

1 **Research Paper**

2 **Into the spongy-verse: structural differences**

3 **between leaf and flower mesophyll**

4

5 **Running title: Structural mesophyll differences**

6

7 Jeroen D.M. Schreel^{1,2,*}, Guillaume Théroux-Rancourt³, Pamela K. Diggle⁴, Craig Brodersen⁵,

8 Adam B. Roddy¹

9

10 ¹Institute of Environment, Department of Biological Sciences, Florida International
11 University, Miami, FL, USA, 33199

12 ²Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO),
13 B-9090 Melle, Belgium

14 ³Smart farming, Biopterre - Bioproducts development center, Sainte-Anne-de-la-Pocatière,
15 Québec, Canada

16 ⁴Department of Ecology and Evolutionary Biology U-3043, 75 N. Eagleville Rd, University of
17 Connecticut, Storrs, CT, USA, 06269

18 ⁵School of the Environment, Yale University, New Haven, CT, USA, 06520

19

20 *Corresponding author: jeroen.schreel@gmail.com

21 Contact information: J.D.M.S.: jeroen.schreel@gmail.com
22 ORCID: 0000-0002-6152-1307
23 G.T.R.: guillaume.theroux-rancourt@biopterre.com
24 ORCID: 0000-0002-2591-0524
25 P.K.D.: pamela.diggle@uconn.edu
26 ORCID: 0000-0001-7391-0249
27 C.B.: craig.brodersen@yale.edu
28 ORCID: 0000-0002-0924-2570
29 A.B.R.: aroddy@fiu.edu
30 ORCID: 0000-0002-4423-8729
31
32 Number of tables: 2
33 Number of figures: 8
34 Black & White: Fig. 1-8
35 Word count: Introduction: 1250
36 Materials and Methods 1566
37 Results and Discussion 1574
38 Total 4390
39 Supplementary data: 2 tables, 7 figures
40

41 **Highlights**

42 While spongy mesophyll tissue occurs in both leaves and the flower perianth, this tissue is
43 structurally different in the two organs.

44

45 **Abstract**

46 As the site of almost all terrestrial carbon fixation, the mesophyll tissue is critical to leaf
47 function. However, mesophyll tissue is not restricted only to leaves but also occurs in the
48 laminar, heterotrophic organs of the floral perianth, providing a powerful test of how
49 metabolic differences are linked to differences in tissue structure. Here, we compared
50 mesophyll tissues of leaves and flower perianths of six species using high-resolution X-ray
51 computed microtomography (microCT) imaging. Consistent with previous studies, stomata
52 were nearly absent from flowers, and flowers had a significantly lower vein density
53 compared to leaves. However, mesophyll porosity was significantly higher in flowers than in
54 leaves, and higher mesophyll porosity was associated with more aspherical mesophyll cells.
55 Despite these differences in cell and tissue structure between leaf and flower mesophyll,
56 modeled intercellular airspace conductance did not differ significantly between organs,
57 regardless of differences in stomatal density between organs. These results suggest that in
58 addition to differences between leaves and flowers in vein and stomatal densities, the
59 mesophyll cells and tissues inside these organs also exhibit marked differences that may
60 allow for flowers to be relatively cheaper in terms of biomass investment per unit of flower
61 surface area.

62

63 **Keywords**

64 flower, flower anatomy, functional plant anatomy, intercellular airspace, leaf, leaf anatomy,
65 microCT, spongy mesophyll, structure-function relations

66 **Introduction**

67 Photosynthesis and transpirational water loss are mechanistically linked through stomatal
68 conductance, intercellular airspace conductance, and leaf vein density (Brodribb et al. 2007;
69 de Boer et al. 2012). To facilitate CO₂ diffusion from the atmosphere into a leaf, the leaf
70 needs to maintain a high surface conductance, which is accomplished by having high
71 stomatal densities. Throughout the history of flowering plants, increasing leaf surface
72 conductance occurred primarily through reductions in the size of stomatal pores and
73 increases in their packing densities (Franks and Beerling 2009). To avoid desiccation,
74 increases in leaf vein density have co-occurred with increasing stomatal conductance,
75 balancing the increase in transpirational water loss with an increase in water supply (de
76 Boer et al. 2012; Scoffoni et al. 2016; Brodribb et al. 2017).

77 The mesophyll, the tissue where chloroplasts fix CO₂, fills a substantial proportion of
78 the leaf volume, sandwiched between the two epidermal layers, and is located between the
79 veins. Unlike other tissues, the mesophyll is defined not only by its cellular features but also
80 by the intercellular airspace that forms a network between the cells. Because CO₂ must
81 diffuse through this intercellular airspace before entering the mesophyll cells, the
82 conductance of the intercellular airspace is directly related to the organization of the
83 mesophyll cells and tissue (Evans et al. 2009; Tomás et al. 2013; Earles et al. 2018; Thérioux-
84 Rancourt et al. 2021, 2023). In many leaves, mesophyll tissue is subdivided into adaxial
85 palisade and abaxial spongy layers, which have distinct structures and functions. Palisade
86 mesophyll tissue absorbs more light and fixes more carbon due to its adaxial position and
87 densely packed, columnar-shaped cells (Ustin et al. 2001). The spongy mesophyll, by
88 contrast, is typically more porous and lacks clear structural organization in some taxa, while
89 it is highly ordered in others (Borsuk et al. 2022). What we know about mesophyll structure
90 and organization is entirely dominated by the study of leaves; however, mesophyll tissue
91 also occurs in non-photosynthetic, floral perianth organs. Understanding the structure and
92 organization of mesophyll tissue in photosynthetic (i.e., leaves) and non-photosynthetic
93 organs (e.g., petals) can illuminate how different functional demands can result in different
94 structural organizations in homologous tissues.

95 The laminar, non-reproductive organs of flowers that comprise the floral perianth
96 vary considerably among angiosperm lineages (Endress 2001). Floral perianths
97 differentiated into distinct sepals and petals have evolved repeatedly among the

98 angiosperms, and petals are thought to have been derived from either stamen-like
99 structures (andropetaloidy) or bract- or leaf-like structures (bracteopetaloidy) depending on
100 their lineage (Eames 1961; Weberling 1989; Takhtajan 1991; Irish 2009). Despite starting
101 development with similar structures (i.e., highly packed, confluent cells), foliar and floral
102 mesophyll undergo different developmental trajectories that result in different mature
103 structures, presumably because of different functional demands that have driven the
104 evolution of these different developmental paths. While organs such as bracts, sepals,
105 pedicels, ovaries, and fruits are capable of some photosynthesis (see Werk and Ehleringer
106 (1983) and Galen *et al.* (1993)), most floral organs are thought to assimilate little to no CO₂.
107 This lack of photosynthetic capacity has been predicted to have cascading consequences on
108 the tissue structure of laminar, non-reproductive floral organs of the perianth, such as
109 tepals and petals, potentially releasing them from selection for high rates of CO₂ diffusion
110 (Roddy 2019).

