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Abstract

We investigate two notions of correlated equilibrium for
extensive-form games: extensive-form correlated equilibrium
(EFCE) and behavioral correlated equilibrium (BCE). We
show that the two are outcome-equivalent, in the sense that
every outcome distribution achievable under one notion is
achievable under the other. Our result implies, to our knowl-
edge, the first polynomial-time algorithm for computing a
BCE.

1 Introduction
Computing a Nash equilibrium is hard in general-sum games,
even for normal-form games with two players (Chen, Deng,
and Teng 2009). Further, Nash equilibrium assumes that the
players are playing independently, which may not hold in
practice—players may have access to a shared source of
randomness, or to a mediator that allows them to correlate
their behavior. These concerns motivate the definition of
notions of correlation in games.

A normal-form correlated equilibrium (NFCE) (Aumann
1974) is a distribution over strategy profiles from which a
player, after receiving a recommended strategy from this
distribution, has no incentive to disobey that recommendation.
This notion, although reasonable in normal-form games, is
unsuitable for extensive-form games, for at least two reasons:
first, no polynomial-time algorithm is known for computing
a normal-form correlated equilibrium in an extensive-form
game; second, a player seeking a profitable deviation from
an NFCE can condition its play on the entire game strategy
recommended by the mediator. In large games, this is not only
computationally difficult but also hard to justify. Therefore,
several notions of correlation have emerged for extensive-
form games, as reasonable generalizations of the NFCE to
extensive-form games.

In this paper, we focus on two such notions: the extensive-
form correlated equilibrium (EFCE) (von Stengel and
Forges 2008) and the behavioral correlated equilibrium
(BCE)1 (Morrill et al. 2021b; Zhang 2022). In both notions, a
strategy profile is first sampled from a known distribution. A
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1This notion was independently defined by the two papers cited;
Zhang (2022) uses the name forgiving correlated equilibrium.

player, upon reaching any of its decision points, observes only
the local recommendation given by the strategy profile at that
decision point. The distribution is considered an equilibrium
if no player has incentive to disobey any recommendations.

The two notions differ in how they treat players who have
disobeyed a past recommendation. In EFCE, a player who de-
viates from a recommendation receives no further recommen-
dations from the mediator. In BCE, a player who disobeys a
recommendation continues to receive recommendations, and
must be incentivized to follow those recommendations even
though it has deviated in the past. These conditions would
seemingly make BCE a stronger notion than EFCE: a deviat-
ing player both gets more information (in the form of extra
recommendations) and has a stronger incentive constraint
(they must be incentivized to obey the extra recommenda-
tions). Indeed, Morrill et al. (2021b) show an explicit example
(which we discuss in Section 3) of a BCE that is not an EFCE.

There are several known techniques for computing EFCEs
and BCEs. Jiang and Leyton-Brown (2011) developed an
exact polynomial-time algorithm that finds an EFCE. Celli
et al. (2020) developed polynomial-time no-regret dynam-
ics that converge to EFCE at rate poly(|H|, 1/ε) where |H|
is the number of nodes in the game tree. The main tech-
nique for computing BCE is no-regret learning. Morrill et al.
(2021b) and Zhang (2022) independently developed very sim-
ilar algorithms for computing BCEs via no-regret learning.
Both of their algorithms, however, take time poly(bd, 1/ε)
where b is the branching factor and d is the depth—when
|H| ≪ bd, this is exponential in the size of the game2. The
discrepancy between these bounds has led Song, Mei, and Bai
(2022) to define the K-EFCE, which interpolates between
EFCE (K = 1) and BCE (K = d) by allowing a deviating
player K deviations before it stops receiving recomendations.
They develop no-regret learning dynamics with convergence
rate poly(|H|, bK , 1/ε), thus matching the known results for
EFCE and BCE. To our knowledge, finding a BCE in time
poly(|H|, 1/ε) was an open problem.

Our main result is that, at least in some sense, the dis-
tinctions between EFCE and BCE are insignificant. More
formally, we show that every EFCE can be transformed into

2Zhang (2022) states their algorithm as having polynomial run-
time, because their paper assumes uniform depth and branching
factor (so that |H| = Θ(bd)).
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a BCE that achieves the same outcome distribution—that is,
the same distribution over terminal nodes—and moreover
that there is a polynomial-time algorithm for implementing
such a transformation. Our result implies, to our knowledge,
the first polynomial-time algorithm for computing a BCE in
an extensive-form game.

