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Abstract

Policy gradient methods enjoy strong practical performance in numerous tasks in
reinforcement learning. Their theoretical understanding in multiagent settings, however,
remains limited, especially beyond two-player competitive and potential Markov games.
In this paper, we develop a new framework to characterize optimistic policy gradient
methods in multi-player Markov games with a single controller. Specifically, under the
further assumption that the game exhibits an equilibrium collapse, in that the marginals
of coarse correlated equilibria (CCE) induce Nash equilibria (NE), we show convergence
to stationary e-NE in O(1/€?) iterations, where O(-) suppresses polynomial factors in
the natural parameters of the game. Such an equilibrium collapse is well-known to
manifest itself in two-player zero-sum Markov games, but also occurs even in a class of
multi-player Markov games with separable interactions, as established by recent work.
As a result, we bypass known complexity barriers for computing stationary NE when
either of our assumptions fails. Our approach relies on a natural generalization of
the classical Minty property that we introduce, which we anticipate to have further
applications beyond Markov games.

*Part of this work was performed as an intern at Meta Al



1 Introduction

Realistic strategic interactions typically occur in stateful multiagent environments in which
agents’ decisions do not only determine their immediate rewards, but they also shape the next
state of the system. Multiagent reinforcement learning (MARL), endowed with game-theoretic
principles, furnishes a rigorous framework whereby artificial agents with strong performance
guarantees can be developed even in such complex and volatile environments. Indeed,
algorithmic advances in MARL have been translated to exciting empirical breakthroughs in
grand AT challenges, covering two-player competitive games [Bowling et al., 2015, Brown and
Sandholm, 2017, Morav¢ik et al., 2017, Perolat et al., 2022, as well as popular multi-player
games |Brown and Sandholm, 2019, Bakhtin et al., 2022|. In spite of those remarkable
developments, our theoretical understanding is still lagging behind, especially in multi-player
games; this is precisely the primary focus of our paper.

In particular, we operate in the canonical framework of Markov (aka. stochastic)
games [Shapley, 1953, Zhang et al., 2019|, which captures multiagent Markov decision
processes. Such settings have been the subject of intense scrutiny in recent years, with a
flurry of results emerging for computing Nash equilibria (NE)—the standard game-theoretic
equilibrium concept—in either two-player zero-sum games or multi-player cooperative games;
our synopsis in Section 5 features numerous such developments. Algorithmic advances beyond
those classes of games are scarce in the literature, and have been considerably impeded by
recently established computational barriers for stationary NE even in turn-based two-player
Markov games [Daskalakis et al., 2023b, Jin et al., 2023]; besides those recent lower bounds,
any student of algorithmic game theory should also come to terms with the intrinsic in-
tractability of NE even in one-shot (stateless) general-sum games [Daskalakis et al., 2006,
Chen et al., 2009]. Yet, characterizing classes of games that elude those computational
barriers is recognized as an important research direction in this line of work.

Our second key motivation—which will naturally coalesce with the considerations de-
scribed above—is to characterize the behavior of policy gradient methods [Agarwal et al.,
2021] in Markov games. Such techniques are especially natural from an optimization stand-
point, and enjoy strong practical performance in a number of tasks [Schulman et al., 2015,
2017]. Furthermore, unlike other popular methods, they are amenable to function approxima-
tion [Sutton et al., 1999|, thereby enabling to tackle enormous action spaces under continuous
parameterizations.

In light of the inability of traditional gradient-based methods to converge even in normal-
form zero-sum games [Mertikopoulos et al., 2018, Vlatakis-Gkaragkounis et al., 2020], we
focus here on analyzing optimistic gradient descent (henceforth 0GD). Optimism has been
a crucial ingredient in attaining convergence in monotone settings and beyond [Cai et al.,
2022b, Gorbunov et al., 2022, Golowich et al., 2020, Vankov et al., 2023|, but its role is
not well-understood even in two-player zero-sum Markov games. In this paper, we take an
important step towards closing this gap, which will uncover as a byproduct a new class of
multi-player Markov games for which we can compute efficiently stationary Nash equilibria.



1.1 Our results

To contextualize our approach, we first have to highlight a classical condition in variational
inequalities (VIs) which guarantees convergence under certain first-order methods; namely,
the so-called Minty property [Facchinei and Pang, 2003, Mertikopoulos et al., 2019]. A great
number of existing results in optimization—not least in the multiagent setting—leverage that
condition to analyze the behavior of learning algorithms. Unfortunately, Daskalakis et al.
[2020] observed that the Minty property fails even in simple two-player Markov games with a
single controller (recalled in Proposition 3.1). Furthermore, although several relaxations of
the Minty property have been proposed (see our overview in Section 5), none has been able
to capture such settings, thereby leaving open whether optimistic policy gradient methods
converge.

In this context, our first main contribution is to introduce a generalization of the Minty
property (Property 3.2) which addresses the aforementioned difficulties by capturing a
broad class of multi-player Markov games. Specifically, our condition is more permissive
in two crucial aspects. First, it allows distorting the underlying operator by a certain well-
behaved function; as we explain in Section 3, this modification already suffices to subsume
the counterexample of Daskalakis et al. [2020]—and generalizations thereof. The second
modification relaxes the pointwise aspect of the original Minty property into an average
guarantee, in the precise sense of Property 3.3.

Now the upshot is that 0GD—under a suitable parameterization—still converges to an
e-strong solution of the induced VI problem after 7' = O.(1/€?) iterations even under our more
permissive criterion (Theorem 3.4), where the notation O.(-) here suppresses polynomial
factors in all natural parameters of the problem. We further establish that this guarantee is
robust in the presence of perturbations akin to relative deterministic noise (Corollary B.9)—a
ubiquitous model in control theory and optimization—and a certain slackness in our condition
(Corollary B.6); the latter extension turns out to be crucial to capture policy optimization
under greedy exploration.

As we have alluded to, the main application of our general theory targets multi-player
Markov games, formally introduced in Section 2. In light of the inherent computational
barriers described earlier, we need to impose additional structure to obtain meaningful
guarantees. Our first assumption is that the underlying Markov game exhibits a certain
equiltbrium collapse, in that the marginals of coarse correlated equilibria induce Nash equilibria
(Definition 4.4). It is well-known that such is the case in two-player zero-sum games, but
recent work [Kalogiannis and Panageas, 2023, Park et al., 2023] has also revealed that
equilibrium collapse persists even in a class of multi-player zero-sum games with separable
interactions—building on a similar result in normal-form polymatriz games |Cai et al., 2016].
Yet, perhaps surprisingly and in stark contrast to normal-form games, equilibrium collapse
alone does not suffice to enable efficient computation of stationary Nash equilibria |Daskalakis
et al., 2023b, Jin et al., 2023]. For this reason, we further posit that the game admits a single
controller, a quite classical setting as surveyed in Section 5. The upshot now is that under
those two assumptions, our condition that generalizes the Minty property holds (Lemma 4.6),
which brings us to one of our main results.



Theorem 1.1 (Informal; precise version in Theorem 4.7). Consider any multi-player Markov
game G with a single controller. If G exhibits equilibrium collapse, there is a poly(|G|,1/¢)
algorithm that receives gradient feedback and computes a stationary e-Nash equilibrium.

Above, we denote by poly(|G|) a polynomial in the natural parameters of the game; the
precise version appears as Theorem 4.7. In light of existing hardness results for computing
stationary NE even in turn-based two-player Markov games [Daskalakis et al., 2023b, Jin
et al., 2023|, it is unlikely that the assumption of having a single controller can be significantly
broadened. We also consider our theory investigating tractability beyond the Minty property
to have interest beyond Markov games, but this is left for future work.

2 Preliminaries on Markov Games

In this section, we provide the necessary preliminaries on Markov games. For further
background on Markov decision processes (MDPs), we refer to the works of Sutton and Barto
[2018], Szepesvari [2022], Busgoniu et al. [2010].

Notation We let N={1,2,...,} denote the set of natural numbers and N* := Nu {0}. For
n € N, we use the shorthand notations [n]:={1,...,n} and [n]*:={0,1,...,n}. For a vector
z € R%, we often use the variable r € [d] to index its coordinates, so that the rth coordinate
is accessed by z[r]. The inequality z < - is to be interpreted coordinate-wise. For two vectors
z,z' € R? we denote by z o 2’ € R? their Hadamard product: (z o 2’)[r]:=z[r] - 2/[r], for all
re[d].