111 First, efficient gas exchange is not a major selection pressure given that
112 heterotrophic organs do not assimilate CO₂ (Lipayeva 1989; Roddy *et al.* 2016; Zhang *et al.*
113 2018), explaining why stomatal densities in leaves are 7 to 250 times higher than those in
114 conspecific petals (Hew *et al.* 1980; Whiley *et al.* 1988; Blanke and Lovatt 1993; Liu *et al.*
115 2017; Zhang and Brodribb 2017; Roddy 2019). Strong phylogenetic structure has been
116 observed in floral stomatal density, suggesting that there has been selection for reduced
117 floral stomatal densities among more recently diverged angiosperm clades (Roddy *et al.*
118 2016; Ke *et al.* 2024).

119 Second, like in leaves (de Boer *et al.* 2012; Brodribb *et al.* 2017), stomatal density
120 and vein density often covary in flowers (Roddy *et al.* 2016; Zhang *et al.* 2018; Ke *et al.*
121 2024). Without the need to transport high fluxes of water to support high rates of
122 transpiration, flowers have lower abundances of veins traversing their petals compared to
123 conspecific leaves (Roddy *et al.* 2013; Zhang *et al.* 2018; Roddy 2019; An *et al.* 2023).

124 Third, without the need to support high fluxes of CO₂ diffusion, the mesophyll of
125 flowers may differ in its structural characteristics from that of leaves. Unlike leaves, which
126 typically have two distinct layers of mesophyll — the palisade and the spongy layers — the
127 floral mesophyll seems to be composed of only a porous spongy mesophyll layer (McCoy
128 1940; Satina and Blakeslee 1941; Kaplan 1968; Kay and Daoud 1981; Battey and Lyndon
129 1988).

130 The structure of floral mesophyll may influence how flowers perform different
131 functions. While leaves must capture, scatter, and absorb light for photosynthesis, flowers
132 often function as a visual attractor for pollinators. Like leaves (Bone et al. 1985; Vogelmann
133 et al. 1996; Brodersen and Vogelmann 2007), many flowers have conically shaped epidermal
134 cells that help to reflect light (Kay and Daoud 1981), a process that may be amplified by light
135 scattering by the porous spongy mesophyll (Kay and Daoud 1981; Vogelman et al. 1996; Van
136 Der Kooi et al. 2016; Van Der Kooi and Kelber 2022). In leaves, the porous structure of the
137 spongy mesophyll is critical for CO_2 to diffuse from the stomatal pores and into the
138 mesophyll cells and chloroplasts lining the mesophyll cell surfaces (Lundgren et al. 2019;
139 Baillie and Fleming 2020; Théroux-Rancourt et al. 2021; Borsuk et al. 2022). In heterotrophic
140 petals, however, maintaining CO_2 diffusion through the airspace and into the mesophyll cells
141 has likely not been an important selection pressure in the evolution of mesophyll structure.
142 Without selection for CO_2 diffusion, anatomical traits that influence diffusion may be more
143 variable in flowers than in leaves, similar to the higher variability of hydraulic traits in
144 flowers compared to leaves (Roddy et al. 2019; An et al. 2023). In addition to these optical
145 and diffusional functions, the mesophyll may also perform a biomechanical role. Without
146 carbon-rich veins to provide structural support, the mesophyll tissue of flowers, in
147 combination with the epidermis, may act as a turgor-driven, hydrostatic skeleton (Roddy et
148 al. 2019, 2023). In support of this hypothesis, the mesophyll tissue collapses and
149 intercellular airspace porosity disappears when positive turgor pressure is lost in
150 *Calycanthus occidentalis* tepals (Roddy et al. 2018). This line of evidence suggests that the
151 different functions performed by floral and foliar mesophyll may result in divergent
152 mesophyll organizations in the two organs.

153 In this paper, we compare the 3D structure of the mesophyll tissue in leaves and
154 flowers using high-resolution X-ray micro-computed tomography (microCT) imaging. We
155 chose six phylogenetically diverse species encompassing the breadth of floral physiological
156 traits sampled to date (Roddy et al. 2016, 2023) (Table 1). We hypothesized that the
157 absence of photosynthesis in flowers lowers their stomatal and vein densities. Because
158 flowers are relatively short-lived, and have lower biomass costs per unit area (Roddy et al.
159 2023), we predicted that flower mesophyll may be thinner and more porous than leaf
160 mesophyll. Because mesophyll porosity is accomplished by changes in cell shape (Zhang et
161 al. 2021; Treado et al. 2022), we also predicted that flowers would have more aspherical

162 cells. However, because low stomatal densities (D_s) in flowers may effectively prevent
163 diffusion even when the mesophyll is porous, we tested how D_s affects intercellular airspace
164 conductance (g_{IAS}) by artificially varying D_s and calculating g_{IAS} .

165

166

167 **Materials and Methods**

168 *Plant material*

169 All plant material was collected from the living collections of the University of California
170 Botanic Garden in Berkeley, CA, USA. We sampled leaves ($n = 1$) and flowers ($n = 1$) from six
171 species that span known variation in floral hydraulic traits (Table 1). Previous sampling of
172 floral anatomical and physiological traits suggests that there is relatively little intraspecific
173 variation (Roddy et al. 2016; Zhang et al. 2018). Sampled shoots were taken from the top of
174 the plant crown, though because all species were shrubs they experienced some shade.
175 Shoots with recently opened flowers were excised in the early morning, and their cut ends
176 immediately recut underwater and kept submerged in water to prevent tissue desiccation.
177 Shoots were transported to the laboratory within 1 hour of collection. An approximately 5 x
178 10 mm piece of tissue was excised from midway down the length of petals and leaves and,
179 for leaves, midway between the midrib and the leaf margin, avoiding major veins. This
180 excised tissue was immediately enclosed in polyimide tape to prevent desiccation during
181 microCT imaging and to aid in sample mounting. Samples were held in the X-ray beam by a
182 cut pipette tip mounted in a drill chuck. The samples were positioned so that the X-ray beam
183 passed through only polyimide tape and plant tissue.