2 Preliminaries
We now introduce the notions necessary for this paper.

Extensive-Form Games
An n-player extensive-form game consists of the following.

1. a tree of histories H , rooted at ∅. The set of leaves, or
terminal histories, is denoted Z. The edges of H are
labeled with actions, and for a node h ∈ H \Z, the set of
actions at h is denoted Ah;

2. a partition H \Z = H0 ⊔H1 ⊔ · · · ⊔Hn of the histories,
where Hi is the set of nodes at which player i acts;

3. for each player i ∈ [n] := {1, . . . , n}, a partition Ii of
Hi into information sets, or infosets. Nodes in the same
information set must have the same set of action labels:
for an information set I ∈ Ii, the shared action set is
denoted AI ;

4. for each node h ∈ H0, a fixed distribution p(·|h) over the
actions at h; and

5. for each player i, a utility function ui : Z → R.

We will demand that players have perfect recall, in other
words, that they do not forget information. Formally, call
σi(h) the sequence of information sets reached by player i
and actions played at those infosets, on the path from the root
to node h, not including (if any) the infoset at h itself. We
use Σi to denote the set of all sequences of player i. Then
we will insist that all nodes in the same infoset I ∈ Ii have
the same sequence for player i, and we will write σi(I) to
denote that shared sequence. In perfect-recall games, the last
infoset-action pair uniquely identifies a sequence; therefore,
we will write Ia to mean the sequence ending with the infoset
I and action a.

The game tree induces a natural partial ordering over in-
fosets, sequences, and histories. We will use ⪯ to denote this
ordering. For example, I ⪯ z means z is a descendant of
some h ∈ I , and Ia′ ⪯ I ′.

A pure strategy xi ∈ Xi assigns an action a ∈ AI to each
infoset I ∈ Ii. A pure strategy profile (or simply pure pro-
file) x = (x1, . . . , xn) is a tuple of pure strategies, one per
player. −i denotes the set of all players except i—for exam-
ple, x−i = (x1, . . . , xi−1, xi+1, . . . , xn). Notationally, we
will write xi(a|I) = 1 if strategy xi plays action a at infoset
I (and 0 otherwise). Analogously, we will write xi(t|s) = 1
if player i plays all the actions on the path from s to t (both s
and t could be nodes, infosets, or sequences), and xi(s) = 1
if xi(s|∅) = 1. Note that xi(Ia) and xi(a|I) are differ-
ent: the former is the indicator that sequence Ia is reached
by player i, whereas the latter is the indicator of whether
action a is played locally at infoset I . We will also write
x(z) :=

∏
i∈[n] xi(z) and x−i(z) :=

∏
j ̸=i xj(z).

A mixed strategy of player i is a distribution πi ∈ ∆(Xi).3
We say πi is behavioral if the actions at every infoset of
player i are mutually independent.

A correlated strategy profile π ∈ ∆(X1 × · · · ×Xn) is a
distribution over pure strategy profiles. Any correlated strat-
egy profile induces a distribution over the terminal nodes of
the game. We will call this distribution the outcome distri-
bution induced by π, and we use z ∼ π (or z ∼ x if π = x
happens to be a pure profile) to denote a sample from it.

Given any pure strategy profile x, the (expected) utility
ui(x) of player i is

ui(x) := E
z∼x

ui(z) =
∑
z∈Z

ui(z)p(z)x(z)

where p(z) is the probability that chance plays all actions on
the ∅ → z path. It will also be useful to define the counter-
factual utility. Intuitively, ui(x; I) is the conditional utility
that player i achieves at infoset I , multiplied by the probabil-
ity that other players reach infoset I . Given a player i and
infoset I ∈ Ii, the counterfactual utility from I is defined by

ui(x; I) :=
∑
z≻I

ui(z)xi(z|I)x−i(z).

To avoid issues of bit complexity, we assume that all numbers
(utilities, nature reach probabilities, correlated strategy pro-
files, etc.) are expressed as rational numbers with poly(|H|)-
bit numerators and denominators.

