Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

Exponential Lower Bounds on the Double Oracle Algorithm in Zero-Sum Games

Brian Hu Zhang', Tuomas Sandholm

1,2,3,4

!Computer Science Department, Carnegie Mellon University
2Strategy Robot, Inc.
3Strategic Machine, Inc.
*Optimized Markets, Inc.
{bhzhang, sandholm} @cs.cmu.edu

Abstract

The double oracle algorithm is a popular method of
solving games, because it is able to reduce com-
puting equilibria to computing a series of best
responses. However, its theoretical properties
are not well understood. In this paper, we pro-
vide exponential lower bounds on the performance
of the double oracle algorithm in both partially-
observable stochastic games (POSGs) and extensive-
form games (EFGs). Our results depend on what
is assumed about the tiebreaking scheme—that is,
which meta-Nash equilibrium or best response is
chosen, in the event that there are multiple to pick
from. In particular, for EFGs, our lower bounds re-
quire adversarial tiebreaking, whereas for POSGs,
our lower bounds apply regardless of how ties are
broken.

1 Introduction

The double oracle algorithm [McMahan et al., 2003] is a pop-
ular practical framework for solving large games. It works
by maintaining a meta-game comprised of a set of policies
for each player, computing a meta-Nash equilibrium of the
meta-game, and then computing best responses to that meta-
game and adding those best responses to the meta-game for
the next iteration. In essence, it reduces solving multi-player
games to solving a series of small meta-games, which are easy,
and best-response problems, which are single-player games.
The method (or, more specifically, variations on the deep
generalization of it, in which the best responses are replaced
with deep RL-based approximate POMDP solvers, commonly
referred to as a special case of the policy-space response or-
acle [Lanctot et al., 2017] algorithm), has been successfully
applied to large, two-player zero-sum games such as Barrage
Stratego [McAleer et al., 2020] and StarCraft [Vinyals et al.,
2019]. In practice, the algorithm tends to converge very fast:
even in games far too large to enumerate the state space, only
tens or hundreds of iterations are required to reach strong play.

However, to our knowledge, the theoretical properties of
double oracle are almost completely unstudied. Indeed, the
lack of an efficient convergence guarantee has led to several
variants of double oracle being developed which do have ef-
ficient convergence guarantees, most notably the sequence-

form [BoSansky et al., 2014] and extensive-form double or-
acle [McAleer et al., 2021] algorithms. In extensive-form
games, both of these algorithms are guaranteed to converge
in a number of iterations polynomial in the size of the game.
Another variant of double oracle, self-play PSRO [McAleer
et al., 2022] has also been developed that adds randomized
policies to the meta-game, in the hopes that such policies lead
to faster learning. In this paper, however, we focus on the plain
version of the double oracle algorithm.!

We derive several different partially-observable stochastic
games (POSGs) in which double oracle takes exponentially
many iterations to converge. The games differ in their structure
and in what assumptions need to be made about the choices left
unspecified in the algorithm, namely, the choices of initializa-
tion, meta-Nash equilibria, and best responses. For example,
if all choices are random then we give a partially-observable
stochastic game with an exponential convergence bound (The-
orem 3.2); if all choices can be made adversarially, then we
give a tree-form, fully-observable game (Theorem 3.5). A
summary of our results can be found in Table 1.

2 Preliminaries

A two-player partially-observable stochastic game (POSG)
(hereafter simply game) consists of the following elements:?

1. A finite state space S, action spaces A1, Ao, and obser-
vation space O with |O] < |S

2. a starting distribution Sy € A(S);

3. aset of terminal states Z C S,

'In multi-player general-sum games, especially when the game
is large enough that “best” responses are approximated with deep
reinforcement learning, generalizations and variants of the double
oracle algorithm have been studied under the name policy space
response oracle (PSRO) [e.g., Lanctot et al. 2017]. In this paper, we
adhere to the more traditional name double oracle because we are
indeed working with the more “standard” two-player version of the
algorithm, not any generalization thereof.

The definition used here is more restrictive than many common
definitions of POSGs. For example, many authors allow observations
to be randomized, or action sets to depend on state, or rewards to be
given at nonterminal states and be action-dependent. But since this
whole paper concerns only lower bounds, adding restrictions makes
our results more powerful. It also simplifies our notation.
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4. for each (s,a1,as) where s € S\ Z,a; € Aj,as € As,
a probability distribution p(-|s, a1, az) € A(S) denoting
the probability of transitioning to the next state;

5. two observation function 01,02 : S\ Z — O; and

6. two reward functions Ry, Ry : Z — [—1,+1] denoting
the reward of P1 and P2 respectively, as a function of the
terminal state reached.

