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Traffic monitoring in the dataplane is vital for reacting to network events such as microbursts, incast, and
attacks. However, current solutions are constrained by the limited resources available on modern ASICs
and don’t provide the flexibility required to identify repeating patterns, such as applications whose flows
communicate with a server at regular intervals. While such flexibility can be achieved using a co-processing
CPU, it is generally too slow to provide insights quickly enough. In this paper, we show how an FPGA
co-processor placed alongside the switching pipeline enables flexible traffic monitoring at data plane rates.
While FPGAs have large memory and expressive processing, their throughput is significantly lower than
switch ASICs. To bridge the throughput gap, we split query execution between the switch and FPGA and
present methods that prevent processing all packets in FPGA. As a result, our system misses up to 5.0x
fewer DDoS attack vectors than ACC-Turbo, the state-of-the-art on-switch solution, and up to 24% fewer
microburst-contributing flows for the same precision rate.
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1 Introduction

Monitoring systems are key components in datacenter networks [11, 13, 19, 26, 43, 51, 85, 86, 89].
As networks grow in size, it is increasingly important to deploy complex analysis solutions and
correlate data across times and flows. Such analysis helps us to gain insights into recurrent events
such as microbursts (which affect application performance) [19, 38, 76]; advanced visibility is
also the key enabler to support fine-grained automated network control [13, 33, 51] and detailed
troubleshooting [28, 35, 73].
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Some existing works directly analyze traffic at programmable switches [19, 44]. However, state-
of-the-art programmable switches have limited capabilities and memory that have to be used
for essential functions such as ACL rules, customized forwarding [69], load balancing [13, 26,
39], congestion control [51], and other network functions and applications [31, 36, 55]. As a
consequence, state-of-the-art solutions that leverage in-network computing for monitoring resort
to enabling only a few simple queries at run-time, effectively limiting network visibility [29, 59].
For example, we can identify the repeated incast by the same application by detecting repetitive
transmission patterns, e.g., due to an aggregation step by a distributed training process [61], a
functionality that is hard to achieve on the switch alone due to its complexity. While one can
use the switch’s CPU to detect such a pattern [80], it has a low bandwidth and is needed for
various other functionalities such as installing rules [44].

Other solutions advocate for analyzing data reported by switches at collectors [11, 29, 52, 90],
dedicated servers located in ordinary racks within the datacenter fabric [34, 56]. This is because
they provide plenty of cheap memory, and their general-purpose CPUs are well equipped to run
data analysis tasks [29]. However, using a remote CPU markedly slows down the control loop,
which is prohibitive for detecting attacks in real time. Further, every single switch can generate
up to millions of telemetry data reports per second [59, 93] and a datacenter network comprises
hundreds of thousands of them [28]. As the amount of data keeps growing with larger networks
and higher line rates [67], it is becoming increasingly hard to scale data collection and analysis in
this way [40, 75, 93].

A clear trade-off emerges: collectors provide the flexibility to run complex data analysis but not
at data-plane speed, which is essential to enable a fast reaction to ephemeral events [19]. On the
other hand, state-of-the-art programmable switches provide high processing speed and enable
quick control loops in the data plane, but lack resources and flexibility.

In this paper, we propose F3, a fast and flexible FPGA-assisted analysis telemetry system. We
explore using FPGAs that are located alongside the switching ASIC pipeline as a co-processor
to support comprehensive analysis functions for network telemetry at data-plane speed. FPGAs
are becoming a commodity in the datacenter infrastructure [21, 23, 47, 48, 83, 88] and vendors
start to package FPGA as a co-processor attached to the switch ASIC [3, 8]. Using this resource
available for network telemetry brings several advantages: (1) FPGAs guarantee high throughput
and low latency analysis: modern chips can handle hundreds of Gbps input data while achieving
deterministic ps level processing latency; (2) Modern FPGAs are more flexible than commodity
programmable ASICs: they have orders of magnitude more memory (e.g., High Bandwidth Memory
is multiple GBs), thousands of arithmetic units and they can be as generic as a high-end CPUs [79].
This makes them the perfect fit for performing advanced monitoring analysis; (3) FPGAs, located
alongside the switch pipeline, allow for fast reaction to events while freeing expensive switch
resources that can be used for packet-processing operations; (4) It is possible to reprogram slices of
FPGA and change its traffic analysis behavior without downtime.

The challenge for F3 is bridging the throughput gap between the sheer amount of data processed
by switches (terabit scale) and the more limited capabilities of FPGAs (hundreds of Gbps), with no to
minimal downtime due to switch recompilations. To overcome this main challenge, we first propose
to decompose monitoring queries, where the switch performs the necessary throughput reduction
functions and FPGA performs the core analysis. Second, we propose to use runtime shaping that can
help in controlling the amount of data sent from the switch to FPGA. Finally, we developed several
FPGA-based traffic analysis modules (i.e., change detection, hierarchical counter aggregation) that
can be used as a library by operators and that can be extended if needed.

We implemented F3 using a combination of a commodity programmable switch pipeline and a
Xilinx Alveo U250 card placed alongside it to emulate a single device. Using real network traces
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that include 11 different attack types, such as SYN Flood and Portscan, we show that F3 misses up
to 5.0x fewer DDoS attack vectors than ACC-Turbo. Additionally, using real flow-size distributions
from datacenter network traffic, we show that our solution misses up to 24% fewer microburst-
contributing. Finally, we show that F3 requires minimal switch and FPGA overheads. Namely, it
requires at most 2.1% of the switch’s SRAM and 26.9% FPGA’s BRAM for all the proposed queries
while being able to detect all lossy flows with a 99.99% probability with just an additional 16.5% of
FPGA’s BRAM.

This work does not raise any ethical issues.

2 Motivation

In this section, we discuss the need for smarter analysis and better performance for network
monitoring systems and why FPGA is a great fit.

2.1 The need for comprehensive analysis

Table 1 lists some example network measurement queries that require comprehensive analysis.
Some require more resources than are available on modern switches, while others are implementable
on switches but have accuracy that can be improved given more memory. We use three examples to
showcase important dimensions of complexity: analyzing across time, across flows, and computing
composite functions.

Example

Temporal/Contextual

Analysis Functions

Microburst analysis [19, 38, 76]

Find a group of 5-tuples that increase throughput at sub-millisecond granularity

Change pattern detection

LDoS attack detection [45, 92]

Find 5-tuples that periodically send traffic with a period of RTO level

AutoCorrelation

Priority flow contention [72, 73, 76]

Find 5-tuples with low priority that consume lots of bandwidth

Thresholding

Metastable failure [7]

Find 5-tuples that last a long time and keep having packet loss

Causal inference

Pulse-wave DDoS Analysis [12]

Find a group of 5-tuples perform puls-wave DDoS attack

Clustering algorithm

Super spreaders [81] Find source IPs that send 5-tuples to more than threshold number of destination IPs | Thresholding
Port scan [37] Find source IPs that send 5-tuple to more than threshold number of destination ports | Thresholding
Newly opened TCP Conns [82] Find source IPs that send more than threshold number of SYN packets Thresholding
Slowloris attack detection [30] Find a group of 5-tuples from the same source that sends low volume traffic Thresholding

Packet loss detection [50]

Find 5-tuples that lost packets and the number of lost packets

Flow-level loss detection

Table 1. Analysis table for common network problems.

