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ABSTRACT observations and analysis challenge the current de facto paradigm

The vulnerability of machine learning models to Membership Infer-
ence Attacks (MIAs) has garnered considerable attention in recent
years. These attacks determine whether a data sample belongs to
the model’s training set or not. Recent research has focused on
reference-based attacks, which leverage difficulty calibration with
independently trained reference models. While empirical studies
have demonstrated its effectiveness, there is a notable gap in our
understanding of the circumstances under which it succeeds or
fails. In this paper, we take a further step towards a deeper un-
derstanding of the role of difficulty calibration. Our observations
reveal inherent limitations in calibration methods, leading to the
misclassification of non-members and suboptimal performance, par-
ticularly on high-loss samples. We further identify that these errors
stem from an imperfect sampling of the potential distribution and a
strong dependence of membership scores on the model parameters.
By shedding light on these issues, we propose RAPID: a query-
efficient and computation-efficient MIA that directly Re-leverAges
the original membershiP scores to mltigate the errors in Difficulty
calibration. Our experimental results, spanning 9 datasets and 5
model architectures, demonstrate that RAPID outperforms previ-
ous state-of-the-art attacks (e.g., LIRA and Canary offline) across
different metrics while remaining computationally efficient. Our
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of difficulty calibration in high-precision inference, encouraging
greater attention to the persistent risks posed by MIAs in more
practical scenarios.!
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1 INTRODUCTION

More personal privacy data has been incorporated into the datasets
used for Machine Learning (ML) recently (such as medical [16]
and communication records [8]). It is thus important to investigate
whether models can effectively prevent privacy leakage. Member-
ship Inference Attacks (MIAs) [45] have been proposed to measure
the extent of a model’s leakage of member samples. It aims to pre-
dict whether a given data point belongs to the training set of a given
target model or not. MIAs are now the de facto standard evaluation
method for models’ privacy risks [36, 49] due to their simplicity
to serve as a direct threat and the fact that MIAs are an important
component of more sophisticated attacks [6].

Typically, MIAs exploit models’ tendency to overfit their train-
ing data and therefore exhibit discrepancies in the outputs be-
tween members and non-members. Previous work seeks to learn
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these distinctive statistical features from the model’s original out-
puts in different ways, such as training a binary classifier (attack
model) [28, 37, 41, 45] or manually computing metrics like loss [62]
or entropy [48]. While these attacks have demonstrated excellent
performance on average-case metrics (Accuracy or ROC-AUC [43]),
Carlini et al. [5] point out that they do not pose important privacy
risks: high Accuracy/AUC are mainly due to the successful iden-
tification of non-members rather than members. This limitation
can be attributed to the fact that the influence of samples’ intrinsic
difficulty [5, 40, 56] on the obtained model outputs is neglected.
Specifically, certain simple non-member samples such as images
with distinctive features or very short sentences, exhibit similarity
to members in terms of model outputs, showing higher membership
scores [17].

Difficulty calibration is proposed by Watson et al. [56] to mitigate
the aforementioned issues. It attempts to quantify the difficulty of
sample points (i.e., the extent to the sample represented on the
whole distribution) and uses this value to regularize the model’s
original outputs, finally obtaining calibrated scores for MIAs. In
practice, difficulty calibration primarily measures the difficulty of
target samples by feeding them into models trained on similar data
(reference models). A category of attacks known as reference-based
attacks employs this technique, aiming to achieve finer-grained
calibration at the cost of extensive computational resources and
numerous queries [5, 40, 57, 61].

While existing reference-based attacks have achieved significant
breakthroughs on recently recommended True-Positive Rate at low
False-Positive Rate (TPR at low FPR), we argue that difficulty cali-
bration is “not all we need” to achieve more powerful and practical
MIAs. We have observed that some non-members, which could
have been correctly classified, are inadvertently misclassified after
difficulty calibration [56], leading to suboptimal performance. Typ-
ically, difficulty calibration assumes that outputs from reference
models can effectively represent the difficulty of target samples.
However, such an assumption is optimistic and thus unrealistic in
many cases. In this paper, we examine and highlight that calibration
errors primarily stem from two contributing factors: 1) the refer-
ence dataset is a subset sampled from the potential distribution; 2)
membership scores are highly dependent on the model parameters.
A more comprehensive analysis of this will be provided in Section 3.

To effectively and efficiently address this issue, we propose
RAPID that directly Re-leverAges the original membershiP scores
to mltigate the errors in Difficulty calibration, rather than treating
it merely as a component of obtained calibrated scores. Specifically,
while the original scores are strongly influenced by the inherent
difficulty of the samples, they can provide reliable non-membership
evidence because the target model directly fits member points dur-
ing training. In other words, samples exhibiting extremely low
original scores (e.g., high losses) are almost non-members. RAPID
re-leverages the original outputs to correct misclassifications of
non-members after difficulty calibration, thereby outperforming
existing reference-based attacks.

To mount RAPID, we adopt a typical supervised learning ap-
proach. Concretely, the adversary first trains a surrogate model
(shadow model) for the target model and several reference models.
Then, the adversary evaluates the shadow dataset samples’ losses
(or other signal outputs) on the shadow model and reference models
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to obtain original membership scores and calibrated scores. The
adversary can use these two scores as features to train a scoring
model, which maps them to final scores for a threshold attack. In
the end, the scoring model takes as input the target sample’s cal-
ibrated scores as well as its original scores to infer the sample’s
membership status. The key point is that our approach introduces
a shortcut in the inference from original outputs to membership
status, allowing it to contribute independently. In contrast, previ-
ous work has been emphasizing the unreliability of original out-
puts and solely using them to serve as a component of calibrated
scores [5, 31, 40, 56, 57, 61]. More importantly, RAPID eliminates
the need for training a large number of reference models which
is time-consuming, and it does not require near-unlimited query
access to the target model, which is widely employed by existing
state-of-the-art attacks [5, 30, 57, 61]. We leave a more detailed
analysis of attack cost in Section 3 and Section 5.

We conduct extensive experiments measuring the performance
of our proposed RAPID, with comparisons to other advanced attack
methods. Experimental results show that RAPID achieves superior
performance across various metrics while keeping its practicality
in real-world scenarios. Notably, RAPID is able to achieve 5.1% TPR
at 0.1% FPR on the CIFAR-10 dataset, approximately 2.5 times and
3 times the performance of state-of-the-art attacks, LiRA offline [5]
and Canary offline [57]. Furthermore, RAPID shows a relative im-
provement of 21.4% in AUC and 14.6% in Balanced Accuracy. All
improvements are achieved with only 1/25 of LiRA offline’s compu-
tational cost (and potentially lower). To make stronger conclusive
statements regarding the practicality of RAPID, we also evaluate
it in the realm of Large Language Models (LLMs), which has seen
limited exploration in prior research. Experimental results show
that RAPID can achieve approximately 3 times the TPR at 0.1%
FPR of attacks that only employ difficulty calibration on BERT [13].
We conduct extensive ablation studies to evaluate the influence of
various components on our attack, such as the number of queries,
the number of reference models, as well as the level of knowledge
regarding model architecture and data distribution of the adver-
sary. Finally, we provide additional discussion on the advantages
of directly re-leveraging the original membership scores by intro-
ducing our shortcut in more complicated reference-based attacks,
and fairly comparing RAPID with the most powerful (though com-
putationally infeasible) LiRA online version. We also highlight the
limitations of our work, which could provide potential directions
for future research. In summary, our paper makes the following
contributions:

e We discover and analyze the phenomena that inherent errors
in difficulty calibration may lead to the misclassification of
non-members, who could have otherwise been accurately
classified, resulting in suboptimal performance.

e We propose a straightforward yet powerful MIA, known as
RAPID, to address the errors in difficulty calibration, suc-
cessfully outperforming other state-of-the-art attacks and
being arguably more practical.

e We conduct extensive experiments in both the classic image
domains and the recent field of LLMs to demonstrate the
effectiveness and efficiency of our attack.
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2 BACKGROUND

2.1 Machine Learning

A learned neural network in machine learning classification tasks
can be represented as a parameterized function My : X — Y that
maps each input x € X to a probability vector over a group of class
labels Y. 0 is the set of parameters. To obtain the optimal weights
0, we utilize a dataset D sampled from an underlying distribution
7. The process of learning the neural network model is denoted as
Mg — T (D), where the training algorithm 7 is applied to the
training set D to optimize the weights 6. The training process is
performed by minimizing the empirical loss using the stochastic
gradient descent algorithm:

O —Oi—€ Y. VoL(yMp,(x), (1)
(x,y)eB

where 8 is a small batch of training samples, € the learning rate
for iteratively updating the parameters 6 of the neural network
and £ the prediction loss such as cross-entropy loss. Utilizing the
gradient descent from Equation 1 will inevitably drive the training
sample’s loss L(y,p), x € D to zero. However, achieving strong
generalization to unseen dataset Diest € 7 remains a challenge
in neural network training. Data augmentation [10, 51, 65] serves
as an effective technique to significantly improve test accuracy. In
order to make the attack scenario more realistic, we also apply this
technique to the training of the target model.