A game is zero-sum if Ry = —Ry;. We will make the as-
sumption that the game has a DAG structure: the transition
multigraph of the game—that is, the multigraph whose nodes
are the states and for which there is an edge (s, ") for each
pair (ai,as) € A1 x As such that p(s’|s, a1, a2) > 0—is
directed and acyclic. Thus, the terminal states z € Z are the
sinks of this DAG. We will denote the depth of the DAG by k.

A pure policy for a player i € {1,2} is a mapping ; :
0=¢ — A;, where O=? denotes the set of sequences on O
of length at most k. We denote by II; the set of pure policies
of player i. A pair of pure policies (71, 72) is a policy profile
or simply profile. A profile induces a distribution over the
terminal states Z of the game, given by sampling so ~ S and
then following (71, 7o) until a state z € Z is reached. We will
use z ~ (71, 72) to denote a sample from this distribution. A
mixed policy u; € A(1l;) is a distribution over pure policies.
Given mixed profile (p1, pi2), the expected value of player i is

Vilpspe) = | E - Ri(2).

T2 2,
ZN(Trl,ﬂ'Q)

Policy m; € 1I; is a best response to a mixed policy p_; if

!/
m; € argmax Vi (m;, pi—;).
i ell;

An e-Nash equilibrium is a profile (11, i2) such that neither
player can improve by more than ¢:
max Vi(Wia,u—i) -

i €11,

Vi(p) <e.

A Nash equilibrium is a 0-Nash equilibrium. In general, com-
puting a Nash equilibrium of a POSG is hard—indeed, even
solving POMDPs (i.e., POSGs where |Az| = 1) is PSPACE-
complete [Papadimitriou and Tsitsiklis, 1987]. Tt will be useful
to define several special cases of POSGs:

1. A (fully-observable) stochastic game is a POSG in which
both players observe the true state, i.e., S = O and
01(8) = 02(s) = s.

2. A tree-form game is a POSG in which the transition
multigraph is a tree.

3. A normal-form game is a stochastic game with a sin-
gle nonterminal state (which is also the start state). A
two-player normal-form game is described by two matri-
ces V,Va € R4 X4z where V;(ay,az) is the reward to
player ¢ if P1 plays action a; and P2 plays as.

Any of the other forms can be converted into normal
form at the cost of a larger game: namely, any POSG is
equivalent to the normal-form game described by matrices
V1, Vo € RILXI2 Thig conversion, however, incurs doubly-
exponential blowup in the size of the game in general.

Algorithm 1: The double oracle algorithm. NOR-
MALFORMNASHEQUILIBRIUM returns an exact Nash
equilibrium to the normal-form game in which each
player picks a policy from its policy set II;. BESTRE-
SPONSE returns a pure policy that is a best response to
the given opponent policy.

1 Input: POSG, initial strategies 79 € II;, 79 € Il,

2 desired Nash gape > 0

3 Output: e-Nash equilibrium (11, p2) of the POSG

4 I« {79}, 113 < {73}

sfort=1,2,... do

6 | b, pub < Nash equilibrium of

7 normal-form game (I~ T4 1)
s | i < P1 bestresponse to ub
9 | b < P2 bestresponse to u}

10 if Nash gap < ¢ then return (u!, %)
w | e O )
2 I « Tt U {rh)

For zero-sum games, in each of the special cases, there
are polynomial-time algorithms for exactly computing a Nash
equilibrium: in the fully-observable case, one can perform
backwards induction (value iteration) starting from the leaves,
solving each state via a linear program; tree-form POSGs are
a subclass of extensive-form games, and Koller et al. [1994]
describe an LP-based method that runs in polynomial time.

2.1 The Double Oracle Algorithm

Pseudocode for the double oracle algorithm is given in Al-
gorithm 1. The algorithm is simple: it iteratively maintains

a meta-game (I11,115), computes a meta-Nash equilibrium
(11, pi2) to that meta-game, computes best responses (71, 72)
in the full game, and adds those best responses to the meta-
game. Double oracle clearly converges in a finite number of
steps: there are only a finite number of pure policies, and each
iteration of the main loop must add a pure policy to at least one
player’s meta-game policy set (if both best responses 77, T
are already in the policy sets, then the Nash gap would be 0).