Moreover, we will let X represent a convex nonempty and compact subset of a Euclidean
space. We denote by Dy its /5 diameter. A function F' : X - X is called L-Lipschitz
continuous (with respect to the ¢, norm | - ||2) if |F(x) - F(x')|s < L|x - &'|2, for any
x,x’ € X; a differentiable function is called L-smooth if its gradient is L-Lipschitz continuous.
Finally, to lighten the exposition, we will often use the O,(-) notation to indicate the
dependency of a function solely on parameter n.

Markov games We are interested in analyzing the convergence of policy gradient methods
in multi-player Markov (aka. stochastic) games [Shapley, 1953] in the tabular regime.
In such games, each player repeatedly elects actions within a multiagent MDP so as to
maximize a reward function. Formally, a multi-player Markov game G is specified by a tuple
(N, S {A P {R;}™,,C, p) = G, whose constituents are defined as follows.

e N :=[n] is the set of players (or agents);

e S is a finite state space;

e A; is the finite and nonempty set of available actions for each player i € [n] (for
simplicity, and without loosing any generality, we posit that the action set does not
depend on the underlying state); further, the joint action set is denoted by A = X", A;;

e P is the transition probability function, so that P(s’|s,a) represents the probability of
transitioning to state s’ € S starting from state s € S under the joint action a € A,



e R;:SxA—[-1,1] is the (normalized) reward function of player i € [n], so that R;(s,a)
represents the instantaneous reward when players select a € A in state s € S; (For
simplicity, the rewards are deterministic.)

o (=mingg)esxa(l - YesP(s]s,a)) >0 is a lower bound on the probability that the
game will terminate at some step of the shared MDP; and

e pcA(S) is the initial distribution over states, assumed to have full support.

Learning algorithms Learning in such multiagent settings proceeds as follows. At every
step h € N* each player i € [n] 1) observes the underlying state s, € S; 2) selects an action
a;, € A;; and 3) subsequently receives some feedback from the environment, to be specified
in the sequel. This process is repeated until the game terminates, which indeed occurs with
probability 1 since we assume that ¢ > 0; the last step before the game terminates will be
denoted by H € N*| which is a random variable.

Policies A (potentially randomized) stationary policy for player i € [n] is a mapping
7 : S > A(A;); that is, a stationary policy remains invariant for all steps h € N*. We only
consider Markouvian policies throughout this paper, without explicitly mentioning so. We
will assume that players follow direct parameterization so that m; » x; € A(A;)° = X; with
the strategy «; s[a;] = m;(ai|s) for all (a;,s) € A; xS. As such, strategies and policies will be
used interchangeably. The set of all possible (stationary) policies for player i € [n] will be
denoted by II;, while II := X', II;. We will also let X = X}, &;.

Value The value function V;™(s) with respect to an initial state s € S gives the expected
reward for player ¢ € [n] under the joint policy 7 = (7,...,m,) € I:

Vr(s) = s [z Ri(sn. an)lso - ] , 1)

where the expectation above is taken with respect to the trajectory induced by the joint
policy 7 € II. We also generalize (1) by defining V" (p) = E;.,[V;"(s)], where we recall that
p € A(S). Similarly, the @ function with respect to player i is defined as

H
Q;" : (3’ a) —E [Z Ri(sh,ah)|so =S,aq9 = a] ,
h=0

where the expectation is again taken over the trajectory induced by 7r € I. In this context,
we will assume that each player receives as feedback from the environment the gradient of its
value function with respect to its strategy.

Nash equilibrium Consider any player i € [n], and let p_; : S = A(A_;) be a potentially
correlated policy. We denote a stationary best response policy of i under p_; by 7r;r = 71':( pi) €

s
IT;, so that V" (p) = V" *(p).!

Tt is well-known that there is always a stationary policy among the set of best response policies [Sutton
and Barto, 2018].



Definition 2.1. A (stationary) product policy 7* € II is an e-Nash equilibrium if

max (V"™ (p) = V™ (p)} < e

1<i<n

Finally, for 7 € II, we define the state visitation distribution dT e A(S) by df [s] o<
hens P™(sn = 5|80), and d7 = Ey ., [dT ]. Tt will also be useful to consider the unnormalized

counterparts of those distributions: CZ;'O[S] = Y hene P (85 = 8|s0) and CZ;,’ = ESONP[CZQ’O].

3 Convergence Beyond the Minty Property

A classical condition that guarantees tractability for a variational inequality (VI) problem is
the so-called Minty property |Facchinei and Pang, 2003]. To be precise, let F': X - X be a
single-valued operator. The Minty property postulates the existence of a point x* € X such
that

(x-a*,F(x))>0, Vxedl. (2)

By now, there has been significant progress on understanding convergence of first-order
methods under the Minty property. Unfortunately, and crucially for the purpose of this work,
even two-player zero-sum Markov games fail to satisfy (2), as was first observed by Daskalakis
et al. [2020]. In particular, they studied a simple two-player zero-sum Markov game known
as Von Neumann’s ratio game |[Neumann, 1945|, given by

T
R
V(a:l,:vg) = L1

; 3
x]Sxy 3)

where @1 € A(Ay) = X1, 22 € A(Ay) = Ay, and R, S € RA*4A2 Tt is further assumed that
x]Sxy > (, for some parameter ¢ > 0. The following proposition underlies much of the
difficulty of analyzing policy gradient methods even under the simple ratio game (3).

Proposition 3.1 (Daskalakis et al., 2020). Fiz any scalars €,s € (0,1), and suppose that

R := (i 8) and S::(f f) (4)

Then, the ratio game induced by the matrices in (4) fails to satisfy the Minty property (2).

Notwithstanding the above realization, empirical simulations suggest that optimistic policy
gradient methods do in fact exhibit convergent behavior. As a result, a criterion more robust
than the Minty property is needed. This is precisely the primary subject of this section.

Before we proceed with our generalized condition, let us make a further observation
regarding the ratio game defined in Proposition 3.1 that will be useful in the sequel: that
game admits a single controller—the transition probabilities depend solely on the strategy
of one of the players; indeed, we note that x]Sxzs = x{s for any (a1, x2) € X} x Xy, where
s = (s,1)—and thereby does not depend on .

Now, to address the aforementioned difficulties, we introduce and study a new condition,
described below.



Property 3.2 (Generalized Minty property). Let F': X — X be such that X = X%, Z, for
deN, and 1z, be the vector with 1 for all entries corresponding to the component Z., and 0
otherwise. Suppose further that A: X - X and W : X - X are functions such that

o A(zx) =YY", a,(x)1z,, where each a, : X - R is a-Lipschitz continuous; 0 < £ < A(x) <
h; and

o W(x) =YY" w(x)lz,; 0<L<W(x)<h.

We say that the induced VI problem satisfies the (., h)-generalized Minty property if there
exists x* € X so that

(x—ax*, F(x)o A(x) o W(x*)) >0, VrelX, (5)
where o denotes component-wise multiplication.

Several remarks are in order regarding this property. First, a key assumption is that the
underlying joint strategy space X can be decomposed as a Cartesian product, and that the
functions A and W adhere to that structure. It is evident that Property 3.2 is more general
than (2) since one can simply take A and W to be constant functions. In fact, when d =1 the
two conditions are equivalent; it is precisely the product structure of X—which is inherently
present in multi-player games—that makes Property 3.2 interesting. It is also worth noting a
related condition appearing in [Harris et al., 2023, Appendix C.5], although it did not have
any algorithmic implications.

Let us now relate Property 3.2 to the difficulty exposed by Proposition 3.1 in the context
of the ratio game. One can show that if * € X; x X is a Nash equilibrium of the ratio game,
then if we take A(xy,x2) and W(xy,x2) as

Azl [Az| | A1l [Asz|
A o '
(az{s(l,...,1),(1,...,1)),(E(1,...,1),(1,...,1)),
1

respectively, then (5) is satisfied (in this particular application, d = 2). Furthermore, having
assumed that x{Sxs > ¢ > 0, we also have control over the lower bound ¢ (as well as the
upper bound h); naturally, taking ¢ arbitrarily small trivializes Property 3.2, and so the
interesting regime occurs when ¢ is bounded away from 0—this also becomes evident from
the guarantee of Theorem 3.4. This observation regarding the VI induced by the ratio game
is in fact non-trivial, and it is a byproduct of the minimax theorem shown by Shapley [1953];
in Section 4, we will prove this property in much greater generality.