Extensive-Form and Behavioral Correlated
Equilibria
To define the notions of equilibrium relevant to this paper, we
must first introduce the framework of Φ-regret (Greenwald
and Jafari 2003). For each player i, let Φ∗

i be the set of
functions ϕ : Xi → Xi. A function ϕ ∈ Φ∗

i should be
interpreted as a deviation by player i: if player i should play
x under π, it instead will play ϕ(x).
Definition 2.1. Let π be a correlated profile. The regret of
player i against ϕ : Xi → Xi is the amount by which i would
increase its expected utility by applying deviation ϕ:

Ri(π, ϕ) := E
x∼π

[ui(ϕ(xi), x−i)− ui(xi, x−i)].

For each player i, let Φi ⊆ Φ∗
i be a set of deviations. Let Φ =

(Φ1, . . . ,Φn). We say that π is an (ε,Φ)–equilibrium if no
deviation in Φ is more than ε-profitable, that is, if Ri(π, ϕ) ≤
ε for every player i and deviation ϕ ∈ Φi.

Larger sets Φi create tighter notions of equilibrium. For
example, if each Φi is the set of constant transformations,
Φi = {ϕ : x 7→ x∗ | x∗ ∈ Xi},4 then a Φ-equilibrium is
a normal-form coarse correlated equilibrium (Moulin and
Vial 1978); if Φi = Φ∗

i for every i, then a Φ-equilibrium is
a normal-form correlated equilibrium (Aumann 1974). The
notions of interest to us in this paper will lie between these
two extremes.

We may also enforce the above condition from any infoset,
leading to a notion of counterfactual Φ-regret.

3∆(S) is the set of probability distributions on S.
4ϕ : x 7→ x∗ is the function that maps every input to x∗.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

9970



Definition 2.2 (Morrill et al. 2021a). The counterfactual
regret of player i against deviation ϕ : Xi → Xi at infoset I
is the amount by which player i would increase its counter-
factual utility from I by applying ϕ:
Ri(π, ϕ; I) := E

x∼π
[ui(ϕ(xi), x−i; I)− ui(xi, x−i; I)]

A counterfactual (ε,Φ)-equilibrium is a correlated profile π
such that no deviation in Φ has more than ε counterfactual
regret from any infosets, that is, if Ri(π, ϕ; I) ≤ ε for every
i ∈ [n], ϕ ∈ Φi, and I ∈ Ii.

We now define two relevant sets of deviations, one of
which uses the usual (non-counterfactual) notion of regret,
and the other of which uses the counterfactual regret.
Definition 2.3 (von Stengel and Forges 2008; Morrill et al.
2021b). A causal deviation is a deviation that can be exe-
cuted by a player who, upon reaching any infoset I , observes
the recommendation xi(·|I) before choosing its action, un-
less it has disobeyed a past recommendation. More formally,
a causal deviation is a function ϕ ∈ Φ∗

i such that ϕ(xi)(·|I)
depends only on I , and the values xi(Ja) for J ⪯ I . An
ε-extensive-form correlated equilibrium (EFCE) is an (ε,Φ)-
equilibrium where Φ is the set of causal deviations.

The extensive-form correlated equilibrium is a well-
understood notion. It is known that the complexity of com-
puting one EFCE exactly is polynomial (Jiang and Leyton-
Brown 2011), and more recently, regret minimization al-
gorithms have emerged that are guaranteed to converge to
EFCE (Celli et al. 2020).
Definition 2.4 (Morrill et al. 2021b). A behavioral devia-
tion5 is a deviation that can be executed by a player who,
upon reaching any of its infosets I , observes the recommen-
dation xi(·|I) before choosing its action. More formally, a
behavioral deviation is a function ϕ ∈ Φ∗

i such that ϕ(xi)(·|I)
depends only on I , and the values xi(·|J) for J ⪯ I . An ε-
behavioral correlated equilibrium (BCE) is a counterfactual
(ε,Φ)-equilibrium where Φ is the set of behavioral devia-
tions.

It is clear from the definitions that every BCE is an EFCE.
BCE appears at first to be a significant refinement of EFCE.
Indeed, the definition refines EFCE in two ways. First, BCE
uses a larger family of deviations (every causal deviation
is behavioral, but not the other way); second, BCE uses
counterfactual regret whereas EFCE uses only the typical
Φ-regret. Indeed, three disjoint sets of authors (Morrill et al.
2021b; Song, Mei, and Bai 2022; Zhang 2022) have devel-
oped no-regret learning algorithms converging to behavioral
correlated equilibrium. However, unlike the aforementioned
EFCE algorithms, these algorithms have worst-case runtime
exponential in the size of Γ.