The meta-game on iteration ¢ is a ¢ X ¢ normal-form game.
For zero-sum games at least, as specified above, Nash equi-
libria can be easily computed in polynomial time via linear
programming [von Neumann, 1928]. Thus, the entire com-
plexity of Algorithm 1 lies in the best responses (which are
POMDPs) and the number of iterations ¢ until the algorithm
terminates. For nonzero-sum games, Nash equilibrium compu-
tation is in general hard [Chen et al., 2009]. However, we will
ignore these computational issues and focus our attention on
the number of iterations it takes for double oracle to converge.

The double oracle algorithm is not affected by the game
representation. For example, running double oracle on a POSG
and running double oracle on the normal form of that POSG
would produce the same result. Therefore, for the rest of the
paper, we will call two games (strategically) equivalent if they
induce the same normal form.
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3 Main Results

As suggested above, the main results in this paper are lower
bounds on the complexity of the double oracle algorithm. In
particular, we will give several game examples in which double
oracle, under various assumptions about the best response
oracle, fails to converge to an e-equilibrium, for moderately-
sized ¢, until ¢ is exponentially large.

In general, a stochastic game may have no Nash equilibria
with small support. For example, consider the k-bit “gen-
eralized matching pennies” game in which P1 picks a string
71 € {0, 1}* one bit at a time, and P2 simultaneously attempts
to guess that string, also one bit at a time, with P2 winning if
and only if P1 and P2 guess the same string.

This game for k£ = 4 is depicted in Figure 1. Intuitively,
it is nothing more than a finite automaton that reads two bit-
strings ay,az € {0,1}* (interpreted as natural numbers in
{0,1,...,2*—1}) in parallel, and outputs the reward u(ay, as)
as specified by the normal-form game: that is, it returns —1 if
the strings are equal and +1 otherwise. This proves:

Theorem 3.1. For every k > 1, there exists a zero-sum fully-
observable stochastic game with O(k) nodes in which, regard-
less of initialization, meta-Nash, or best responses, double
oracle takes 2°%) iterations to find an exact equilibrium.

However, the “generalized matching pennies” game is not
ideal as a counterexample, for multiple reasons:

1. Polynomial-time approximation: While double oracle
fails to converge to exact equilibrium in polynomially
many iterations, it will converge to a e-equilibrium in
O(1/e) iterations: one can check inductively that, at
odd iterations, P1 will add an arbitrary new policy to its
support I1;, and P2 will add the same policy at the next
(Neven) ileration. Thus, after 2¢ iterations we will have
1% = 113 and (p3t, p3?) will be a 1 /t-equilibrium. This
is still a reasonable convergence rate.

2. High support. As mentioned above, the game has only
high-support equilibria.

The main counterexamples in our paper will fix both of
these issues. In particular, all our counterexamples will be
families of games in which there is a Nash equilibrium with
constant support size, and yet double oracle fails to find any
e-approximate equilibrium in poly (N, 1/¢) iterations, where
N is the size of the representation of the POSG. These coun-
terexamples are summarized in Table 1.

Theorem 3.2. For every k > 1, there exists a zero-sum POSG
with O(k) states and a pure Nash equilibrium in which, in the
double oracle algorithm,

* the meta-Nash equilibria and the best responses are
unique on every iteration, and

e for  constant, if the starting policies 79,79 are chosen

uniformly at random?, then double oracle takes ©(2%)
iterations in expectation.

3Choosing starting policies at random means choosing a pure
policy 72 from II; uniformly at random, not setting 7 to be the
uniformly random policy.

Proof. The proof is based on a simple normal-form game that
we call the n-bigger-number game. In the n-bigger-number
game, each player’s action space is A; = Ay = [n] =
{0,...,n — 1}, and the rules are as follows. Both players
simultaneously select numbers a; € [n]. If a; = a;, then both
players score 0. Otherwise, the player who plays the bigger
number scores 1, unless |a; —a;| = 1 in which case they score
2.