As we shall see, Property 3.2 is already permissive enough to lead beyond known results.
Nevertheless, to obtain as general results as possible, we next introduce a further extension
of Property 3.2.

Property 3.3 (Average version of Property 3.2). Under the preconditions of Property 3.2

with respect to some triple (a,?,h) € R3,, we say that the induced VI problem satisfies the

average («, ¢, h)-generalized Minty property if for any sequence o(T) = (2())p there exists
Xsx* =z (cM) so that
T

(x® —x* F(x®) o A(x®) o W (x*)) > 0. (6)

t=1



Property 3.2 clearly implies Property 3.3 as a suitable * ¢ X would make every term
in the summand (6) nonnegative; we have found that the additional generality of the latter
property is useful for some applications (see Section 4).

We are now ready to proceed to the main result of this section, which concerns the
behavior of the update rule

x® =Ty (2® - nA(z) o F(x(®1)),

0GD
2 =T (20 - nA(x®) o F(z)), o

for t € N. Above, 1 > 0 is the learning rate; Iy (+) is the Euclidean projection operator; and
2 =2 € X is an arbitrary initialization. The update rule (0GD) is the familiar optimistic
gradient descent method [Chiang et al., 2012, Rakhlin and Sridharan, 2013al, but with an
important twist: the operator F(z®) is now replaced by A(x®)o F(x®), where A: X - X
is a problem-specific function—in direct correspondence with Property 3.2; this can be simply
viewed as incorporating a time-varying but non-vanishing learning rate. We remark that it is
assumed that A can be accessed in order to perform the update rule (0GD); this assumption
will be discussed and addressed in the context of our applications in Section 4. Below, we show
that Property 3.3 is indeed sufficient to guarantee tractability for the induced VI problem, in
the following formal sense.

Theorem 3.4. Let X = X, Z, for some deN and F : X - X be an L-Lipschitz continuous
operator with Br = maXic.<q | Fy|2. Suppose further that the average («, ¢, h)-generalized

2
Minty property (Property 3.3) holds. Then, for any € >0, after T > Qfggh iterations of (0GD)

with learning rate n < i, /Ww there is a point () € X such that for any x* € X,

(20, P @) - (o, F(20)) < 20 (22220 02, 2T0)

nt l

Proof sketch The proof of this theorem is deferred to Appendix B.1, but we briefly
describe the key ingredients here. In a nutshell, we analyze optimistic gradient descent (0GD)
following the regret analysis of optimistic mirror descent (Proposition B.1) in the context of
multi-player games [Rakhlin and Sridharan, 2013b, Syrgkanis et al., 2015]; more precisely,
we essentially view each component over Z,., comprising the Cartesian product X = X%, Z,,
as a separate player. The twist is that—in accordance with (0GD)—the observed utility is
taken to be F.(x®)o A.(x®), instead of F,(x®), where F, is the rth component of F.
Importantly, the structure imposed on A(x) by Property 3.3 enables us to show that a
suitable weighted notion of regret enjoys a certain upper bound independent of both A and
W. Thus, leveraging (6), we are able to show—following earlier work [Anagnostides et al.,
2022, Zhang et al., 2022a]—that the second-order path lengths of the dynamics are bounded
(Corollary B.3). Then, Theorem 3.4 follows by the assumption that 0 < ¢ < A(x) < h; that
is, incorporating A(x) into the update rule (0GD) does not distort by much the underlying
operator F'.

A point ® such that (x® - z*, F(x®)) < € for any * € X—as in the guarantee of
Theorem 3.4—is known as an e-approximate solution to the Stampacchia VI problem (aka.

8



an e-approximate strong solution). To make this guarantee more concrete, and to connect
it with the forthcoming application in Section 4, let us consider an n-player game so that
F=(F,...,F,) and F; = -V, u;(x), where u; : X - R is the differentiable utility of player
i€[n].

Corollary 3.5. Under the preconditions of Theorem 3./, we can compute a point x € X after
a sufficiently large T = O.(1/€?) iterations of (0GD), for any € >0, such that

1. if each u;(x;,-) is L-smooth, then for any player i € [n] and x} € X; with |} — ;]2 <0,
ui(x) —ui(x;, @) > —€ - %(52;

2. if each u;(x;,-) is gradient dominant, then for any player i€ [n] and x} € X;, u;(x) -
wi(x;, ;) > —€.

To be precise, the (per-player) gradient dominance property postulates that

wi(x) - maxu;(x;, x_;) > G min(x; - x;, Vg, u(x))
rYeX; Tl eX;
for all € X, where G > 0 is some parameter. As such, Item 2 follows directly by definition
and Theorem 3.4. Item 1 above is more permissive, but only yields a local optimality
guarantee. Still, it turns out that computing such points is hard even in smooth min-max
optimization |Daskalakis et al., 2021, 2023a|; more precisely, Item 1 is interesting in the local

regime 9§ < \/% ; see [Daskalakis et al., 2021, Definition 1.1]; other notions of local optimality

have also been studied in the literature [Jin et al., 2020], but this is not in our scope here.

Before we conclude this section, let us highlight some interesting extensions of Theorem 3.4.
First, one can further broaden the scope of Property 3.3 by replacing the right-hand side
of (6) by —+T, for some parameter v € R,y. In Corollary B.6, we show that we can then
compute an O, (/7 +€)-approximate strong solution. This particular relaxation turns out to
be crucial to capture policy parameterization under ©.,(v)-greedy exploration (Remark B.13
elaborates on this point). In such settings, one has control over the parameter «y, and so by
taking v := €2 we can generalize the guarantee of Theorem 3.4.

Our second extension concerns the behavior of (0GD) in the presence of noise. Our model
of perturbation is akin to the standard relative deterministic noise, wherein the error is
proportional to the distance from optimality, for an appropriate notion of distance [Polyak,
1987, Lessard et al., 2016]. More precisely, for parameters p,d > 0, we assume access
to a noisy operator F%? : X — X such that |F%?(x) — F(x)|s < § - EQGAP(x), where
EQGAP(x) : X > @ » maxgcx(x — x*, F(x)) represents the equilibrium gap. We further
posit that F%# satisfies a relaxed version of Property 3.3 in which the right-hand side of (6)
can be as small as —p YL, (EQGAP(z®))2. In this context, Corollary B.9 reassures us that
the conclusion of Theorem 3.4 is robust if 4 and p are small enough.



4 Optimistic Policy Gradient in Multi-Player Markov
Games

In this section, we leverage the theory developed earlier in Section 3 in order to characterize
optimistic policy gradient methods in multi-player Markov games. In light of the inherent
hardness of computing Nash equilibria in general-sum games, we will restrict our attention to
more structured classes of Markov games. The first assumption we consider can be viewed as
a natural counterpart of the Minty property, but with respect to the value functions—without
linearizing by taking the gradients.

Assumption 4.1. Let G be a Markov game. There exists a joint policy (77,...,7}) €Il
such that

VT () = 2 Vi (p) 20,¥ (o, my) €I
=1 i=1
Crucially, unlike the Minty property (2), Assumption 4.1 subsumes two-player zero-sum
(Markov) games. Indeed, Shapley [1953] proved that there exist policies (7}, 7)) € II such
that

VT (p) < VT (p) < VT (p), V() €11

Here, Vi(p) = -V (p) and Va(p) = V(p) (since the game is zero-sum). The above display
establishes Assumption 4.1 since Vlﬂim( p)+ V;Nr; (p) 2 0. In other words, Assumption 4.1
is a byproduct of Shapley’s minimax theorem.

It is worth noting that any (stationary) Nash equilibrium (77,...,7}) € II satisfies

SV (p) = VT () 2 0,V () €T,
=1 i=1

which closely resembles the condition of Assumption 4.1. However, unlike Assumption 4.1,
the above condition always holds since (stationary) NE always exist [Fink, 1964].

As it will become clear, Assumption 4.1 is naturally associated with Property 3.2. We
also introduce a more permissive assumption in direct correspondence with Property 3.3.

Assumption 4.2. Let G be a Markov game. For any sequence of product policies o(T) =
(w®) 1o, there exists 115 w* = w*(o(T)) such that

*

T n - ﬂ(t_) T n .
SV () - 2> v (p) 2 0.

t=1i=1 t=1i=1

Beyond the two-player zero-sum setting, we first show that Assumption 4.2 is satisfied
for the class of zero-sum polymatriz Markov games [Kalogiannis and Panageas, 2023] (see
also [Park et al., 2023]).