2.2 Membership Inference Attacks

MIAs aim to infer whether a sample belongs to the training set of a
victim model. It has drawn much attention [6, 7, 18, 20, 21, 35, 37,
47, 58, 64] because of its direct threats to privacy and its ease of
deployment. Membership inference is also widely used to measure
the effectiveness of machine unlearning [3] and serve as a baseline
for data tracing [54, 55] and ownership verification [23, 44].

Definition of MIAs. Let & be the underlying distribution, let 7
be the training algorithm that a challenger (defender) would use,
and let A be the attack method an attacker would use to make a
prediction. The game will proceed as follows:

(1) The challenger samples a training dataset O € & and trains
a target model My «— 7 (D).

(2) The challenger randomly flips an unbiased coin b € {0, 1}.

(3) If b = 0, the challenger randomly samples a fresh target point
x € m \ D. Otherwise, the challenger randomly samples a
fresh target point x € D.

(4) The challenger sends (x, y) to the attacker. The attacker has
black-box access to the model My and the distribution 7 \ D.

(5) The challenger outputs a bit b ﬂi/\‘j) (x,y).

(6) if b = b, output 1. Otherwise, output 0.
It is worth noting that Yeom et al. [62] also made a similar definition
to ours. However, they assume the attacker has access to the entire
distribution 7, which means they can access potential training data
before inference time. This assumption probably favors the attacker
and is subject to being unrealistic. Therefore, we have modified
the definition to restrict the attacker’s access to only the attack
dataset Dypack = 7 \ D. This modification is for assessing the
attack method on unseen data. As the attack dataset D,iack and
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the target model My are typically considered fixed, the adversary’s
prediction can be simplified as A(x, y).

Attack Method. To provide a better understanding of MIAs, we
make a formal definition of A as follows:

Ax,y) = 1[S(x,y) > 1], )

where S outputs the membership score of (x, y) and ¢ indicates a
threshold used for decision-making. For illustrative purposes, we
start out by using the loss value [62] to represent the membership
score S(x,y), so that Ay (x,y) = L[-L(y, Mg(x)) > t]. This
is intuitive as machine learning models are trained to minimize
the loss of their members. Consequently, members naturally have
smaller losses compared to non-members, which can be used to
distinguish between them. Prior work [40, 61] has also proved that
loss-threshold-based attacks are theoretically powerful. The subse-
quent work has built upon this and focused on high-precision mem-
bership inference [5, 30, 40, 56, 57, 61] or altering the assumptions
about the attacker’s knowledge (i.e., attack scenario) [9, 28, 29, 37].

Metrics. We consider the following three common metrics:

e Balanced Accuracy. The simplest method to evaluate attack
efficacy that measures how often an attack correctly predicts
membership on a balanced dataset of members and non-
members [9, 18, 28, 30, 37, 40, 48, 50, 62].

e AUC. The most commonly used method to interpret the
Receiver Operating Characteristic (ROC) curve [43] is by
calculating the area under the curve (AUC). It reflects the
average-case success of membership inference.

o TPR at Low FPR. The latest metric used to evaluate attack
efficacy focuses on the TPR of the attack when the threshold
t is set to a large value to achieve an extremely low FPR.
This metric is currently recommended [5] because it directly
reflects the actual extent of privacy leakage of the model
towards its training samples.

3 RETHINKING DIFFICULTY CALIBRATION

In this section, we provide a detailed rethinking of difficulty calibra-
tion [56], which forms the basis for a variety of advanced attacks.
We first provide additional background on difficulty calibration.
Then, we conduct an in-depth analysis of its limitations. Finally,
we present the design intuition of RAPID.

Difficulty Calibration. Watson et al. [56] have argued that Ajosg
is very unreliable as samples have different intrinsic difficulty. A
sample exhibiting low loss is not necessarily a member; it could
also be due to its low difficulty. Ajys struggle to separate these
low-loss non-members from typical members since both can attain
a high membership score. To improve the attack’s reliability, a sim-
ple modification to the original membership score called difficulty
calibration is required. It is based on the intuition that if (x, y) has
low difficulty (i.e., over-represented on ), it will generally show
high membership scores on all reference models trained on data
similar to that of the target model. By subtracting the average of
membership scores on reference models from the original member-
ship score of the target sample, the influence of sample difficulty
can be eliminated. Formally, the calibrated membership scores can
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Figure 1: The distribution of raw membership scores and calibrated membership scores. All the samples with different losses
obtained from the target VGG16 model are divided into three ranges: ‘small 1oss’[0,0.002), ‘medium loss’[0.002,1), and ‘large
loss’[1,00). The target model is trained on the CIFAR-10 dataset. Difficulty calibration significantly increases the membership
scores of some non-member samples that originally had medium or large losses.

be defined as:

S’ (x.y) = S Y) — Ep e T( Do) S W], )
where the expectation is approximated by sampling several refer-
ence models from T (Dyyack). From Equation 3 we can find that
ideally, calibrated scores of non-members will approximate 0, as
their original scores are mainly up to their intrinsic difficulty. Con-
versely, the calibrated scores of members will exceed 0 because
their original scores are influenced not only by their difficulty
but also by the training process itself. This technique, which we
called difficulty calibration, has demonstrated breakthroughs in
high-precision attacks and served as the foundation for subsequent
advanced reference-based attacks [5, 40, 57, 61].

Limitations. To understand the circumstances under which the
difficulty calibration succeeds or fails, we divide the samples with
different losses obtained from the target model into three ranges:
‘small loss’[0,0.002), ‘medium loss’[0.002,1), and ‘large loss’[1,00).
Specifically, Figure 1(a), Figure 1(b), and Figure 1(c) categorize sam-
ples within specific ranges of losses, while Figure 1(d), Figure 1(e),
and Figure 1(f) represent the frequency distributions of calibrated
scores for these samples corresponding to Figure 1(a), Figure 1(b),
and Figure 1(c), respectively. To dispel potential misunderstandings,
we emphasize that calibrated score distributions (i.e., the X-axis)

of (d), (e), and (f) may intersect, and the different scales of the Y-
axis are due to the different number of points included in them.
Comparing (a) to (d), the calibrated signal indeed allows for scored
highest samples to belong to the member class, making it possible
to confidently predict member samples at low FPR. Therefore, if we
only consider distinguishing between members/over-represented
non-members, difficulty calibration indeed performs exceptionally
well. However, we can observe that medium-loss and large-loss
non-members, which could have been classified correctly, have
a larger overlap with members in the distribution of scores after
difficulty calibration. Specifically, the increased overlap area from
(b) to (e) may cause degradation in metrics reflecting the average
privacy leakage [56], such as Balanced Accuracy and AUC. Further-
more, the shift from (c) to (f) highlights an issue where half of the
non-member samples witness a surge in their membership scores,
with some even surpassing 7. High calibrated scores of large-loss
non-members may render the selection of an appropriate thresh-
old ¢t more challenging, as the crucial metric TPR at low FPR is
highly sensitive to non-members with high membership scores [5].
Overall, Figure 1 shows that depending solely on difficulty cali-
bration constitutes a suboptimal approach, with respect to both
average-case metrics and TPR at low FPR.
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These limitations arise from two main factors. Firstly, the av-
erage results of membership scores obtained from reference mod-
els cannot precisely depict the extent to the target record (x, y)
represented within the distribution 7, as the D450k only repre-
sents a subset of distribution . There is an inherent difference
between these two distributions. For instance, a target sample may
be over-represented on a subset sampled from sz but not in the
entire distribution. This error can be partially mitigated by con-
ducting multiple random samplings from D,ack, provided that the
attacker possesses a Dirack larger than the target model’s training
set. A larger D,yack implies a better approximation to the true
distribution. Secondly, the calibrated scores of each sample heavily
depend on the parameters of the target model and the reference
models. To better illustrate this, consider the following distribution:
S, y) ={-L(y M(x) « T (D)) | T € T} is the distribution of
losses on (x, y) for models trained on a given dataset using different
training algorithms. We follow previous work [5] to model $ as a
Gaussian distribution:

$(x,y) ~ N(p0%). 4

For simplicity, we make an assumption that the distribution of
losses on (x,y) for the target model and the reference model are
independent of each other. By calculating the difference of two
independent Gaussian distributions, i.e., $tar (x, y) and $e(x, v),
we can quantify the distribution of target samples’ calibrated mem-
bership scores as:

Sear (x, y) ~ N(,utar — Href> Utzar + O-rzef)’ (5)

where piar, flref, Utzar and Urzef are uniquely determined by the target
record (x,y) and given training sets. In a single security game, the
specific parameters of the target model and the reference model
actually represent a single random sampling from the distribution
Bca1(x, y). Therefore, the calibrated scores depend significantly on
the parameters of models and not just on membership status. For
non-members, pitar and piyer should behave similarly statistically.
This would make the mean of the distribution $,; close to 0, ideally.
However, the increased variance leads to a significant occurrence
of calibrated scores much larger than 0, resulting in the misclas-
sification of non-members. In worse cases, since Dy, and the
target model training set do not intersect at all, it may lead to piar
being noticeably larger than p.. for non-members.