We first analyze the behavior of double oracle in the n-
bigger-number game with random starting policies. For each ¢,
let M (t) be the largest number in the support of either player’s
policy set ITt. Then with constant probability, M (0) < n/2.
Further, ! is supported on {0, ..., M (¢ — 1)}. Then the best
response 75 to 114 is at most M (t—1)+1, because any number
larger than ¢ performs worse than maxsupp(ut) + 1 < t.
Thus, M (t) < M(t — 1) + 1 for all ¢ > 1. Equilibrium can
only be reached when M (t) = n, because the only equilibrium
of the game is (n,n). Therefore, with constant probability,
double oracle takes O(n) iterations, and therefore the expected
number of iterations for double oracle is also ©(n).

We now show that the n-bigger-number game, for n =
2% is equivalent to a POSG with O(k) nodes, which would
complete the proof. Consider the POSG depicted in Figure 2
(for k = 4, easily generalizable). Like Figure 1, this POSG is
essentially a finite automaton that reads two bitstrings a1, as
simultaneously, and outputs the required value. The reward
depends on the value of a; — a9, in particular, whether it is
greater than 1, equal to 1, equal to 0, equal to -1, or less than
-1. The center row of nodes captures the states in which the
substrings read are currently equal (If that continues until the
last timestep, then the numbers are equal). The row above
the center captures the states in which a; # a9 but it is still
possible for a; = as + 1. (This happens if a; = 210¢ and
as = x01* for some string = and integer £.) The row below
the center is the same but with the players flipped.

Since observations are trivial, a pure policy in this POSG is
specified by a vector ; € {0, 1}*, whose jth index specifies
the action played by player ¢ at time j € [k]. The vector
m; is then identified with the pure action in the 2*-bigger-
number game whose binary representation is ;. This POSG
is equivalent to the 2*-bigger-number game. [

The next two results will be similar to the above result,
but will have increasingly stringent requirements on the struc-
ture of the game—first, stochastic games, and then tree-form
stochastic games. In exchange, we will also need more strin-
gent requirements on the behavior of the double oracle al-
gorithm. In particular, the meta-Nash equilibria and best re-
sponses used by double oracle may no longer be unique, so
we will need to make assumptions on how they are chosen.
Whenever the choice is not unique, we will always assume
adversarial choices for the algorithm—that is, we will assume
that meta-Nash equilibria and best responses are chosen to
make double oracle run for as long as possible.

Theorem 3.3. For every k > 1, there exists a zero-sum fully-
observable stocastic game with O (k) states and a pure Nash
equilibrium , in which, in the double oracle algorithm,

* the meta-Nash equilibria are unique on every iteration,
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game properties

double oracle assumptions

ZS FO TF Nashsupport initialization meta-Nash best responses |S] e*
Theorem3.1 v / X 20(k) — — — O(k) 2-0(k)
Theorem32 v X X 1 random — — O(k) o(1)
Theorem33 v v/ X 1 random — adversarial O(k) O(1)
Theorem34 X X 4 1 adversarial  adversarial — poly(k) ©(1/k)
Theorem3.5 v vV / 2 adversarial  adversarial ~ adversarial O(k) ©(1/k)

Table 1: Summary of main results. Nash support gives the minimum support per player, in pure policies, of any exact Nash equilibrium.
In all cases double oracle takes 2°(® iterations to converge to an e-equilibrium for every ¢ < €*. ‘ZS’, ‘FO’, and ‘TF’ mean zero-sum,

fully-observable, and tree-form, respectively.

e the best responses are not unique on every iteration, and

e for ¢ < 2, if the starting policies 70,79 are chosen
uniformly at random, double oracle with adversarial best
responses takes 2% — 1 iterations.

Proof. We will define a n-weak bigger-number game similar
to the n-bigger-number game used in the proof of Theorem 3.2.
In the weak n-bigger-number game, two players simultane-
ously select a number a; € [n], and whoever picks the bigger
number wins (scores 1).

Unlike the bigger-number game, best responses will not
be unique in the weak bigger-number game. For example,
every number bigger than 0 is a best response to 0. However,
we can still replicate the behavior of double oracle on the
bigger-number game, because the same conditions for that
behavior still hold: namely, the only Nash equilibrium is
(n,n), and max supp(u!) + 1 is always a best response to pf.
Therefore, if we always adversarially choose this best response,
an identical analysis holds, and the expected runtime of double
oracle is ©(n) iterations.