10



Polymatrix zero-sum Markov games A polymatrix game is based on an undirected
graph G = (V, E). Each node i € V is (uniquely) associated with a player, while every edge
{i,1'} € E represents a pairwise interaction between players ¢ and ¢’. It is assumed that the
reward of each player is given by the sum of the rewards from each game engaged with its
neighbors. The zero-sum aspect imposes that the sum of the players’ rewards is 0. Such
games were investigated by Cai et al. [2016] (see also Even-Dar et al. [2009] for a more general
treatment) under the normal form representation. For the Markov setting, Kalogiannis and
Panageas [2023] further assumed that in each state there is a single player (not necessarily
the same) whose actions determine the transition probabilities to the next state. For that
class of games, with a careful examination of their analysis we are able to show the following
result.

Proposition 4.3. Assumption 4.2 is satisfied for any polymatriz zero-sum Markov game.

In fact, this result is a byproduct of a more general characterization that we prove. To
explain our result, we first recall the concept of a coarse correlated equilibrium (CCE), which
relaxes Definition 2.1 by allowing correlated policies. We will further use the concept of an
e-average CCE (henceforth e-ACCE), a relaxation of CCE in which the sum—instead of the
maximum as in CCE—of the players’ deviation benefits must be at most €. Precise definitions
are deferred to Appendix A, as they are not crucial for the purpose of this section. In this
context, we introduce the following definition.

Definition 4.4 (Equilibrium collapse). Let G be a Markov game. We say that G exhibits
equilibrium collapse if there is a C' = C(G) € R, such that for any stationary e-ACCE
pe A(A)S of G, the marginal policies (7y,...,m,) = (7w (),...,m,(n)) form a (Ce)-Nash
equilibrium of G.

We remark that the prior work on zero-sum polymatrix Markov games established
equilibrium collapse with respect to e-CCE [Kalogiannis et al., 2023], but their argument
readily carries over for ACCE as well. Proposition 4.3 is thus implied by the following result.

Proposition 4.5. Assumption /.2 is satisfied in any Markov game G exhibiting equilibrium
collapse per Definition /.J.

Having justified Assumptions 4.1 and 4.2, we now proceed to establishing Property 3.2.
Taking a step back, one might hope that equilibrium collapse (in the sense of Definition 4.4)
would already suffice to efficiently compute stationary NE—as in the case of normal-form
games. However, recent lower bounds [Daskalakis et al., 2023b, Jin et al., 2023| dispel any
such hopes, thereby necessitating additional structure in order to elude those intractability
barriers. This is precisely where the admission of a single controller comes into play, an
assumption crucial for establishing Property 3.3. Indeed, this is shown in the following key
lemma, which relies on the expression of the difference of the value function (Lemma B.12) and
the connection between the @) function and the gradient of the value function (Lemma B.11).
In accordance with our theory in Section 3, we let Fg(x) = =(Vz, Vi(p),. .., Va, Va(p)); see
Remark B.10 for a clarification regarding differentiability of the value function in spite of the
empty interior of X.
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T

Lemma 4.6. Consider a Markov game G, and let A;(x,x*)[s,a;] = dp;,,—[:][s] forie[n] and

(s,a;) € S x A;. Further, let A(x,x*) = (A(x,x*),..., A\ (x,x*)). If Assumption /.1 holds,
then there exists x* € X such that

(x-x", F(x)oA(x,x*)) 20, VaelX. (7)
In particular, if G admits a single controller, denoted by cntrlg, then Property 3.2 holds with

1 2if 1 # entrlg

AZ’ , Qi | = 7 -
(@)l {(dﬁi[S]) " ifi=cntrlg,
and

1 2if 1 # entrlg

Wi(2")[s.a,] = { -

dp' [s] :ifi=cntrlg.

We see that (7)—a generalization of Property 3.2—holds without any additional as-
sumptions on the transition probabilities. Yet, decoupling A(x,x*) = A(x) o W (x*) in the
sense of Property 3.2 turns out to be crucial to apply our techniques. In fact, the recent
hardness result of Park et al. [2023] suggests that the general case should be intractable. We
further remark that Lemma 4.6 applies similarly to conclude Property 3.3 if we substitute
Assumption 4.1 by Assumption 4.2.

Finally, having established Lemma 4.6, we can now apply Theorem 3.4 along with the
gradient dominance property (Lemma B.14) to obtain one of our main results. Specifically, in
Appendix B we appropriately bound all of the involved parameters appearing in Theorem 3.4;
as usual, this includes a certain distribution mismatch coefficient Cg (defined in (13) of
Appendix B)—the multi-player analog of the quantity considered by Daskalakis et al. [2020]—
as well as a dependency on 1/|p| ., necessitating that the original distribution p assigns a
non-negligible probability mass to all states.

Theorem 4.7. Let G be a Markov game that satisfies Assumption /.2 and admits a single
controller. Then, (0GD) after 1/e2 - poly(n, ¥iq |Ail,|S], 1/¢,Cg, 1/| pl ) iterations computes
a stationary e-NFE.

The importance of Theorem 3.4 stems not just from its computational complexity impli-
cations, but also from its applicability in a decentralized environment. Indeed, all players are
performing gradient steps without any further information from their environment, with the
sole exception of the controller. In particular, as predicted by Lemma 4.6, performing the
update rule (0GD) requires some further access to the environment in order to estimate the
(unnormalized) state visitation distribution Jg[], using standard arguments, this requires
poly(|G|,1/€) time to determine within e-error, which suffices for applying Theorem 3.4 (see
Remark B.4).

An illustrative comparison between (0GD) with a time-varying but non-vanishing learning
rate—per its update rule—and the vanilla version with a constant learning rate in the context
of the ratio game appears in Appendix C.
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It is worth noting that our proof technique shares an interesting conceptual similarity
with the approach of Erez et al. [2023], also based on a weighted notion of regret. The key
point of departure is that we explicitly incorporate the weights into the update rule (0GD),
which in turn induces a second-order dependency on the deviation of the weights in lieu
of a first-order bound; this turns out to be crucial for establishing Theorem 4.7. Yet, our
approach is more restrictive in that it rests on having a single controller.

5 Further Related Work

Computing and learning equilibria in Markov games has attracted considerable interest
recently. Most focus has been on the Nash equilibrium in either identical-interest—or more
generally, potential—games [Fox et al., 2022, Leonardos et al., 2022, Alatur et al., 2023,
Aydin and Eksin, 2023, Ding et al., 2022, Zhang et al., 2022¢, Maheshwari et al., 2022, Macua
et al., 2018, Chen et al., 2022], or two-player zero-sum Markov games [Daskalakis et al., 2020,
Cen et al., 2023, Cai et al., 2023, Chen et al., 2023c, Wei et al., 2021, Zhang et al., 2020,
Sayin et al., 2021, Huang et al., 2022, Cui and Du, 2022, Perolat et al., 2015, Zeng et al.,
2022, Pattathil et al., 2023, Yang and Ma, 2023, Arslantas et al., 2023, Chen et al., 2023b],
albeit with a few exceptions [Qin and Etesami, 2023, Sayin, 2023, Giannou et al., 2022,
Kalogiannis and Panageas, 2023, Kalogiannis et al., 2023, Park et al., 2023, Ma et al., 2023].
In general-sum multi-player games, in light of the intractability of Nash equilibria, most focus
has been on computing or indeed learning (coarse) correlated equilibria |[Daskalakis et al.,
2023b, Jin et al., 2021, Wang et al., 2023, Erez et al., 2023, Liu et al., 2022, Zhang et al.,
2022b, Foster et al., 2023].

Nevertheless, an important question has been to identify classes of multi-player games that
circumvent the intractability of NE in general games. For example, recent work [Kalogiannis
and Panageas, 2023, Park et al., 2023] investigates the class of polymatrix Markov games,
which is based on the homonymous class of normal-form games [Cai and Daskalakis, 2011,
Cai et al., 2016]; indeed, the topic of network games has been particularly popular in the
literature on MARL (see [Zhang et al., 2018, Chu et al., 2020, Parise and Ozdaglar, 2019],
and references therein). Specifically, Kalogiannis and Panageas [2023] and Park et al. [2023]
leverage the equilibrium collapse of CCE to NE to show that Markov NE can be computed
efficiently; in stark contrast, Park et al. [2023] showed that computing a stationary NE is
PPAD-hard; the latter hardness result is based on earlier work by Daskalakis et al. [2023b],
Jin et al. [2023]. In the class of polymatrix zero-sum Markov games, our novelty compared
to earlier work [Kalogiannis and Panageas, 2023, Park et al., 2023| (see also the concurrent
paper of Ma et al. [2023]) lies in showing convergence to stationary Nash equilibria; this does
not contradict the aforementioned hardness results since we impose an additional assumption
on the transitions. It is worth underscoring that stationarity is a fundamental desideratum
with a long history in the literature on repeated games; among other benefits, stationary
policies enjoy a much more memory-efficient encoding, which becomes especially crucial when
each policy is represented via an enormous neural network with millions of parameters, while
stationary policies are also arguably more interpretable.