Design Intuition. Machine learning algorithms aim to minimize
the loss during training, which implies that high original loss can
provide sufficient evidence of non-members. On the other hand,
difficulty calibration indeed helps confidently separate low-loss
non-members from members. However, the aforementioned errors
may cause an unexpected increase in membership scores of some
high-loss non-members, making this attack suboptimal. We can thus
utilize the original membership scores to differentiate between non-
members who scored higher due to the difficulty of calibration and
genuine members. Our method does not require training numerous
reference models [5, 57, 61] to conduct a parametric likelihood-ratio
test or querying the target model extensively [30, 61] to mitigate the
influence of target model parameters. By introducing a shortcut
in the inference from original outputs to membership status, our
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Figure 2: General attack pipeline of our RAPID.

proposed RAPID can significantly (as shown in our experiments)
enhance the performance of MIAs while ensuring their practicality.

4 ATTACK METHODOLOGY

In this section, we present the methodology of RAPID. We begin
by defining the threat model that our attack operates under. Then
we outline the pipeline of RAPID when the attacker has only black-
box access to the target model. Finally, we introduce some useful
techniques for enhancing the attack performance.

4.1 Threat Model

In this paper, we primarily focus on the most commonly adopted
black-box setting, in which the attacker only has access to the
posterior probability distribution of the target model’s outputs. We
also follow previous advanced works [5, 28, 30, 37, 40, 41, 45, 56,
57, 61], assuming that the attacker can sample sufficient data from
7\ D and knows the target model’s architecture. We will show
these two assumptions can be relaxed in Section 5. Recently, there
have been extensions of MIAs from black-box scenarios to settings
such as white-box scenarios [28, 37] and label-only [9, 29], which
will not be discussed in this paper.

4.2 Attack Method

We suggest training a scoring model Mcore to map the original
membership scores S(x, y) and the calibrated membership scores
S’ (x,y) together to the final membership scores, which are then
used for membership inference. Therefore, the definition in Equa-
tion (2) can be modified as follows:

A(x,y) = L[ Mscore (S, S”) > t]. (6)

We train a model Mscore to find the optimal mapping toward fi-
nal membership scores because original membership scores and
calibrated membership scores have different scales. The scoring
model learns to directly correct the prediction errors caused by
the aforementioned errors in S’(x, y) using S(x,y). Specifically,
instances with high calibrated membership scores but low original
membership scores are expected to be non-members rather than
members. Using a heuristic search algorithm to obtain the param-
eters required for optimal mapping is apparently suitable in this
case. To conduct our attack, the adversary needs to perform four
steps: shadow model training, reference model training, scoring
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Figure 3: The frequency distributions of final scores and
calibrated scores, which were sampled using a VGG16 model
trained on CIFAR-10.

model training, and membership inference. We give the detailed
pipeline of our proposed RAPID in Figure 2.

Shadow Model Training. As the attacker does not have access to
the target model’s training dataset Dyarget. We thus sample a subset
Dghadow from Diarget’s i.i.d. (independent identically distributed)
dataset D,yack to train the shadow model Mgpadow- It shares simi-
larities with the target model Miarget in terms of properties, and
we can utilize its outputs and Dgpadow to train Mgcore-

Reference Model Training. The attacker then uses another sub-
set of Dyirack, referred to as Dieference t0 train reference models
M eference- Different training algorithms 7~ can be used to obtain
reference models with different parameters. See more detailed dis-
cussion in Section 4.3.

Scoring Model Training. The attacker trains a scoring model,
namely Mscore, using the attack dataset D,y,ck. The scoring model
is modeled as a Multi-Layer Perceptron (MLP) with a single output
channel. To confine the output within the range of [0,1], a sigmoid
layer is applied to the model’s output. Mscore is thus defined as
follows:

Mscore = sigmoid(MLP(S & §)). (7)
The model takes as input the concatenation of the original member-
ship scores and the calibrated membership scores of the samples,
while the corresponding labels are set to 1 if the sample belongs
to the training set of the shadow model, and 0 otherwise. Binary
Cross-Entropy Loss is utilized to compute the loss, and the objec-
tive is to minimize £(Mscore (S, S”), label) during training. Figure
3 demonstrates that the final membership scores obtained from
Miscore exhibit a higher level of discrimination between members
and non-members compared to the calibrated membership scores. It
is worth noting that Yuan et al. [63] proposed a self-attention-based
attack that utilizes the transformer [52] to capture global dependen-
cies among inputs and enables interaction within the inputs. We
also experiment with modeling the scoring model as a transformer,
but the results show no significant improvement. We believe this is
because mapping the original scores and the calibrated scores to the
optimal final scores is a simple task that an MLP can perform well.
Future work will be conducted to further investigate the specific
impact of the scoring model’s architecture on attack performance.

Performing Membership Inference. The attacker is finally able to
conduct MIAs on each given sample. By feeding the target sample
to both Miarget and Mieference> the attacker obtains S(x,y) and
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8’ (x, y) respectively. These scores are concatenated and then input
into Mscore to obtain the final membership score. To achieve opti-
mal attack accuracy, the attacker simply needs to set the threshold ¢
to 0.5. Through sweeping over a range of values for the threshold ¢,
the adversary can obtain the tradeoff between FPR and TPR, allow-
ing for the calculation of AUC and the attack’s TPR at a given low
FPR. Compared to prior works, our attack method has an additional
advantage: previous reference-based attacks do not provide guid-
ance on the appropriate threshold ¢ to achieve the desired low FPR
attack in real scenarios [5, 32, 40, 56, 57]. However, in our method,
the shadow model can be utilized to determine an appropriate ¢t in
order to achieve the target FPR.

4.3 Generic Techniques

We will introduce two techniques used in our complete attack that
significantly enhance the attack performance. We argue that these
techniques could potentially serve as generic building blocks to
enhance a variety of reference-based attacks.

Random Sampling. As the size of D, increases, the extent to
the target record represented in the distribution 7 can be approxi-
mated better using IE p(_ . 7(D,,.q) [S (% y)]. Specifically, when
the adversary possesses Dagiack significantly larger than Dyarget,
the attack can be improved by training several Meference on dif-
ferent subsets of Dyt sampled each time randomly. In more
realistic scenarios where the attacker’s available data is insufficient
for random sampling, a substitute approach to improve the attack
performance is by training multiple reference models using differ-
ent training algorithms 77, such as varying initialization parameters.
This works as it brings the computed inherent difficulty (i.e., the
average outputs) of the target record closer to pf, thereby partially
mitigating the impact resulting from the randomness in sampling
from a distribution 3.

Multiple Queries. To make the observed original membership
score of the target record closer to its pitar, a naive idea is to train
multiple Miarget on Drarget and performs a single query on each
of them. However, this appears to be an unfeasible strategy for
the adversary. We can thus alternatively enhance the attack by
averaging the outputs obtained from multiple queries on the same
model on the target record and its augmentations. Notably, Carlini
et al. [5] also apply this method to fit multiple-dimensional spheri-
cal Gaussians. They argue that these perturbed inputs may be seen
by the target model during training and thus contain additional
membership signals. However, we observe that simply averaging
the outputs can already greatly enhance the attack, which is not
entirely consistent with the explanation provided by Carlini et al..
We believe that this enhancement comes from mitigating the errors
caused by the dependence of the target point’s membership score
on the parameters 6 of the target model. We leave a detailed discus-
sion in Section 6.3. As the method of fitting multiple-dimensional
spherical Gaussians applies only to attacks using Gaussian like-
lihood estimate [5, 57], we argue that subsequent MIAs can use
the average membership scores obtained from multiple queries to
replace the original scores to enhance their performance.
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Table 1: The prediction accuracy of different model architectures on different datasets.