We now only need to represent the 2¥-weak bigger-number
game as a stochastic game. Consider the stochastic game in
Figure 3, which is this time a fully-observable game*. Once
again, this POSG is essentially a finite automaton that com-
putes the game value. As before, we relate the policies, which
are vectors 7; € {0,1}*, to numbers in {0,...,2% — 1} via
their binary representation, and from this it is easy to see that
the normal form of this stochastic game is indeed the 2*-weak
bigger-number game. O

Our next result is the only result that uses a nonzero-sum
game, and the first of two results concerning tree-form games.

Theorem 3.4. For every k > 1, there exists a nonzero-sum,
tree-form, partially-observable stochastic game with poly (k)
states, and a pure Nash equilibrium, in which, for e < 1/k,
there exist starting policies 7, 7S such that double oracle
with adversarial meta-Nash equilibria takes ©(2%) iterations
to converge.

Proof. As before, we define the normal-form game first. In
the n-incrementing game, two players simultaneously pick
numbers a; € [n|. If a; = a; + 1 then player ¢ scores «
and player j scores —f3, where > « > 0. If a; = a; then

“The observations in this game are actually irrelevant, because
there is only one possible state corresponding to each history length.
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both players score 0. Otherwise both players score a negative
number.

It is easy to see that, in the subgame where both players are
restricted to {0, ..., ¢} C [n], (¢,t) is a Nash equilibrium (in
fact, the unique welfare-maximizing equilibrium) and ¢ 4 1
is a best response for both players. Thus, if both players are
initialized at 11 = {0}, convergence will only happen after
will only converge after n iterations. We will set n = 2*, and
show that this game is representable as a stochastic game with
poly(k) states.

Consider the stochastic game defined as follows. Both
players have action sets of size 2k, identified with bitstrings
consisting of completely repeated digits, i.e., 0, 1, 00, 11, 000,
111, efc. For cleanliness we will write 0¢ to be the string with
0 repeated / times, and 1¢ for the string with 1 repeated / times.
These strings will denote the trailing runs of the players’ bit
strings. The transitions are as follows. At the root state, if
both players play the same bit and different lengths, then both
players score —2. If the players play different-length strings
and neither player has played a string of length 1, both players
score —2. Otherwise, the game continues.

At this point, there are three possibilities. From here on-
wards, players are forced to play either 0 or 1: any other action
immediately terminates the game with both players scoring
—2 (and is therefore dominated).

1. Both players have played 0° or 1¢. In this case, bit i €
{1,...,k — £ — 1} is drawn uniformly at random and
disclosed to both players, and both players choose an
action. Both players score 0 if the bits match, and —1
otherwise.

2. One player has played 0°, and the other has player 1¢. In
this case, abiti € {1,...,k — £ — 1} is drawn uniformly
at random and disclosed to both players, and both players
then choose an action again. The player who played 1°
scores — 1. The player who played 0° scores 1/2k if the
bits match, and —1 otherwise.

3. One player (WLOG, P1) has played 0° (for £ > 1), and
the other has played 1. In this case, abiti € {1,...,k —
2} is selected at random. Then both players select an
action. If i = k — /¢ then P1 is forced to play 1; if
1 > k — £ then P1 is forced to play 0. P1 scores —1. P2
scores 1/2k if the bits match, and —1 otherwise.

4. One player (WLOG, P1) has played 1¢ (for ¢ > 1), and
the other has played 0. In this case, abiti € {1,...,k —
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+1 +1 +1 +1

\ [\
1,0 0,1 1,0 0,1
0.0 0.0 0.0 00—
Figure 1: The k-bit guess-the-string game, here depicted for k = 4. The action spaces are A1 = Az = {0, 1}. The start state is the leftmost

state, labeled with —. Terminal states are drawn as rectangles, and their rewards are written within them. Transitions are deterministic, and
edges are labeled with the transitions that take them there.

+1 +1 +1
/T
0

T T
1,0 L1 0,0 1,0 L1 0,0 1,

Y
0,1 0,1 2
Y .

0,1

| | ! |
N =
0.0 1,1 0.1 0.0 1,1 0,1 0.0 1,1 0,1
Iy I I
-1 -1 -1

Figure 2: The 2" -bigger-number game used in Theorem 3.2, here depicted for k = 4. Observations are trivial: |O] = 1.