Beyond games with separable interactions, Kalogiannis et al. [2023] showed that NE can
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be computed efficiently in a class of games that subsumes both zero-sum and potential games—
namely, adversarial team Markov games; see also [Emmons et al.; 2022, Wang and Sandholm,
2002] for pertinent results. It is also worth noting that certain refinements of NE—such as
strict equilibria—have been shown to be attractors under policy gradient methods [Giannou
et al., 2022], although such refinements are not universal.

Naturally, gradient-based methods have also received considerable attention in imperfect-
information extensive-form games [Hoda et al., 2010, Lee et al., 2021, Piliouras et al., 2022,
Zinkevich et al., 2007, Liu et al., 2023], as well as the more tractable class of normal-form
games [Hsieh et al., 2021, Hussain et al., 2023]. Even for the latter class of games, it is known
that gradient-based methods may fail to converge pointwise to Nash equilibria [Vlatakis-
Gkaragkounis et al., 2020, Mertikopoulos et al.; 2018]. In stark contrast, it has been
documented that optimism, a minor modification akin to the extra-gradient method introduced
in the online learning literature by Rakhlin and Sridharan [2013a], Chiang et al. [2012], leads
to last-iterate convergence in monotone settings [Cai et al., 2022b, Gorbunov et al., 2022,
Golowich et al., 2020]. Further, beyond the monotone regime, ample of prior work has
endeavored to identify broader classes of tractable VIs, such as the weak Minty property put
forward by Diakonikolas et al. [2021]. In turn, this has engendered a considerable recent body
of work; we refer to the papers of Pethick et al. [2023], Cai and Zheng [2023], Pethick et al.
[2022], Lee and Kim [2021], Cai et al. [2022a], Mahdavinia et al. [2022], Vankov et al. [2023],
and the many references therein.

Finally, we highlight that Markov games with a single controller have a rich history; see
[Parthasarathy and Raghavan, 1981, Bagar and Olsder, 1998, Eldosouky et al., 2016, Guan
et al., 2016, Qiu et al., 2021, Sayin et al., 2022]; those references contain ample motivation and
examples of realistic strategic interactions that can be faithfully modeled as Markov games
with a single controller. For example, Eldosouky et al. [2016] cast strategically configuring a
wireless network so as to protect against potential attacks as a security game in which the
defender serves as the sole controller.

6 Conclusions and Future Work

In conclusion, we have furnished a natural generalization of the classical Minty property, and
we showed that computational tractability persists even under our more permissive condition.
We also applied our general theory to obtain new convergence results to stationary Nash
equilibria for optimistic policy gradient methods in a broad class of multi-player Markov
games.

A number of interesting questions arise from our work. First, our new condition (Prop-
erty 3.2) crucially relies on the product structure of the joint strategy space. While such
structure is always present in multi-player games with uncoupled strategy sets, the canonical
case treated in the literature, it may break in some settings of interest [Jordan et al., 2023,
Goktas et al., 2023, Goktas and Greenwald, 2022]. Extending the theory of Section 3 to
capture such settings is an interesting avenue for future work. Furthermore, we have seen
that any Markov game that exhibits equilibrium collapse satisfies property (7), without
assuming the existence of a single controller. Understanding when property (7) suffices to
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ensure computational tractability is another promising direction.
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A Additional Preliminaries

In this section, we provide some additional preliminaries omitted from the main body.

Average CCE We first give the definition of an average CCE—in the parlance of Nadav
and Roughgarden [2010]. ACCE were also studied recently by Zhou et al. [2023] but under
the name “weak CCE.”

Definition A.1. A stationary (potentially correlated) policy p € A(A)® is a stationary
e-ACCE if

(V" (p) - V¥#(p)) <e.

M=

(2

Il
—_

Polymatrix zero-sum Markov games We recall that a polymatrix zero-sum Markov
game is based on an undirected graph G = (V,E). Each node i € V := [n] is uniquely
associated with a player. We will denote by N; = {i" € V : {i,i’} € E} the neighborhood of
player i € [n]. The set of edges E encodes the underlying pairwise interactions, so that the
instantaneous reward of player i € [n] can be expressed as R;(s,a) = Yen, R (s, a;,air),
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where R; ;s : SxA;x Ay - R. Furthermore, it holds that Y, R;(s,a) =0, for any (s,a) € Sx A,
since the game is assumed to be zero-sum. Furthermore, Kalogiannis and Panageas [2023] also
assume that in every state s € S there is a single player determining the transition probabilities,
denoted by cntrl,. Interestingly, admitting a switching controller—in the sense of the latter

assumption—is necessary to guarantee equilibrium collapse, as shown by Kalogiannis and
Panageas [2023].

B Omitted Proofs

In this section, we provide the proofs omitted from the main body. Appendix B.1 below
contains the proofs from Section 3, while Appendix B.2 establishes our statements from
Section 4.

B.1 Proofs from Section 3

We commence here with the proofs from Section 3. We first have to recall the so-called
RVU property, crystallized by Syrgkanis et al. [2015]; the version we include below was not
explicitly stated by Syrgkanis et al. [2015], Rakhlin and Sridharan [2013a], but follows readily
from their arguments.

Proposition B.1 (RVU property [Syrgkanis et al., 2015|). Consider a regret minimization
algorithm over Z, instantiated with (0GD) parameterized by a learning rate n > 0. Then, under
any sequence of utilities ('Uq(nt))()gtg’]‘, for some time horizon T € N, its regret can be upper
bounded as

L (1.0 202 4 (0 _ a2
on 2 (1207 = 2013 + =17 - 2V ).
t=1

D2 T
Regl) < 2=+ ) fuf” - ul V3 -
n t=1
We recall the standard definition of regret: Regg) = MaXzrez, Yz - z,(,t),u,(f)). We
also call attention to the fact that (0GD) has access to an auxiliary utility w(®), which also
appears in the regret bound of Proposition B.1; this is just made for convenience, and it does
not affect the analysis.

We will also use the following lemma, which can be extracted in [Anagnostides et al.,
2022].

Lemma B.2. Suppose that the sequences (zﬁt))ogtg and (27€t))1$tg+1 are updated by (0GD)
under a sequence of utilities (’uﬂgt))ogtg’]‘. Then, for any te[T],

D
max(z’ - 29, ul’) < (i + max |ul” Hg) s,
pres-a N I<<T

where 87(]5) — ||z,€t) _ 25” “2 + ||z7(«t) _ 2§t+1)||2-

We can proceed with the proof of Theorem 3.4, the statement of which is recalled below.
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Theorem 3.4. Let X = X%, Z, for some deN and F: X - X be an L-Lipschitz continuous
operator with Bp = maxXic.<q |Fr|2. Suppose further that the average («,t,h)-generalized

2
Minty property (Property 3.3) holds. Then, for any € >0, after T > Qfggh iterations of (0GD)

with learning rate n < i, /Ww there is a point £t € X such that for any =* € X,

<$(t)’F(w(t))> _ (m*,F(m(t))) < Qd(maXlgrngZT . hBF) .

n¢ l

Proof. We let ® = (z,(f))f:l for any ¢ € N* and & = (27Et))f:1 for any t € N. We further
let A=(Ay,...,Ay) and F = (Fy,...,F;). In light of the Cartesian product structure of
X =x¢_, Z,, the update rule of (0GD) can be equivalently written as

2 =Tz, (27 = A (@D o F(207D)),

®
20 = T, (2 - A2 ) o F (2)),

for all times ¢ € N and 7 € [d]. In turn, (8) can be equivalently expressed so that z\” and 2"

are solutions to the optimization problems

1
min ar(m(t_l))(zh Fr(w(t_l))> 5 HZT - 27@) H%>
zr€Z, 27]

min - (20) 2, F (20} + -1, - 273
ZreZ, 2n
respectively. Let us fix a time horizon T' € N and r € [d]. Invoking Proposition B.1, it follows
that for any reference point z* € Z, the term Yo, a,(x®)(z{" - 27, F.(2®)), which can be
viewed as the cumulated regret under the sequence of utilities (F.(z®) o A,.(2®)) <1, can
be upper bounded by