Temporal analysis. One good example that is common in wide-area networks is the detection
of low-rate denial of service (LDoS) attacks [45, 92]. In a specific type of LDoS attack [45], the
attacker sends short bursts lasting around the duration of a round-trip time (RTT), with intervals
between bursts on the scale of a retransmission timeout (RTO). Even a single DoS stream can
provoke the victim flow to repeatedly enter the retransmission state, and such attack traffic is
challenging to detect, given their small volume.

To catch the suspects, we need to look into each flow’s past traffic volume and identify the
interval patterns, using techniques like auto-correlation as in previous work [20]. As shown in [45],
different LDoS attacker flows can have different lengths of burst periods. Since we do not know the
attacker flow’s burst period beforehand, we can calculate an auto-correlation score for possible
lengths. To exemplify the problem, we use a simple topology in ns-3 with three senders, one receiver,
and one attacker connected by a single switch through 10G links. To simulate datacenter traffic
traversing different paths in a 3-tier topology, we assign senders RTTs of 100us, 200us, and 300us.
We use commonly used RTO value of 1ms for datacenter traffic [63]. The aggregate background
TCP traffic throughput from all senders is 10Gbps and the flow size is sampled from DCTCP flow
size CDF [14]. The attacker creates one low-rate square-wave DoS flow by sending 1000 64-byte
UDP packets every RTO. The resulting average DoS flow throughput is only 0.512 Gbps. We record
the #bytes received by the switch for each flow every epoch with different epoch granularity (100ps,
200ps, 400us).
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Fig. 1. LDoS Attack Detection Precision

Figure 1 shows the LDoS attack detection precision by running an auto-correlation algorithm
with a lagged time interval of retransmission timeout (RTO) under different numbers of historical
epochs. The LDoS attack detection accuracy increases with more history epochs and reaches to
100% with 320 epochs. However, a programmable switch can’t maintain data about hundreds of
historical epochs due to its stage constraints. Even the most advanced programmable switch [4]
has only 20 pipeline stages and allows at most 4 register arrays per stage, translating to access
to a maximum of 80 epoch data in the pipeline. Also, performing auto-correlation on historical
epoch data costs extra pipeline stages on a programmable switch. Although programmable can
recirculate packets through the pipeline multiple times, it reduces the pipeline bandwidth available
to process packets [70].

Compared with programmable switches, FPGA has no pipeline stage constraints. Algorithms
with dependency (e.g., auto-correlation) can be synthesized and implemented into a customized
circuit on the FPGA. Then the number of epoch data it can access is only constrained by FPGA’s
memory capacity. Modern FPGA has lots of on-chip memory resources (e.g., high-bandwidth
memory is multiple GBs [9]), and it can keep enough history information for analysis.

Contextual analysis. In the datacenter network, there are many applications, each consisting
of multiple flows, running concurrently and competing for network bandwidth. Some applications
(e.g., machine learning training) are very bursty and might thus negatively affect the behaviors of
others. This is because microbursts and incast are known to degrade datacenter performance [14, 32].
It is thus important to analyze flows based on context (e.g., belonging to which application or coming
from which subnet) to troubleshoot the interactions between application behavior and the network.

One such use case is finding the root cause of microbursts. Often caused by incast, a microburst
is a phenomenon where a switch’s queue is suddenly overwhelmed by burst traffic within a short
timescale. Previously, ConQuest[19] analyzed each flow’s weight in the queuing buffer and identified
flows with weights larger than a threshold as the contributing flows of the microburst. However,
such a crude analysis fails to recognize when a microburst is caused by a group of many flows
sharing the same destination, since each flow may not exceed the threshold. As shown in [62], flows
causing microbursts can come from several particular subnets. And we need to aggregate flows
based on the subnet context to observe the bursty throughput increase. To illustrate this issue, we
use a spine-leaf topology in ns3, with the detailed setup described in §5.1.2. Figure 2 shows the per-
flow throughput and aggregated per-subnet (IP/24) throughput during microbursts. Like the incast
setting in [51], the microburst is created by randomly selecting 60 senders and one receiver, each
sending 500KB. From the per-flow throughput view, it’s hard to distinguish the incast flows from
the background ones. However, when looking from the IP-subnet level, it’s clear that TCP incast
flows originate from 4 different subnets, which means 4 different racks in the simulated network
topology. It’s worth mentioning that configuring ConQuest’s flow definition [19] for a single subnet
context, such as an IP with a /24 subnet mask, is feasible. However, the programmable switch’s
resource constraints prevent it from accommodating multiple subnet contexts simultaneously.
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Fig. 2. Per-flow throughput and aggregated per-subnet throughput during a microburst.

Therefore, it is necessary to analyze across flows to pinpoint the group of bursty flows together and
determine the root cause of the incast. Recent works like Precision [16, 17] also show the importance
of across-flow analysis in detecting DDoS attacks. The hierarchical heavy hitter detection algorithms
can achieve higher accuracy with an increasing number of counters (more memory usage). To
diagnose network problems in Table 1, datacenter operators usually need to analyze group-level
flow behaviors at different dimensions (flow, port, priority, or other metadata). With an increasing
number of different grouping levels, it requires more memory capacity to support across-flow
analysis. Programmable switch only provides tens of MB on-chip memory per pipeline. Modern
FPGA card offers several gigabytes on-chip high bandwidth memory (HBM) [9], which provides
~ 100ns access latency and up to 460GB/s bandwidth [77]. Thus, FPGAs enable much more accurate
contextual analysis with larger hierarchies.

Comprehensive analysis. Many queries, e.g., as listed in Table 1, involve calculating composite
functions (change detection, correlation, clustering) over the input data. The complexity far exceeds
what traditional programmable switches can offer, and warrants the more powerful and flexible
computational capability of FPGAs. One such case is analyzing metastable failures [7], a phenomenon
caused by the interaction of application-layer connection pool logic and the underlying network-
layer load balancing. In this incident reported by Meta, and solved after more than two years, a
Most-Recently-Used (MRU) connection pool to the database backend was used with flow-based
Equal-Cost Multi-Path (ECMP) load balancing. Although MRU can minimize the number of unused
connections compared with other reusing policies (e.g., LRU), the system enters a delicate unstable
state, where any perturbation will push the system towards the imbalanced failure state [7]. Here,
any packet loss will cause a connection to finish slower, which puts it on top of the MRU connection
pool to be used again immediately. When a link is particularly congested, and lots of flows are
suffering from congestion or losses, the MRU policy may end up only using this link. Traditional
methods can only detect ECMP imbalance when the aggregated throughput differs across different
links, at which point it is too late to avoid entering a metastable failure state. However, it is possible
to detect the MRU pool earlier by calculating comprehensive analysis functions such as those required
for causal analysis. Using Cross Correlation [2], we can identify the relationship between a packet
loss or ECN congestion tag and the connection being subsequently reused. Once causality is
confirmed, we can take remedial actions to avoid the system entering the metastable failure state.