+1 +1 +1 +1
T T T T
1,0 11 1,0 L1 1,0 11 1,0 L1
0 ) \ 0
0.1 0.1 o 00— 00—
i 0,0 i 0,0 i i
-1 -1 -1 -1

3

i<II—€ z</I ¢ C)/Kk—e i:II—Z i>k—£h C>/l<k 7 i= k ¢ skt
000l Mt 00 o 1110 00 0.1 00 ol 00 0,1

0 L1 11 L1
@ H ‘1/21< —1‘ H ‘1/% —1‘ H ‘—1 1/21«‘ ﬁ ‘—1 1/21<‘ ﬁ ‘I/Qk —1‘ H ‘1/21« —1‘ ﬁ ‘I/Qk —1‘ -

Figure 4: A depiction of the game used in Theorem 3.4. Observations are not shown: the only nontrivial observation each player makes is the
randomly-selected index <. Not all actions and transitions are shown. If a terminal node contains only one reward, then that is the reward of
both players.
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2} is selected at random. Then both players select an
action. If i = k — ¢ then P1 is forced to play 0. If
1 > k — ¢ then P1 is forced to play 1. P2 scores —1. P1
scores 1/2k if the bits match, and —1 otherwise.

A sketch of the game is depicted in Figure 4. Like the previous
three proofs, we still essentially want a state machine to dis-
criminate between the same five classes (a; —as > 1,=1,=
0,= —1, < —1) but now we need the game to be tree-form.
Since the comparison between the numbers requires knowing
how long the trailing run of ones (or zeros) is, we ask the
players for this information up-front—that is, both players at
the start state choose the trailing runs of their numbers from
the set {0, 1,00, 11,000, 111, ... } of size 2k. Conditioned on
these choices, the reward function is linear in the prefixes of
the two players’ bitstrings, and hence it can be represented
by a single layer of the game tree in which a bit is selected at
random and then the players pick assignments to that bit.

An undominated pure policy (for either player) consists
of a trailing run 0¢ or 1, and assignments to each bit i €
{1,...,k — £ — 1}. Thus, such strategies correspond exactly
to the bitstrings in {0, 1}™. It is easy to check that the utilities
in the game restricted to undominated strategies satisfy the
conditions of the n-incrementing game, completing the proof.

Our final result will involve a case where both the meta-
Nash equilibria and the best responses are not unique, and
therefore we will assume that both are adversarially chosen.
However, the game in the counterexample will have the most
stringent structure: the counterexample is a zero-sum tree-form,
fully-observable stochastic game.

Theorem 3.5. For every k > 1, there exists a zero-sum fully-
observable, tree-form stochastic game with O(k) states and a
Nash equilibrium of support size 2 for each player in which,
for e < 2/k, there exist starting policies 79,73 such that
double oracle with adversarial meta-Nash equilibria and best

responses takes at least 281 iterations.

Proof. Unlike in the previous two proofs, in this proof it will
be most convenient to start by defining the stochastic game
without first discussing its normal form. Consider the follow-
ing game. There are k nonterminal states, Si,...,S;. The
starting distribution Sy is uniform on {sy,..., s }. Ateach
state, the players will each play a single action a; € {0,1},
and then the game will end. It remains only to define the
rewards.

* At state s1, P2 wins if and only if the players did not play
the same action. That is, s; is a matching pennies game.

* At state s; for j > 1, P2 wins if and only if P1 played 0
and P2 played 1.

The winner gets value 41, and the loser gets value —1.

The equilibrium value of this game is 1 — 1/k for P1: the
profile “play uniform random at s; and 1 at all other states” is
an equilibrium policy for both players of support size 2. As
before, we will identify pure strategies 7; € {0, 1}* with the
numbers they encode in binary. In this notation, let 79 = 2% —1
and 79 = 0. Then we will show that, fort € {1,...,2k"1 —

1}, the following adversarial choices of meta-Nash and best
responses are possible in the double oracle algorithm:

1. t — 1is a best response for P1 against P2 playing ¢t — 1,
2. tis a best response for P2 against P1 playing 2¥ — 1,

3.0 = {28 —1}U{0,...,t — 1}, and II, = {0, ..., ¢},
and

4. (28 —1,¢ — 1) is a meta-Nash equilibrium if (IT}, IT3),
that has equilibrium gap 2/k in the full game,

We now prove all four points above by induction.

1. For P1, playing ¢t — 1 against t — 1 wins all states, so it is
a best response.

2. Against 2% — 1, P2 can only win the matching pennies
game, which P2 does by playing any policy in the range
[0,25=1 — 1]. ¢ is indeed such a policy.

