +

4Ä2
s Ã

2

|bs|
+

6Ä2
s d

¸
.
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Following from a direct induction, we have

W 2
2 (qS , q∗) f

[
S−1∏

s=0

(

1− Äs
4¸

)]

W 2
2 (q0, q∗) +

S−1∑

i=0

(
4Ä2
i Ã

2

|bi|
+

6Ä2
i d

¸

) S−1∏

j=i+1

(

1− Äj
4¸

)

In this condition, we choose uniformed step and mini-batch sizes, i.e., Äs = Ä , |bs| = bin, and have

W 2
2 (qS , q∗) f

(

1− Ä

4¸

)S

·W 2
2 (q0, q∗) +

(
4Ã2

bin
+

6d

¸

) S−1∑

i=0

Ä2

(

1− Ä

4¸

)i

f
(

1− Ä

4¸

)S

·W 2
2 (q0, q∗) +

(
2Ã2¸

bin
+ 3d

)

· 8Ä.
(31)

Using that for all u ∈ R+, 1− u f exp(−u), then it has

(

1− Ä

4¸

)S

W 2
2 (q1, q∗) f exp

(

−ÄS
4¸

)

W 2
2 (q0, q∗) f ¶

2
. (32)

Without loss of generality, the iteration number of inner loop will be large, which implies the last inequality of Eq 32 will

establish by requiring

ÄS g log
2W 2

2 (q1, pk+1|k+ 1
2
,b(·|x0, b))

¶
· 4¸.

In the following, we choose the value of ÄS to be the lower bound. Besides, we require the last term of Eq 31 to satisfy

(
2Ã2¸

bin
+ 3d

)

· 8Ä f ¶

2
ô Ä f ¶

16
·
(

2Ã2¸

bin
+ 3d

)−1

. (33)

Combining Eq 32 and Eq 33, the proof is completed.

Lemma C.3. Using the notations presented in Alg 2, asume [A1]-[A3]. Define

S′ g log
2W 2

2 (q1, pk+1|k+ 1
2
,b(·|x0, b))

¶
· 4¸Ä−1 and S′ ∈ N+,

for all s ∈ [0, S′], the step sizes and sample sizes satisfy

|bs| = bin and Äs := Ä f min

{

¶

16
·
(

2Ã2¸

bin
+ 3d

)−1

,
1

36

}

in Alg 2. Besides, for s ∈ [S′ + 1, S], the step sizes and sampler sizes are

|bs| = b′
in and Äs := Ä ′ f min

{

¶

2
·
(

2Ã2

b′
in

+
3d

¸

)−1

,
1

36

}

.

In this condition, if the total iteration number S satisfies

S g S′ + (Ä ′)−1 and S ∈ N+,

then the underlying distribution qS of output particles satisfies KL
(

qS
∥
∥pk+1|k+ 1

2
,b(·|x0, b)

)

f ¶.

Proof. We first introduce 0 < S′ < S satisfying S′ ∈ N+, and denote the underlying distribution of output particles as

qS =

∑S
i=S′+1 q

′
i

S − S′
where i ∈ N+
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and q′
i denotes the underlying distribution of z′

i in Alg 2. Similar to Lemma C.1, the target distribution of the inner loop, i.e.,

pk+1|k+1/2,b(·|x0, b) will be abbreviated as q∗(·). Then, we set all step and sample sizes between S′-th to S-th iteration are

uniformed Ä ′ and b′
in. In this condition, we have

KL
(
qS
∥
∥q∗

)
f 1

S − S′
·

S∑

i=S′+1

KL
(
q′
i

∥
∥q∗

)

f 1

2Ä ′(S − S′)
·
[(

1− Ä ′

4¸

)

W 2
2 (qS′+1, q∗)−

S∑

i=S′+2

Ä ′

4¸
·W 2

2 (qi, q∗)−W 2
2 (qS+1, q∗)

+(S − S′) ·
(

4(Ä ′)2Ã2

b′
in

+
6(Ä ′)2d

¸

)]

f W 2
2 (qS′+1, q∗)

2Ä ′(S − S′)
+

2Ä ′Ã2

b′
in

+
3Ä ′d

¸

(34)

where the first inequality follows from Lemma E.5 and the second inequality follows from Lemma C.1. According to

Corollary C.2, in Alg 2, if we set

Äs := Ä f min

{

¶

16
·
(

2Ã2¸

bin
+ 3d

)−1

,
1

36

}

, S′ g log
2W 2

2 (q1, q∗)

¶
· 4¸Ä−1.

for all s ∈ [0, S′], then we have W 2
2 (qS′+1, q∗) f ¶. In this condition, by requiring

Ä ′(S − S′) g 1, and Ä ′ f ¶

2
·
(

2Ã2

b′
in

+
3d

¸

)−1

,

the first and the second term of Eq 34 will satisfies

W 2
2 (qS′+1, q∗)

2Ä ′(S − S′)
f ¶

2
, and

2Ä ′Ã2

b′
in

+
3Ä ′d

¸
f ¶

2
.

Hence, the proof is completed.

Theorem C.4 (Formal version of Theorem 4.1). Suppose [A1]-[A3] hold. With the following parameter settings

¸k =
1

2L
, K =

L

³∗
· log

(1 + L2)d

4³∗ϵ2
, ¶k =

2ϵ2³∗

L
·
(

log
(1 + L2)d

4³∗ϵ2

)−1

bo = min

{
Ã2

4³∗ϵ2
· log

(1 + L2)d

4³∗ϵ2
, n

}

,

for Alg 1, if we choose Alg 2 as the inner sampler shown in Line 5 Alg 1, set

Ä = min

{

³∗ϵ
2

16
·
(
(
Ã2 + 3Ld

)
· log

(1 + L2)d

4³∗ϵ2

)−1

,
1

36

}

,

Ä ′ = min

{

³∗ϵ
2

4L
·
(
(
Ã2 + 3Ld

)
· log

(1 + L2)d

4³∗ϵ2

)−1

,
1

36

}

,

S′(x0, b) =

(

log

(

∥∇fb(0)∥2
+ L+ L ∥x0∥2

L³∗ϵ2

)

+ log log
(1 + L2)d

4³∗ϵ2

)

· 4

LÄ

S(x0, b) =

(

log

(

∥∇fb(0)∥2
+ L+ L ∥x0∥2

L³∗ϵ2

)

+ log log
(1 + L2)d

4³∗ϵ2

)

· 4

LÄ
+ (Ä ′)−1,

Äs = Ä when s ∈ [0, S′(x0, b)]

Äs = Ä ′ when s ∈ [S′(x0, b) + 1, S(x0, b)− 1]
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and 1 inner minibatch size, i.e., bin = 1, then the underlying distribution of returned particles p̂K in Alg 1 satisfies

TV (p̂K+1, p∗) < 3ϵ. In this condition, the expected gradient complexity will be

34L3(Ã2 + 3d)

³3
∗ϵ

2
· log(24L2) · log2 (1 + L2)d

4³∗ϵ2
· log

30L2
(

M + Ã2 + d+ 1 + ∥∇f(0)∥2
)

³∗ϵ2
,

which can be abbreviated as Θ̃(»3ϵ−2 · (d+ Ã2)).

Proof. For the detailed implementation of Alg 1 with Alg 2, we consider the following settings.