2.2 The Need for Performance.

Low latency: Several examples in Table 1 (microburst, LDoS attack, Slowloris Attack) can benefit
from a fast and immediate reaction to performance anomaly events, which can greatly reduce
application performance impact.

To illustrate this point, we create an ns-3 simulation that sends background flows to a receiver
with a single 10Gbps link at 90% utilization. Each flow uses DCTCP and the flow size is randomly
drawn from the DCTCP [14] distribution. Similarly to the incast setting in HPCC [51], we then
send 60 incast flows (each of size 500KB) simultaneously from 60 different senders to the receiver.
The total incast traffic is 30MB and it takes 24 ms to finish at 10Gbps link. We measure the flow
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completion time (FCT) of background flows starting in this time window and calculate the relative
slowdown compared to without incast case. The reaction we perform in this example is to reroute
incast flows to another low utilization path, and reaction time is defined as the time interval between
incast happening and when the reaction is performed.

—@— 50-percentile FCT slowdown
75-percentile FCT slowdown
—@— 95-percentile FCT slowdown

Slowdown
N w
o o

—
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_./0/.

1 2 4 8 16 ®
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Fig. 3. Background flows FCT slowdown under different reaction times.

Figure 3 shows the background flow FCT slowdown under different reaction times. The data
point with an x-value of infinite reaction time represents the case with no reaction, resulting
in a 5.5%, 10.7X, and 36.5X slowdown for the 50-, 75-, and 95-percentiles FCT of the background
flows. A fast 1ms reaction time mitigates most of the impact, translating to only 1.9x slowdown of
95-percentile FCT of background flows and zero slowdowns for 50- and 75-percentiles. With 16ms
reaction time, background flows still experience severe 3.8%, 4.6x and 27.4x FCT slowdowns at 50-,
75- and 95-percentiles.

While many previous monitoring systems [30, 59] use end-host CPUs to aid the monitor-
ing analysis, we believe it would be better to execute analysis on computing units near the
switch dataplane to provide the possibility of fast reaction. In the case study of Sonata, it re-
quires up to 11 seconds for end-host CPUs to analyze traffic originating from the Tofino switch
to detect Zerror attacks [30]. Using FPGA as a co-processor of the switch can leverage its low
latency processing [48] advantage to enable fast reaction.

High throughput: Switch dataplanes are augmented with a control-plane CPU to perform
functions that can not be done in the dataplane [80]. Due to power constraints, the switch CPU is less
powerful and, by design, is handling control tasks instead of dataplane traffic. Moreover, the switch’s
CPU is needed for various other functionalities such as communicating with a controller [49] or
installing rules [44], which are needed for policy changes [57], traffic reroute [11].

2.3 FPGAs to the Rescue

To summarize, the ASIC pipeline of programmable switches can provide performance, but it has
limited support for comprehensive analysis (§2.1). In contrast, relying on either collectors or switch
CPUs can help with the analysis but does not meet our requirements on performance (§2.2).

FPGAs meet both requirements: they are high-performance architectures able to process 100Gbps
network traffic at dataplane speeds [91]. They are more energy efficient than CPUs [83] and allow
more comprehensive analysis than switch ASICs, as generic as CPUs. Finally, their partial reconfig-
uration feature allows flexibly adding queries without downtime in the monitoring applications.

Recognizing the benefits of FPGAs, switch vendors are including them in products, connected
through high-bandwidth buses to the ASIC pipeline. For example, the Intel Tofino Expandable
Architecture is being used by multiple companies for a variety of applications, such as NAT
translation, firewalls, tunnel termination, and layer-4 load balancing [3].
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3 F3 Design

A high-level overview of our design is shown in Figure 4. After a pre-deployment phase, each
query is partitioned between the FPGA and switch (§ 3.1), and we apply cross-query level optimiza-
tions (§ 3.2). We ensure that the deployment meets the throughput of the FPGA (§3.3) and finally,
we analyze the result and report them to the operator (§3.4).

F3 Pre-deployment Phase F3 deployment Phase

. | Data Plane
ueries Query-specific Analysis

@l Al A2 . A
Q2 =) / Query-specific Reduce

Rules R1 R2 Rn
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Fig. 4. The F3 framework.

3.1 Labor division for single query

The FPGA can run comprehensive analysis (e.g., analysis functions in Table 1) but can not sustain
the Tbps-scale processing of switches. In contrast, switches are more limited in processing. Also,
their limited resources need to be used for many other functions, such as ACL, load balancing,
and potentially assisted congestion control (e.g., HPCC [51]). Here we want to explore the right
division of labor between switches and FPGA for just a single query. The goal is to satisfy the
FPGA’s throughput constraint while minimizing switch resource usage. We then discuss optimizing
this labor division strategy for multiple query cases (§3.2).

We observe that many monitoring queries already have throughput reduction operators that
decrease the data stream size [30, 59]. These operators include filter (which drops data that meets
given predicates), sample (which randomly selects data at a given ratio), and aggregate (which
applies aggregation function such as sum, max, count to data of the same key). Listing 1 is the
Slowloris attacks detection query [30], where network operators identify hosts that open many
low-traffic volume TCP connections. This query has in total six throughput reduction operators
(three aggregate operators and three filters).

We propose to run a few throughput reduction operators at the switch to decrease the amount
of telemetry data transmitted to FPGA. To determine the appropriate number of each type of

Listing 2. Slowloris Attacks Detection (reduce-first)

Listing 1. Slowloris Attacks Detection

reduce_prefix = packetStream # Throughput: 3.2Tbps

.filter(p => p.proto == TCP)

.aggregate(keys=(dIP,sIP,tcp.sPort),
val=ipv4.totalLen, f=sum) # Throughput: 14Gbps

n_conns = packetStream # Throughput: 3.2Tbps ;
3
4
5 n_conns = reduce_prefix
6
7
8

.filter(p => p.proto == TCP)}
.aggregate (keys=(dIP,sIP,tcp.sPort), val=None,
f=distinct) # Throughput: 14Gbps