184

185 *X-ray micro-computed tomography (microCT) imaging*

186 We used high resolution X-ray computed microtomography to image flower and leaf
187 samples in three dimensions (Brodersen and Roddy 2016) at Beamline 8.3.2 of the
188 Advanced Light Source of Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
189 Samples were scanned in continuous tomography mode at 24 keV as the samples rotated
190 from 0° to 180°. The duration of each scan was between 5-7 minutes, and there was no
191 visible damage to tissues after scanning. Images were captured by a camera (PCO EDGE;
192 Cooke Corp., Romulus, MI, USA) with a 5x Mitutoyo long working distance lens. Scans
193 resulted in 1,025 raw, two-dimensional tomographic projection images per sample, which

194 were then reconstructed using TomoPy (Gürsoy et al. 2014). Reconstructed scans were
195 processed and mesophyll traits extracted using published methods (Théroux-Rancourt,
196 Jenkins, et al. 2020) and briefly described below.

197

198

199 *Leaf trait analysis of microCT images*

200 Mesophyll thickness (L_{mes} ; Table 2) was computed as the median height of all voxel columns
201 throughout the sample. Tissue volumes were extracted as the sum of voxels per tissue type:
202 veins (V_{vein}), mesophyll cells (V_{cell}), and intercellular airspace (V_{IAS}). Mesophyll volume (V_{mes})
203 was calculated as the sum of V_{cell} and V_{IAS} . Mesophyll porosity (θ_{IAS}) was calculated as
204 V_{IAS}/V_{mes} (Théroux-Rancourt et al. 2023). Surface area of mesophyll cells exposed to the
205 intercellular airspace (SA_{mes}) was computed by a marching cube algorithm (van der Walt et
206 al. 2014) building surface meshes around the airspace using a step size of two (i.e., over
207 every second voxel), which provides a surface area estimate for geometrical objects closer
208 to their mathematical surface area than when using a step size of one (Théroux-Rancourt,
209 Voggeneder, et al. 2020). Mesophyll surface area per projected leaf or petal surface area
210 (S_m) was calculated as SA_{mes}/LA , where LA is the projected surface area of the sample stack
211 (width \times depth of the stack).

212 Stomatal density (D_s) was calculated as the number of stomata per LA. One species,
213 *Bergenia crassifolia*, had amphistomatous leaves, while all other species had hypostomatous
214 leaves. Flower tepals and petals had very few, if any, stomata (Table 1). Though they did not
215 have stomata, *Romneya coulteri* petals had numerous cracks or pores in the petal epidermis
216 (Fig. S2). While these pores were generally smaller than stomatal pores, they could
217 nonetheless be pathways for gas diffusion, and so we treated them as stomata. Because the
218 calculation of intercellular airspace conductance (g_{IAS}) from 3D mesophyll anatomy depends
219 on the presence and spatial positioning of stomata (discussed below), we randomly added
220 artificial stomata to floral tepal and petal epidermises. We performed a sensitivity analysis
221 of the effects of stomatal density on g_{IAS} by using stomatal densities equivalent to 100%,
222 50%, and 25% of their conspecific leaf stomatal densities (Table S2). This allowed us to
223 elucidate to what extent differences in diffusion capacity between leaves and flowers were
224 due to differences in stomatal density versus mesophyll structure. For *Bergenia crassifolia*,

225 we added these stomata on both petal surfaces, reflecting the amphistomatous distribution
226 on leaves.

227 We calculated a number of geometrical parameters that describe the organization of
228 the porous mesophyll tissue (Earles et al. 2018). Lateral path lengthening (λ) is the increased
229 path length for diffusion resulting from the discrete distribution of stomata and is calculated
230 as $L_{\text{Euc}}/L_{\text{epi}}$, where L_{Euc} is the Euclidean path length from a stoma to a point along the
231 mesophyll surface and L_{epi} is the epidermal path length (Earles et al. 2018; Théroux-Rancourt
232 et al. 2023). In other words, L_{Euc} is the shortest unobstructed distance from a stoma to a
233 point along the mesophyll surface, while L_{epi} is the distance from the abaxial epidermis for
234 hypostomatous leaves, or the shortest distance from either the ad- or abaxial epidermis for
235 amphistomatous leaves, to a point along the mesophyll surface. The tortuosity factor (τ) is
236 the square of the ratio of the path length travelled by diffusion to the Euclidean path length,
237 calculated as $(L_{\text{geo}}/L_{\text{Euc}})^2$, where L_{geo} is the geodesic path length or the actual path length
238 travelled by a diffusing CO_2 molecule from the closest stoma to a point along the mesophyll
239 surface (Earles et al. 2018; Théroux-Rancourt et al. 2023). Both the code used and a detailed
240 description of the steps taken to measure these parameters are available at
241 <https://github.com/gtrancourt/leaf-traits-microct/tree/dev>.

242 By combining these structural traits, we calculated the conductance of the
243 intercellular airspace (g_{IAS}) as (Earles et al. 2018):

$$g_{\text{IAS}} = \frac{\theta_{\text{IAS}} D_m}{e L_{\text{mes}} \tau \lambda} \quad \text{Eq. 1}$$

244 where D_m represents the diffusion coefficient of CO_2 in air ($16 \text{ mm}^2 \text{ s}^{-1}$) and eL_{mes} is
245 the effective mesophyll thickness, considered to be $0.5 L_{\text{mes}}$ for hypostomatous leaves and
246 $0.25 L_{\text{mes}}$ for amphistomatous leaves.

247 Vein density, or vein length per projected area (VLA), was calculated as the total
248 length of veins divided by LA. We measured vein diameter manually by imposing three
249 transects on a paradermal cross-section positioned to pass through the middle of the veins :
250 two intersecting diagonal transects and one transect parallel to the edge of the paradermal
251 cross section, separating the top quarter from the second quarter of the image. This pattern
252 prevented the same point from being intersected by all three transects and also
253 incorporated variation in measured diameter due to vein orientation. Though this approach
254 results in an overestimation in vein diameter because the shortest vein diameter is that

255 perpendicular to the tangent of the vein at any point, this approach is similar to traditional
256 methods for measuring vein diameter that rely on two-dimensional leaf cross-sections that
257 cut veins obliquely.