Dataset CIFAR-10 CIFAR-100 CINIC-10 SVHN
Model Train acc Test acc Train acc Test acc Train acc Test acc Train acc Test acc
MobileNetV2 99.8% 84.1% 100.0% 55.1% 94.5% 79.7% 100.0% 95.2%
VGG16 99.8% 82.4% 99.9% 48.5% 99.9% 80.0% 100.0% 94.7%
ResNet50 98.1% 75.0% 100.0% 41.1% 99.8% 79.8% 99.8% 94.2%
DenseNet121 | 100.0% 81.6% 100.0% 44.9% 100.0% 80.2% 100.0% 94.9%

5 EVALUATION

In this section, we evaluate our RAPID on various benchmark
datasets and diverse model architectures. We focus on three stan-
dard metrics: Balanced Acc, AUC, and TPR at low FPR, which have
been detailed in Section 2. Through extensive experiments, we
demonstrate that our attack outperforms the state-of-the-art meth-
ods and has lower attack costs. We also evaluate our attack under
the defense of Differential Privacy (DP), which is a widely applied
defense mechanism against privacy leakage attacks. In addition to
the standard evaluation work emphasized by existing MIAs, we also
conduct evaluations in the field of LLMs to explore the practicality
of our attack. To distinguish these results from the classic evalua-
tions, the specific experimental setup and results for this section
are presented in Section 5.3.

5.1 Experimental Setup

Datasets. In the main experimental section, we select four bench-
mark image datasets, namely CIFAR-10 [25] (a benchmark dataset
used for classification tasks), CINIC-10 [11] (an extension of CIFAR-
10 consisting of 270,000 images, with downsampled ImageNet im-
ages for the same classes), CIFAR-100 [25] (similar to CIFAR-10
but with 100 classes), and SVHN [38] (consisting of 99,289 color
images of house numbers from the Google Street View dataset).
Additionally, we also choose two text datasets, which are used for
training classification models and testing attacks, including Loca-
tion [59, 60] (containing location “check-in" records of mobile users
in the Foursquare social network) and Texas [1] (presented in the
Hospital Discharge Data Public Use Data File provided by the Texas
Department of State Health Services). All datasets are divided into
three equal-sized parts: Diarget, Dshadow> a0 Dreference- We have
observed that some previous work may overlook the significant im-
pact of the size of the attack dataset on the attack performance [30].
Generally, a larger attack dataset leads to a better approximation of
sample difficulty. Therefore, when evaluating various attacks, it is
crucial to ensure that different attack methods have seen an equal
number of samples during the training process.

Network Architecture. For image datasets, we consider four com-
mons architectures: VGG16 [46], ResNet50 [19], DenseNet121 [22],
and MobileNetV2 [42]. For text datasets, we train a model with two
fully connected layers for classification. We use the SGD algorithm
to train the models, with a learning rate (Ir) set to 0.1, momen-
tum set to 0.9, and weight decay [26] set to 5e-4. We also apply a
cosine learning rate schedule [33] for optimization. Data augmen-
tation [10] is enabled during the training of the target models to

enhance their generalization. For the scoring model, we train a
4-layer MLP with a single output channel.

Attack Baselines. We compare our RAPID with seven state-of-
the-art or representative attack methods. Among them, Yeom et
al. [62] leverage the loss of the target model for decision boundary
estimation. Yuan et al. [63] propose a new signal called sensitivity,
which exhibits a larger gap between members and non-members.
Both Watson et al. [56] and Ye et al. [61] employ difficulty calibra-
tion. The latter emphasizes the reliance of membership scores on
the target model and uses models distilled from the target model
as reference models. Liu et al. [30] take the first step to exploit
the information from the training trajectory to conduct member-
ship inference attacks and achieve advanced performance. Both the
methods proposed by Ye et al. and Liu et al. rely on the property that
the self-distilled reference model is similar to the target model so
that for non-members pitar and piyer will be closer. We also compare
RAPID with LiRA proposed by Carlini et al. [5] and Canary pro-
posed by Wen et al. [57], both using Gaussian likelihood estimate
and currently achieving the best performance. Specifically, LiIRA
utilizes augmentations of the target sample to compute statistics,
while Canary uses adversarial tools to directly optimize for queries
that are discriminative.

Attack Setup. In the main experiments, we train 4 reference mod-
els on Dreference> €ach with a different random initialization. We
compute the average of the membership scores obtained from these
reference models to calculate the calibrated membership scores.
For all models, we utilize the multiple queries technique, where
the average membership scores obtained from all queries represent
per model’s output scores. To ensure fairness in comparison, we
re-implement existing attacks (except LiRA and Canary) using the
same number of reference models as ours, if they have claimed
that their performance is related to the number of reference models
in the papers. When evaluating LiRA and Canary, we follow the
original papers’ setting for the number of reference models (128
and 64 respectively). We also ensure that LiRA queries the same
number of times as RAPID (8 times). Since optimizing hyperparam-
eters significantly affects the performance of Canary, we follow its
original settings.

Why Not Online Version? In practice, both LiRA and Canary have
an offline version and an online version. For instance, LiRA online
firstly trains 256 reference models, half of which are IN models
trained on datasets that include the target record, and the other
half are OUT models trained on datasets that do not include the
target record. Then, LiRA fits two Gaussian distributions to the
confidences of the IN and OUT models on the target record. Finally,
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Figure 4: The ROC curves of attack results on VGG16 models trained on four benchmark datasets.

Table 2: The attack performances of different attacks on VGG16 models trained on four benchmark datasets. Additional attack
results for other model architectures can be found in Appendix.B.

Attack ‘ TPR @ 0.1% FPR AUC Balanced Accuracy

method ‘ CIFAR-10 CIFAR-100 CINIC-10 SVHN CIFAR-10 CIFAR-100 CINIC-10 SVHN CIFAR-10 CIFAR-100 CINIC-10 SVHN
Yeom et al. [62] 0.0% 0.1% 0.1% 0.1% 0.643 0.866 0.660 0.552 64.1% 83.4% 65.8% 55.8%
Yuan et al. [63] 0.1% 1.0% 0.1% 0.1% 0.680 0.895 0.691 0.562 64.6% 84.0% 66.1% 55.7%
Watson et al. [56] 1.4% 2.0% 1.3% 1.2% 0.629 0.750 0.645 0.566 58.6% 68.9% 58.9% 53.4%
Carlini et al. [5] 2.2% 11.5% 3.6% 1.0% 0.534 0.807 0.547 0.500 57.5% 78.0% 59.0% 52.1%
Ye et al. [61] 1.0% 1.2% 1.3% 0.5% 0.629 0.752 0.649 0.571 59.2% 71.9% 59.3% 53.3%
Liu et al. [30] 0.9% 4.2% 1.8% 1.0% 0.708 0.929 0.755 0.600 64.2% 85.4% 67.2% 56.0%
Wen et al. [57] 1.7% 9.1% 2.9% 1.5% 0.610 0.837 0.665 0.532 59.0% 77.6% 62.9% 53.5%
Ours ‘ 5.1% 18.8% 4.9% 2.9% 0.776 0.958 0.799 0.618 69.1% 89.1% 70.5% 57.1%

Table 3: Time cost of all attacks against a VGG16 model trained on CIFAR-10.

Attack Method‘ [62] [63] [56] LiRA offline [5] LiRA online [5] [61] [30] Canary offline [57] Canary online [57] ours.
Time Cost/h ‘ 0.22 0.47 0.46 13.82 >200000 0.87 0.51 38.5 >100000 0.58

it queries the confidence of Mtarget on the target record and outputs
a likelihood-ratio test. However, LiRA offline only trains 128 OUT
models and outputs a one-sided hypothesis test. When evaluating
LiRA and Canary in our main experiments, we implement the offline
version of them. This is because LiRA (Canary) online requires
training 128 (64) IN models for each target sample, which is not so
feasible for common attackers. More discussions on why comparing
with LiRA (Canary) offline is reasonable can be found in Attack
Cost Analysis of Section 5.2.

5.2 Experimental Results

Finally, we present the performance of our attack in the black-box
scenario, comparing it to the seven advanced baselines [5, 30, 56,
57, 61-63]. Furthermore, we provide a detailed attack cost analysis
of all attacks. Lastly, we provide the results of all attacks against
models using DP-SGD [2]. Table 1 reports the accuracy of Mtarget.