• For all k ∈ {0, 1, . . . ,K − 1}, the mini-batch bk in Alg 1 Line 2 has a uniformed norm which is denoted as |bk| = bo.

• For all k ∈ {0, 1, . . . ,K − 1}, the conditional probability densities pk+1|k+1/2,b(·|xk+1/2, bk) in Alg 1 Line 4

formulated as Eq 6 share the same L-2 regularized coefficients, i.e., ¸−1
k .

• For all k ∈ {0, 1, . . . ,K − 1}, the inner sampler shown in Alg 1 Line 5 is chosen as Alg 2.

Errors control of outer loops. With these conditions, we have

TV (p̂K , p∗) f

√
√
√
√1

2

K−1∑

i=0

¶i + Ã

√

K¸

2bo
+

√

(1 + L2)d

4³∗
· (1 + ³∗¸)

−K

which follows from Theorem 3.1. For achieving TV (pK+1, p∗) f Õ(ϵ), we start with choosing the step size ¸ and the

iteration number K in Alg 1. By requiring

¸ f 1

2L
and K g (³∗¸)−1 · log

(1 + L2)d

4³∗ϵ2
=

2L

³∗
· log

(1 + L2)d

4³∗ϵ2
, (35)

we have

(1 + ³∗¸)
2K g exp(³∗¸K) g (1 + L2)d

4³∗ϵ2
⇒ exp(−³∗K¸) f ϵ,

where the first inequality follows from 1 + u g exp(u/2) when u f 1. The last equation of Eq 35 establishes when ¸ is

chosen as its upper bound. Besides by requiring

bo g min

{
K¸Ã2

2ϵ2
, n

}

= min

{
Ã2

³∗ϵ2
· log

(1 + L2)d

4³∗ϵ2
, n

}

, (36)

we have Ã
√

K¸/(2bo) f ϵ. The last equation of Eq 36 requires the choice of ¸ and K in Eq 35 to be their upper and lower

bound respectively. For simplicity, we consider inner samplers for all iterations share the same error tolerance, i.e., ¶k = ¶
for all k ∈ {1, 2, . . . ,K}. By requiring,

¶ f 2ϵ2

K
=
ϵ2³∗

L
·
(

log
(1 + L2)d

4³∗ϵ2

)−1

(37)

we have

√
1
2

∑K−1
i=0 ¶i f ϵ. The last inequality of Eq 37 holds when K is chosen as its lower bound in Eq 35.

Errors control of inner loops. Then, we start to consider the hyper-parameter settings of the inner loop and the total

gradient complexity. According to Theorem 3.1, we require the underlying distribution of output particles of the inner loop,

i.e., p̂k+1|k+ 1
2
,b(·|x0, b), satisfies

KL
(

p̂k+1|k+ 1
2
,b(·|x0, b)

∥
∥pk+1|k+ 1

2
,b(·|x0, b)

)

f ¶ f ϵ2³∗

L
·
(

log
(1 + L2)d

4³∗ϵ2

)−1

(38)
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for all x0 ∈ R
d and b ¦ {1, 2, . . . , n}. Then, to achieve Eq 38, Lemma C.3 will decompose the total inner iterations of

Alg 2, i.e., s ∈ [0, S(x0, b)] into two stages.

For the first stage, we consider

Äs := Ä f min

{

¶

16
·
(

2Ã2¸

bin
+ 3d

)−1

,
1

36

}

= min

{

³∗ϵ
2

16
·
(
(
Ã2 + 3Ld

)
· log

(1 + L2)d

4³∗ϵ2

)−1

,
1

36

}

(39)

for s ∈ [0, S′(x0, b)] where

S′(x0, b) g
(

log
2L ·W 2

2 (q0, pk+1|k+ 1
2
,b(·|x0, b))

³∗ϵ2
+ log log

(1 + L2)d

4³∗ϵ2

)

· 2

LÄ
and S′(x0, b) ∈ N+. (40)

It should be noted that the last equation of Eq 39 only establishes when ¶ and ¸ are chosen as their upper bounds, and

bin = 1.

For the second stage, we consider

Äs := Ä ′ f min

{

¶

2
·
(

2Ã2

b′
in

+
3d

¸

)−1

,
1

36

}

= min

{

³∗ϵ
2

4L
·
(
(
Ã2 + 3Ld

)
log

(1 + L2)d

4³∗ϵ2

)−1

,
1

36

}

. (41)

for s ∈ [S′(x0, b) + 1, S(x0, b)− 1] where

S(x0, b) gS′(x0, b) + (Ä ′)−1

=

(

log
2L ·W 2

2 (q0, pk+1|k+ 1
2
,b(·|x0, b))

³∗ϵ2
+ log log

(1 + L2)d

4³∗ϵ2

)

· 32Ã2 + 96Ld

L³∗ϵ2
· log

(1 + L2)d

4³∗ϵ2

+
4LÃ2 + 12L2d

³∗ϵ2
· log

(1 + L2)d

4³∗ϵ2
.

(42)

It should be noted that the last equation of Eq 42 only establishes when ¶ and ¸ are chosen as their upper bounds, and

b′
in = 1.

Since the choice of S(x0, b) depend on the upper bound of W 2
2 (q1, pk+1|k+ 1

2
,b(·|x0, b)), we start to bound it. Line 3 of

Alg 2 has presented that q0 is a Gaussian-type distribution with ¸−1-strong convexity, then we have q0 also satisfies ¸−1-LSI

due to Lemma E.2, which implies

W 2
2 (q0, pk+1|k+ 1

2
,b(·|x0, b)) f 2¸KL

(

q0

∥
∥pk+1|k+ 1

2
,b(·|x0, b)

)

f ¸2FI
(

q0∥pk+1|k+ 1
2
,b(·|x0, b)

)

.

Noted that the relative Fisher information satisfies

FI
(

q0∥pk+1|k+ 1
2
,b(·|x0, b)

)

=

∫

q0(z)

∥
∥
∥
∥
∥
∇ log

q0(z)

pk+1|k+ 1
2
,b(z|x0, b)

∥
∥
∥
∥
∥

2

dz

=

∫

q0(z) ∥∇fb(z)−∇fb(0) +∇fb(0)−∇f(0) +∇f(0)∥2
dz

f 3L2
Ez∼q0

[∥z∥2] + 3 ∥∇fb(0)−∇f(0)∥2
+ 3 ∥∇f(0)∥2

= 3L2(¸ + ∥x0∥2
) + 3 ∥∇fb(0)−∇f(0)∥2

+ 3 ∥∇f(0)∥2
.

where the first inequality follows from [A1] with respect to fb, and the last equation follows from the explicit form of the

mean and variance of Gaussian-type q0. Taking the expectation for both sides, we have

Ex0,b

[

W 2
2 (q0, pk+1|k+ 1

2
,b(·|x0,b))

]

f 3¸2 ·
(

L2¸ + L2
Ex0

[

∥x0∥2
]

+ Eb

[

∥∇fb(0)−∇f(0)∥2
]

+ ∥∇f(0)∥2
)

f Ex0

[

∥x0∥2
]

+
1

2L
+

Eb

[

∥∇fb(0)−∇f(0)∥2
]

L2
+
∥∇f(0)∥2

L2

f Ex0

[

∥x0∥2
]

+ (2L2)−1 ·
(

2 ∥∇f(0)∥2
+ L+ 2Ã2/|b|

)

f Ex0

[

∥x0∥2
]

+
2 ∥∇f(0)∥2

+ L+ 2Ã2

2L2

(43)
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where the second inequality follows from the choice of ¸, the third inequality follows from Lemma E.1, and the last

inequality establishes since |b| g 1. To solve this problem, we start with upper bounding the second moment, i.e., Mk of pk
for any k ∈ [1,K]. For calculation convenience, we suppose L g 1, ¶ < 1 without loss of generality and set

Cm := 4¸¶ +
6Ã2

bo
+

(
6

¸2
+ 4

)

M +
6d

¸
f 2 + 6Ã2 + (24L2 + 4)M + 12Ld.