Dy ) ]
2 +0 ) Ja () F(2) - a, (2 D) F (D)3
t=1

1 T
_ Z (Hz(t) _ ﬁ(t) “2 n Hz(t) _ ZA(t+1)H2)

217 = T T 2 T T 21>
where we recall that Dz above represents the /5 diameter of Z,. Furthermore, using the
assumption of Property 3.2 that 0 < ¢ < w,(x*) < h, the term Y1, wT(w*)ar(a:(t))(z,Et) -
zr, F.(x®)) can be in turn upper bounded by

2

D= h T
227; +nh Z Har(m(t))Fr(w(t)) - ar(w(t_l))Fr(w(t_l))Hg
t=1

& )  2@®)2 (t)  L(+1))2

o 2 (157 - 20+ 127 - 20V 1R) - (9)
t=1

for any * € X. Now, by selecting a suitable z* € Z, for each r € [d], Property 3.3 implies

that

T d T
> Y wi(@)a, (20) (2" - 22, F(x0)) = Y (a® - 2", F(z®) 0 A(z®) o W (")) 20,
t=1r=1 t=1
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for any ¢ € [T']. Thus, by adding (9) for each r € [d] we have that

D%2h
0< ﬁ +2nh3 Z HF(:v(t)) F(ilt(t 1))||2 + 2nha2dmax |F |3 Z H:I:(t) — (" 1)||2
=

T
-3 2 (I - 4O+ |2 - 3¢ ]R),
t=1

where we used the fact that Y7, D% = D%; S (1280 = 292+ 1280 - 285D)2) = (Ja® -
W2 + |2® — £¢+1D|2); and that
lar(x9) F(2®) - a, (D) F (2D 3 < 20| B (20) - F(2V)3
+ 2| B Bl (2) - a (xD)P.

Further, using L-Lipschitz continuity of F', we have that

2

OSDX

h T i ¢ )
+2n(h3L? + hB%a2d) Y a2 — 2|3 - o S ™ -2t |3
t=1 n =
S (10 a2 4 ) 1) 2
L3 (12 - 03+ |2 - a6D3).
t=1

where we also used the fact that ¥, [2® — 2D |2 <237, (Ja® - 2O |2 + |2® - 2D |2).

Thus, for n < }1, /WW’ we conclude the following.

Corollary B.3. Under the conditions of Theorem 3./,

T 2D2
Z (Hw(t) —g® “3 + Hfﬂ(t) — p+1) H%) < th'
t=1

2
As a result, for 7' > 2PX" the above inequality implies that there exists ¢ € [T'] such that
|z® — 2@, |&® — 2+ |, < e. Using Lemma B.2, it follows that for any r € [d],

ar(m(t)xz?ﬁt)a Fr(w(t)» — Gy (w(t))(zﬁ, Fr(w(t)»
D ¥
s(ﬁi+h3)(u“> £01+ 240 - 2070),)

Given that a,(x®) > /(> 0,

Dz, hBF)
¢

(40, (@) - (27, Fo(a)) £ 2( 22+

1t holds that

Adding those inequalities for all 7 € [d], we conclude that for 7 > 2

(), F(x™)) - (x*, F(x®)) < Qd(maXISTSCl Dz, , hBF) ‘

n¢ l
for any x* € X'. This concludes the proof. O
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Remark B.4. Theorem 3.4 is robust to conceding error in the evaluation of A(x). More
precisely, let us suppose that |A(z®) - A"(x®)]. <e®, for any ¢t € [T]* and a sufficiently
small ¢ > 0. Following our proof of Theorem 3.4, it is easy to see that (0GD) under the
sequence (F(xz®) o A/(x®))oer yields an Or (ﬁ + LYo |A(2®) - A’(a:(t))Hoo>—strong
solution to the VI problem. As a result, if we can guarantee that e(®) < %, for any t € [T]*,
we recover the same rate as Theorem 3.4.

We next provide a slight extension of Theorem 3.4 under a more general condition than
Property 3.3, described below.

Property B.5 (Extension of Property 3.3). Under the preconditions of Property 3.2 with
respect to some triple (a,f,h), we say that the induced VI problem satisfies the average
(a, 0, h) € R -generalized Minty property with slackness v > 0 if for any sequence o(T) =
(")) 1c4er there exists X 3 x* = x*(0(1)) so that

(2 —z*, F(xz®) o A(xz™) o W(x*)) > —.

N~
M=

Il
—_

t

Corollary B.6. Let X = X%, Z, for some deN and F : X — X be an L-Lipschitz continuous
operator. Suppose further that the average (o, l, h)-generalized Minty property with slackness
v >0 (Property B.5) holds. Then, for any € >0, after T € N iterations of (0GD) with learning

rate n < }“ /Wm there is a point *® € X such that for any ©* € X,

(z® - 2" F(z®)) < Zd(maxlgsd Dz, . hBF) 4y  2D%4h

0l ( c T

2
Proof. Similarly to the proof of Corollary B.3, X1, (J&® - 2® |2 + |® - £+ |2) < % +
YT, As a result, we conclude that there is ¢ € [T] such that

2D%h  dny
) _ 5@ ) _ D)), < x° 2T
|22 = &2z, & - &2 <\ [ —=+ =
The statement then follows from Lemma B.2, similarly to Theorem 3.4. O]

Remark B.7. One application of incorporating slackness—per Property B.5 and variants
thereof—with independent interest pertains the convergence of competing neural networks
in the neural tangent kernel (NTK) regime [Jacot et al., 2018|, wherein the optimization
landscape behaves as nearly convex-concave. Indeed, online learning techniques readily extend
under near convexity [Chen et al., 2023a], a fact that can be leveraged in conjunction with
our approach to provide convergence guarantees in that regime.

We next extend our analysis in the presence of noise in the operator, in a sense that will
be made precise very shortly. To this end, we first need to state a slight modification of
Property B.5; we recall the notation EQGAP(x) : X 3 © » maxg-cx(x — x*, F(x)).
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Property B.8. Under the preconditions of Property 3.2 with respect to some triple (a, ¢, h),
we say that the induced VI problem satisfies the average (o, ¢, h, p) € RY -generalized Minty
property if for any sequence o) == (M) 1o there exists X > x* = * (o)) so that

ET:(:c(t) —x* F(x®) o A(x®) o W (x*)) 2 —p ET:(EQGAP(zc(t)))Q.

Corollary B.9. Let X = X%, Z, for some deN and F : X - X be an L-Lipschitz continuous
operator. Suppose that we instead have access to an operator For : X — X such that

1. F%¢ satisfies the average (o, l, h, p)-generalized Minty property (Property B.8); and
2. |For(z) - F(zx)|2 < 0- EQGAP(z), for any z € X.
If the pair (p,d) is such that

ne?

+12nh362 <
g ! 64(maxiereq Dz, + nhBrs.)?

and 6 < 53—, with learning rate n < § then after T € N iterations of (0GD)

¢
= 2Dy’ 3h3L2+hB2 5 old’

there is a point x® € X with equilibrium gap EQGAP(x®) upper bounded by

161 K2 ( D%h
—— | 6nh*PEQGAP(x®) + =2,
Nay 7 (=) 2n

for any € >0, where K is defined in (10).
Proof. First, using Lemma B.2, it follows that for any r € [d],
ar(@®) (=", F2* (@) - an (2=, B (2))

red D : 2
(B B, ) (120 - 200+ 20 - 270L).

in turn implying that

maxXi<r<q D hB g, . .
(@ - 2", 7)) < Ak ) (Ja® - 6 + 20 - $CD).