258

259 *Cell segmentation for quantifying cell shape*

260 While previous segmentations of individual mesophyll cells from microCT image stacks
261 relied on only one cell per scan (Théroux-Rancourt, Voggeneder, et al. 2020; Harwood et al.
262 2021), we manually segmented three cells (pseudoreplicates) of each mesophyll tissue type
263 (spongy and/or palisade parenchyma) per scan to capture variation in cell shape. First,
264 edges of the target cell in contact with surrounding cells were identified because cell walls
265 are brighter in microCT images than cell interiors and because sharp changes in cell surface
266 curvature occur at cell-cell boundaries. These cell-cell boundaries were manually delineated
267 using a graphic tablet (Wacom Cintiq 16, Wacom Co, Saitama, Japan) in Fiji (Schindelin et al.
268 2021), making sure the cell wall of the target cell was inside the selected area and not
269 covered by the line drawn. To completely detach the cell of interest from the surrounding
270 tissue, multiple iterations of rotating and reslicing the stack were followed by identifying
271 and drawing the contact edges. Second, the stack was thresholded using the built-in
272 automated threshold function in Fiji. Subsequently, the cell of interest was manually flood-
273 filled with a contrasting grey value. The colored stack was thresholded again using the built-
274 in threshold function in Fiji, using a selected greyscale range that included only the colored
275 cell. The segmented cell was smoothed by a median filter with a pixel radius of two and
276 resliced three times to have equal smoothing in all directions (x, y, and z planes). Lastly, the
277 surface area (A) and volume (V) of the cell was measured using the Particle Analyser
278 function of the BoneJ plugin (Doube et al. 2010) for Fiji. A visualization of this workflow can
279 be found in the supplement (Fig. S1).

280 Based on the surface area and volume of a cell, the cell's deviation from a perfect
281 sphere, i.e., asphericity (\mathcal{A}), was calculated as:

$$A = \frac{A^{\frac{3}{2}}}{6 V \pi^{\frac{1}{2}}} \quad \text{Eq. 2}$$

282 where $\mathcal{A} = 1$ for a perfect sphere and increases with increasing asphericity (Treado et
283 al. 2022).

284

285 *Statistical analysis*

286 Most variables, except VLA and SA_{mes}/V_{IAS} , exhibited more variance among flowers than
287 among leaves. To take this difference in variance into account, we used paired t-tests with
288 unequal variance (paired Welch's t-test) to compare traits between organs (i.e., leaves and
289 flowers). To compare multiple datasets (e.g., flowers, leaf spongy mesophyll, leaf palisade
290 mesophyll and all leaf mesophyll) a pairwise paired t-test with unequal variance was
291 performed. We incorporated phylogenetic analyses where appropriate by constructing a
292 dated supertree using V.Phylomaker2 (Jin and Qian 2022). Phylogenetic paired t-tests were
293 used to compare flower and leaf traits (phyl.pairedttest() in R package *phytools* (Revell
294 2024)). All statistical tests were performed in R (R Core Team 2020).

295

296 **Results and Discussion**

297 Our comparison of leaf and flower 3D mesophyll structure highlights the diversity of
298 mesophyll structures. Consistent with analyses of physiological traits (Roddy et al. 2019; An
299 et al. 2023), our results show that for almost every mesophyll trait measured, flowers
300 exhibited higher interspecific variability than leaves. While mesophyll porosity is important
301 to facilitate CO_2 diffusion in leaves, high mesophyll porosity also potentially reduces the
302 metabolic costs of tissue construction and maintenance, which may be critical in short-lived,
303 heterotrophic organs like flower tepals and petals.

304 Stomata were almost completely absent on flowers, resulting in a significantly lower
305 stomatal density for flowers compared to leaves ($t = 5.01$, $df = 5$, $p < 0.05$). Leaf stomatal
306 density ranged from 43 to 553 mm^{-2} , depending on species (Table 1). By contrast, we found
307 stomata on flowers of only two species, *Illicium floridanum* and *Rhododendron mucronatum*,
308 though petals of *Romneya coulteri* had numerous epidermal pores that could allow for gas
309 exchange between the petal interior and the atmosphere (Fig. S2; Table 1). Fewer stomata
310 on flowers should decrease transpirational water loss, allowing for lower VLA in flowers.
311 Consistent with previous findings (Feild et al. 2009; Roddy et al. 2013; Zhang et al. 2018; An
312 et al. 2023), VLA was significantly lower in flowers compared to leaves ($t = -4.91$, $df = 5$, $p <$
313 0.05; Fig. 1, Table S1). As a result, flowers must hydrate a larger mesophyll volume per unit
314 of vein volume (V_{mes}/V_{vein} ; $t = 2.01$, $df = 5$, $p < 0.10$; Fig. 1). Despite this consistent difference
315 in VLA, vein diameter was not significantly different between organ types ($p = 0.66$), and

316 flowers exhibited much greater variation in vein diameter than did leaves (Fig. 1). This larger
317 variance is a result of two contrasting groups of species: those in which flowers have
318 narrower veins than their conspecific leaves (*Luculia gratissima*, *Rhododendron*
319 *mucronatum*, and *Romneya coulteri*) and those in which flowers have wider veins than their
320 conspecific leaves (*Bergenia crassifolia*, *Camellia yunnanensis*, and *Illicium floridanum*) (Fig.
321 S3). While narrower petal/tepals could be due to lower transpirational demand, thicker
322 floral veins could compensate for lower VLA to achieve similar water supply. However,
323 without more information about conduit number per vein and conduit diameter, it is
324 difficult to draw clear conclusions. Furthermore, only the difference in VLA between organs
325 remained significant after accounting for shared evolutionary history (Table S1), though this
326 is likely due to the small number of species in our study.

327 As flowers function mainly as pollinator attractors, the structure and organization of
328 the mesophyll were predicted to differ between leaves and flowers. Attracting pollinators
329 requires large, showy floral displays that reflect light externally, e.g., through conical
330 epidermal cells and reflective mesophyll surfaces (Kay and Daoud 1981; Van Der Kooi et al.
331 2016). Contrary to flowers, leaves need to capture and scatter light internally to be
332 absorbed by mesophyll tissue for photosynthesis, which requires large mesophyll tissue
333 volumes to maximize light absorption. Due to these differences in function and associated
334 mesophyll thickness and volumes, flower mesophyll thickness (L_{mes}) and porosity (θ_{IAS}) were
335 expected to be lower and higher compared to their conspecific leaves, respectively.

336 Contrary to our initial hypothesis, the overall difference in L_{mes} between flowers and
337 leaves was insignificant, with only *Bergenia crassifolia* and *Romneya coulteri* having a lower
338 L_{mes} in flowers than leaves (Figs. 2 and 3). All else being equal, thinner mesophyll would
339 reduce floral carbon construction costs per unit area (Roddy et al. 2023). That most species
340 exhibited thicker L_{mes} in flowers than leaves is surprising, but may be due to biomechanics;
341 tissue thickness increases stiffness independently of the material properties.