In this condition, following from Lemma 3.2, we have

Mk+1 f
6

¸2
k

·Mk + 4¸k¶k +
6Ã2

|bk|
+

(
6

¸2
k

+ 4

)

M +
6d

¸k
= 24L2Mk + Cm,

which implies

Mk f
(
24L2

)k
M + Cm ·

(

1 + 24L2 + . . .+
(
24L2

)k−1
)

f
(
24L2

)k ·
(

M +
Cm

24L2 − 1

)

f
(
24L2

)K ·
(
M + 2 + 6Ã2 + (24L2 + 4)M + 12Ld

)
.

(44)

Additionally, Lemma 3.2 also demonstrates that

Mk+ 1
2
fMk + ¸kd f

(
24L2

)K ·
(
M + 2d+ 6Ã2 + (24L2 + 4)M + 12Ld

)

for all k ∈ [0,K − 1]. Plugging Eq 44 into Eq 43, we have

Ex0,b

[

W 2
2 (q0, pk+1|k+ 1

2
,b(·|x0,b))

]

f
(
24L2

)K−1 ·
(

M + Cm + 2 ∥∇f(0)∥2
+ L+ 2Ã2

)

f
(
24L2

)K−1 · 30L2 ·
(

M + Ã2 + d+ 1 + ∥∇f(0)∥2
)

,

which implies

Ex0,b

[

log(2L ·W 2
2 (q0, pk+1|k+ 1

2
,b(·|x0, b)))

]

f log
(

E

[

2L ·W 2
2 (q0, pk+1|k+ 1

2
,b(·|x0, b)

])

f log
[(

24L2
)K ·

(

M + Ã2 + d+ 1 + ∥∇f(0)∥2
)]

= K · log(24L2) + log
(

30L2 ·
(

M + Ã2 + d+ 1 + ∥∇f(0)∥2
))

f L

³∗
log

(1 + L2)d

4³∗ϵ2
· log(24L2) + log

(

30L2 ·
(

M + Ã2 + d+ 1 + ∥∇f(0)∥2
))

,

(45)

where the first inequality follows from Jensen’s inequality and the last inequality follows from the parameters’ choice shown

in Eq 35. By choosing S(x0, b) to its lower bound and taking the expectation for both sides of Eq 42, we have

Ex0,b [S(x0, b)] f
32Ã2 + 96Ld

L³∗ϵ2
· log

(1 + L2)d

4³∗ϵ2
· log log

(1 + L2)d

4³∗ϵ2
+

4LÃ2 + 12L2d

³∗ϵ2
· log

(1 + L2)d

4³∗ϵ2

+
32Ã2 + 96Ld

L³∗ϵ2
· log

(1 + L2)d

4³∗ϵ2
· E

[

log

(
2L · W 2

2 (q1, pk+1|k+ 1
2

,b(·|x0, b))

³∗ϵ2

)]

f
32Ã2 + 96Ld

L³∗ϵ2
· log

(1 + L2)d

4³∗ϵ2
· log log

(1 + L2)d

4³∗ϵ2
+

4LÃ2 + 12L2d

³∗ϵ2
· log

(1 + L2)d

4³∗ϵ2

+
32Ã2 + 96Ld

L³∗ϵ2
· log

(1 + L2)d

4³∗ϵ2
·

(

log
30L2

(
M + Ã2 + d + 1 + ∥∇f(0)∥2

)

³∗ϵ2
+

L

³∗
log

(1 + L2)d

4³∗ϵ2
· log(24L

2)

)

f
4LÃ2 + 12L2d

³∗ϵ2
· log

(1 + L2)d

4³∗ϵ2
+

32Ã2 + 96Ld

L³∗ϵ2
· log

(1 + L2)d

4³∗ϵ2

· 2 ·
L

³∗
· log

30L2
(
M + Ã2 + d + 1 + ∥∇f(0)∥2

)

³∗ϵ2
· log(24L

2)

f
34L2(Ã2 + 3Ld)

³2
∗ϵ2

· log(24L
2) · log

(1 + L2)d

4³∗ϵ2
· log

30L2
(
M + Ã2 + d + 1 + ∥∇f(0)∥2

)

³∗ϵ2
,
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for all x0 ∼ pk+1/2. Hence, the total gradient complexity will be

K · Ex0,b [S(x0, b)] = Õ(»3ϵ−2 ·max{Ã2, Ld}),

and the proof is completed.

C.2. Warm-started MALA Inner Samplers

We define the Reńyi divergence between two distributions as

Rr(p∥q) =
1

r − 1
log

∫ (
p(x)

q(x)

)r

· q(x)dx,

since it will be widely used in the following section. Then, we provide a detailed theoretical analysis.

Lemma C.5. Suppose [A1] holds and Alg 4 is implemented with following hyper-parameters’ settings:

µ =
√

3/¸, Ä = Θ̃

(
¶¸1/2

d1/2r1/2

)

, and S = Θ̃

(
d1/2r1/2

¶
log
(
∥x0∥2 + (¸∥∇fb(0)∥)2

)
)

,

the underlying distribution qS of the output particle i.e., zS will satisfy

Rr(qS∥q∗) f ¶2,

whereRr denotes Reńyi divergence with order r.

Proof. We suppose the InnerULD is implemented as Alg 4. We denote the underlying distribution of (zs,vs) as q′
s and

its marginal distribution w.r.t. zs is denoted as qs. Since, we only consider Alg 4 rather than its outer loops, the target

distribution of Alg 4 can be abbreviated as

q∗(z) ∝ exp(−g(z)), q′
∗(z,v) ∝ exp

(

−g(z)− ∥v∥
2

2

)

, where g(z) := − log pk+1|k+ 1
2
,b(z|x0, b).

Combining Lemma B.2 and the choice of the step size, i.e., ¸ f 1/2L, we have

(2¸)−1 · I ¯ ∇2g(z) = ∇2q∗(z) ¯ (3/2¸) · I.

By data-processing inequality, we have

Rr(qS∥q∗) f Rr(q′
S∥q′

∗).

By the weak triangle inequality of Reńyi divergence, i.e., Lemma 7 in (Vempala & Wibisono, 2019), we have

Rr(q′
S∥q′

∗) f r − 1/2

r − 1
· R2r(q

′
S∥q̃′

∗) +R2r−1(q̃′
∗∥q∗).

It can be noted that
r−1/2
r−1 will be bounded by 2 when q g 3/2 and q̃′

∗ denotes the underlying distribution of output particles

if we initialize q′
0 with q′

∗. Then, by combining Lemma E.9, Lemma E.10 and Lemma E.11, we conclude that

Rr(q′
S∥q′

∗) f ¶2

if ULD is run with friction parameter µ, step size Ä , and iteration complexity N that satisfy:

µ =
√

3/¸, Ä ≲
¶¸3/4

d1/2r1/2T 1/2
, and S ≳

√
¸

Ä
log

(
(
d¸ + ∥x0 − z∗∥2

)
· r¸

1/2

¶2Ä3

)

.