Given that, by assumption, [Fo¢(z®) - F(x®)|, < dEQGAP(x®), it follows that for
<ok
X
EQGAP(z™) < K (|2 -2 |, + |2 - 2(+D),),

where we have defined

(10)

K =9 (maX1grgd Dz, N hBps.p ) .

n¢ 14
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Moreover, similarly to the proof of Theorem 3.4, Property B.8 implies that the term
~p YL (EQGAP(x®))2 can be upper bounded by

Dk

+ 2nh? Z | Fo#(a®) = o2 (D)3 + 2nha®d By, Z |2 -2
=1

T
o= > (I - 5O+ [0 - &V [3).
i

Now the term —% YL (J2® - 2®[2 + |2 — £+ |2) can be upper bounded by

Z(EQGAP(t))2

U ) -2
—8—;Hw A P 8K2

while the term Y/, [ Fo2(2(®) — Fo¢(x(D)|2 can be upper bounded by

T T
36°EQGAP(z()? + 667 Y (EQGAP(z™))? +3L2 ) [ — 2(1|3.
t=1 t=1

As a result, for n < i\/W;W and any pair (p,d) such that

+12nh36% <

we conclude that there is (Y € X with equilibrium gap EQGAP(z®) upper bounded by

16nK? D% h)

6nh36*EQGap(x®) +
e ( (2)

B.2 Proofs from Section 4

In this section, we provide the proofs deferred from Section 4. We first make a remark
regarding differentiability of the value function, following [Daskalakis et al., 2020, Remark 1].

Remark B.10 (Differentiability). Under direct parameterization, the interior of the joint
strategy space, denoted by int(Xx'), is empty. To make sure that the gradient V., Vi(p) is
well-defined, we can instead consider a suitable compact and convex set X, for any o > 0,
so that X' ¢ int(X5) and any point & is within distance 0 from some point in X;. Using
continuity and compactness, it is direct to see that by taking the limit 6 | 0 our analysis
readily applies.

Now, following the approach of Kalogiannis and Panageas [2023|, we prove Proposition 4.3.

Proposition 4.3. Assumption 4.2 is satisfied for any polymatrixz zero-sum Markov game.
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Proof. We consider for each player i € [n] the following nonlinear program with variables

v; € RS and p e A(A)S.

min p'v;
s.t. 0[8] 2 Eaq iop i) [Ri(5,@) + (0P (s, @)v;],

where Cim i=1—(sq, for all s€S and q; € A;. In particular, p above represents a stationary,
potentially correlated joint policy. Now let us fix a player i € [n] and p_; € A(A;)S. Tt is
well-known that the induced linear program is feasible, and the optimal objective is equal
to the value of player i € [n] when best responding to p_; [Puterman, 2005]. That is, if the
optimal value is attained at v} (u_;) € RS, it holds that V;"*7(p) = pTv? (p_;), for all i € [n].
In particular, if p(-|s) == 7w*(:|s) is a Nash equilibrium policy (Definition 2.1), it holds that
Yy Vj’ﬁii(p) = Y7,V (p) =0. This in turn implies that the sum of the objectives (over
the players) of the original nonlinear programs is nonpositive. Furthermore, let us fix 7(-|s)
to be a product distribution. By feasibility, it follows that for any state s €S,

v;[8] 2 Equn(is)[Ri(s, @) + (5. aP(]s, @)v;].

Thus, using the fact that }.i"; R;(s,a) =0 and that (,4 > 0 for all (s,a) € S x A, it follows
that -, v;[s] >0 for all s€S. So, it follows that when restricting p to be a product policy
the sum of the objective values is 0.

Now, consider a potentially correlated policy wp, and let @ = w(u) be the product
distribution induced by taking the marginals of . By feasibility, for any player i € [n] and

(s,a;) e Sx A,
V78] 2 Eq iop i) [Ri(s, @) + (5.0 P( s, @) v} ]. (11)

By the assumption of separability of the reward function, the first term in the right-hand
side of (11) is equal to

Z ]Ea7¢~ufi('|8)Ri7i'(sv a) = EaiiNﬂ-ii(.‘s)Ri(s, Cl,).
i'eN;

Further, by the assumption of having a switching controller, the second term in the right-hand
side of (11) is equal to

Ea7i~u7i(.|s)ﬂj}('|8, a)’U; = Eaiwﬂii(.|s)ﬂ)('|8, a)vi*.
Thus, we conclude that
Vi [s] 2 Eq_on (i) [Ri(s, @) + Es,ap('|3> a)v;],

which means that the pair (v, m(p)) constitutes a feasible solution. Given that m(pu) is
by definition a product distribution, we know that };’; p™v; > 0, in turn implying that
Yy V;’” “(p) 2 0. Finally, Assumption 4.2 follows by taking g to be a uniform mixture of T
product distributions. O
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Beyond polymatrix zero-sum Markov games, Assumption 4.2 is satisfied in all games
exhibiting equilibrium collapse per Definition 4.4, as we observe next.

Proposition 4.5. Assumption /.2 is satisfied in any Markov game G exhibiting equilibrium
collapse per Definition /./.

Proof. For the sake of contradiction, suppose that there exists a sequence of product joint
policies (7w, ... (™)) such that

1 L& 4a® 1 L& o
22V (P - S VT () <0 (12)
T T
that is, Assumption 4.2 is violated. If p € A(A)® represents the uniform mixture over
(wM ..., &™) which is potentially a correlated policy, (12) can be rewritten as
(V"= (p) - V(p)) <O0.
i=1

In words, p constitutes an e-ACCE (Definition A.1) with € < 0. By the assumption that G
exhibits equilibrium collapse (Definition 4.4), it follows that the marginals of p induce an
e’-Nash equilibrium with € < 0, which is a contradiction. This completes the proof. O]

We next state a number of elementary properties in MDPs [Cai et al., 2020], starting
from the connection between the gradient of the value function and the @ function; for
completeness, we also provide their proofs.

Lemma B.11. For any state s € S and any joint action profile (a;,a_;) =a € A,

oV (p)

Oz [ai] 5[5 Bq_om 1) [QF (s,@)], Vi € [n].

Proof. Let sp € S be any initial state. We have that the gradient V,,V,™(so) is equal to

Vwi ( Z 7ri(ai,0|50)Ea_iy0~7r_,-(-|so)[Q?(Sm aO)]) 5
ai’oéAi

where we denoted by ag = (a1, ...,a,0). The above display is in turn equal to
>, mi(aiolso)(Va, logmi(aiolse) ) E[QT (50, ao)]
ai,()EAi

+ Z m-(ai,g

ai,QEAi

50>E[ S P(sifso. ao>vmw<sl>] ,

8168

where the expectation is taken with respect to a_;o ~ w_;(+|so). In particular, the second
term above follows from the fact that

QT (s0,a0) = Y. P(s1]s0,a0) V™ (s1).
81€$
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As a result, it follows that the gradient V,,V."(s) can be expressed as

Epr (s0)[ Va, log Ti(aio0]s0))QF (S0, @0) ] + Epr(ysg) [L1a>1Va, Vi™ (50)] -

By linearity, the same holds by replacing the initial state sy € S with any distribution p € A(S).
As a result, by induction and the fact that ¢ > 0, we conclude that

H
Vwi‘/;ﬁ(P):E zVwi10g71'1;(ai,h|3h))@f(5h,ah) .
h=0

The above expression is also equal to

ZS dp [5)Eavn(is) [ Va: log 7i(asls))QF (s, @)].

The statement of the lemma thus follows by the fact that 2% ”,([a l‘ﬁ)) wi,sl[ai] if (s,a;) = (s',al),

and 0 otherwise. O]
Lemma B.12 (Value difference). For any joint policy 7 € 11 and policy = € I1;, the value
difference V""" (p) = Vi (p) is equal to

S Ay s] Y (@)[a] - @[] E[QT (5,a)],

seS a;eA;

for any player i € [n], where the expectation above is taken over a_; ~ w_;(¢|s).

Proof. Let s €S. We see that the value difference Vf;’mi(s) - V™ (s) can be expressed as
H H
E [Z Ri(sn, ah)] -V (s)=E [Z Ri(sn,an) + Lpa<a Vi (1) - V;ﬁ(sh)]
h=0 h=0
H
5|3 (@) v,
h=0

where the expectation above is taken over trajectories induced by P77, As a result, the
value difference V,""" () - V™(s) is equal to

Z A" [ TR an (s mi sy [QT (87, @) = VT ()],

s'eS

which leads to the conclusion of the lemma by taking the expectation E,.,[-]. ]

We now combine Lemmas B.11 and B.12 to conclude Lemma 4.6, the statement of which
is recalled below.