342 Thicker mesophyll in flowers may compensate for the biomechanical effects of
343 higher porosity in flowers. Because selection may have favored reduced biomass costs in
344 flowers compared to leaves, one of the primary ways of accomplishing this would have been
345 through a higher mesophyll porosity (θ_{IAS}) (Roddy et al. 2023). Even though we sampled only
346 six species, flowers exhibited almost the full range (0-1) of mesophyll porosities that are
347 physically possible, ranging from 0.11 in *I. floridanum* to 0.76 in *L. gratissima*. θ_{IAS} was

348 marginally higher in flowers compared to leaves ($t = 2.01$, $df = 5$, $p < 0.10$) and consistently
349 higher in flowers for every species except *I. floridanum* (Fig. 2), suggesting that while
350 mesophyll volume per unit projected surface area (V_{mes}/LA) was not significantly different
351 between flowers and leaves, floral mesophyll is generally more porous. This higher porosity
352 would contribute to lower biomass costs per unit area for flowers (Roddy et al. 2023). While
353 higher porosity could reduce organ stiffness, thicker L_{mes} in flowers could compensate for
354 higher porosity. The lower θ_{IAS} for the entire leaf mesophyll is due primarily to the densely
355 packed palisade mesophyll, which is absent in flowers (Fig. 3). However, with the exception
356 of *I. floridanum*, the spongy mesophyll in flowers is more porous than even the leaf spongy
357 mesophyll (Fig. 4). The wide diversity in mesophyll thickness and porosity of flowers
358 observed in just these six species could be due to variation in other ecological factors.

359 Given that the proto-mesophyll tissue in leaf and flower primordia begins
360 development as highly packed (i.e. almost no porosity) but then matures into a wide range
361 of mesophyll porosities (Fig. 2 and 3), we asked whether this variation in tissue porosity is
362 driven by similarly wide variation in cell shape. Recent modeling and visualization of
363 *Arabidopsis* mesophyll development has shown that the development of spongy mesophyll
364 porosity is driven by changes in cell shape towards increasingly lobed, more aspherical
365 shapes (Maksymowych 1973; Zhang et al. 2021; Treado et al. 2022). Additionally, among
366 widely divergent vascular plant lineages, leaf spongy mesophyll in many species exhibits a
367 highly conserved structural organization composed of lobed cells that form a stable network
368 (Borsuk et al. 2022).

369 Among the species sampled here, flowers tended to have both more porous
370 mesophyll tissue (Fig. 3 and 4) and mesophyll cells that were more aspherical than leaves
371 (Fig 3 and 5). Across the spongy mesophyll of both leaves and flowers, cell shape asphericity
372 (\mathcal{A}) and tissue porosity (θ_{IAS}) were strongly coordinated ($p < 0.05$; Fig. 6), suggesting that cell
373 shape-and not only the organization of cells in 3D-is a critical determinant of mesophyll
374 tissue-level porosity. The higher \mathcal{A} and θ_{IAS} in flowers may, therefore, be central traits
375 enabling petals to be biomechanically robust yet have a low dry mass per area. Because
376 mesophyll cells must remain in contact with each other, increasing tissue-level porosity
377 seems to require more aspherical cells (Fig. 6).

378 Variation in stomatal density (D_s) and θ_{IAS} affected both the Euclidean path length
379 (L_{Euc}) and the geodesic path length (L_{geo}) from a stoma to a point along the mesophyll
380 surface. Low D_s led to increases in L_{Euc} and lateral path lengthening (λ ; Fig. 7), and a decrease
381 in θ_{IAS} resulted in a low L_{geo} and tortuosity factor (τ) (Earles et al. 2018). Because current
382 methods for estimating conductance through the intercellular airspace (g_{IAS}) require tracing
383 the paths from stomata to the mesophyll cell surfaces, estimating g_{IAS} requires knowing
384 where stomata are. Thus, having few or no stomata would preclude calculating g_{IAS} . Yet,
385 intercellular airspace conductance can be calculated even if there is no concentration
386 gradient to drive the flux. To overcome this methodological limitation for flowers without
387 stomata, we artificially added stomata in varying densities to petals and tepals and
388 calculated the resulting g_{IAS} . Decreasing D_s tended to cause λ to increase, with major
389 changes occurring between 50% and 25% of leaf D_s , though differences between leaves and
390 flowers with equal D_s were not significantly different (Fig. 7). Thus, g_{IAS} may be relatively
391 constant across a wide range of D_s under the θ_{IAS} observed here, indicating that the
392 stomatal resistance is much higher than other gas-phase components of the diffusional
393 pathway. τ was expected to be influenced to some extent by D_s and θ_{IAS} ; however,
394 decreasing D_s (Fig. S4) or varying θ_{IAS} (Fig. S5) appeared to have little effect on τ . The effects
395 of D_s on τ at low porosity were likely due to the stochastic positioning of stomata that
396 occurs at low D_s (Fig. S5). Based on the limited effect of D_s on λ and τ , it is not surprising
397 that the effect of D_s on g_{IAS} was also limited and not significantly different between leaf and
398 flower spongy mesophyll (Fig. 8), nor when examining the entire leaf mesophyll (spongy and
399 palisade together) (Fig. S6).

400

401 *Conclusions*

402 Using a novel dataset of 3D mesophyll structure for conspecific leaves and flowers, we
403 characterized the differences between organs in mesophyll structure and function. The
404 lower stomatal and vein densities observed in flowers compared to leaves were associated
405 with differences in mesophyll structure. Aside from a reduction in carbon-dense veins
406 among flowers, mesophyll porosity was significantly higher in flowers than in leaves,
407 explaining at least partially why flowers have lower biomass costs per unit of area. Despite
408 these large structural differences in the mesophyll of flowers and leaves, intercellular
409 airspace conductance did not differ significantly between leaves and flowers when flowers

410 were artificially given stomatal densities on par with leaves. This result reiterates the
411 importance of low stomatal densities on flowers in protecting their porous mesophyll from
412 the desiccating atmosphere. Importantly, across both leaves and flowers, increasing spongy
413 mesophyll porosity was associated with more aspherical mesophyll cells. Together, these
414 results highlight how different functional demands and developmental trajectories can give
415 rise to a diversity of forms.

416

417 **Acknowledgements**

418 The authors thank D.Y. Parkinson for help at the microCT beamline, and H. Forbes for
419 facilitating access to plants at the U.C. Botanical Garden.

420

421 **Funding**

422 This work was supported by a fellowship from the Yale Institute for Biospheric Studies to
423 A.B.R. and by US NSF grant CMMI-2029756 to A.B.R. and C.R.B. The Advanced Light Source is
424 supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US
425 Department of Energy under contract no. DE-AC02-05CH11231.

426

427 **Competing interests**

428 The authors declare no conflict of interest.

429

430 **Author contributions**

431 The project was conceptualized by A.B.R., P.K.D., and C.R.B. Original scans were collected by
432 A.B.R., G.T.-R. C.R.B. Data were processed and analyzed by J.D.M.S., G.T.R., and A.B.R.
433 Conceptualization and writing of the original draft was done by J.D.M.S. Writing, reviewing
434 and editing was done by all co-authors. The project was supervised by A.B.R.