By recalling that T = NÄ , solving for these choices of parameters, and omitting logarithmic factors, we conclude that it

suffices to run ULD with the following choices of parameters:

µ =
√

3/¸, Ä = Θ̃

(
¶¸1/2

d1/2r1/2

)

, and S = Θ̃

(
d1/2r1/2

¶
log ∥x0 − z∗∥2

)

(46)
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where z∗ is the minimizer of g. Besides, the minimizer of g satisfies

∇g(z∗) = ∇fb(z∗) + ¸−1 · (z∗ − x0) = 0 ô x0 = ¸∇fb(z∗) + z∗,

which implies

∥x0∥ = ∥¸∇fb(z∗) + z∗∥ g ∥z∗∥ − ¸∥∇fb(z∗)∥ ô ∥x0∥+ ¸∥∇fb(z∗)∥ g ∥z∗∥.

In this condition, it has

∥z∗∥ f ∥x0∥+ ¸∥∇fb(z∗)−∇fb(0) +∇fb(0)∥ f ∥x0∥+ L¸∥z∗∥+ ¸∥∇fb(0)∥

where the second inequality follows from [A1]. Since, we require L¸ f 1/2, then the previous inequality is equivalent to

∥z∗∥ f 2∥x0∥+ 2¸∥∇fb(0)∥.

Plugging this results into Eq 46, the hyper-parameter choice of Alg 4 can be concluded as

µ =
√

3/¸, Ä = Θ̃

(
¶¸1/2

d1/2r1/2

)

, and S = Θ̃

(
d1/2r1/2

¶
log
(
∥x0∥2 + (¸∥∇fb(0)∥)2

)
)

.

Lemma C.6 (Variant of Theorem 1 of (Wu et al., 2022)). Using the notations presented in Alg 3, suppose [A1] holds and

Alg 3 is implemented when

Ä = Θ

(

¸d−1/2 log−2

(

max

{

d,
Ç2(q0∥q∗)

¶2

}))

, and S = Θ

(

d1/2 log3

(
Ç2(q0∥q∗)

¶2

))

.

Then, underlying distribution qS of the output particle i.e., zS will satisfy

TV (qS , q∗) f ¶.

Proof. We suppose the InnerMALA is implemented as Alg 3. We denote the underlying distribution of (zs,vs) as q′
s and

its marginal distribution w.r.t. zs is denoted as qs. Since, we only consider Alg 3 rather than its outer loops, the target

distribution of Alg 3 can be abbreviated as

q∗(z) ∝ exp(−g(z)), q′
∗(z,v) ∝ exp

(

−g(z)− ∥v∥
2

2

)

, where g(z) := − log pk+1|k+ 1
2
,b(z|x0, b).

Theorem 1 of (Wu et al., 2022) upper bound the total variation distance between the underlying distribution of output

particles and the target distribution as

TV (qS , q∗) f Hs +
Hs

s
· exp

(

−SΦs
2

)

where Hs is defined as

Hs := sup {|q0(A)− q∗(A)| : q∗(A) f s}
and Φs denotes the s-conductance. The final step size and gradient complexity will depend on the warm-start M defining as

Hs fMs. Since, we use Ç2 distance to define the warm-start in our analysis. We have additionally the following inequality.

|q0(A)− q∗(A)| =
∣
∣
∣
∣

∫

1A

(
dq0

dq∗
− 1

)

dq∗

∣
∣
∣
∣
f
√
∫

1AdÃ ·
∫ (

dq0

dq∗
− 1

)2

dq∗ f
√

q∗(A)Ç2(q0∥q∗),

which means Hs f
√

sÇ2(q0∥q∗). In this condition, we have

TV (qS , q∗) f
√

sÇ2(q0∥q∗) +

√

Ç2(q0∥q∗)

s
· exp

(

−SΦs
2

)
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By requiring

s =
¶2

4Ç2(q0∥p∗)
and S =

2

Φs
log

(
8Ç2(q0∥p∗)

¶2

)

,

we can achieve TV (qS , p∗) f ϵ. Besides, we can obtain the M by

M g Hs

s
⇐ M g

√

Ç2(q0∥q∗)

s
=

2Ç2(q0∥q∗)

¶
. (47)

Since the target distribution q∗ is (1/2¸)-strongly convex and (3/2¸)-smooth when ¸ f 1/(2L) due to Lemma B.2, plugging

the choice of M shown in Eq 47 into Theorem 1 of (Wu et al., 2022), we know the step size should be

Ä = Θ

(

¸d−1/2 log−2

(

max

{

d,
Ç2(q0∥q∗)

¶2

}))

and the gradient complexity will be

S = Θ

(

d1/2 log3

(
Ç2(q0∥q∗)

¶2

))

.

Hence, the proof is completed.

Corollary C.7. Suppose [A1] holds, we implement Alg 4 with

µ =
√

3/¸, Ä = Θ̃

(
¸1/2

d1/2

)

, and S = Θ̃
(

d1/2 log
(
∥x0∥2 + (¸∥∇fb(0)∥)2

))

,

and implement Alg 3 with

Ä = Θ
(

¸d−1/2 log−2
(
max

{
d, ¶−1

}))

, and S = Θ
(

d1/2 log3 (1/¶)
)

.

The underlying distribution qS of the output particle of Alg 3 will have

KL
(
qS
∥
∥q∗

)
f ¶,

and the total gradient complexity will be

Θ̃
(

|b|d1/2
(
log
(
∥x0∥2 + (¸∥∇fb(0)∥)2

)
+ log3(1/¶)

))

.

Proof. Using the notations in Alg 3, by Lemma C.5, Alg 4 can outputs a distribution q0 satisfying

R3(q0∥q∗) f log 2,

which implies

Ç2(q0∥q∗) f exp (R2(q0∥q∗))− 1 f exp (R3(q0∥q∗))− 1 f 1.

It should be noted that the second inequality follows from the monotonicity of Reńyi divergence. In this condition, the

gradient complexity of Alg 4 should be

|b| × S′ = Θ̃
(

|b|d1/2 log
(
∥x0∥2 + (¸∥∇fb(0)∥)2

))

,

where S′ denotes the iteration number of Alg 4, i.e., Line 2 of Alg 3. With the warm start in Ç2 divergence, we invoke

Lemma C.6 and achieve

TV (qS , q∗) f ¶2/5.

with the following gradient complexity

|b| × S = Θ
(

|b|d1/2 log3 (1/¶)
)

.
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Then, we start upper bound the KL divergence between qS and q∗ and have

KL
(
qS
∥
∥q∗

)
fÇ2(qS∥q∗) =

∫ (
qS(z)

q∗(z)
− 1

)2

q∗(z)dz f
√
∫ ∣
∣
∣
∣

qS(z)

q∗(z)
− 1

∣
∣
∣
∣
q∗(z)dz ·

∫ ∣
∣
∣
∣

qS(z)

q∗(z)
− 1

∣
∣
∣
∣

3

q∗(z)dz

f

√
√
√
√TV (qS , q∗) ·

(
∫ ∣
∣
∣
∣

qS(z)

q∗(z)

∣
∣
∣
∣

3

dz + 1

)

=
√

TV (qS , q∗) · (exp (2R3(qS∥q∗)) + 1)

f
√

TV (qS , q∗) · (exp (2R3(q0∥q∗)) + 1) f ¶,

where the second inequality follows from Cauchy–Schwarz inequality, the second equation follows from the definition of

Reńyi divergence, and the last inequality follows from data-processing inequality. Therefore, to ensure the convergence of

KL divergence, i.e.,

KL
(
qS
∥
∥q∗

)
f ¶,

the total complexity of this warm start MALA will be

Θ̃
(

|b|d1/2
(
log
(
∥x0∥2 + (¸∥∇fb(0)∥)2

)
+ log3(1/¶)

))

.