1
2
3
4
. te(keys=(dIP,), val=None,
2 aggregate (keys=(d ), va one .aggregate (keys=(dIP,sIP,tcp.sPort), val=None,
7
8

f=distinct)
.aggregate(keys=(dIP,), val=None, f=count)

f=count) # Throughput: 4Gbps
n_bytes = packetStream

«filter(p => p.proto == TCP)} 9 n_bytes = reduce prefix

9 .aggregate(keys @P:)' val=ipvd.totallen, f=sum)} 10 .aggregate(keys =(dIP,), val=ipv4.totalLen, f=sum)
10 Slowloris = n_conns.join(keys=(dIP,), n_bytes) -
11 Slowloris = n_conns.join(keys=(dIP,), n_bytes))
11 .map((dIP, (con,byte)) => (dIP, (con/byte)))
12 .filter((dIP, con/byte) = (con/byte > Th2)) 12 .map((dlp, [conbyte)) = (dIP, (con/byte)))
' v Y 13 .filter((dIP, con/byte) => (con/byte > Th2))
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throughput reduction operator, we need to consider both FPGA’s throughput constraint and switch
resource usage. First, the telemetry data stream after the first aggregate operator in the monitoring
query has the throughput of ~10 Gbps for Tbps-level network traffic, which already satisfies the
FPGA throughput constraint. Second, aggregate needs much more switch resources than filter and
sample. Aggregate is a stateful operator that needs switch SRAM resource to implement the hash
table [30], while filter and sample only require a single match-action table on the switch. Allocating
more aggregate operators on the switch can considerably increase switch resource usage.

As a result, we determine that the appropriate allocation for the throughput reduction operators
on the switch is up to the first aggregate operator in the query, which we refer to as the reduction
operator prefix (ROP) of the query. The ROP starts with zero or multiple filter/sample operators
and ends with one aggregate operator. We investigated common monitoring tasks as shown in
Table 2 and the core insight here is monitoring query can be written in a reduction-first way, where
the beginning of the query is reduction operator prefix. We take the query for Slowloris attack
detection as an example (Listing 1) and this query can be rewritten in a reduction-first way. The
start of the query (Listing 2) consists of filter and aggregate operators, both of which are types of
reduce operators. Table 2 shows more queries that can be written as reduction-first queries.

Given a reduction-first query, we allocate its ROP to the switch and the remaining part of the
query (including its analysis function) to the FPGA. This approach has two benefits: firstly, the
telemetry data transmitted from the switch can satisfy FPGA’s throughput constraint. Second, ROP
has minimal switch resource usage since it has only one aggregate operator.

3.2 Optimization for multiple queries

To perform labor division for n reduction-first queries between the switch and FPGA, one
strawman solution is to allocate n ROPs on the switch and the remaining parts of n queries to
the FPGA. However, increasing the number of ROPs deployed on the switch may lead to FPGA
throughput constraint violation and high switch resource usage. So we propose an optimization to
reduce the number of ROPs allocated on the switch, which we refer to as ROP merging.

The intuition of ROP merging is to find a new ROP R such that the output of ROPs before merging
(e.g., {R1, Ry, .., Ry }) can be derived from R’s output. As a result, we can only allocate R on the switch
instead of allocating n ROPs on the switch. To simplify the discussion, we only discuss ROP merging
for two ROPs R; and R; (but it can be generalized to multiple ROPs). Since ROP ends with an
aggregate operator, the output of ROP is (key, value) pairs after each query-defined time interval
or window. We use {(k1,01)} to designate the key-value pairs from R; and similarly {(k,,v2)} for
R;. ki and k; represent the aggregation keys in R; and R,. The target ROP R after merging outputs
{(k,v)}, which we can apply extra throughput reduction operators to get {(k,v1)} and {(kz, v2)}.
Here, we discuss the merging opportunity based on the relationship between k; and k.

Case 1: ky and k; has subset relationship. Here, we assume k; is a subset of k; for discussion
purpose. There are merging opportunities for the following two sub-cases.

(a) When R; and R, have the same filter and sample operators, we can use R; as the merged ROP.
For example, we have R; and R, as defined below. And R, can be used as the merged ROP because
we can apply extra aggregate (keys=(sIP)) to derive R;’s output from R;’s output.

Case 1 (subset): ROP merging example with same filters

Ry=filter(tcp.flags==SYN) .aggregate (keys=(sIP))
A Rp=filter(tcp.flags==SYN).aggregate(keys=(sIP,dIP))
= R= R2
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(b) When R; and R, have different filter and sample operators, but the header fields used in these
filter/sample predicates are a subset of k;, we can get merged ROP R in two steps. First, we perform
the disjunction of predicates inside Ry and R; for filter and sample operators separately. We then
use them as filters or sample predicates inside R. Second, we use R;’s aggregate operator as the
aggregate operator in R. In the below example, we perform disjunction for predicates dport > 80
and dport < 60 and use R,’s aggregate operator in R.

Case 1 (subset): ROP merging example with different filters

Ri=filter(dPort>80) .aggregate (keys=(sIP))
A Rp=filter(dPort<60).aggregate(keys=(sIP,dPort))
= R=filter(dPort>80||dPort<60) .aggregate(keys=(sIP,dPort))

We choose to do merging for the above two sub-cases when k; and k, have a subset relationship.
The merged ROP R can save switch resource usage because the switch only needs to support one
aggregate operator (instead of two for when deploying R; and R;). It can also reduce telemetry data
throughput sent to FPGA.

Case 2: ky and k; are not subset of each other. In this case, merging ROPs may increase the switch
resource usage and telemetry data throughput. In the below example, we can union k; and k; to get
the merged ROP. However, the number of distinct (sIP, dIP) pairs after each aggregation interval
can be much larger than the sum of distinct sIP and distinct dIP. As a result, the merged ROP R
needs more switch resources to allocate a larger hash table and also send more telemetry data. So
we choose to not merge for this case.

Case 2 (not-subset): ROP merging risk example

Ri=aggregate(keys=(sIP)) A Rp=aggregate(keys=(dIP))
= R=aggregate(keys=(sIP,dIP))

In summary, ROP merging can reduce switch resource usage and telemetry data throughput
when deploying multiple queries. But ROP merging can not guarantee satisfying FPGA throughput
constraints when network operators want to deploy a large number of queries or there is a traffic
change in the runtime. In the next subsection (§3.3), we will introduce safeguards to meet FPGA
throughput requirements.

3.3 Safeguard for Meeting the Throughput of FPGA

There are no fundamental constraints on the complexity of queries that can be supported by the
FPGA, which is as flexible as high-end CPUs [79]. For instance, prior work such as N3IC [68] demon-
strates that FPGAs can execute machine learning models on line-rate network traffic. However,
when a large number of queries or highly resource-intensive queries are deployed simultaneously,
the FPGA may struggle to handle the monitoring traffic from the switch at full line rate (e.g.,
100Gbps). To prevent queries from exceeding the FPGA’s throughput capabilities, F3 employs both
compile-time and run-time safeguards, ensuring that queries remain within the FPGA’s throughput
limits.