435

436 **Data availability**

437 The primary data supporting this study were not made publicly available at the time of
438 publication, but can be made available upon request.

439 **References**

440 An Y-D, Roddy AB, Zhang T-Z, Jiang G-F. 2023. Hydraulic differences between flowers and
441 leaves are driven primarily by pressure-volume traits and water loss. *Frontiers in*
442 *Plant Science* 14:Article: 1130724.

443 Baillie AL, Fleming AJ. 2020. The developmental relationship between stomata and
444 mesophyll airspace. *New Phytologist* 225:1120–26.

445 Battey NH, Lyndon RF. 1988. Determination and differentiation of leaf and petal primordia in
446 *Impatiens balsamina*. *Annals of Botany* 61:9–16.

447 Blanke MM, Lovatt CJ. 1993. Anatomy and transpiration of the avocado inflorescence.
448 *Annals of Botany* 71:543–47.

449 Bone RA, Lee DW, Norman JM. 1985. Epidermal cells functioning as lenses in leaves of
450 tropical rain-forest shade plants. *Applied Optics* 24:1408–12.

451 Borsuk AM, Roddy AB, Théroux-Rancourt G, Brodersen CR. 2022. Structural organization of
452 the spongy mesophyll. *New Phytologist* 234:946–60.

453 Brodersen CR, Roddy AB. 2016. New frontiers in the three-dimensional visualization of plant
454 structure and function. *American Journal of Botany* 103:184–88.

455 Brodersen CR, Vogelmann TC. 2007. Do epidermal lens cells facilitate the absorptance of
456 diffuse light? *American Journal of Botany* 94:1061–66.

457 Brodribb TJ, Feild TS, Jordan GJ. 2007. Leaf maximum photosynthetic rate and venation are
458 linked by hydraulics. *Plant Physiology* 144:1890–98.

459 Brodribb TJ, McAdam SAM, Murphy MRC. 2017. Xylem and stomata, coordinated through
460 time and space. *Plant, Cell & Environment* 40:872–80.

461 de Boer HJ, Eppinga MB, Wassen MJ, Dekker SC. 2012. A critical transition in leaf evolution
462 facilitated the Cretaceous angiosperm revolution. *Nature Communications* 3:Article:
463 1221.

464 Doube M, Kłosowski MM, Arganda-Carreras I, Cordelières FP, Dougherty RP, Jackson JS,
465 Schmid B, Hutchinson JR, Shefelbine SJ. 2010. BoneJ: Free and extensible bone image
466 analysis in ImageJ. *Bone* 47:1076–79.

467 Eames AJ. 1961. *Morphology of the Angiosperms* New York: McGraw-Hill.

468 Earles JM, Théroux-Rancourt G, Roddy AB, Gilbert ME, McElrone AJ, Brodersen CR. 2018.
469 Beyond porosity: 3D leaf intercellular airspace traits that impact mesophyll
470 conductance. *Plant Physiology* 178:148–62.

471 Endress PK. 2001. Origins of flower morphology. *Journal of Experimental Zoology* 291:105–
472 15.

473 Evans JR, Kaldenhoff R, Genty B, Terashima I. 2009. Resistances along the CO₂ diffusion
474 pathway inside leaves. *Journal of Experimental Botany* 60:2235–48.

475 Feild TS, Chatelet DS, Brodribb TJ. 2009. Giant flowers of Southern Magnolia are hydrated by
476 the xylem. *Plant Physiology* 150:1587–97.

477 Franks PJ, Beerling DJ. 2009. Maximum leaf conductance driven by CO₂ effects on stomatal
478 size and density over geologic time. *Proceedings of the National Academy of*
479 *Sciences* 106:10343–47.

480 Galen C, Dawson TE, Stanton ML. 1993. Carpels as leaves: meeting the carbon cost of
481 reproduction in an alpine buttercup. *Oecologia* 95:187–93.

482 Gürsoy D, De Carlo F, Xiao X, Jacobsen C. 2014. TomoPy: a framework for the analysis of
483 synchrotron tomographic data. *Journal of Synchrotron Radiation* 21:1188–93.

484 Harwood R, Théroux-Rancourt G, Barbour MM. 2021. Understanding airspace in leaves: 3D
485 anatomy and directional tortuosity. *Plant, Cell & Environment* 44:2455–65.

486 Hew CS, Lee GL, Wong SC. 1980. Occurrence of non-functional stomata in the flowers of
487 tropical orchids. *Annals of Botany* 46:195–201.

488 Irish VF. 2009. Evolution of petal identity. *Journal of Experimental Botany* 60:2517–27.

489 Jin Y, Qian H. 2022. V.PhyloMaker2: An updated and enlarged R package that can generate
490 very large phylogenies for vascular plants. *Plant Diversity* 44:335–39.

491 Kaplan DR. 1968. Structure and development of the perianth in *Dowingia bacigalupii*.
492 *American Journal of Botany* 55:406–20.

493 Kay QON, Daoud HS. 1981. Pigment distribution, light reflection and cell structure in petals.
494 *Botanical Journal of the Linnean Society* 83:57–84.

495 Ke Y, Zhang Y , Zhang F , Yang D, Wang Q, Peng X , Huang X , Sher J, Zhang J . 2024. Monocots and eudicots have more conservative flower water use strategies
496 than basal angiosperms. *Plant Biol J* 26:621–32.

497 Lipayeva LI. 1989. On the anatomy of petals in angiosperms. *Botanicheskii Zhurnal* 74:9–18.

498 Liu H, Xu QY, Lundgren MR, Ye Q. 2017. Different water relations between flowering and
499 leaf periods: a case study in flower-before-leaf-emergence *Magnolia* species.
500 *Functional Plant Biology* 44:1098–1110.

501 Lundgren MR, Mathers A, Baillie AL, Dunn J, Wilson MJ, Hunt L, Pajor R, Fradera-Soler M,
502 Rolfe S, Osborne CP, Sturrock CJ, Gray JE, Mooney SJ, Fleming AJ. 2019. Mesophyll
503 porosity is modulated by the presence of functional stomata. *Nature Communications*
504 10:Article: 2825.

505 Maksymowych R. 1973. Analysis of leaf development.

506 McCoy RW. 1940. Floral organogenesis in *Frasera carolinensis*. *American Journal of Botany*
507 27:600–609.

508 R Core Team. 2020. R: A language and environment for statistical computing. .

509 Revell LJ. 2024. phytools 2.0: an updated R ecosystem for phylogenetic comparative
510 methods (and other things). *PeerJ* 12:Article: e16505.