Hence, the proof is completed.

Theorem C.8. Suppose [A1]-[A3] hold. With the following parameter settings

¸k =
1

2L
, K =

L

³∗
· log

(1 + L2)d

4³∗ϵ2
, ¶k =

2ϵ2³∗

L
·
(

log
(1 + L2)d

4³∗ϵ2

)−1

bo = min

{
Ã2

4³∗ϵ2
· log

(1 + L2)d

4³∗ϵ2
, n

}

,

for Alg 1, if we choose Alg 3 as the inner sampler shown in Line 5 of Alg 1, set

µ =
√

6L, Ä = Θ̃

(
1√
2Ld

)

, and S = Θ̃

(

d1/2 log

(

∥x0∥2 +
∥∇fb(0)∥2

2L2

))

.

for Alg 4, and

Ä = Θ

(
1

2L
√
d
· log−2

(

max

{

d,
L

2³∗ϵ2
log

(1 + L2)d

4³ϵ2

}))

,

and S = Θ

(

d1/2 log3

(
L

2³∗ϵ2
log

(1 + L2)d

4³ϵ2

))

.

for Alg 3, then the underlying distribution of returned particles pK in Alg 1 satisfies TV (pK+1, p∗) < 3ϵ. In this condition,

the expected gradient complexity will be Θ̃
(
»3d1/2Ã2ϵ−2

)
.

Proof. We provide this proof with a similar proof roadmap shown in Theorem C.4. Specifically, we show the detailed

implementation of Alg 1 with Alg 2 in the following.

• For all k ∈ {0, 1, . . . ,K − 1}, the mini-batch bk in Alg 1 Line 2 has a uniformed norm which is denoted as |bk| = bo.

• For all k ∈ {0, 1, . . . ,K−1}, the conditional probability densities pk+1|k+1/2,b(·|xk+1/2bk) in Alg 1 Line 4 formulated

as Eq 6 share the same L-2 regularized coefficients, i.e., ¸−1.

• For all k ∈ {0, 1, . . . ,K − 1}, the inner sampler shown in Alg 1 Line 5 is chosen as Alg 3.

By requiring

¸ f 1

2L
and K g (2³∗¸)−1 · log

(1 + L2)d

4³∗ϵ2
=

L

³∗
· log

(1 + L2)d

4³∗ϵ2
,
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we have √

(1 + L2)d

4³∗
· (1 + ³∗¸)

−K f
√

(1 + L2)d

4³∗
· exp(−³∗K¸) f ϵ.

Besides by requiring

bo g min

{
K¸Ã2

2ϵ2
, n

}

= min

{
Ã2

4³∗ϵ2
· log

(1 + L2)d

4³∗ϵ2
, n

}

,

we have Ã
√

K¸/(2bo) f ϵ. Additionally, by requiring,

¶ f 2ϵ2

K
=

2ϵ2³∗

L
·
(

log
(1 + L2)d

4³∗ϵ2

)−1

.

With these conditions, we have

TV (pK , p∗) f

√
√
√
√1

2

K−1∑

i=0

¶i + Ã

√

K¸

2bo
+

√

(1 + L2)d

4³∗
· (1 + ³∗¸)

−K f 3ϵ

which follows from Theorem 3.1.

Errors control of inner loops. To determine the hyper-parameter settings of Alg 4 and Alg 3, we can plug the choice of

outer loops step size ¸ and inner loops error tolerance ¶, i.e.,

¸ =
1

2L
and ¶ =

2ϵ2³∗

L
·
(

log
(1 + L2)d

4³∗ϵ2

)−1

into Corollary C.7. In this condition, for Alg 4, we set

µ =
√

6L, Ä = Θ̃

(
1√
2Ld

)

, and S = Θ̃

(

d1/2 log

(

∥x0∥2 +
∥∇fb(0)∥2

2L2

))

.

For Alg 3, we set

Ä = Θ

(
1

2L
√
d
· log−2

(

max

{

d,
L

2³∗ϵ2
log

(1 + L2)d

4³ϵ2

}))

,

and S = Θ

(

d1/2 log3

(
L

2³∗ϵ2
log

(1 + L2)d

4³ϵ2

))

.

Then, the underlying distribution qS of the output particle of Alg 3 will satisfy

KL
(
qS
∥
∥q∗

)
f 2ϵ2³∗

L
·
(

log
(1 + L2)d

4³∗ϵ2

)−1

= ¶,

and the total gradient complexity will be

Θ̃
(

bod
1/2
(
log
(
∥x0∥2 + (¸∥∇fb(0)∥)2

)
+ log3(1/¶)

))

.

Since log(1/¶) will only provide additional log terms which will be omitted in Θ̃, we only consider the following inequality,

i.e.,

Ex0,b

[

bod
1/2 log

(
∥x0∥2 + (¸∥∇fb(0)∥)2

)]

f bod1/2 log
(

E

[

∥x0∥2
]

+ ¸2
E

[

∥∇fb(0)∥2
])

f bod1/2 log
(

E

[

∥x0∥2
]

+ 2¸2 ∥∇f(0)∥2
+ 2¸2

E

[

∥∇fb(0)−∇f(0)∥2
])

f Ã2d1/2

4³∗ϵ2
· log

(1 + L2)d

4³∗ϵ2
· log

(

E

[

∥x0∥2
]

+
∥∇f(0)∥2

2L2
+

Ã2

2L2

)
(48)
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the first inequality follows from Jensen’s inequality, the second follows from triangle inequality, and the last follows

from [A3]. Here, we should note that the underlying distribution of random variable x0 is pk+1/2. Hence, the second

moment bound, i.e., Mk+1/2 of pk+1/2 for any k ∈ [0,K − 1] is required.

To solve this problem, we start with upper bounding the second moment, i.e., Mk of pk for any k ∈ [1,K]. For calculation

convenience, we suppose L g 1, ¶ < 1 without loss of generality and set

Cm := 4¸¶ +
6Ã2

bo
+

(
6

¸2
+ 4

)

M +
6d

¸
f 2 + 6Ã2 + (24L2 + 4)M + 12Ld.

In this condition, following from Lemma 3.2, we have

Mk+1 f
6

¸2
k

·Mk + 4¸k¶k +
6Ã2

|bk|
+

(
6

¸2
k

+ 4

)

M +
6d

¸k
= 24L2Mk + Cm,

which implies

Mk f
(
24L2

)k
M + Cm ·

(

1 + 24L2 + . . .+
(
24L2

)k−1
)

f
(
24L2

)k ·
(

M +
Cm

24L2 − 1

)

f
(
24L2

)K ·
(
M + 2 + 6Ã2 + (24L2 + 4)M + 12Ld

)
.