3 Main Result Statement and Examples
We start by defining our notion of outcome equivalence:
Definition 3.1. Two correlated strategy profiles π and π′

are outcome-equivalent if they induce the same outcome
distribution.

5One should not confuse behavioral deviations from behavioral
strategies—the two terms only share a name.

Our main result, then, simply states:

Theorem 3.2 (Main result). Every ε-EFCE is outcome-
equivalent to an ε-BCE.

Before proving the main result, we give two examples
showing why such a result may be believable and illustrating
some of the ideas used in the proof. The first, due to Morrill
et al. (2021a) gives an example of a BCE that is not an EFCE.

Example 3.3 (Morrill et al. 2021a). Consider the extensive-
form game depicted in Figure 1 (left). Consider the corre-
lated profile π that uniformly mixes between the profiles
(¬U,X1|U,X1|¬U,X2) and (¬U, Y1|U, Y1|¬U, Y2). Both
players achieve expected utility 1.5. This profile is not a
BCE: player 1 can deviate profitably by playing U (contrary
to the recommendation), and then following the recommenda-
tion to play either X1 or Y1. However, this deviation does not
work for EFCE, because a player who deviates by playing
U will not receive the subsequent recommendation. Indeed,
π is an EFCE. This shows that behavioral deviations can be
more powerful than causal deviations.

Although π is not a BCE, there is a BCE π′ that is
outcome-equivalent to π. Indeed, consider the correlated pro-
file that evenly mixes between (¬U,X1|U,X1|¬U,X2) and
(¬U,X1|U, Y1|¬U, Y2) (where the only difference is that, in
the second pure profile, Y1|U has been replaced by X1|U ).
This change preserves the outcome distribution, because the
recommendation Y1|U is never actually given to player 1 in
equilibrium, as player 1 plays ¬U in equilibrium. This profile
π′ is a BCE: the previous deviation no longer works, because,
after playing U , player 1 is always given the recommendation
X1—its counterfactual best response—instead of any useful
recommendation.

The second example shows that the use of counterfactual
regret in the BCE definition is also significant.
Example 3.4. Consider the (one-player) extensive-form game
depicted in Figure 1 (right). Then the profile π = (0.9L +
0.1R,R′) is a 0.2-EFCE, but it is not an 0.2-BCE, because
the player can deviate to L′ at B to counterfactually improve
its utility at that infoset by 1. However, once again, there is
a 0.2-BCE that is outcome-equivalent to π: namely, π′ =
0.9(L,L′) + 0.1(R,R′).

Interestingly, in this example, the profile π′ is not a behav-
ior strategy, and indeed there is no 0.2-BCE that is a behavior
strategy and outcome-equivalent to π. This illustrates that
converting from EFCE to BCE in general will sometimes re-
quire turning behavior strategies into non-behavior strategies.

4 Proof of Main Result
In this section, we prove the main result, Theorem 3.2.

Let π be an ε-EFCE. For each player i, infoset I ∈ Ii
and action a ∈ AI , define the counterfactual best response
strategy xIa

i as the strategy that maximizes the countefactual
utility at I against π−i, conditioned on xi playing to Ia.
Formally,

xIa
i ∈ argmax

x′
i∈Xi

E
x∼π

[ui(x
′
i, x−i; I) | xi(Ia) = 1].
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2, 1 0, 0 0, 0 1, 2 3, 2 0, 0 0, 0 2, 3

¬U

X1|¬U

X2 Y2

Y1|¬U

X2 Y2

U

X1|U

X2 Y2

Y1|U

X2 Y2

2

1 0

L R

L′ R′

Figure 1: Left: The extended battle of the sexes game in Example 3.3. The players are ▲ (P1) and ▼ (P2). Infosets are connected
by dotted lines. Player 1 first chooses whether or not to upgrade (U ). Then, both players simultaneously choose an event (X or
Y ) to attend. Player 1 prefers X , while player 2 prefers Y . If the players attend different events, they are unhappy and get utility
0. If the players attend the same event, the player attending its preferred event gets 2, and the other player gets 1. Upgrading
gives an extra point of utility if the players attend the same event. Right: The game used in Example 3.4 illustrating that use
counterfactual regret is also significant.

for every infoset I . Assume ties are broken consistently—for
example, in favor of the lexicographically first action. Of
course, it is only interesting to investigate xIa

i at infosets
J ⪰ I . Given the conditional opponent reach probabilities

E
x∼π

[x−i(z)|xi(Ia) = 1]

for every z ∈ Z, the strategy xIa
i can be computed by a

simple backwards tree traversal.

