

**PP43F-1727 Assessing species-specific oxygen isotopic temperature calibrations for
Gulf of Maine bivalves**

Martin, B., Rivera, D., Thatcher, D., Wanamaker, A., Schwartz, M., Whitney, N., Guay, K., Franklin, F., Stewart, J., Williams, B., LaVigne, M.

American Geophysical Union Fall Meeting

December 2023

San Francisco, CA

Abstract:

Oxygen isotope records from mollusk shells have been used extensively to reconstruct past ocean temperatures and hydrographic conditions. Due to its centuries-long lifespan, *Arctica islandica* is commonly used in paleoclimate reconstructions, while mollusk species with shorter lifespans, such as *Mya arenaria*, are often preserved in indigenous shell heaps from thousands of years ago. Current reconstructions implement an oxygen isotope-water temperature calibration derived from multiple species of aragonite mollusks (Grossman and Ku, 1986). To test for species-specific differences in the oxygen isotope-water temperature relationship, three Gulf of Maine mollusk species (*Mercenaria mercenaria*, *M. arenaria*, and *A. islandica*) were grown in controlled temperature treatments (6.21 ± 0.06 , 8.91 ± 0.28 , $11.83 \pm 0.14^\circ\text{C}$) in a flow-through laboratory experiment for twenty weeks. We measured the $\delta^{18}\text{O}$ of the seawater ($\delta^{18}\text{O}_w$) in each tank throughout the experiment and the $\delta^{18}\text{O}$ of the growing edge of each shell ($\delta^{18}\text{O}_c$) at the conclusion of study ($n_{\text{mya}} = 56$, $n_{\text{mer}} = 46$, $n_{\text{arc}} = 22$). The $\delta^{18}\text{O}_c$ values for replicate individuals from the same species and tank agreed within $\sim \pm 0.2\text{--}0.6\text{‰}$ ($\pm 1 \text{ SD}$, $n = 4\text{--}10$ replicates per species), which is above the analytical uncertainty of $\sim \pm 0.09\text{‰}$. Both $\delta^{18}\text{O}_w$ and $\delta^{18}\text{O}_c$ were used to calculate temperature using the calibration equation determined by Grossman and Ku (1986). Preliminary temperatures calculated from *M. arenaria* and *M. mercenaria* $\delta^{18}\text{O}_c$ values using the Grossman and Ku equation differed significantly from the measured tank temperatures ($P < 0.05$ for *M. arenaria* and *M. mercenaria* at all three temperatures), predicting temperatures that were $\sim 1\text{--}4^\circ\text{C}$ cooler and $\sim 2\text{--}6^\circ\text{C}$ warmer, respectively. Temperatures calculated from *A. islandica* $\delta^{18}\text{O}_c$ using the Grossman and Ku equation generally agreed with measured temperatures for each treatment. Based on these findings, the use of species-specific calibration equations may be necessary to account for differences in the ways that mollusk species such as *M. mercenaria* and *M. arenaria* record temperature. Conversely, our findings broadly reinforce the use of Grossman and Ku's multi-species calibration for oxygen isotope records from *A. islandica*, though the relationship at lower temperatures may need to be studied further.