Additionally, Lemma 3.2 also demonstrates that

Mk+ 1
2
fMk + ¸kd f

(
24L2

)K ·
(
M + 2d+ 6Ã2 + (24L2 + 4)M + 12Ld

)

for all k ∈ [0,K − 1]. Plugging the following inequality, i.e.,

Ã2d1/2

4³∗ϵ2
· logE

[

∥x0∥2
]

f Ld1/2Ã2

4³2
∗ϵ

2
log

(1 + L2)d

4³∗ϵ2
log 24L2 log

(
M + 2d+ 6Ã2 + (24L2 + 4)M + 12Ld

)

into the RHS of Eq 48 and omitting trivial log terms, we know the gradient complexity for each k will be Θ̃
(
»2d1/2Ã2ϵ−2

)
.

After multiplying the total iteration number of Alg 1, i.e., K, the final gradient complexity will be Θ̃
(
»3d1/2Ã2ϵ−2

)
. Hence,

the proof is completed.

D. Lemmas for Errors from Initialization of Inner Samplers

Proof of Lemma 3.2. We first suppose the second moment of p̂k is upper bounded and satisfies Ep̂k
[∥x∥2] f mk.

According to Alg 1 Line 3, we have the closed form of the random variable x̂k+1/2 is

x̂k+ 1
2

= x̂k +
√
¸kÀ, where À ∼ N (0, I).

Noted that À is independent with x̂k, hence, we have

Mk+ 1
2

:= E

[∥
∥
∥x̂k+ 1

2

∥
∥
∥

2
]

= E

[

∥x̂k∥2
]

+ ¸k · d fMk + ¸k · d. (49)

Then, considering the second moment of xk+1, we have

E

[

∥x̂k+1∥2
]

=

∫

p̂k+1(x) · ∥x∥2
dx

=

∫




∫

p̂k+ 1
2
(y) ·

∑

b∈{1,2,...,n}

p̂k+1|k+ 1
2
,b(x|y, b) · pb(b)



 · ∥x∥2
dx

=
∑

b∈{1,2,...,n}

(

pb(b) ·
∫

p̂k+ 1
2
(y) ·

(∫

p̂k+1|k+ 1
2
,b(x|y, b) · ∥x∥2

dx

)

dy

)

(50)
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Then, we focus on the innermost integration, suppose µ̂y(·, ·) as the optimal coupling between p̂k+1|k+ 1
2
,b(·|y) and

pk+1|k+ 1
2
,b(·|y). Then, we have

∫

p̂k+1|k+ 1
2
,b(x|y) ∥x∥2

dx− 2

∫

pk+1|k+ 1
2
,b(x|y) ∥x∥2

dx

f
∫

µ̂y(x̂,x)
(

∥x̂∥2 − 2 ∥x∥2
)

d(x̂,x) f
∫

µ̂y(x̂,x) ∥x̂− x∥2
d(x̂,x) = W 2

2

(

p̂k+1|k+ 1
2
,b, pk+1|k+ 1

2
,b

)

.

(51)

Since pk+1|k+ 1
2
,b is strongly log-concave, i.e.,

−∇2
x′pk+1|k+ 1

2
,b(x

′|x, b) = ∇2fb(x′) + ¸−1I °
(
−L+ ¸−1

k

)
I ° (2¸k)−1 · I,

the distribution pk+1|k+ 1
2
,b also satisfies (2¸k)−1 log-Sobolev inequality due to Lemma E.2. By Talagrand’s inequality, we

have

W 2
2

(

p̂k+1|k+ 1
2
,b, pk+1|k+ 1

2
,b

)

f 4¸kKL
(

p̂k+1|k+ 1
2
,b

∥
∥pk+1|k+ 1

2
,b

)

f 4¸k¶k. (52)

Plugging Eq 51 and Eq 52 into Eq 50, we have

E

[

∥x̂k+1∥2
]

f
∑

b∈{1,2,...,n}

(

pb(b) ·
∫

p̂k+ 1
2
(y) ·

(

4¸k¶k + 2

∫

pk+1|k+ 1
2
,b(x|y) ∥x∥2

dx

)

dy

)

. (53)

To upper bound the innermost integration, we suppose the optimal coupling between p∗ and pk+1|k+ 1
2
,b(·|y) is µy(·, ·).

Then it has
∫

pk+1|k+ 1
2
,b(x|y) ∥x∥2

dx− 2

∫

p∗(x) ∥x∥2
dx

f
∫

µy(x′,x)
(

∥x′∥2 − 2 ∥x∥2
)

d(x′,x) f
∫

µy(x′,x) ∥x′ − x∥2
d(x′,x) = W 2

2 (p∗, pk+1|k+ 1
2
,b)

(54)

Since pk+1|k+ 1
2
,b satisfies LSI with constant (2¸k)−1. By Talagrand’s inequality and LSI, we have

W 2
2 (p∗, pk+1|k+ 1

2
,b) f 4¸kKL

(

p∗

∥
∥pk+1|k+ 1

2
,b

)

f 4¸2
k

∫

p∗(x) ·
∥
∥
∥
∥
∥
∇ log

p∗(x)

pk+1|k+ 1
2
,b(x|y, b)

∥
∥
∥
∥
∥

2

dx = 4¸2
k

∫

p∗(x) ·
∥
∥
∥
∥
∇fb(x)−∇f(x) +

x− y

¸k

∥
∥
∥
∥

2

dx

f 12¸2
k ·
[∫

p∗(x) ∥∇fb(x)−∇f(x)∥2
dx + ¸−2

k

∫

p∗(x) ∥x∥2
dx + ¸−2

k ∥y∥
2

]

.

Combining this inequality with Eq 54, we have
∫

pk+1|k+ 1
2
,b(x|y) ∥x∥2

dx f 12¸2
k

∫

p∗(x) ∥∇fb(x)−∇f(x)∥2
dx + 12M + 12 ∥y∥2

+ 2M.

Plugging this inequality into Eq 53, we have

E

[

∥x̂k+1∥2
]

f 4¸k¶k +
∑

b¦{1,2,...,n}

24¸2
k · pb(b)

∫

p̂k+ 1
2
(y) ·

(∫

p∗(x) ∥∇fb(x)−∇f(x)∥2
dx

)

dy

+ 28M +
∑

b¦{1,2,...,n}

24 · pb(b)

∫

p̂k+ 1
2
(y) ∥y∥2

dy.

(55)

According to [A3], suppose we sample b uniformly from {1, 2, . . . , n}, then for any x ∈ R
d we have

Eb






∥
∥
∥
∥
∥
∥

1

|b|

|b|
∑

i=1

(∇f(x)−∇fbi
(x))

∥
∥
∥
∥
∥
∥

2



 =

1

|b|2
|b|
∑

i=1

|b|
∑

j=1

E
[
(∇fbi

(x)−∇f(x))¦(∇fbj
(x)−∇f(x))

]

=
1

|b|2
|b|
∑

i=1

E

[

∥∇fbi
(x)−∇f(x)∥2

]

=
Ã2

|b| .
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Plugging this equation into the second term of RHS of Eq 53, we have

∑

b¦{1,2,...,n}

pb(b)

∫

p̂k+ 1
2
(y) ·

(∫

p∗(x) ∥∇fb(x)−∇f(x)∥2
dx

)

dy

=

∫

p̂k+ 1
2
(y)

∫

p∗(x)Eb

[

∥∇fb(x)−∇f(x)∥2
]

dxdy =
Ã2

|b| .