3. This follows from the previous two points and the defini-
tion of the double oracle algorithm.

4. The profile (28 — 1,¢ — 1) scores 1 — 2/k for P1 since
P1 loses the matching pennies game but wins all others
by playing 1. P2 cannot improve upon this. P1 can only
improve by winning at all states, but in order to do that, P1
must play a policu in the range [t — 1, 2~ —1]. However,
P1’s policy set TI: ™! only contains {0,...,t — 2} by
induction hypothesis, so P1 cannot win all states, and
therefore (28 — 1,¢ — 1) is a meta-Nash equilibrium.

This completes the induction and therefore the proof, since
with these choices, the Nash gap computed by double oracle
will stay at 2/k until at least iteration 251, O

4 Discussion and Related Work

In this section, we discuss a few alternative algorithms similar
to the double oracle algorithm, and how they relate to the
results in this paper.

4.1 Fictitious Play

Another common algorithm for reducing multi-player to
single-player games is fictitious play. Fictitious play differs
from double oracle only in the choice of opponent policies !,
against which player i computes the best response 7¢. While
double oracle uses a Nash equilibrium of the restricted game
defined by the policies already discovered, fictitious play uses
a simple uniform average over those policies:

1 t—1
7=0

Although this change seems simple, the two algorithms be-
have very differently in theory. For example, double oracle is
guaranteed to converge in at most |II| iterations, where II is
the set of policies, since at least one policy is added on every
iteration until convergence is reached. However, proving (or
disproving) a poly(|II|, 1/¢)-time convergence rate for ficti-
tious play, even in zero-sum games is one of the oldest open
problems in game theory, known as Karlin’s conjecture [Kar-
lin, 1959]. Similarly to our discoveries, however, the behavior
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Figure 5: A depiction of the game used in Theorem 3.5, for k = 3. Edges to the start states are labeled with their starting probabilities (1/3).

of fictitious play is known to depend on assumptions about
tiebreaking. In particular, it is known that for normal-form
games whose payoff matrix is diagonal, the convergence rate
of fictitious play is polynomial if the best responses are chosen
using a consistent tiebreaking method [Abernethy er al., 20211,
but not if they are chosen adversarially [Daskalakis and Pan,
2014].

4.2 «-Best Response Dynamics and Potential

Games

In best response dynamics, we simply set u® ; = 7rt:il. That s,
each player simply best responds to the opponent’s previous
policy. In zero-sum games, best response dynamics usually
will not converge to equilibria: indeed, since 7 is always pure,
best response dynamics cannot converge whenever there is no
pure equilibrium. However, best response dynamics have been
considered in the class of potential games, which are, roughly
speaking, games that “look like” ones in which every player
has the same utility function. In this class of games, it has been
observed [Awerbuch et al., 2008; Chien and Sinclair, 2011]
that it is sometimes better to limit players to only playing best
responses if they improve the player’s utility by more than
some parameter ov.

One may ask whether a similar change affects our lower
bounds. That is, suppose that, in the double oracle algorithm,
! is only added to II! if V(x!, put,) —

the best response 7} i

V(ut) > «, where € > o > 0. Let us call this algorithm
a-double oracle.

e In Theorem 3.1, the best response of P1 at iteration 2t
improves the value by 2/¢, and the best response of P2 at
iteration 2¢ 4+ 1 improves the value by a full 2. Thus, the
theorem is unaffected.

¢ In Theorem 3.2, Theorem 3.3, and Theorem 3.4, the value
improvement of every player on every iteration is equal
to the Nash gap. Therefore, these results are unaffected.

e Theorem 3.5 is affected. That result relies on the ability
for P2 to add the best response 7r§ = t, which does not
improve P2’s value at all. Thus, the result breaks for
every a > (.

5 Conclusions and Future Research

We have shown, to our knowledge, the first exponential lower
bounds on the convergence time (in number of iterations) of
the double oracle algorithm. We leave several natural ques-
tions for future research.

* Can the gaps in Table 1 be closed? For example, does
there exist a tree-form POSG in which the double oracle
algorithm must take exponentially many iterations with
any of the adversarial assumptions removed? Does there
exist a fully-observable stochastic game in which the
double oracle algorithm is exponential even with non-
adversarial best responses?

* Are there “simple” modifications to double oracle, for
example, a-double oracle as suggested in Section 4.2,
that guarantee polynomial worst-case bounds in certain
cases (e.g., zero-sum tree-form games)?
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