Compile-time. Using training data in the form of representative packet traces provided by
operators, F3 runs traces to estimate the aggregated bandwidth consumed by ROPs. If the estimated
bandwidth is smaller than FPGA’s throughput constraint max_bw, F3 accepts this set of ROPs.
Otherwise, F3 needs users to rewrite their reduce-first queries such that ROPs can perform further
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throughput reductions or reduce the number of reduce-first queries to be deployed. F3 then repeats
the previous steps to optimize these ROPs. This workflow is similar to the profile-guided techniques
which collect performance profiles to optimize software in the production environment (e.g.,
Facebook Bolt [60] and Google AutoFDO [18]). The assumption of having representative historical
traces is valid, as prior work, such as Sonata [29], also uses them to optimize monitoring query
planning.

Run-time. During a transient period where current traffic patterns deviate from historical
traces, if the output counter stream exceeds max_bw during runtime, F3 automatically downscales
the counter stream to reduce the bandwidth consumption. That is, if the max_bw allows us to
stream X counters, and in the current epoch, we observed Y distinct keys, a uniformly random
subset of X counters will be sent. This approach is equivalent to flow sampling when the key is
a 5-tuple. As demonstrated in prior work [15], many monitoring queries exhibit accuracy that
degrades gracefully based on the flow sampling probability, p = min{1, X/Y}. For example, consider
detecting super spreaders or port scans (srcIPs that send packets to many dstIPs or many ports on
the same destination) in Table 2. Prior works (e.g., Sonata [30]) have considered a fixed threshold
T (e.g., 1000) such that any srcIP that communicates with more than that many dstIPs/ports is
considered malicious. After sampling, we check which srcIPs communicate with more than T - p
destinations. As long as p is not exceedingly small, concentration bounds imply that F3 would be
able to satisfactorily identify the culprits. Namely, if the srcIP communicated with Z destinations,
the number of sampled counters with high probability be Z + ©(1/Z - (1 — p) - p~!) (O function
represents asymptotic tight bounds). For example, with p = 10%, T = 1000, with probability 99% we
will flag a srcIp that communicates with at least 1500 dstIps but will not flag one that communicates
with at most 670.

3.4 Telemetry data analysis at FPGA

F3 FPGA is composed of three modules: epoch-counter history, query-specific reduce, and query-
specific analysis. The epoch-counter history module is a fixed module at runtime, which keeps
epoch counters output from ROPs on the F3 switch in recent history. Operators can write their
query-specific reduction and analysis modules using either RTL language (e.g., Verilog) or High-
level Synthesis (e.g., Vitis HLS [10]). They can also reconfigure the reduce and analysis modules at
runtime based on the queries. With partial reconfiguration, operators can introduce new queries
without impacting current queries deployed on F3 FPGA.

Epoch Counter History The FPGA maintains epoch counter history in a circular buffer. It
enables temporal analysis to find the pattern across different epochs, which is necessary for
analyzing examples like microburst analysis and detect LDoS attack in Table 1.

With FPGA’s large on-chip memory, the epoch-counter history module can maintain many
epochs. For example, 1024 epochs only take 1.488% FPGA on-chip BRAM (see Section 5.2). Epoch-
counter history enables temporal analysis in the query-specify reduction and analysis stage.

Query-specific Reduce. With merging rules in section 3.2, queries with ROPs merged under
merging rules take the same epoch counters as input. But we need query-specific reduction to
break these epoch counters into query-specific inputs. For example, detect super spreader in
Table 2 needs to apply aggregate(keys=(sIP,dIP),f=distinct) to break epoch counters output
by R=aggregate(keys=fiveTuple, f=distinct) into unique IP pairs. Operators can implement one
reduce layer for each of these merged queries. F3 parallelizes these reduction layers in FPGA.

These reduction layers can leverage FPGA’s large memory to minimize the error. For example, the
aggregation operator can implement larger hash tables at FPGAs than at switches, which reduces
hash collision.
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Example Query code

Super Spreader [81] reduce_prefix = packetStream.aggregate(keys=(sIP,dIP),val=None, f=distinct)
analysis = reduce_prefix.aggregate(keys=(sIP,), val=None, f=count).filter((sIP, cnt) => cnt > Th)

Port scan [37] reduce_prefix = packetStream.aggregate(keys=(sIP,tcp.dport),val=None, f=distinct)
analysis = reduce_prefix.aggregate(keys=(sIP,), val=None, f=count).filter((srcIP, cnt) => cnt > Th)

TCP Incomplete reduce_prefix = packetStream.aggregate(keys=(sIP,tcp.flags), val=None, f=count)

Flows [82] n_syn = reduce_prefix.filter((sIP,tcp_flags),cnt) => (tcp_flags == SYN).map(((sIP, tcp_flags),cnt)=>(sIP, cnt))
n_fin = reduce_prefix.filter((sIP,tcp_flags),cnt) => (tcp_flags == FIN).map(((sIP, tcp_flags),cnt)=> (sIP,cnt))
analysis = n_syn.join(keys=(sIP,), n_fin).map((sIP, (cntl,cnt2)) => (sIP,cntl-cnt2)).filter((sIP,cnt) => cnt>thr)

Nery opened TCP reduce _prefix = packetStream.aggregate(keys=(dIP,tcp.flags), f=count)
analysis = reduce_prefix.filter(((dIP,tcp_flags),cnt)=>tcp_flags==SYN)
Conns [82] .map( ((dIP,tcp_flags), cnt)=>(dIP,cnt)).filter((dIP,cnt)=>cnt>thr)

Slowloris attack de- reduce_prefix = packetStream.filter(p => p.proto == TCP).aggregate(keys=(dIP,sIP,tcp.sPort), val=ipv4.totalLen, f=sum)
. n_conns = reduce_prefix.aggregate(keys=(dIP,sIP,tcp.sPort), val=None, f=distinct).
tection [30] aggregate(keys=(dIP,),val=None, f=count)
n_bytes = reduce_prefix.aggregate(keys =(dIP,), val=ipv4.totalLen, f=sum)
analysis = n_conns.join(keys=(dIP,), n_bytes)).map((dIP,(con,byte))=>(dIP, (con/byte))).
filter((dIP,con/byte)=>(con/byte>Th2))

LDoS attack detec- reduce_prefix = packetStream.aggregate(keys=5tuple, val=ipv4.totalLen, f=sum)
tion [45 92] analysis = reduce_prefix .autoCorrelation(thr, nEpochs=n)
>

Microburst analysis reduce_prefix = packetStream.aggregate(keys=5tuple, val=ipv4.totallLen, f=sum)
[19 38 76] ip_prefix_bytes = reduce_prefix.map((5tuple,bytes)=>(sIP/24,bytes).aggregate(keys=(sIP/24,),val=bytes, f=sum)
U analysis=ip_prefix_bytes.changeDetection(threshold=Thl, tA=nl, tB=n2)
.join(key=(sIP/24,), reduce_prefix).filter((5tuple, nbytes) => nbytes > Th2).
map((5tuple, _) => (sIP/24, nbytes))

Pulse—wave DDOS reduce_prefix = packetStream.aggregate(keys=5tuple, val=None, f=count)
Analysis [12] analysis = reduce_prefix.clustering()

Priority ﬂOW con- reduce _prefix = packetStream.aggregate(keys=(priority, S5tuple), val=ipv4.totalLen, f=sum)
. priority_bytes = reduce_prefix.aggregate(keys=(priority,), val=ipv4.totallLen, f=sum)
tention [72’ 73’ 76] flow_priority = reduce_prefix.aggregate(keys=(priority, 5tuple), val=None, f=distinct)
analysis = priority_bytes.join(keys=(priority,),flow_priority).
filter((priority, (n_bytes,5tuple))=>(priority<Thl)&&(n_bytes>Th2))

Packet Loss detec- reduce_prefix = packetStream.aggregate(keys=5tuple, val=None, f=count)
tion [50] analysis = reduce_prefix.flowLossDetection(thr, nEpochs=n)

Table 2. Reduce-first Query Table.