Main Evaluation. Compared to the latest representative works,
our proposed attack outperforms. Figure 4 demonstrates the supe-
rior performance of our attack in the low FPR regime. This holds
even versus the attacks using Gaussian likelihood estimate [5, 57],
which require training a large number of reference models. Table
2 presents the same advanced performance of our attack in terms

of average metrics, surpassing previous attacks [5, 30, 56, 57, 61—
63] by a significant margin. For example, over CIFAR-100 RAPID
elevates the best TPR @0.1% FPR from 11.5% to 18.8%, best AUC
from 0.929 to 0.958, and best Acc from 85.4% to 89.1%. We posit
that this represents a significant advancement in the MIA domain,
as previous work has struggled to achieve optimal performance
across all metrics simultaneously. For instance, while LiRA and
Canary offline achieve significant breakthroughs in currently rec-
ommended TPR at 0.1% FPR, they even fall short of the initial loss
attack [62] in metrics reflecting average-case success. Additional
attack results for other model architectures and datasets can be
found in Appendix.B and Appendix.C.

Attack Cost Analysis. To shed light on the practicality of existing
state-of-the-art work [5, 30, 57, 61] and our proposed attack, we will
provide an analysis in two aspects: query cost and computational
cost. In distilled-based attacks [30, 61], assuming the distillation
dataset size is N and the number of distillation rounds is E, if the
attack targets n records, the attack would require NE + n queries on
the target model. In contrast, our attack only requires 8n queries on
the target model. Specifically, taking CINIC-10 as an example, the
cost of our attack for 20000 sample points reduces to approximately
1/42. As for computational cost, our proposed RAPID only requires
training 4 reference models and a shadow model to achieve better
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Table 4: Attack performance of RAPID against a DenseNet121
model trained on CIFAR-10 using DP-SGD.

Noise C=10

Multiplier (6)| €  Model Acc Attack Acc TPR @ 0.1% FPR Attack AUC
0.0 o 77.1% 67.7% 3.0% 0.756

0.1 >5000 66.8% 54.0% 0.2% 0.552

0.2 >1000 58.6% 51.2% 0.2% 0.516

0.5 >100 44.9% 50.4% 0.2% 0.507

1.0 8 30.2% 49.9% 0.1% 0.502

performance compared to LiRA [5], which requires training at least
128 models. This reduces the computational cost to approximately
1/25 (and potentially lower). To provide an explicit time complexity
analysis for all attacks, we report the total time cost of various
attacks against a VGG16 model trained on CIFAR-10 using a single
NVIDIA GeForce RTX 3070 Ti in Table 3. The time cost of LiRA
(Canary) online is approximately proportional to the number of
samples attacked. Thus, its time cost is calculated theoretically by
measuring the time required to attack one sample. The astronom-
ical computational overhead of LiRA (Canary) online renders it
an infeasible attack—the adversary needs to train 128 IN models
for each potential member at inference time. Therefore, we use
LiRA (Canary) offline as the state-of-the-art baselines in our main
experiments.

In practice, Carlini et al. [5] use a clever method that circumvents
the necessity to train 128 models for each point to evaluate the the-
oretical performance of LiRA online. However, we note that the
implementation in their code repository? 1) relaxes the assumption
that the attack set contains only non-members, and (2) potentially
makes LiRA online advantaged more (than traditional implementa-
tions) as the IN/OUT models are highly similar to the target model.
To ensure fairness in comparison, we have placed a detailed discus-
sion of the theoretical performance gap between RAPID and LiRA
online in Section 8.

Attack Against DP-SGD. Differential privacy [15] is a widely used
defense mechanism against all privacy leakage attacks [24, 27, 47].
It imposes theoretical bounds on the success rate of MIAs by di-
rectly restricting the ability to distinguish between two neighboring
datasets (differing only in the inclusion or exclusion of a particular
sample). This is directly related to MIAs. Previous studies have also
explored this scenario [5, 30], and we follow their investigation to
examine the defensive effect of the DP-SGD training algorithm [2]
on our attack. We fixed the clipping norm to 10 and evaluated
the performance of prior works and our attack on a DenseNet121
model trained on the CIFAR-10 dataset. The privacy budget € can be
controlled by varying the noise multiplier parameter. From Table
4 and Figure 5, we can observe that DP-SGD indeed effectively
defends against all MIAs. However, DP-SGD significantly reduces
the classification accuracy of the target model under high clipping
norms, even when the noise multiplier is set to 0.1. We should thus
carefully consider the trade-off between the defense level achieved
by differential privacy and the loss of model accuracy. We primarily
focus on the scenario where o (noise multiplier) is set to 0.1 to
evaluate the defense level of DP against existing attacks since this

Zhttps://github.com/tensorflow/privacy/tree/master/research/mi_lira_2021
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Figure 5: Attack performance of prior works and our attack
against a DenseNet121 model trained on CIFAR-10 using DP-
SGD. The noise multiplier o is set to 0.1. Additional attack
results for other o can be found in Appendix.D.

setting maintains an acceptable model accuracy. It can be observed
that while the gap between different attacks has narrowed, our
attack continues to outperform other works across all metrics. Our
work presents a greater challenge to DP-SGD in the better trade-off
between defense level and model performance.

5.3 Attack Against LLMs

In the realm of LLMs, MIAs can assess the degree of privacy leakage
in both the pre-training and fine-tuning stages. Pre-training is
primarily conducted on publicly available datasets, and the data
used to train the model is often public knowledge. Fine-tuning
typically occurs on smaller, and more private datasets. Therefore,
our primary focus is on the fine-tuning phase, where full model fine-
tuning and prompt-based learning [4, 39] are two commonly used
methods. Previous work has already pointed out that the privacy
risk of prompted models exceeds that of fine-tuned models at the
same utility levels [14], and we are thus interested in whether our
proposed RAPID can launch an effective attack against fine-tuned
LLMs or not.

Setup. We fine-tune BERT [13] to solve three standard down-
stream text classification tasks: cola [53], cb [12], and mrpc [53].
This is because BERT has demonstrated strong generalization ca-
pabilities on these classification tasks. To investigate the impact of
model size on membership risk, we conduct attack evaluations on
both the BERT-base version (total Parameters=110M) and the BERT-
large version (total Parameters=340M). Within all our experiments,
the learning rate (Ir) is set to 3e-5 and weight decay [26] is set to
5e-4 in the training process. We fine-tune the model for 20 epochs
and use the checkpoint with the highest validation accuracy during
tuning. We report the fine-tuning results in Table 5. In the attack
setup, we follow the data splitting method outlined in Section 5.1
and only fine-tune two reference models on D eference for our at-
tack. The technique of multiple queries is not employed because
there is no natural data augmentation available in the text domain
as there is in the image domain. However, Mattern et al. [34] have
recently proposed a neighborhood attack that uses synthetically
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Table 5: The classification accuracy of BERT-base and BERT-
large fine-tuned on different datasets.

Dataset ‘ cola cb mrpc

Model ‘Train acc Testacc Train acc Test acc Train acc Test acc

BERT-base | 98.0% 80.4% 99.8% 79.2% 99.5% 77.8%
BERT-large| 100.0%  86.3% 99.9% 82.6% 99.7% 81.4%

Table 6: The attack results of BERT-base and BERT-large fine-
tuned on mrpc.

‘ TPR @ 0.1% FPR AUC Balanced Accuracy
Attack Method ‘BERT—base BERT-large BERT-base BERT-large BERT-base BERT-large
Duan et al. [14] 0.2% 0.1% 0.686 0.689 63.1% 59.9%
Watson et al. [56] 0.4% 0.2% 0.654 0.654 59.0% 58.4%
Ours | 11% 0.2% 0.745 0.700 66.7% 60.1%

generated neighboring texts. This aligns closely with our idea, im-
plying RAPID’s potential for further enhancement in attacking
LLMs.