Besides, for the last term of RHS of Eq 53, we have

∑

b¦{1,2,...,n}

pb(b)

∫

p̂k+ 1
2
(y) ∥y∥2

dy = Mk+ 1
2
.

With these conditions, Eq 55 can be reformulated as

Mk+1 := E

[

∥x̂k+1∥2
]

f 4¸k¶k +
24¸2

kÃ
2

|b| + 28M + 24Mk+ 1
2

f 24 ·Mk + 4¸k¶k +
24¸2

kÃ
2

|b| + 28M + 24¸kd.

(56)

where the last inequality follows from Eq 49. Hence, the proof is completed.

Remark D.1. According to Lemma 3.2, when L f 1/5, We plug the following hyper-parameters settings, i.e.,

¸k =
1

2L
, ¶k f

Ld

2
, and |bk| g

6Ã2

d
,

into Eq 56, then we have

Mk+1 fMk + 5(d+M) ⇒ MK fM +K · 5(d+M) f 6K(d+M),

which is the second moment bound along the update of Alg 1.

E. Auxiliary Lemmas

Lemma E.1. Suppose a function f can be decomposed as a finite sum, i.e., f(x) = 1/n
∑n
i=1 fi(x) where [A3] is satisfied.

If we uniformly sample a minibatch b from {1, 2, . . . , n} which constructs a minibatch loss shown in Eq 3, then for any

x ∈ R
d, we have

Eb

[

∥∇fb(x)−∇f(x)∥2
]

f Ã2

|b|

Proof. For minibatch variance, we have

Eb





∥
∥
∥
∥
∥

1

|b|
∑

i∈b

(∇f(x)−∇fi(x))

∥
∥
∥
∥
∥

2


 =
1

|b|2E




∑

i∈b

∑

j∈b

(∇fi(x)−∇f(x))¦(∇fj(x)−∇f(x))





=
1

|b|2E
[
∑

i∈b

∥∇fi(x)−∇f(x)∥2

]

=
Ã2

|b| .

Hence, the proof is completed.

Lemma E.2 (Variant of Lemma 10 in (Cheng & Bartlett, 2018)). Suppose − log p∗ is m-strongly convex function, for any

distribution with density function p, we have

KL
(
p
∥
∥p∗

)
f 1

2m

∫

p(x)

∥
∥
∥
∥
∇ log

p(x)

p∗(x)

∥
∥
∥
∥

2

dx.
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By choosing p(x) = g2(x)p∗(x)/Ep∗

[
g2(x)

]
for the test function g : Rd → R and Ep∗

[
g2(x)

]
<∞, we have

Ep∗

[
g2 log g2

]
− Ep∗

[
g2
]

logEp∗

[
g2
]
f 2

m
Ep∗

[

∥∇g∥2
]

,

which implies p∗ satisfies m-log-Sobolev inequality.

Lemma E.3 (Theorem 3 in (Chen et al., 2022)). Assume that p∗ ∝ exp(−f∗) satisfies [A2]. For any ¸ > 0, and any initial

distribution p1 the k-th iterate pk of the proximal sampler with step size ¸k satisfies

KL
(
pk+1

∥
∥p∗

)
f KL

(
pk
∥
∥p∗

)
· (1 + ³∗¸k)

−2
,

which means it has

KL
(
pk+1

∥
∥p∗

)
f KL

(
p0

∥
∥p∗

)
·
k∏

i=1

(1 + ³∗¸k)
−2
.

Lemma E.4. Suppose p∗ ∝ exp(−f∗) defined on R
d satisfies ³∗-log-Sobolev inequality where f∗ satisfies [A1], p0 is the

standard Gaussian distribution defined on R
d, then we have

KL
(
p0

∥
∥p∗

)
f (1 + L2)d

2³∗
.

Proof. According to the definition of LSI, we have

KL
(
p0

∥
∥p∗

)
f 1

2³∗

∫

p1(x)

∥
∥
∥
∥
∇ log

p1(x)

p∗(x)

∥
∥
∥
∥

2

dx =
1

2³∗

∫

p1(x) ∥−x +∇f∗(x)∥2
dx

f 1

2³∗

∫

p1(x)
(
∥x∥2 + L2∥x∥2

)
dx =

(1 + L2)d

2³∗

where the second inequality follows from the L-smoothness of f∗ and the last equation establishes since Ep0
[∥x∥2] = d is

for the standard Gaussian distribution p0 in R
d.

Lemma E.5 (Convexity of KL divergence). Suppose {qi}i∈{1,2,...,n} and p are probability densities defined on R
d and

{wi}i∈{1,2,...,n} are real numbers satisfying

∀i ∈ {1, 2, . . . , n} wi ∈ [0, 1] and

n∑

i=1

wi = 1.

It has

KL

(
n∑

i=1

wiqi
∥
∥p

)

f
n∑

i=1

wiKL
(
qi
∥
∥p
)
.

Proof. We first consider the case when n = 2, which means it is only required to prove

KL
(
¼q1 + (1− ¼)q2

∥
∥p
)
f ¼KL

(
q1

∥
∥p
)

+ (1− ¼)KL
(
q2

∥
∥p
)

(57)

for any ¼ ∈ [0, 1]. In this condition, we have

KL
(
¼q1 + (1− ¼)q2

∥
∥p
)

=

∫

(¼q1(x) + (1− ¼)q2(x)) log(¼q1(x) + (1− ¼)q2(x))dx

−
∫

(¼q1(x) + (1− ¼)q2(x)) log p(x)dx.

(58)

Since φ(u) := u log u satisfies convexity, i.e.,

∇2φ(u) = u−1 > 0 ∀u > 0,
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which implies

¼q1(x) + (1− ¼)q2(x) log (¼q1(x) + (1− ¼)q2(x)) f ¼q1(x) log q1(x) + (1− ¼)q2(x) log q2(x),

then RHS of Eq 58 satisfies

RHS f
∫

¼q1(x) log q1(x)dx−
∫

¼q1(x) log p(x)dx

+

∫

(1− ¼)q2(x) log q2(x)dx−
∫

(1− ¼)q2(x) log p(x)dx = ¼KL
(
q1

∥
∥p
)

+ (1− ¼)KL
(
q2

∥
∥p
)
.

Then, for n > 2 case, we suppose

KL

(
n−1∑

i=1

wiqi
∥
∥p

)

f
n−1∑

i=1

wiKL
(
qi
∥
∥p
)
. (59)

Then, by setting

q :=

∑n−1
i=1 wiqi
1− wn

=

∑n−1
i=1 wiqi
∑n−1
i=1 wi

,

then we have

KL

(
n−1∑

i=1

wiqi
∥
∥p

)

=KL
(
(1− wn)q + wnqn

∥
∥p
)
f (1− wn)KL

(
q
∥
∥p
)

+ wnKL
(
qn
∥
∥p
)

f(1− wn)

n−1∑

i=1

wi
1− wn

KL
(
qi
∥
∥p
)

+ wnKL
(
qn
∥
∥p
)

=

n∑

i=1

wiKL
(
qi
∥
∥p
)
,

where the first inequality follows from Eq 57 and the last inequality follows from Eq 59. Hence, the proof is completed.

Lemma E.6 (Lemma 11 in (Vempala & Wibisono, 2019)). Suppose the density function satisfies p ∝ exp(−f) where f is

L-smooth, i.e., [A1]. Then, it has

Ex∼p

[

∥∇f(x)∥2
]

f Ld.