Query-specific Analysis. Query-specific analysis module provides the core analysis part of
each query. For example, in the second column of Table 2, the query code not colored in blue is the
query-specific analysis part. Here, we use two examples to show that FPGA can support advanced
analysis functions.

Change detection. Change detection can capture significant changes in short-term behavior [42].
The microburst query (Table 1) uses change detection to detect the bursty flows or sub-networks in
a short time window. Existing works like ConQuest use simple thresholding to flow’s weight in
the queuing buffer to detect bursty flows, which could incorrectly report large background flows
as bursty flows. Change detection can distinguish large background flows from real bursty flows
by analyzing temporal change patterns. We present one version of the change detection function
based on previous work [53, 54, 65].

Consider two adjacent time intervals t4 and tg epochs. If the volume for a flow x in interval t4
is Sa[x] and Sp[x] over tg, we define the change of a flow x as the volume differences in the two
time intervals: D[x] = [Sa[x] — Sg[x]|. We define a flow as a heavy change flow if the difference
in its signal exceeds ¢ percentage of the total changes over all keys. The total changes are defined
as D = er[n] D[x]

Previous switch-based change detection needs control-plane involvement and only performs
simple change detection when t4 and ¢p are the same as single epoch length [54]. This is due to the
limited number of stages on the programmable switch. FPGA can provide change detection across
multiple epochs fully on the data plane.
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Flow-level packet loss detection. The detect packet loss query (Table 1) detects flow-level packet
loss by comparing the per-flow packet counters from upstream and downstream switches. In F3,
FPGA is directly connected to one switch (local switch) and it can receive epoch counters from
the local switch and remote switches through packet forwarding. We use k-set [24] to aggregate
epoch counters (flow,n_pkts) from different switches. The k-set is a dictionary data structure that
supports both addition and subtraction of a sequence of (key,value) pairs. k-set also provides an
operation RecoverSet that can return all (key,value) pairs with non-zero value inside the k-set.
k-set is a randomized data structure and takes a confidence parameter é. It can provide 1 — §
probability guarantee that RecoverSet can succeed when the number of satisfied keys is less than k.

To detect flow-level packet loss, k-set adds (flow,n_pkts) counters from upstream switches and
subtracts (flow,n_pkts) counters from downstream switches. RecoverSet operation can return flow-
level loss counters (flow,n_loss_pkts). Compared with other dictionary data structures (e.g., a hash
table), the k-set has much smaller memory usage, which is determined by the number of lossy flows
instead of the total number of flows. However, k-set is resource-consuming to implement on the
switch (costs lots of ALUs to simulate multiplication operations), while FPGA can easily support it.

4 Implementation

We have implemented F3 on a Tofino 32D switch ASIC [4] connected to Xilinx/AMD Alveo U250
FPGA card [1] to emulate an FPGA co-processor. The F3 switch code, consisting of the Map and
Aggregate modules, is written in P4 while the FPGA code, including the Epoch counter history,
Query-specific reduce and Query-specific analysis modules, is written in Verilog.

F3 Switch There are two types of modules at the switch:

Map. We extract fields from packet headers and evaluate predicates, which are boolean operations
on packet header fields (e.g., dport > 80) or fields stored in user metadata. The resulting flags from
these evaluations are then stored in the user metadata.

Aggregate. We use the available registers to implement a hash table for the epoch-counter (EC).
At the end of each epoch, we use Tofino’s data plane packet generator to export the counter to
the FPGA, creating a batch of packets, each recirculating several times to minimize the header
overheads. Since the data plane packet generator is hardware-based, users can configure the counter
readout interval with a fine-grained period of 100us or even lower and reach 100Gbps throughput.

F3 FPGA There are three types of modules in the FPGA:

Epoch counter history. Each counter-history is implemented using FPGA’s BRAM. We declare
registers in Vitas HLS [10] and Vitas can find the best BRAM layout on FPGA.

Query-specific Reduce. For the aggregate operator, we use a hash table which is implemented
using FPGA’s BRAM. The hash function is an efficient multiply-shift function based on [74]. For
other reduce operators (filter and sample), they are directly expressed in Vitas HLS.

Query-specific Analysis. Here, we focus on discussing the implementation of advanced functions
mentioned in Section 3.4. (1) Change Detection. The change detection module has a change table
implemented in BRAM. First, we calculate the change for each flow and put it into the change table.
Second, we calculate the sum of all absolute changes. Third, we check if the change of each flow
is larger than a certain threshold of the total change. Since FPGA is more efficient in performing
integer arithmetic operations, we use integer multiplication to approximate the checking condition
[é] - D[x] = D. (2) Flow-level packet loss detection. We implement the k-set data structure in
Verilog. The two-dimensional hash table is implemented using BRAM. Since recoverSet operation
needs integer division, we translate division into multiplication and bit operation, which is an
optimization technique commonly used in modern compilers [78].
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5 Evaluation

We now show the benefits of F3 with FPGA as a coprocessor for network telemetry: F3 can support
a variety of queries with comprehensive analysis with high performance and low resource usage.

5.1 Supporting Comprehensive Analysis

We demonstrate the flexibility of F3 with two examples Pulse-wave DDoS Analysis and Microburst
Analysis. For each example, we compare F3 with two alternative solutions in simulation : state-of-the-
art switch dataplane monitoring systems and the ideal CPU-based solution that runs comprehensive
analysis algorithms at line rate.

5.1.1  Pulse-wave DDoS Analysis. Pulse-wave DDoS attacks are a new volumetric attack type
formed by short, high-rate traffic pulses [12]. ACC-Turbo [12] introduces an online clustering
algorithm to characterize pulse-wave DDoS attack patterns identify the cluster for each incoming
packet, and perform real-time reactions (e.g., programmable packet scheduling) for malicious flows.

Experiment setup. We leverage the open-source simulation code from ACC-Turbo [27] , which
simulates a switch processing network traffic. And we feed CICDD0S-2019 [66] trace, as used in
ACC-Turbo [12], at 108x speed (simulating 100Gbps network load), which consists of a series of
DDoS attacks.