511 Roddy AB. 2019. Energy Balance Implications of Floral Traits Involved in Pollinator Attraction
512 and Water Balance. *International Journal of Plant Sciences* 180:944–53.

513 Roddy AB, Brodersen CR, Dawson TE. 2016. Hydraulic conductance and the maintenance of
514 water balance in flowers. *Plant, Cell & Environment* 39:2123–32.

515 Roddy AB, Guilliams CM, Fine PVA, Mambelli S, Dawson TE, Simonin KA. 2023. Flowers are
516 leakier than leaves but cheaper to build. *New Phytologist* 239:2076–82.

517 Roddy AB, Guilliams CM, Lilittham T, Farmer J, Wormser V, Pham T, Fine PVA, Feild TS,
518 Dawson TE. 2013. Uncorrelated evolution of leaf and petal venation patterns across
519 the angiosperm phylogeny. *Journal of Experimental Botany* 64:4081–88.

520 Roddy AB, Jiang GF, Cao K-F, Simonin KA, Brodersen CR. 2019. Hydraulic traits are more
521 diverse in flowers than in leaves. *New Phytologist* 223:193–203.

522 Roddy AB, Simonin KA, McCulloh KA, Brodersen CR, Dawson TE. 2018. Water relations of
523 *Calycanthus* flowers: Hydraulic conductance, capacitance, and embolism resistance.
524 *Plant, Cell & Environment* 41:2250–62.

525 Satina S, Blakeslee AF. 1941. Periclinal chimeras in *Datura stramonium* in relation to
526 development of leaf and flower. *American Journal of Botany* 28:862–71.

527 Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden
528 C, Saafeld S, Schmid B, Tinevez J-Y, White DJ, Hartenstein V, Eliceiri K, Tomancak P,
529 Cardona A. 2021. Fiji: An open-source platform for biological-image analysis. *Nature*
530 Methods 9:676–82.

531

532 Scoffoni C, Chatelet DS, Pasquet-kok J, Rawls M, Donoghue MJ, Edwards EJ, Sack L. 2016.
533 Hydraulic basis for the evolution of photosynthetic productivity. *Nature Plants*
534 2:Article: 16072.

535 Takhtajan A. 1991. *Evolutionary trends in flowering plants* New York: Columbia University
536 Press.

537 Théroux-Rancourt G, Herrera JC, Voggendorf K, De Berardinis F, Luijken N, Nocker L, Savi T,
538 Scheffknecht S, Schneck M, Tholen D. 2023. Analyzing anatomy over three
539 dimensions unpacks the differences in mesophyll diffusive area between sun and
540 shade *Vitis vinifera* leaves. *AoB PLANTS Article: plad001*.

541 Théroux-Rancourt G, Jenkins MR, Brodersen CR, McElrone AJ, Forrestel EJ, Earles JM. 2020.
542 Digitally deconstructing leaves in 3D using X-ray microcomputed tomography and
543 machine learning. *Applications in Plant Sciences* 8:Article: e11380.

544 Théroux-Rancourt G, Roddy AB, Earles JM, Gilbert ME, Zwieniecki MA, Boyce CK, Tholen D,
545 McElrone AJ, Simonin KA, Brodersen CR. 2021. Maximum CO₂ diffusion inside leaves
546 is limited by the scaling of cell size and genome size. *Proceedings of the Royal Society*
547 B 288:Article: 20203145.

548 Théroux-Rancourt G, Voggendorf K, Tholen D. 2020. Shape matters: the pitfalls of analyzing
549 mesophyll anatomy. *New Phytologist* 225:2239–42.

550 Tomás M, Flexas J, Copolovici L, Galmés J, Hallik L, Medrano H, Ribas-Carbó M, Tosens T,
551 Vislap V, Niinemets Ü. 2013. Importance of leaf anatomy in determining mesophyll
552 diffusion conductance to CO₂ across species: quantitative limitations and scaling up
553 by models. *Journal of Experimental Botany* 64:2269–81.

554 Treado JD, Roddy AB, Théroux-Rancourt G, Zhang L, Ambrose C, Brodersen CR, Shattuck MD,
555 O’Hern CS. 2022. Localized growth and remodelling drives spongy mesophyll
556 morphogenesis. *Journal of the Royal Society Interface* 19:Article: 20220602.

557 Ustin SL, Jacquemoud S, Govaerts Y. 2001. Simulation of photon transport in a three-
558 dimensional leaf: implications for photosynthesis. *Plant, Cell & Environment*
559 24:1095–1103.

560 Van Der Kooi CJ, Elzenga JTM, Staal M, Stavenga DG. 2016. How to colour a flower: on the
561 optical principles of flower coloration. *Proc R Soc B* 283:20160429.

562 Van Der Kooi CJ, Kelber A. 2022. Achromatic cues are important for flower visibility to
563 hawkmoths and other insects. *Front Ecol Evol* 10:Article: 819436.

564 van der Walt S, Schönberger JL, Nunez-Iglesias J, Boulogne F, Warner JD, Yager N, Gouillart
565 E, Yu T, the scikit-image contributors. 2014. scikit-image: Image processing in
566 Python. *PeerJ* 2:Article: e453.

567 Vogelman TC, Nishio JN, Smith WK. 1996. Leaves and light capture: light propagation and
568 gradients of carbon fixation within leaves. *Trends in Plant Science* 1:65–70.

569 Vogelmann TC, Bornman JF, Yates DJ. 1996. Focusing of light by leaf epidermal cells.
570 *Physiologia Plantarum* 98:43–56.

571 Weberling F. 1989. *Morphology of flowers and inflorescences* Cambridge: Cambridge
572 University Press.

573 Werk KS, Ehleringer JR. 1983. Photosynthesis by flowers in *Encelia farinosa* and *Encelia*
574 *californica* (Asteraceae). *Oecologia* 57:311–15.

575 Whiley AW, Chapman KR, Saranah JB. 1988. Water loss by floral structures of avocado
576 (*Persea americana* cv. Fuerte) during flowering. *Australian Journal of Agricultural*
577 *Research* 39:457–67.

578 Zhang F-P, Brodribb TJ. 2017. Are flowers vulnerable to xylem cavitation during drought?
579 Proceedings of the Royal Society B: Biological Sciences 284:Article: 20162642.

580 Zhang F-P, Carins Murphy MR, Cardoso AA, Jordan GJ, Brodribb TJ. 2018. Similar geometric
581 rules govern the distribution of veins and stomata in petals, sepals and leaves. New
582 Phytologist 219:1224–34.

583 Zhang L, McEvoy D, Le Y, Ambrose C. 2021. Live imaging of microtubule organization, cell
584 expansion, and intercellular space formation in *Arabidopsis* leaf spongy mesophyll
585 cells. The Plant Cell 33:623–41.