Now, consider the distribution π′ generated by the follow-
ing procedure. Sample x ∼ π, and then for every infoset
I ∈ Ii not reached, replace the recommendation at I with
the recommendation at I in xJa

i where player i deviated be-
fore I . Formally, for every player i and every infoset I ∈ Ii
with xi(I) = 0, let Ja be the sequence that i deviates before
reaching I , that is, let Ja be such that xi(Ja) = 1, J ⪯ I ,
but Ja ̸⪯ I . Then replace xi(·|I) with xJa

i (·|I).

We claim that π′ is an ε-BCE. Let ϕ be any behavioral
deviation of player i and let I be any infoset of player i.
Let x ∼ π′. First, note that, by construction of π′, a devi-
ating player in π′ cannot profit from behavioral deviations
compared to causal deviations. This is because, for any se-
quence Ia, the values xi(Ja

′) for J ⪯ I completely deter-
mine xi(Ia): if xi(I) = 1 then xi(Ia) = xi(a|I), and if
xi(I) = 0 then xi(Ia) = xJa′

i (I) where Ja is the deviation
point of xi before I . Thus, we may assume that ϕ is causal.
Further, ϕ cannot profit on xi ∼ π′ such that xi(I) = 0: by
definition, xi will be playing a counterfactual best response
at every such infoset I conditioned on all information that

the deviating player knows at that point. In symbols,

Ri(π
′, ϕ; I)

= E
x∼π′

[ui(ϕ(xi), x−i; I)− ui(xi, x−i; I) | x(I) = 0]︸ ︷︷ ︸
≤0

· E
x∼π′

[1− x(I)]

+ E
x∼π′

[ui(ϕ(xi), x−i; I)− ui(xi, x−i; I) | x(I) = 1]

· E
x∼π′

[x(I)]

≤ E
x∼π′

[ui(ϕ(xi), x−i; I)− ui(xi, x−i; I) | x(I) = 1]

· E
x∼π′

[x(I)]

= Ri(π
′, ϕ⪰I) ≤ ε

where ϕ⪰I is the deviation that applies ϕ only at infosets
J ⪰ I , that is,

ϕ⪰I(xi)(a|J) =
{
ϕ(xi)(a|J) if J ⪰ I

xi(a|J) otherwise

5 Algorithm for Converting from EFCE to
BCE

The proof of Theorem 3.2 also implies a polynomial-time
algorithm for computing a BCE from an EFCE. That is, so
long as the EFCE π is expressed in a form allowing for the
computation of the counterfactual best responses xIa

i , the
proof gives a polynomial-time algorithm for computing a
BCE. In this section, we give a possible formulation of this
polynomial-time algorithm. First, we must define the format
that we will use to represent correlated profiles.

Definition 5.1. A correlated profile π is a mixture of small-
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support products if

π =
T∑

t=1

α(t)
n⊗

i=1

π
(t)
i where π

(t)
i =

K∑
k=1

β
(t,k)
i x

(t,k)
i .

where T and K are positive integers,
∑T

t=1 α
(t) = 1,∑K

k=1 β
(t,k)
i = 1 for every i and t, and the notation

⊗n
i=1 πi

means the product distribution π ∈ ∆(X1)× · · · ×∆(Xn)
whose marginal on Xi is πi.

Such a π can be expressed using O(T ·K · |H|) numbers,
namely, for each t ≤ T, k ≤ K, and sequence Ia ∈ Σi

we need to represent x(t,k)
i (a|I), α(t), and β

(t,k)
i . We will

assume in the rest of this section that correlated profiles are
represented as a mixture of products.

One may wonder at this point about the case where the
π
(t)
i are behavior strategies. In this case, it is possible for K

to be exponentially large: for example, if π(t)
i is fully mixed

then K =
∏

I∈Ii
|AI |. However, there is a remedy for this:

Lemma 5.2. Let π be an ε-EFCE expressed as a mixture of T
products, where each π

(t)
i is a behavior strategy. Then, there

is a poly(|H|, T )-time algorithm that returns an ε-EFCE π′

that (1) is outcome-equivalent to π, and (2) is a mixture of
small-support products with K ≤ |H| and the same T .