Experimental Results. We compare our attack to the original loss-
based attack in [14] and attacks with difficulty calibration in [34, 56]
as other baselines do not take this scenario into consideration. The
results in Table 6 demonstrate that RAPID still outperforms other
baselines in attacking well-fine-tuned LLMs. However, the advan-
tage of our attack is observably reduced compared to that of the
computer vision domain, especially in terms of TPR at low FPR.
One possible reason is that LLMs, due to their strong generalization
capabilities obtained from the pre-training phase, result in small
prediction losses for most non-members. In other words, the num-
ber of misclassified non-members (due to difficulty calibration) that
can be directly corrected using the original membership scores is
smaller. This is consistent with the worse TPR results for BERT-
large compared to BERT-base, as BERT-large has a larger model
capacity and stronger generalization abilities. Note that Carlini et
al. [6] have demonstrated that larger pre-trained language models
would memorize more training data, which contrasts with the ex-
perimental results in Table 6. We speculate that this is because the
memorization principles of LLMs differ during the pre-training and
fine-tuning stages. We have also observed that even with a larger
training-testing accuracy gap compared to models trained on SVHN
(see Table 1), the TPRs of all attacks against LLMs become generally
worse, which contradicts traditional views. We hypothesize that
the target dataset itself probably has a quite small proportion of out-
liers (hard samples), making the distribution of outputs for member
points similar between the target models and reference models. We
argue that the inherent distribution properties of the dataset
also significantly influence the attack’s TPR at a given FPR,
not only the level of overfitting. For more experimental results,
please refer to Appendix.E.

6 ABLATION STUDY

In this section, we conduct extensive experiments to investigate the
specific impact of each component on the final performance. We
aim to further substantiate our explanation in Section 3 regarding
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Figure 6: Our proposed method significantly improves the
TPR at low FPR compared to solely using calibrated mem-
bership scores.

the suboptimality of difficulty calibration. Specifically, we start by
exploring the impact of reference models and the signal function
employed. Then we discuss the effects of random sampling and the
number of Mieference On the attack. We also examine the impact
of varying numbers of queries. Lastly, we attempt to relax two
common assumptions regarding the same architecture to Mtarget
and ii.d. D,yiack used by the attacker to demonstrate the efficacy
of our attack in more realistic scenarios. In our ablation studies, we
utilize the CINIC-10 dataset by default unless otherwise stated.

6.1 Reference Model and Signal Function

In practice, the adversary can select different reference models
and signal functions for difficulty calibration. Common reference
models include models trained from scratch on Diyeference (i-€., triv-
ial models [56]) and models distilled from the target model (i.e.,
distilled models [61]). As for signal functions, common options in-
clude loss [62], confidence [41], and gradnorm [37]. To investigate
whether intrinsic errors in difficulty calibration are a pervasive
phenomenon, we compare the different performances of attacks us-
ing only calibrated scores and attacks re-leveraging original scores
across various reference models and signal function settings. Note
that to emphasize the direct impact of the shortcut introduced by
us, other enhancement techniques such as random sampling and
multiple queries are not utilized. Table 7 and Figure 6 demonstrate
that introducing a shortcut of S;grget (x,y) effectively enhances
the performance across all evaluation metrics. This justifies our
claim that difficulty calibration represents a suboptimal approach
and that original membership scores can directly correct errors it
generates.

6.2 Random Sampling

We have argued the adversary can significantly enhance the attack
by training several Meference Using random sampling when he has
alarger Dyiiack compared to Diarget. In the worst case, the attacker
can also achieve a slightly weaker improvement by changing the
initialization parameters of these M eference trained on Dieference-
We are interested in understanding the impact of the number of
M eference On the attack results, both with and without random
sampling. Figure 7 illustrates the TPR of our attack at a fixed FPR
of 0.1% as the number of M eference increases. As expected, a larger
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Table 7: Comparison of the performance using prior calibrated membership scores and ours on a VGG16 model trained on
CINIC-10. We evaluate different signal functions and reference models.

‘ Loss

Conf GN

Reference

Calibrated Our Calibrated Our Calibrated Our Calibrated Our Calibrated Our Calibrated Our
Model Acc Acc AUC AUC Acc

Acc AUC AUC Acc Acc AUC AUC

Trivial Model [56]

59.6% 66.6% 0.658 0.739 60.6%

62.6% 0.636 0.687 61.9% 66.9% 0.662 0.746

Distilled Model [61] ‘ 59.4% 66.4% 0.654 0.749 56.8%

62.1% 0.604 0.702 63.3% 67.1% 0.680 0.756
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Figure 7: The attack performance exhibits apparent enhance-
ment as the number of reference models increases, with di-
minishing returns. When using random sampling, the attack
results have a higher upper bound.

number of reference models leads to better attack performance. It is
further enhanced when random sampling is employed, as having a
larger number of seen data points when training Meference means
the extent to the target point represented in D eferences becomes
more like that under the entire distribution 7. Training more than
two reference models brings diminishing benefits as the averaged
results gradually stabilize. Another question is whether the rate
at which RAPID’s attack success rate increases, relative to the
associated attack cost, outpaces existing methods, and we use LiRA
as the baseline to answer this question. Figure 8 demonstrates that
RAPID benefits more from the ability to train increasing numbers
of reference models. Specifically, LiRA requires training at least 32
reference models to capture the majority of the benefits.

6.3 Multiple Queries

Previous work [5] has suggested that models are typically trained
to minimize their loss on augmented versions of examples, which
inspires the idea of conducting MIAs on augmented versions of
examples that have been seen during training. However, the results
of attacks against CIFAR-10 in Figure 9 are not entirely consistent
with this explanation. Note that we average the membership scores
obtained from multiple queries on the target model to obtain the
final S(x,y). The experimental results show that increasing the
number of queries leads to diminishing improvements in attack
performance. Under the previous explanation, the results of each
query on different augmented versions of target samples should
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Figure 8: Both RAPID and LiRA exhibit enhanced attack per-
formance as the number of reference models increases, with
RAPID benefiting more from training additional reference
models.

be independent and of equal importance, so that averaging results
of multiple queries should not lead to such significant improve-
ments. The final experimental results actually align perfectly with
the analysis provided in Section 4.3. This is also why the trade-off
observed with multiple queries is similar to that of random sam-
pling. Furthermore, Figure 9 demonstrates that RAPID continues
to outperform LiRA even with an increasing number of queries.
This justifies our claim that averaging outputs is equally good for
fitting multiple-dimensional spherical Gaussians. Querying the tar-
get model only four times can capture the majority of the benefits,
which enhances the feasibility of the RAPID attack.

6.4 Model Architecture

Most existing works [5, 28, 30, 40, 45, 61, 62] have assumed that
the adversary has knowledge of the specific architecture of the
target model in order to have a larger attack surface. However, this
assumption is often not valid. Therefore, we aim to investigate the
impact of mismatched model architectures on the attack results.
Following the settings of our main experiments, we vary the archi-
tectures of the target model, shadow models, and reference models
while ensuring consistency in the architectures of shadow mod-
els and reference models (which is feasible for the attacker). The
experimental results in Figure 10 show that the attack performs
best when all three models have identical architectures. When the
model architectures are completely different, there is only a little
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Figure 9: Multiple queries on the augmented versions of the
target sample can significantly enhance the attack perfor-
mances, and RAPID consistently outperforms LiRA.

drop in attack performance except for MobileNetV2. The phenome-
non of degradation is easily understood because the membership
score distributions obtained from models with different architec-
tures are significantly different, even if they are trained on the
same dataset. This directly leads to our trained Mscore incorrectly
mapping S(x, y) and S’ (x, y) obtained from Miarget and Miefernce
to final membership scores. Despite that, our attack still achieves
significantly better performance compared to other baseline at-
tacks using the same architecture, as demonstrated in Table 2. The
notable decrease in attack performance due to the MobileNetV2
architecture can be attributed to the fact that in MobileNetV2, the
number of channels in the feature map increases and then decreases,
which is contrary to the other three architectures. Remarkably, pre-
vious research [5] has also shown similar experimental results. We
hope that future work can provide a clearer explanation for this
phenomenon. Overall, our attack demonstrates stronger robustness
because it outperforms existing baseline attacks even in more chal-
lenging settings, whereas the baseline attacks achieved their results
in easier settings.

6.5 Disjoint Dataset

In this section, we relax the assumption that the attacker has access
to an attack dataset that follows the same distribution as the target
model’s training dataset. We instead assume that the attacker only
has an attack dataset that is disjoint from the target model’s training
dataset, which they use to train the shadow models and reference
models. This is a more realistic condition since it is difficult for
the attacker to obtain a dataset that is perfectly aligned with the
target training dataset. Specifically, we conduct experiments in the
following two settings:

® Diarget = Dattack- Specifically, we train the target model,
shadow model, and reference models using the CIFAR-10
dataset. This setup completely follows the settings in our
main experiments.

® Diarget # Dytrack- Specifically, we train the target model
using a subset of the CIFAR-10 dataset, while we train the
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Figure 10: The impact of architecture differences between
the target model and the models trained by the adversary
(shadow model and reference models) on CINIC-10.
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Figure 11: The impact of distribution shift between the target
model training dataset and the attack dataset owned by the
adversary (shadow dataset and reference dataset).

shadow model and reference models using the ImageNet
portion of the CINIC-10 dataset, following prior work [5, 30].