Alternative solutions. We compare three clustering algorithms: (1) ACC-Turbo on the switch:
We use the ACC-Turbo algorithm takes srcip and dstip, sport, dport, ttl, and pktlen and follow the
approach in ACC-Turbo [12] that uses each byte of them as features. The algorithm runs four
clusters as suggested in [12] to fit in the limited stages and ALUs of a Tofino switch. (2) Online
K-means on F3: F3 takes the input of epoch counters every 100us, and runs query-specific reduce
to extract each byte of the srcip and dstip, sport, dport as features. Based on the packet counts in
ECs, the FPGA generates these features for each packet to feed into the clustering algorithm. Note
that we do not use features ttl, and pktlen because they are per-packet information that epoch
counters cannot collect. F3 runs the online k-means solution with a constant update ratio of % [6]
to make it feasible to implement on FPGA. (3) Offline K-means on the ideal CPU We assume an ideal
CPU can take all the per-packet features (same as (1)) at line rate and run the best offline K-means
solution [41]. For (2) and (3), we vary the number of clusters from 4 to 20.

We use two metrics: purity and recall. Same as [12], we label each cluster as either majority-benign
or majority-malicious. Purity measures the number of packets matching their cluster label divided
by the total number of packets. Recall measures the percentage of malicious packets clustered to
the majority-malicious clusters.

Results. Figure 5 shows that F3 improves the purity of ACC-Turbo on the switch by up to 11.7%
and recall by up to 35.9%. This is because F3 supports more comprehensive analysis than switches
can support. Compared to the ideal CPU, F3 only loses 2% purity and 8.0% recall. This is because F3
uses fewer features and runs the approximate solution of online K-means. With more clusters, the
purity and recall gap between F3 and the ideal CPU becomes smaller because more clusters can
make both the purity and recall closer to optimal.

5.1.2  Microburst Analysis: Microburst is common in data centers [87] and operators are interested
in understanding the interplay with application workloads and burst properties [25]. One of the
most important steps is finding the microburst’s contributing flows.

Experiment setup:

Topology. We use the ns-3 [5] simulator to test a topology with 8 spine and 8 leaf switches with
128 hosts connected by 10Gbps links with 2us propagation delay [84]. We set the switch queue size
as 700KB. We use DCTCP [14] as the default congestion control algorithm.
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Fig. 5. DDoS clustering purity and recall

Traffic. We feed background traffic based on DCTCP_CDF [14] with average 60% network load.
Like in [51], we generate incast traffic by randomly selecting 60 senders and one receiver, each
sending one flow of 500KB. The incast traffic load is 2% of the network capacity. During each incast,
a microburst happens at the leaf switch port that connects to the receiver. These incast flows are
the ground truth contributing flows for the microburst. We feed the packet traffic received at each
leaf switch port to the various solutions below to detect the contributing flows of the microburst.
The simulation lasts 200ms and there are 64 incasts during the simulation in total.

Alternative solutions: We compare three microburst analysis algorithms: (1) ConQuest on
the switch[19]: ConQuest is the state-of-the-art solution for microburst analysis on switches. We
configure the snapshot and count-min sketch parameters as the ConQuest paper suggested. We
varied its queue occupancy threshold from 1% to 10%. (2) Change Detection on F3: In F3, the switch
exports epoch counters every 100us. The FPGA runs change detection as discussed in Section 4. To
fit the FPGA architecture, change detection has two approximations: First, we use a hash table to
aggregate changes for each flow which may incur collision; second, we use integer arithmetic to
replace floating point arithmetic. (3) Change Detection on the ideal CPU: For the ideal CPU case,
we run the change detection algorithm without any approximation: We run an ideal hash table
without collisions and use floating point arithmetic. For (2) and (3), we configure t4 and tg as 8
epochs and vary the change detection threshold from 4% to 40%.
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Fig. 6. Microburst analysis precision-recall curve Fig. 7. k-set memory usage

Results. Figure 6 shows the precision-recall curve of the three microburst analysis solutions. F3
has a better precision-recall tradeoff than ConQuest on the switch. F3 can improve the recall by up
to 24% for the same precision rate compared with ConQuest. Compared with the ideal CPU, F3’s
precision-recall curve is close to the ideal CPU. For example, F3’s precision is only 0.7% smaller than
the ideal CPU when both achieve 98.0% recall. The difference is caused by the two approximations
in the FPGA implementation of change detection we mentioned before.

5.2 High Performance

To demonstrate the generality of the F3 framework, we implemented ten telemetry queries in
Table 5 on Xilinx U250 FPGA [1] using Vitis HLS 2020.2 [10].
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All queries can be synthesized at 340MHz frequency, which means FPGA can process 100Gbps
throughput. FPGA can receive up to 781 million epoch counters per second (each epoch counter is
16 bytes).

F3 runs three stages at the FPGA: epoch-counter history, query-specific reduction, and query-
specific analysis. Due to pipelining, F3 FPGA’s end-to-end analysis latency is determined by the
bottleneck stage. When we run advanced query-specific analysis (such as correlation and change
detection), the end-to-end latency is determined by the analysis latency.

Table 3 shows the latency of a few advanced query-specific analysis functions used in our queries.
The correlation latency is the time it takes to calculate the auto-correlation score across 512 history
epochs for one flow. The change detection latency is the time it takes to find heavy change flows
across 128 different flows (t4 = 8 epochs and tg = 8 epochs). The flow-level loss detection latency is
the time it takes to get flow loss by performing RecoverSet operation to k-set (k = 128).

Analysis functions Latency (ns) Stages | ALUs | SRAM

Correlation 791 F3 for all queries 4 20.8% | 2.1%

Change detection 6051 ACC-Turbo for Pulse-wave DDoS | 12 72.9% | 15.4%

Flow-level loss detection | 6124 ConQuest for microburst analysis | 9 18.8% | 3.3%
Table 3. Latency involving advanced query- Table 4. Switch resource usage

specific analysis.

Our FPGA can finish all query-specific analysis functions in Table 3 less than 6.2 ys. In contrast,
the CPU’s median packet forwarding latency using DPDK without analysis is already higher (7.8 us
reported in [22]). The change detection and flow-level loss detection take more time than correlation
because they both have more memory access across epochs and flows. The loss detection analysis
also needs complex computation in the k-set recovery stage.

5.3 Resource usage

We measure the resource usage of F3 at both the switch and the FPGA.

Switch: Table 4 shows that F3 uses only four stages, 20.8% of ALUs, and 2.1% of SRAM to support
all ten queries.

In contrast, the switch implementations for specific queries can take more resources. (Note that
some queries do not even have a switch-only solution.) We take ACC-Turbo on the switch for
Pulse-wave DDoS analysis and ConQuest for microburst analysis as an example. ACC-Turbo on the
switch takes 12 stages to maintain the states for four clusters and 72.9% ALUs to run computation
for online clustering. ConQuest also takes more stages and SRAM to maintain multiple snapshots
history on the switch. F3 has 2.0% higher ALU usage than ConQuest because F3 needs more
computation to generate epoch counters that work for all queries.