Proof. By definition, the EFCE gap and the outcome distri-
bution both only depend on the sequence-form reach prob-
abilities π

(t)
i (Ia) for each Ia ∈ Σi. These form a vector

π
(t)
i ∈ [0, 1]Σi , called the sequence-form vector. Intuitively,

the sequence-form vector π(t)
i is a complete description of

a strategy up to outcome equivalence, since the probability
of any given terminal node being reached under profile π is
just p(z) ·

∏
i π

(t)
i (z). Therefore, it suffices to show that the

sequence-form vector π(t)
i is a convex combination of a small

number of sequence-form vectors of pure strategies. The fact
that the set of sequence-form vectors is a convex polytope in
extensive-form games was shown by Koller, Megiddo, and
von Stengel (1994). Indeed, one can directly describe the set
using the following linear constraint system:

∀σ: πi(σ) ≥ 0; πi(∅) = 1; ∀I: πi(I) =
∑
a∈AI

πi(Ia).

Therefore, by Carathéodory’s theorem6 on convex hulls, there
exists a decomposition π

(t)
i =

∑|Σi|
k=1 β

(t,k)
i x

(t,k)
i , where

the xis are sequence forms of pure strategies. An explicit
algorithm for computing such a decomposition is described
by Grötschel, Lovász, and Schrijver (1981, Theorem 3.9).
This completes the proof.

All algorithms that we are aware of that compute an ex-
act or approximate EFCE return their correlated profiles as
mixtures of behavioral profiles (or as mixtures of pure pro-
files, which are just the special case K = 1). Lemma 5.2 is

6Carathéodory’s theorem states that every point in a convex
compact set X of dimension d is a convex combination of at most
d+ 1 extreme points of X .

therefore important in that it allows us to convert from be-
havior strategies to mixtures of small-support products, and
therefore allows the main result of this section to also deal
with behavior strategy profiles. We are now ready to state the
main result of this section.
Theorem 5.3. There exists a poly(|H|, T,K)-time algo-
rithm that takes as input an ε-EFCE π as a mixture of small-
support products, and returns ε-BCE in the same format.

Proof. Follow the proof of Theorem 3.2. The counterfac-
tual best responses xIa

i can be computed in polynomial time
because one can compute Ex∼π [x−i(z) | xi(Ia) = 1] for ev-
ery z ∈ Z by iterating over the support of π. Then, for each
x
(t,k)
i , replacing x

(t,k)
i (·|I) with xJa

i (·|I) as directed by The-
orem 3.2 is a matter of iterating over the information sets of
player i and keeping track of where deviations happen.

In particular, applying the polynomial-time exact EFCE
algorithm of Jiang and Leyton-Brown (2011), we have:
Corollary 5.4. There is a polynomial-time algorithm that,
given an extensive-form game, computes an exact BCE.

To our knowledge, this result was previously unknown,
even for ε-approximate BCE, not to mention exact BCE.

6 Discussion
In this section, we discuss a corollary and some caveats to
our results and techniques.

Optimal Equilibria
Our results have immediate implications for the problem
of optimizing over the set of BCEs. Let c : Z → R be
any objective function. Call an equilibrium π optimal under
objective c if it maximizes c(π) := Ex∼π,z∼x c(z) among
all equilibria of the same notion. The following corollary
follows immediately from Theorem 3.2.
Corollary 6.1. For every objective c, the optimal EFCE and
the optimal BCE under c have the same objective value.

Therefore, to compute an optimal BCE, it suffices to com-
pute an optimal EFCE and convert it to a BCE. The conver-
sion can be perfomed in polynomial time by Theorem 5.3. As
for computing an optimal EFCE, the general problem is NP-
hard (von Stengel and Forges 2008), but various algorithms
exist for the optimal EFCE problem that have parameterized
guarantees (Zhang et al. 2022) or work in special cases (Fa-
rina and Sandholm 2020). Our results therefore imply, up to
polynomial factors, algorithms with the same guarantees for
optimal BCE.