In order to eliminate the influence of overfitting on the attack per-
formance, we keep the same amount of data in both settings. Addi-
tionally, the number of queries and reference models remains the
same. Figure 11 shows that the distribution shift between Diarget
and D,ack indeed leads to a noticeable decrease in TPR at 0.1% FPR.
This is because the decreasing similarity between the shadow model
and the target model makes errors in calibrated scores increase,
which finally weakens the performance of scoring model on an un-
seen dataset. Remarkably, our attack still outperforms the majority
of baseline attacks in harder settings on Balanced Accuracy.

7 RELATED WORK

Recently researchers have paid growing emphasis on the impor-
tance of high-precision inference in the field of MIAs [5, 28, 30,
32, 40, 56, 57, 61]. Various attack methods based on difficulty cali-
bration have been proposed to address this challenge. Sablayrolles
et al. [40] introduce a method that uses loss from both reference
models trained with and without the target point to calibrate the
original membership scores. Watson et al. [56] employ a similar
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Table 8: The attack performances of LiRA online version and our RAPID on VGG16 models trained on four benchmark datasets.
We use 64 reference models (only OUT models) for RAPID to achieve its optimal performance.

Attack ‘ TPR @ 0.1% FPR AUC Balanced Accuracy

method ‘ CIFAR-10 CIFAR-100 CINIC-10 SVHN CIFAR-10 CIFAR-100 CINIC-10 SVHN CIFAR-10 CIFAR-100 CINIC-10 SVHN
Carlini et al. [5] 11.9% 43.6% 12.4% 6.5% 0.790 0.972 0.778 0.629 68.9% 90.1% 63.9% 57.4%
Ours 10.9% 42.3% 13.9% 5.8% 0.808 0.974 0.826 0.641 70.5% 90.6% 71.8% 57.9%

approach but replace all reference models with trivial OUT mod-
els (trained without the target point). Carlini et al. [5] take a step
further from the aforementioned approaches [40, 56] by fitting
Gaussians to the outputs of the referenced models. It considers the
distribution parameters of the target point’s loss on a large number
of reference models. Ye et al. [61] design a model-dependent and
sample-dependent attack leveraging distilled models, which are
closer to the target model. Liu et al. [30] introduce a Loss Trajec-
tory Attack, which utilizes the distillation trajectory of the target
model for membership inference. Wen et al. [57] argue that one
limitation of LiRA is that it queries the target model using only the
original target data point or its augmentations. They instead learn
query vectors that are maximally discriminative; they separate all
models trained with the target data point from all models trained
without it. In general, previous work has mainly focused on ob-
taining calibrated scores of higher-quality, while overlooking the
impact of attack cost on the practical threat of the attack. Notably,
pioneering work by Shokri et al. [45] also utilizes original outputs,
but is primarily based on the intuition that there are differences
between outputs from members and non-members. To the best of
our knowledge, we are the first to formally utilize the compelling
non-member evidence in original outputs to address the inherent
errors in difficulty calibration, thereby achieving a more powerful
and practical MIA.

8 DISCUSSION AND LIMITATIONS

Our Paradigm Also Enhances LiRA. In addition, our extensive
experimental results have demonstrated that RAPID significantly
outperforms existing state-of-the-art attacks. However, whether di-
rectly re-leveraging original membership scores can enhance more
complicated attacks that utilize difficulty calibration (e.g., LiRA)
remains an unresolved question. To investigate this question, we
do experiments on a VGG16 model trained on the CIFAR-10 dataset.
Specifically, we use the concatenation of the original membership
scores and the membership scores calculated by LiRA offline (i.e.,
the results of the one-sided hypothesis test) as features to train
a scoring model. The experimental results indicate a significant
improvement in LiRA’s performance, elevating the TPR @0.1%
FPR from 2.2% to 4.5%, the AUC from 0.534 to 0.775, and the Acc
from 57.5% to 68.7%. In other words, although LiRA has trained
numerous reference models to make a Gaussian likelihood estimate,
it still potentially misclassifies certain high-loss non-members as
members.

RAPID vs. LiRA Online. As LiRA online is computationally infea-
sible, we do not include it as a baseline in our main experiments.
However, Carlini et al. [5] provide a clever method to evaluate
the theoretical performance of LiRA online. We are interested in

whether RAPID could serve as a practical alternative to LiRA on-
line in real-world scenarios. Specifically, they combine members
and non-members into a set, and then randomly sample half of
the data to train a reference model. This process is repeated 256
times. For any given target sample, since it has a 50% chance of
being sampled into the training set of any reference model, there
are approximately 128 reference models serving as its IN models,
and 128 reference models serving as its OUT models. Although
this method circumvents the necessity to train 128 IN models for
each target sample, it remains impractical in reality because the
adversary cannot access all potential member samples before the in-
ference time. Furthermore, this implementation potentially boosts
LiRA online’s attack performance compared to traditional methods
(i.e., those used in our main experiments)—each IN/OUT model
shares about half of its training data with the target model, making
the IN/OUT models highly similar to the target model. This similar-
ity makes calibrated membership scores more accurate, as they rely
more on membership status rather than model parameters (model
characteristics). To ensure a fair comparison, we train the refer-
ence models for RAPID using a similar method to LiRA. However,
note that RAPID remains a practical offline attack, with the key
difference being that the reference models and the target model
share some training data. As demonstrated in Table 8, our RAPID,
as an offline attack, achieves nearly the same TPR at 0.1% FPR as
LiRA online, along with higher AUC and balanced accuracy results.
Consequently, while LiRA online is not so practical in real-world
scenarios, our RAPID represents an equivalent alternative that is
computationally feasible.

Limitations. Our work has several limitations. First, the effec-
tiveness of all existing MIAs mainly relies on identifying out-of-
distribution member samples (i.e., samples only receiving high
membership scores from the target model). This, to some extent,
limits the performance of MIAs. Although our RAPID achieves
state-of-the-art performance, it does not fully address this issue.
Second, we only evaluate RAPID on public datasets, and its effec-
tiveness and sensitivity to specific populations (or subgroups of
datasets) have not been fully investigated. Third, our evaluation on
LLMs is limited to masked language models, and the performance
of RAPID on autoregressive language models has not been studied.
We will conduct experiments on more LLMs in the future. Despite
these limitations, we believe our study provides insight into the
limitations of difficulty calibration, issues of MIA practicality, and
finally the potential solutions to the aforementioned issues.

9 CONCLUSION

In this paper, we have emphasized that existing reference-based
MIAs do not fully utilize the non-member evidence contained in the
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original membership scores, which can be re-leveraged to correct
the misclassification of non-members caused by difficulty calibra-
tion. Therefore, we have introduced a new attack RAPID, which
directly corrects the inherent errors in difficulty calibration by train-
ing a scoring model to map the original membership scores and
the calibrated scores to the final membership scores. This improves
the attack efficacy by eliminating the need for: 1) training a large
number of models; and 2) near-unlimited query access to the tar-
get model. Extensive experiments demonstrate the state-of-the-art
performance of RAPID in both classic image domains and recent
fields of LLMs. We hope our research can advance the development
of more efficacious techniques for quantifying privacy loss and
protecting data privacy.
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A DATA SPLITS ON DIFFERENT DATASETS

Table 9: Data splits of all the datasets used in our main experiments.

t t s s r r
Dataset D Dot Dtmin Diest Z)train Diest

train

CIFAR-10 | 10000 10000 10000 10000 10000 10000
CIFAR-100| 10000 10000 10000 10000 10000 10000
CINIC-10 | 45000 45000 45000 45000 45000 45000
SVHN 16548 16548 16548 16548 16548 16548
Location 835 835 835 835 835 835
Texas 11222 11222 11222 11222 11222 11222
cola 1513 1513 1513 1513 1513 1513
cb 51 51 51 51 51 51
mrpc 968 968 968 968 968 968

B ADDITIONAL EXPERIMENTAL RESULTS ON OTHER MODELS

It is worth noting that due to the high computational cost of LiRA and Canary, when evaluating them on other model architectures, we
randomly selected a benchmark dataset for each architecture. When evaluating other advanced attacks, we utilized all four benchmark
datasets for each architecture.

Table 10: The attack performances of different attacks on ResNet50 models trained on four benchmark datasets.