Lemma E.7 (Lemma 5 in (Durmus et al., 2019)). Suppose the underlying distributions of random variables x and x+
√

2ÄÀ
are p and p′ respectively, where À ∼ N (0, I). If p, p∗P2(Rd) and Ep∗

[log p∗] <∞, then it has

2Ä · (Ex∼p′ [log p′(x)]− Ex∼p∗
[log p∗(x)]) fW 2

2 (p, p∗)−W 2
2 (p′, p∗).

Definition E.8 (Definition of Orlicz–Wasserstein metric). The Orlicz–Wasserstein metric between distributions p and q is

Wψ(p, q) := inf
(x,y)∼Γ(p,q)

∥x− y∥ψ

where

∥x∥ψ := inf

{

¼ > 0 : E

[

È

(∥x∥
¼

)

f 1

]}

.

Lemma E.9 (Theorem 4.4 in (Altschuler & Chewi, 2023)). Suppose q∗ ∝ exp(−g) where g is µ-strongly-convex and

L-smooth. Let P denote the Markov transition kernel for underdamped Langevin dynamics (ULD) when run with friction

paramter µ =
√

2L and step size Ä ≲ 1/(»
√
L). Then, for any target accuracy 0 < ϵ f

√

log 2/(i− 1), any Reńyi

divergence order i g 1 and any two initial distributions q′
0, q

′
1 ∈ P(R2d),

Ri(PNq′
0∥PNq′

1) f ϵ2,

if the number of ULD iteration is

N ≳

√
L

µÄ
log

(
2Wψ(q0, q∗)

L1/2ϵ2Ä3

)

,

where q0 is the marginal distribution of q′
0 w.r.t. the first d dimensions and Wψ is defined as Definition E.8.

36



Faster Sampling via Stochastic Gradient Proximal Sampler

Lemma E.10 (Remark 4.2 in (Altschuler & Chewi, 2023)). Suppose q∗ ∝ exp(−g) where g is µ-strongly-convex and

L-smooth. We run underdamped Langevin dynamics (ULD) when with friction paramter µ =
√

2L, step size Ä ≲ 1/(»
√
L)

and initialize the distribution with

q′
0 = ¶x ¹N (0, I),

then it has

Wψ(q0, q∗) ≲
√

d/µ+ ∥x− x∗∥
where x∗ denotes the minimizer of g.

Lemma E.11 (Lemma 4.8 in (Altschuler & Chewi, 2023)). Suppose q∗(z) ∝ exp(−g(z)) where g is µ-strongly-convex and

L-smooth. Let q′
∗(z,v) ∝ exp(−g(z)− ∥v∥2/2). Let P denote the Markov transition kernel for underdamped Langevin

dynamics (ULD) when run with friction paramter µ ≍
√
L and step size

Ä ≲ L−3/4d−1/2i−1(T logN)−1/2,

where N is the total number of iterations and T = NÄ is the total elapsed time. Then,

Ri(PNq′
∗∥q′

∗) f L3/2dÄ2iT.

F. Additional Experiments

Due to space limitations, we defer some experimental details in Section 5 to this part.

In our experiments, we fix the number of stochastic gradient usage at 12000. As the primary goal of our experiments is

to verify our theory, we set the inner batch size, i.e., bs = 1. Additionally, to be more comparable with SGLD, we set

S′ = S − 1. Under these conditions, we primarily focus on tuning three other hyper-parameters. Among them, the inner

step size Ä is chosen from the set {0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4}, which somewhat corresponds to the step size in SGLD.

The inner iteration S is chosen from {20, 40, 80}, which also determines K = 12000/S. The outer step size ¸ is a special

hyper-parameter in SPS-SGLD, which corresponds to the coefficient of quadratic regularizer in RGO. As our theory requires

it to be larger than Ä in our theory, we choose it from {1.0, 4.0, 10.0} in our experiments. The optimal hyper-parameters

obtained through grid search are presented in Table 2.

Hyper-Params

Dimensions
d = 10 d = 20 d = 30 d = 40 d = 50

Inner step size Ä 0.4 0.4 0.4 0.4 0.4
Inner iteration number S 40 20 20 80 80
Outer step size ¸ 4.0 4.0 10.0 10.0 10.0

Table 2. Hyper-parameter settings for different dimension tasks based on the grid search.

For the choice of these hyper-parameters, the inner step size somewhat corresponds to the step size in SGLD and can be

set in the same order of magnitude. The outer step size ¸ is a special hyper-parameter in SPS-SGLD, it requires to be

larger than Ä in our theory and experiments. Furthermore, our theory indicates that the inner iteration number, i.e., S, is in

the same order of magnitude as ¸/Ä . This principle of the hyper-parameter choice can be roughly verified by the optimal

hyper-parameter settings shown in Table 2. Moreover, we conduct a grid search for bs under our experimental settings. It is

Inner batch size

Dimensions
d = 10 d = 20 d = 30 d = 40 d = 50

bs = 1 0.105 0.063 0.064 0.060 0.055
bs = 5 0.143 0.078 0.081 0.074 0.082
bs = 10 0.138 0.092 0.086 0.122 0.110
bs = 20 0.175 0.107 0.090 0.142 0.117

Table 3. The marginal accuracy results under different bs settings.

worth noting that since we fix the gradient usage, increasing the inner batch size will cause the iteration number to decrease

sharply. Consequently, the overall performance in our experiments is worse than that observed with the bs = 1 setting.
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Although we only provide gradient complexity in our theory, both SGLD and SPS-SGLD are first-order samplers, with the

primary computational cost stemming from the number of gradient calculations referred to as gradient complexity in our

paper. Consequently, we can assert that SGLD and SPS-SGLD have nearly the same computational cost when the number

of gradient calls is fixed, which is set at 12k in our experiments. To substantiate this claim, we present the wall clock time

under 12k gradient calls (normalizing SPS-SGLD wall clock time to 1) in the table below.

Algorithms

Dimensions
d = 10 d = 20 d = 30 d = 40 d = 50

SPS-SGLD 1 1 1 1 1
SGLD 0.971 0.968 0.981 0.970 0.969

Table 4. The wall clock time comparison between SPS-SGLD and SGLD.

Moreover, we add some other baselines, e.g., such as AB-SGLD and CC-SGLD proposed by Das et al. (2023). We

selected these variants because they achieved the best theoretical results, apart from our own. With target distributions set

as shown in Section 5, the total variation distance performance for different algorithms is presented below. The results

Algorithms

Dimensions
d = 10 d = 20 d = 30 d = 40 d = 50

SPS-SGLD 0.105 0.063 0.064 0.060 0.055
CC-SGLD 0.143 0.125 0.105 0.121 0.114
AB-SGLD 0.154 0.129 0.121 0.120 0.119
vanila-SGLD 0.176 0.144 0.122 0.131 0.134

Table 5. The marginal accuracy results comparison among SPS-SGLD and other SGLD variants.

demonstrate that SPS-SGLD significantly outperforms CC-SGLD and AB-SGLD. Furthermore, such SGLD variants can

also be incorporated as inner samplers within our framework, potentially enhancing the performance of SPS-type methods

even further. Additionally, we would be happy to modify the name to distinguish it from SGLD variants, such as CC-SGLD

and AB-SGLD.
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