Hindsight Rationality and No-Regret Learning
So far, this paper has only discussed algorithms that take
an already-computed ε-EFCE as input. However, one pos-
sible motivation of notions of correlated equilibria is that
uncoupled learning dynamics can reach them in empirical
frequency of play. Formally, suppose that n agents play
an extensive-form game repeatedly for T rounds. At time
t ∈ [T ], each agent i selects a (usually behavior) strategy
π
(t)
i ∈ ∆(Xi), which depends only on the players’ own
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2, 0 0, 2 0, 2 2, 0

2, 2

1, 1 0, 0 0, 0 1, 1

MP

H1

H2 T2

H1

H2 T2

Coop

Exit

P

H1

H ′
2 T ′

2

T1

H ′
2 T ′

2

S

Figure 2: A game showing that the EFCE-BCE map in this paper is not surjective (for any tiebreaking method). The root node
is a nature node; nature moves uniformly at random. The MP subtree is the matching pennies game; the Coord subtree is a
coordination game, but P2 has a strictly dominant Exit action.

utility functions ui(·, π(τ)
−i ) for each τ < t. (in particu-

lar, not on the other players’ utility functions). Then the
empirical frequency of play is the uniform distribution on
{π(1), . . . , π(T )}.

As stated earlier, there are known uncoupled learning dy-
namics that approach an ε-EFCE after T = poly(|H|, 1/ε)
rounds (Celli et al. 2020). However, to our knowledge, there
is no known learning algorithm whose empirical frequency
of play approaches BCE at poly(|H|, 1/ε): the earlier algo-
rithms of Morrill et al. (2021b); Song, Mei, and Bai (2022);
and Zhang (2022) achieve rate poly(bd, 1/ε), where b is the
depth and d is the branching factor of the game, but this
is worst-case exponential in the size of the game. Roughly
speaking, the reason for the discrepancy is that a deviator
seeking a profitable BCE deviation has poly(bd) possible
decision points (corresponding to each sequence of recom-
mendations it could have seen), whereas a deviator seeking a
profitable EFCE deviation only has polynomially many (be-
cause, at each infoset I , the only possible recommendation
histories are the sequences Ja for J ⪯ I).

One may therefore ask whether Theorem 5.3 implies the
existence of uncoupled learning dynamics that reach BCE
in poly(|H|, 1/ε) rounds. Unfortunately, this is not the case.
Theorem 3.2 (and therefore the algorithm in Theorem 5.3)
changes player i’s strategy π

(t)
i based on future strategies

π
(>t)
−i , because the counterfactual best response xIa

i depends
on all opponent strategy profiles, not just those played in
the past. We leave finding polynomial-time uncoupled learn-
ing dynamics for BCE (or proving the nonexistence of such
dynamics) as an open question for future research.

Stronger Notions of Outcome Equivalence
The notion of outcome equivalence used throughout the paper
so far concerns only the outcome distribution on the equilib-
rium path of play. One may ask whether this notion can be
strengthened, and what happens to our results under a stricter
definition of outcome equivalence. For example, one may
consider the following strengthened notion: let us call two
profiles π and π′ counterfactually outcome-equivalent if, for
every player i and infoset I ∈ Ii, the counterfactual reach
probabilities of every terminal node z ≻ I coincide, that is,

E
x∼π

xi(z|I)x−i(z) = E
x∼π′

xi(z|I)x−i(z).

This would guarantee, among other things, that the coun-
terfactual utility Eui(x; I) is the same under π and π′ at
every infoset. Unfortunately but perhaps unsurprisingly, our
main result does not hold for this stronger notion of outcome
equivalence. Indeed, consider the same game used in Exam-
ple 3.4 (Figure 1, right). In that game, there exists an EFCE,
namely the pure strategy (L,R′), whose counterfactual value
at the lower P1 decision point is zero. There cannot be a BCE
with this property, because then there would be a beneficial
counterfactual deviation at that decision point.

We define the above notion of counterfactual outcome-
equivalence purely for simplicity, as we have been using
counterfactual utility throughout the paper. However, the
above counterexample would also apply equally well to other
possible strengthenings of the notion of equivalence, such as
a subgame-perfect notion (e.g., “the conditional distributions
coincide in every proper subgame”).

Surjectivity
Let f be the map in Theorem 3.2, that is, f takes as input an
ε-EFCE π and outputs an outcome-equivalent ε-BCE f(π).
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Every BCE outcome distribution appears as the outcome dis-
tribution of some f(π): f preserves outcome distributions, so
taking π to be a BCE with the desired outcome distribution
is sufficient. However, one may ask whether the map given
by Theorem 3.2 is surjective on the set of all BCEs, not just
the set of all outcome distributions—that is, whether every
BCE appears as f(π). The map f depends on a choice of
tiebreaking scheme for the counterfactual best responses xIa

i .
In this section, we give a simple counterexample illustrating
that, regardless of the tiebreaking scheme, f cannot be sur-
jective. Consider the game in Figure 2. There exists a BCE
of this game in which P1 gets conditional utility 1 in the sub-
tree S, namely the uniform distribution on (E,H1, H2, H

′
2),

(E,H1, T2, H
′
2), (E, T1, T2, T

′
2), and (E, T1, H2, T

′
2), that

is, P2 perfectly correlates with P1 in S. However, this cannot
happen in a BCE created by f because such a BCE cannot
contain a useful recommendation to P2 in S because P2 must
have deviated before reaching S.