Attack ‘ TPR @ 0.1% FPR AUC Balanced Accuracy

method ‘ CIFAR-10 CIFAR-100 CINIC-10 SVHN CIFAR-10 CIFAR-100 CINIC-10 SVHN CIFAR-10 CIFAR-100 CINIC-10 SVHN
Yeom et al. [62] 0.0% 0.4% 0.1% 0.0% 0.655 0.934 0.669 0.539 64.2% 90.4% 65.4% 54.6%
Yuan et al. [63] 0.2% 3.2% 0.2% 0.2% 0.687 0.950 0.688 0.550 64.6% 90.5% 65.7% 54.7%
Watson et al. [56] 1.2% 2.4% 1.4% 0.9% 0.650 0.783 0.644 0.560 60.7% 71.0% 59.3% 53.3%
Ye et al. [61] 0.0% 0.0% 0.8% 0.6% 0.641 0.747 0.639 0.561 52.0% 70.9% 59.3% 53.2%
Liu et al. [30] 0.0% 6.5% 1.3% 0.7% 0.745 0.970 0.745 0.589 67.2% 91.7% 66.4% 55.1%
Ours ‘ 3.3% 27.4% 3.9% 2.7% 0.779 0.984 0.792 0.607 69.6% 94.0% 70.0% 56.5%

Table 11: The attack performances of different attacks on MobileNetV2 models trained on four benchmark datasets.

Attack ‘ TPR @ 0.1% FPR AUC Balanced Accuracy

method ‘ CIFAR-10 CIFAR-100 CINIC-10 SVHN CIFAR-10 CIFAR-100 CINIC-10 SVHN CIFAR-10 CIFAR-100 CINIC-10 SVHN
Yeom et al. [62] 0.0% 0.0% 0.0% 0.2% 0.625 0.866 0.574 0.560 62.8% 84.6% 57.8% 55.5%
Yuan et al. [63] 0.1% 1.7% 0.2% 0.1% 0.659 0.901 0.604 0.556 63.0% 84.9% 58.2% 55.3%
Watson et al. [56] 0.9% 1.9% 0.9% 1.0% 0.634 0.738 0.624 0.570 59.5% 69.0% 58.2% 53.8%
Ye et al. [61] 0.6% 1.0% 0.5% 0.6% 0.617 0.701 0.623 0.572 58.0% 69.3% 58.3% 54.0%
Liu et al. [30] 1.1% 6.6% 0.9% 0.9% 0.710 0.940 0.657 0.600 64.3% 86.4% 60.1% 56.3%
Ours ‘ 4.1% 16.9% 2.0% 2.5% 0.760 0.959 0.686 0.619 67.6% 89.3% 62.0% 57.2%

Table 12: The attack performances of different attacks on DenseNet121 models trained on four benchmark datasets.

Attack ‘ TPR @ 0.1% FPR AUC Balanced Accuracy

method ‘ CIFAR-10 CIFAR-100 CINIC-10 SVHN CIFAR-10 CIFAR-100 CINIC-10 SVHN CIFAR-10 CIFAR-100 CINIC-10 SVHN
Yeom et al. [62] 0.1% 0.0% 0.0% 0.1% 0.688 0.929 0.670 0.571 68.3% 91.1% 67.3% 56.2%
Yuan et al. [63] 0.1% 3.6% 0.1% 0.1% 0.729 0.955 0.709 0.558 68.9% 91.5% 67.5% 55.6%
Watson et al. [56] 1.0% 2.2% 1.0% 1.2% 0.633 0.785 0.650 0.571 59.8% 71.5% 61.1% 53.5%
Ye et al. [61] 0.9% 0.9% 0.8% 0.9% 0.636 0.768 0.648 0.571 60.7% 71.2% 60.1% 53.8%
Liu et al. [30] 0.8% 11.0% 2.3% 1.2% 0.776 0.972 0.775 0.603 69.6% 91.8% 68.7% 56.5%

Ours ‘ 3.4% 28.2% 5.4% 2.7% 0.805 0.983 0.810 0.624 72.3% 93.4% 69.1%  58.0%
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Figure 12: The ROC curves of attack results on ResNet50 models trained on four benchmark datasets.
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Figure 13: The ROC curves of attack results on MobileNetV2 models trained on four benchmark datasets.
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Figure 14: The ROC curves of attack results on DenseNet121 models trained on four benchmark datasets.
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Table 13: The attack performances of different attacks including LiRA and Canary on different model architectures and
benchmark datasets.

‘ TPR @ 0.1% FPR AUC Balanced Accuracy
Attack CIFAR-10 CIFAR-100 SVHN CIFAR-10 CIFAR-100 SVHN CIFAR-10 CIFAR-100 SVHN
method MobileNetV2 DenseNet121 ResNet50 MobileNetV2 DenseNet121 ResNet50 MobileNetV2 DenseNet121 ResNet50
Yeom et al. [62] 0.0% 0.0% 0.0% 0.625 0.929 0.539 62.8% 91.1% 54.6%
Yuan et al. [63] 0.1% 3.6% 0.2% 0.659 0.955 0.550 63.0% 91.5% 54.7%
Watson et al. [56] 1.0% 2.2% 0.9% 0.634 0.785 0.560 59.5% 71.5% 53.3%
Carlini et al. [5] 2.7% 25.1% 1.3% 0.543 0.900 0.499 57.3% 84.4% 51.7%
Ye et al. [61] 0.6% 1.0% 0.6% 0.617 0.768 0.561 58.0% 71.2% 53.2%
Liu et al. [30] 1.1% 11.0% 0.7% 0.710 0.972 0.589 64.3% 91.8% 55.1%
Wen et al. [57] 0.1% 12.7% 0.9% 0.499 0.899 0.522 50.8% 83.6% 52.7%
Ours ‘ 4.1% 28.2% 2.7% 0.760 0.983 0.607 67.6% 93.4% 56.5%
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Figure 15: The ROC curves of different attacks including LiRA and Canary on different model architectures and benchmark
datasets.

C ADDITIONAL EXPERIMENTAL RESULTS ON LOCATION AND TEXAS DATASETS

Experimental results on Location and Texas datasets do not include an evaluation of Canary because Canary cannot be directly applied to
attack discrete data, such as text or tabular data [57].

Table 14: The attack performances of different attacks on a 2-layer MLP trained on Location and Texas.

Attack ‘ TPR @ 0.1% FPR AUC Balanced Accuracy
method ‘ Location Texas Location Texas Location Texas
Yeom et al. [62] 0.2% 0.1% 0.870 0.776 82.2% 72.5%
Yuan et al. [63] 0.7% 1.5% 0.895 0.818 81.8% 74.1%
Watson et al. [56] 0.4% 4.7% 0.817 0.760 74.9% 67.9%
Carlini et al. [5] 9.0% 4.3% 0.839 0.681 76.9% 65.0%
Ye et al. [61] 3.0% 1.5% 0.806 0.691 72.2% 62.7%
Liu et al. [30] 2.6% 2.5% 0.938 0.818 87.1% 74.7%

Ours ‘ 16.4% 7.7% 0.932 0.864 85.3% 77.1%
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Figure 16: The ROC curves of attack results on a 2-layer MLP trained on Location and Texas.
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Figure 17: Attack performance of prior works and our attack against a DenseNet121 model trained on CIFAR-10 using DP-SGD.

The baseline employs random guessing to identify members.
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E ADDITIONAL EXPERIMENTAL RESULTS ON CB AND COLA DATASETS

The notably higher TPR results of the attack on BERT-large compared to BERT-base in Table 15 require further investigation, and we suspect
it may be related to the small size of cb (more susceptible to randomness), the special distribution properties of cb, or the more powerful
memorization capability of BERT-large.

Table 15: The attack results of BERT-base and BERT-large models trained on cb. Please note that here we consider FPRs down
to 0.0 because the cb dataset is very small, making it unable to set FPRs at 0.1%.

‘ TPR @ 0.0% FPR AUC Balanced Accuracy
Attack Method ‘ BERT-base BERT-large BERT-base BERT-large BERT-base BERT-large
Duan et al. [14] 0.0% 5.9% 0.711 0.628 64.7% 62.7%
Waston et al. [56] 0.0% 5.9% 0.782 0.639 60.8% 61.8%
Ours ‘ 3.9% 7.8% 0.803 0.666 65.7% 62.7%

Table 16: The attack results of BERT-base and BERT-large models trained on cola.

‘ TPR @ 0.1% FPR AUC Balanced Accuracy
Attack Method ‘BERT—base BERT-large BERT-base BERT-large BERT-base BERT-large
Duan et al. [14] 0.1% 0.0% 0.634 0.592 62.3% 62.2%
Waston et al. [56] 0.3% 0.1% 0.656 0.677 59.1% 61.7%

Ours | 0.5% 0.1% 0.701 0.687 62.5% 62.1%
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