Lemma 4.6. Consider a Markov game G, and let A;(x,x*)[s, a;] = % forie[n] and

(s,a;) € S x A;. Further, let A(x,x*) = (A (x,x*),..., \p(x,x*)). If Assumptzon 4.1 holds,
then there exists x* € X such that

(x-x" F(x)oA(x,x*)) >0, VaelX. (7)
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In particular, if G admits a single controller, denoted by cntrlg, then Property 3.2 holds with

1 2if 1 # entrlg

Ai(x)[s,a;] = {(ngi[s])_l :if i = cntrlg,

and
1 suf i # entrlg

Wi(@*)[s,a:] = | e
(@)ls, i) {dpl [s] :ifi=cntrlg.
Proof. Let us consider a player i € [n]. For (s,a;) € S x A;, Lemma B.11 implies that

v (p)
aazw [a,]

where the expectation above is taken over a_; ~ w_;(+|s). Thus, summing over all s € S and
a; € A;, it follows that the term (x; — x;, V4, Vi(p) o Ai(x, x*)) is equal to

S Ay s] Y (@)[a)] - @[] E[QT (5,a)],

seS a;eA;

Ai(e,2")[s,a,] = dp ™ (s)E[QF (s,@)],

where the expectation above is again taken over a_; ~ w_;(-|s). By Lemma B.12, the term

above is equal to the value difference V;W’{’mi(p) - V7™(p). Thus, summing over all players
i € [n], we find that (5) is a consequence of Assumption 4.1. Analogously, (6) is a consequence
of Assumption 4.2. O

Remark B.13 (Greedy exploration). Throughout this paper, we have been operating in the
regime of direct parameterization in that m;(a;|s) = x;s[a;], for any player i € [n] and
(s,a;) € X x A;. This type of parameterization suffices under the assumption that players
have complete gradient feedback, but in the more challenging bandit feedback model such a
parameterization could cause the variance of the gradient estimator to blow up. One common
approach to address this issue consists of incorporating y-greedy exploration, so that now
mi(a;ls) = (1 - y)x; s[a;] +/|A;|. This in turn leads to variance bounded by O,(1/7v). It is
fairly straightforward to see that Lemma 4.6 still implies Property 3.3, with the difference
that the right-hand side of (6) is replaced by a term —©.(y)7. By virtue of Corollary B.6,
analogous conclusions hold in that case as well.

In Corollary 3.5, we saw that the guarantee of Theorem 3.4 in general smooth multi-player
games yields only a local optimality guarantee; to arrive at global optimality, as claimed in
Theorem 4.7, we will show that the gradient dominance property (Item 2) holds; the proof
below follows that of [Daskalakis et al., 2020, Lemma 1].

Lemma B.14 (Gradient dominance). Let 7 € Il and =} € I1;, for some player i € [n]. Then,

Ly

the value difference maxgrcn, V; " (p) = V™ (p) is upper bounded by

* .
dﬂ'i yTT—q
o

P

1 /

min
Trelly ()
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Before we proceed with the proof, let us point out that the ratio above is defined coordinate-
wise, which is well-defined since we have assumed that p has full support. We also note that
the nomenclature I} (7r_;) above denotes the set of (stationary) best response policies of
player i € [n] under m_;.

Proof of Lemma B.1j. By Lemma B.12, we have that the value difference maxzrer, Viﬂg’ﬂ‘i (p)-
V™ (p) can be upper bounded by

Zdﬂ- i maXEa i~TT 1(|s)[v (8) Qﬂ(s CL)]

a;eA
seS €A

where 7} (7_;) € Il (7_;) is a policy minimizing . Since maxg,es, Eq_,om;(4s)[Vi™(5)—

o0

QT (s,a)] >0 for any state s € S, the last displayed term can be in turn upper bounded by

p

dﬂ'Z ST

Z dﬂ- max Ea—iNW—z‘('\S) [V;ﬂ-(s) - Q?(& a)]
oo S€S e

p

Moreover, the first term above can be bounded as

Jz;,ﬂ_- 1d7r T
dm C P

while the second term is equal to
max 3> 3 5 (sl [0 JE[V(s) - Q7 (5.0)]
Ti€vi geS a e A;
- maxz Z (ml S[CLZ] _.’L';"S[CLZ‘])E[Q?(S,G)],

@i seS aeA;

where the expectation is taken over a_; ~ w_;(+|s). By Lemma B.11, the last term can be
recognized as maXgrex, (T; — &}, Vo, Vi(p)), concluding the proof. O

Finally, to conclude Theorem 3.4 using Theorem 4.7, we appropriately bound all the
involved parameters. We first point out a standard bound on the smoothness of the value
function.

Lemma B.15. For any joint policies w,w' €11,

4|4
C3

AL o o),

[Ve, Vi (p) = Va, V™ (P2 <

for any player i € [n].

Theorem 4.7. Let G be a Markov game that satisfies Assumption /.2 and admits a single
controller. Then, (0GD) after 1/e? - poly(n, ¥iq |Ail,|S], 1/¢,Cg, 1/|pls) iterations computes
a stationary e-NE.
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Proof. In light of Lemma 4.6, we will apply Theorem 3.4 with the following parameters:

o X; = A(A;)® and X = XL, &;. As such, we have that X' = X[, 5es Zips With Z;, =
A(A;);

o d:=n|S[;
o D% =2n|S|;

o h:= max{%, m} and £ :=min {(, |p|}. This follows given that for any joint policy
7 e I1 it holds that dT [s] = Xpen P (s = sls0) < Dol —~C)h < % and tl~1at dr [s] >
P (s0 = s|s0), for any (s,s0) €S xS, in turn implying that d7[s] < % and d3[s] 2 p[s],
for any s € §. Hence, the claimed bounds on ¢ and h follow directly by virtue of
Lemma 4.6;

o L= 4—VZ%§|A"|2. Indeed, having taken F'(x) = —(Vg, Vi(p),..., Vs, Va(p)), the claimed
bound on the Lipschitz continuity of F' follows directly by Lemma B.15;

e Bp = maxl% VIAil - This follows given that, by Lemma B.11, [ Fisloo < CLQ’ for any
VIA,

(4,5) € [n] xS, in turn implying that |[F [, < ¥7"; and
o (= —W. Indeed, for any two joint policies 7r, 7w’ € Il it holds that
1 1 1 - ~
| < dn ] - 7 s
T[s] dx'[s]|” lpl%” g

for any s €S. Let us fix the state s € S. To bound the term |Jg[s] - Jg'[s]|, we consider
a fictitious Markov game G such that for any player i € [n] the reward is defined so that
Ri(s',a) = 1if s’ = 5, and 0 otherwise. Then, it follows that the value function takes
the form V7 (p) = Jg[s], for any player i € [n] and joint policy 7 € II. Thus, the term
dx[s] - dx'[s] is equal to V" (p) - VT (p) + o+ V™0 (p) = V' (p), and in turn
Lemma B.12 yields that

Bl-d 1)< 5 %% Y il -ahla]

The conclusion then follows from the equivalence between the ¢; and the ¢, norms.

As a result, Theorem 3.4 along with Lemma 4.6 imply that after a sufficiently large number
of iterations T = poly(n, ¥ |Ail,1S],1/¢,1/|p| ) - 1/€2, we have computed a point x(Y) such
that

(x® F(x®)) - ;ni%(w*, F(x®)) <e.
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Finally, Lemma B.14 implies that

¢ )
> (v () -V () 2 -

i=1

where G = %, in accordance to Lemma B.14. In particular, here we defined Cg as

dﬂ'i*,ﬂ'_i
max max { min } : (13)
1<i<n mw_;ell_; Tri* EH; (71',1') p -
Thus, rescaling €’ := Ge concludes the proof. ]

C Illustrative Experiments

Our main result concerns the behavior of (0GD) under a time-varying but non-vanishing
learning rate—captured by the term A(x) in the update rule of (0GD). In this section,
we present some illustrative experiments that juxtapose the performance of the variant we
analyze and the standard optimistic gradient descent algorithm under a constant learning
rate > 0.

Specifically, we conduct experiments on the ratio game (3), where R e R100x120 apd
S = 8 ® 119 for some s € R190, Each entry of R and s are selected uniformly at random from
(0,1). We execute each algorithm for 103 iterations with 7 := 0.1. The results for 9 different
random realizations are illustrated in Figure 1. Overall, we see that the two algorithms
attain similar performance, although there are no theoretical guarantees for the performance
of (0GD) with a constant learning rate.
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Figure 1: Optimistic gradient descent with a constant learning rate 7 := 0.1 (blue curve)
versus optimistic gradient descent with a time-varying learning rate per (0GD) (orange curve).
Each figure corresponds to a separate random ratio game. The equilibrium gap of a joint
strategy @ € X is defined as maxg«cx{x — x*, F(x)).
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