Counterfactual Regret and the Definition of BCE
We discuss here the choice and consequences of using the
counterfactual regret (Definition 2.2), rather than the usual
notion of regret (Definition 2.1), in the definition of BCE.

The definitions of equilibria used throughout this paper are
not new to this paper. Instead, EFCE and BCE are defined
by von Stengel and Forges (2008) and Morrill et al. (2021b),
respectively. Compared to EFCE, BCE enforces a sort of
equilibrium refinement—not quite subgame perfection, but
something resembling it. Further, for no-regret algorithms
in particular, using counterfactual regret is fairly natural—
indeed, the couterfactual regret minimization (CFR) family
of algorithms (Zinkevich et al. 2007)—as its name suggests—
entirely revolves around mimimizing the counterfactual re-
gret, and many of the best equilibrium-finding algorithms
for extensive-form games are based on CFR (Brown and
Sandholm 2019; Farina, Kroer, and Sandholm 2021).

One may indeed define a notion of equilibrium that is like
BCE except that it uses regular regret (Definition 2.1) instead
of counterfactual regret. Let us call this notion full EFCE.
As this choice of name suggests, full EFCE behaves more
like EFCE than BCE. Indeed, von Stengel and Forges (2008)
originally define the full EFCE (although they do not give
it a special name), and they then show that full EFCE and
EFCE are outcome-equivalent, before using what we define
as the EFCE for the remainder of their paper. Intuitively, the
outcome equivalence follows from a conversion in which the
recommendations in off-path information sets are replaced
with arbitrary (uninformative) recommendations (since they
are off-path, there is no need to ensure incentive compatibil-
ity). Further, the outcome equivalence between full EFCE
and EFCE—unlike the one shown in our paper between BCE
and EFCE—also carries over to hindsight rationality, so the
polynomial-time no-regret algorithms that converge to EFCE
(e.g., Celli et al. 2020) can be easily modified to converge
to full EFCE instead. Due to this equivalence, subsequent
papers, including all those cited in our paper, have used the
same definition of EFCE that we use, as it is simpler. BCE,
on the other hand, has no known polynomial-time no-regret
dynamics. We leave this as an explicit open problem.

7 Conclusions and Future Research
We have proven the outcome equivalence of extensive-form
and behavioral correlated equilibria, and we have given a
polynomial-time algorithm for converting one into the other,
thus leading to, among other implications, the first algorithm
for computing a BCE in polynomial time.

Perhaps the most relevant question for future research is
whether there are uncoupled learning dynamics converging to
BCE at rate poly(|H|, 1/ε). Resolving this question in either
direction would be illuminating. If there are, then the algo-
rithm would somehow overcome the exponential explosion
in the number of decision points accessible to the deviator. If
there are not, then BCE would be a rare example of a notion
of equilibrium for which finding an equilibrium is doable in
polynomial time, but not with uncoupled learning dynamics.

More broadly, there remains an interesting open line of re-
search regarding the limits of polynomial-time algorithms for
computing equilibria: how tight does one need to make the no-
tion before computing one becomes hard? For example, com-
puting a Nash equilibrium is known to be hard (Chen, Deng,
and Teng 2009). What about the normal-form correlated equi-
librium (NFCE) (Aumann 1974) in an extensive-form game,
which lies between EFCE and Nash? Is there a polynomial-
time algorithm for finding one? Are there polynomial-time
uncoupled learning dynamics that converge to one at rate
poly(|H|, 1/ε)?7 Do these answers change if we instead de-
fine and use a counterfactual notion of NFCE, which would
then lie between BCE and a counterfactual notion of Nash
equilibrium (in which each player’s strategy must be a coun-
terfactual best response to other players’ strategies, that is,
each player must be best responding even at infosets I that
the player does not play to reach, as long as other players
play to reach I)? All these questions are, to our knowledge,
open.
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