FPGA: Overall, it takes around 26.9% of BRAM and 6.1% of lookup tables to support all ten
queries together. We also breakdown the resource usage into three stages:

For the epoch-counter history module, we implement one that keeps 1024 epochs and each epoch
is a hash table of 2!¢ rows. The key of the epoch counter is 128-bit and the value of the epoch
counter is 32-bit. The epoch-counter history module uses just 1.448% of total BRAM on FPGA.

Table 5 shows the resource usage of individual queries for the query-specific reduction and
analysis modules. Port scan query only costs less than 0.9% BRAM and less than 0.03% for other
resources because it only has a few basic dataflow operators (aggregate and filter). For the packet
loss detection query, we set k = 128 which means the k-set can capture a maximum number of
128 lossy flows. We configure k-set to take 5-tuple (104-bit) as key and packet counter (16-bit) as
value to get flow-level packet loss counter. This query costs around 8.8% BRAM, 6.1% DSP, 1.1%
FF, and 1.1 % LUT. The reason is that the k-set needs to maintain two-dimensional tables and do
multiplication for loss detection.
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Query-specific Reduce Query-specific Analysis

Query BRAM DSP FF LUT BRAM DSP FF LUT

Super spreader [81] 0.595% 0.041% 0.025% 0.020% | 0.595% 0.000% 0.009% 0.012%
Port scan [37] 0.595% 0.024% 0.021% 0.015% | 0.298% 0.000% 0.001% 0.006%
TCP Incomplete Flows [82] 0.893% 0.008% 0.011% 0.017% | 0.595% 0.000% 0.011% 0.016%
Newly opened TCP Conns [82] 0.893% 0.008% 0.011% 0.017% | 0.595% 0.000% 0.010% 0.012%
Detect slowloris attack [30] 1.488% 0.106% 0.026% 0.021% | 0.893% 0.000% 0.012% 0.018%
Detect LDoS attack [45, 92] 1.488% 0.179% 0.027% 0.021% | 1.488% 0.179% 2.679% 2.443%
Microburst analysis [19, 38, 76] 1.488% 0.179% 0.027% 0.021% | 1.786% 0.179% 1.760% 1.984%
Pulse-wave DDoS Analysis [12] 1.488% 0.179% 0.027% 0.021% | 0.000% 0.065% 0.036% 0.485%
Priority flow contention [72, 73,76] | 1.488% 0.244% 0.028% 0.021% | 1.488% 0.244% 0.033% 0.024%
Detect packet loss [50] 1.488% 0.179% 0.027% 0.021% | 7.328% 5.982% 1.011% 1.060%

Table 5. F3 FPGA Block RAM, Digital Signal Processing, Flip-Flop, and LookUp Table resource usage for
common network monitoring tasks.

Memory usage in flow-level loss detection: We now vary k in the loss detection query to understand
its memory usage for different loss scenarios (Figure 7). To track 1024 lossy flows with 99.99%
probability, we only need ~2MB memory, which is around 16.5% of Xilinx U250 BRAM [1]. Note
that 1024 lossy flow in a 100us epoch is already a worst-case scenario.

6 Discussion

Dataplane-speed Reaction. Faster reaction time reduces the impact of bad network events
(e.g., LDoS attack in Table 1). Since F3 is fully on the dataplane (switch+FPGA), we envision that
F3 enables the opportunity for reaction in dataplane speed (e.g., 10 ps latency). In F3 FPGA, there
could be one reaction decision module that decides the reaction strategy (e.g., rate limiting) based
on analysis results and sends packets to inform the F3 switch. The F3 switch can perform a reaction
based on the reaction strategy.

Commodity switch+FPGA. In our current F3 prototype, we use the programmable switch to
implement the reduction operator prefix (ROP). We believe that F3 can also apply to commodity
switch+FPGA architecture if switch vendors can provide programming APIs for operators to
configure ROP.

F3 switch under heavy load. Our current F3 prototype relies on the programmable switch’s
traffic manager to generate and recirculate packets for reading counters and sending the data to
the FPGA. However, when the switch is under heavy load, recirculation packets may be dropped,
leading to the loss of monitoring information. This can affect the accuracy of F3’s analysis on
the FPGA side. Exploring methods to maintain the accuracy of F3’s FPGA analysis under these
conditions is an interesting direction for future work.

7 Related Work

In this section, we review the state-of-the-art approaches related to our work. We first discuss
the ones relying only on programmable switches and then focus our attention on the solutions that
leverage end-host systems. Finally, we briefly discuss proposals that use the combination of FPGAs
and switches to accelerate network functions.

Switch-based telemetry. Switch-based telemetry systems leverage programmable switches to
collect fine-grained telemetry data. Based on whether the analysis of the telemetry data needs the
help of a CPU (switch CPU or end-host CPU), these telemetry systems can be classified into two
categories. (1) Telemetry systems such as Sonata [30], Marple [59], FlowRadar [49], *Flow [71] and
NetSeer [93] put part of the analysis logic of telemetry data on CPU. (2) Telemetry systems such as
ConQuest [19] and ACC-Turbo [12] perform the analysis fully on the switch dataplane. The recent
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Direct telemetry Access proposal [46] also shows that by doing switch processing and aggregation
one can reduce the collection overheads for answering queries.

End-host based telemetry. End-host-based telemetry systems use end-hosts to collect and
monitor telemetry data. Trumpet [58], PathDump [72], PingMesh [28], Confluo [40] leverage the
advantage that end-hosts have ample resource and better programmability support. However, these
systems lack the network visibility that may be necessary to debug a class of network problems.

Switch+FPGA Offloading. Tiara [83] is a stateful layer-4 load balancer that leverages the
large high-bandwidth memory (HBM) available in state-of-the-art FPGAs and co-locates them
with switches to offload memory-intensive tasks from the switch. Ribosome [64], instead, employs
FPGAs to extend the packet-processing capabilities of switches and demonstrate its capabilities
using packet-processing programs such as firewall, load balancer, and packet scheduler.

8 Conclusion

In this paper, we have presented F3, a new real-time telemetry solution relying on the cooperation
between a switch ASIC pipeline and an FPGA co-processor colocated next to it. When designing
F3, we carefully considered the gap between the two in terms of throughput and computation
expressibility. To that end, we propose to split the query execution between the devices in a way
that allows the switch program to remain as much as possible static while we re-program the
FPGA when new queries are introduced. Further, we presented various techniques for bridging
the throughput gap between the devices while minimizing the impact on the query accuracy.
Finally, a testbed evaluation demonstrates that F3 misses up to 5.0x fewer DDoS attack vectors than
ACC-Turbo, the state-of-the-art on-switch solution, and up to 24% fewer microburst-contributing
flows for the same precision rate.
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