586

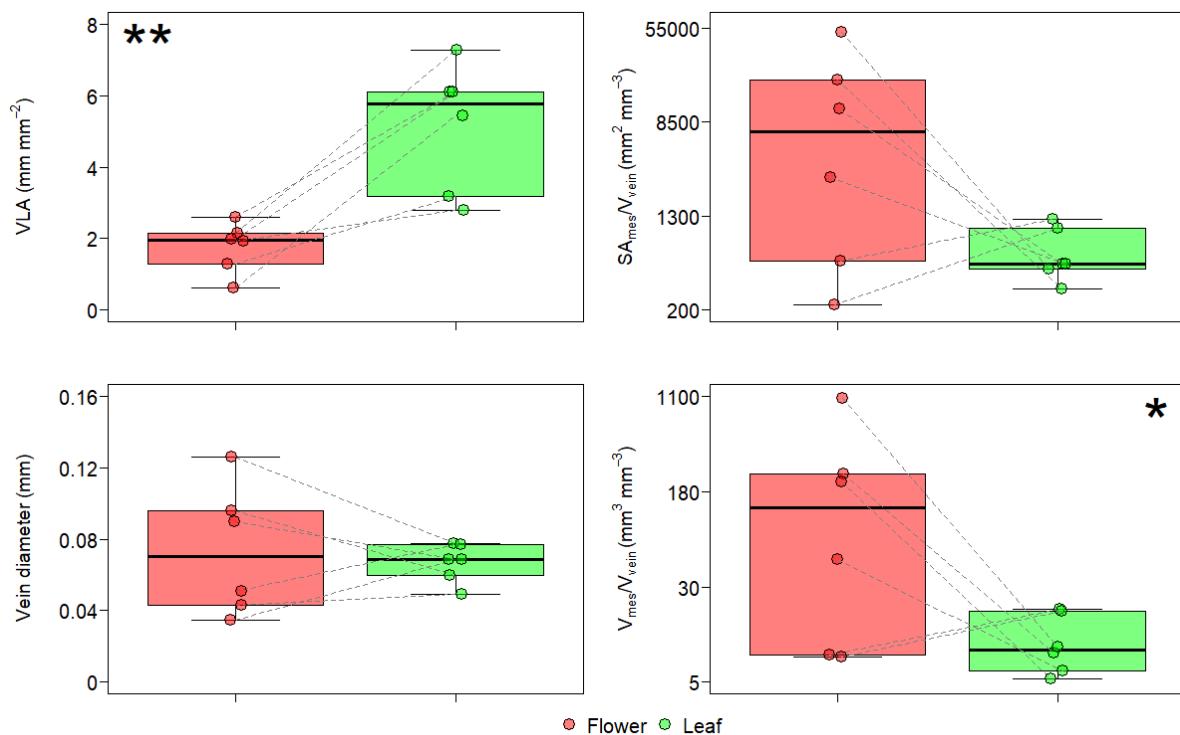
587 **Tables**

588 Table 1. Measured stomatal densities (stomata mm⁻²) on the adaxial (AD) and abaxial (AB)
 589 surface (n = 1).

	Surface	Leaf	Flower
<i>Bergenia crassifolia</i>	AD	28	0
	AB	105	0
<i>Camellia yunnanensis</i>	AD	0	0
	AB	178	0
<i>Illicium floridanum</i>	AD	0	0
	AB	43	1
<i>Luculia gratissima</i>	AD	0	0
	AB	239	0
<i>Rhododendron mucronatum</i>	AD	0	0
	AB	239	5
<i>Romneya coulteri</i>	AD	0	0
	AB	553	260*

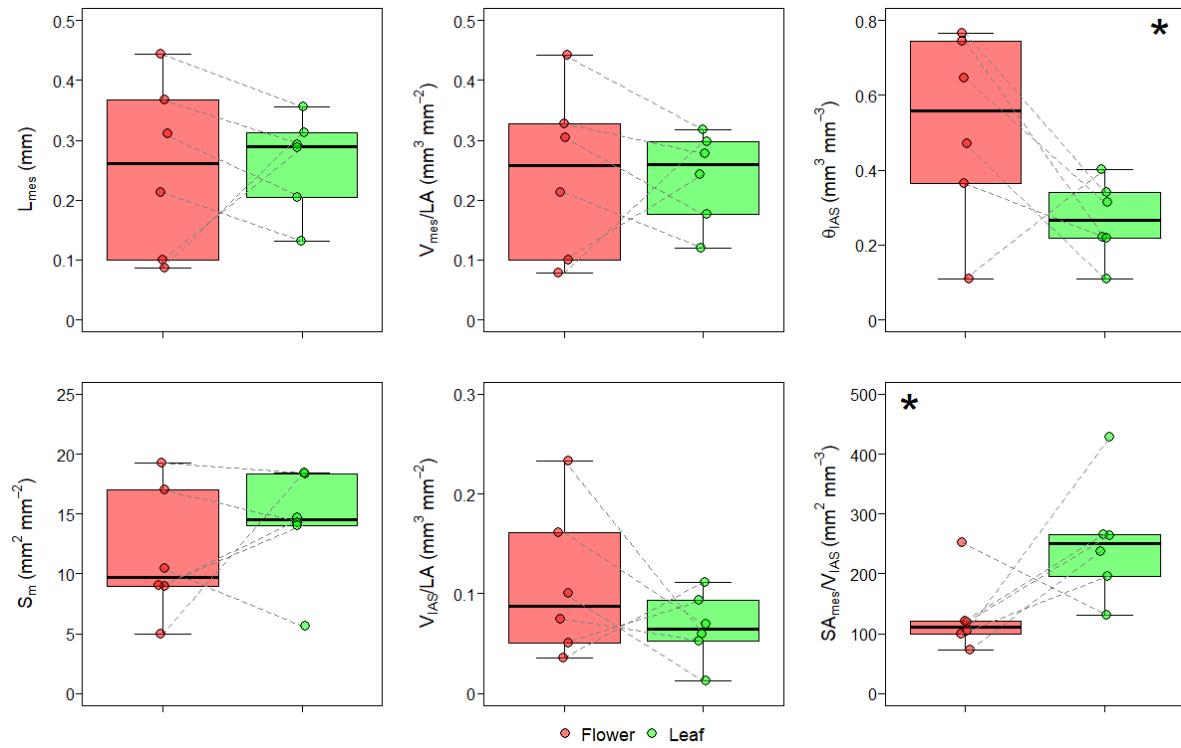
*Not real stomata, but pores that could be used for gas exchange

590

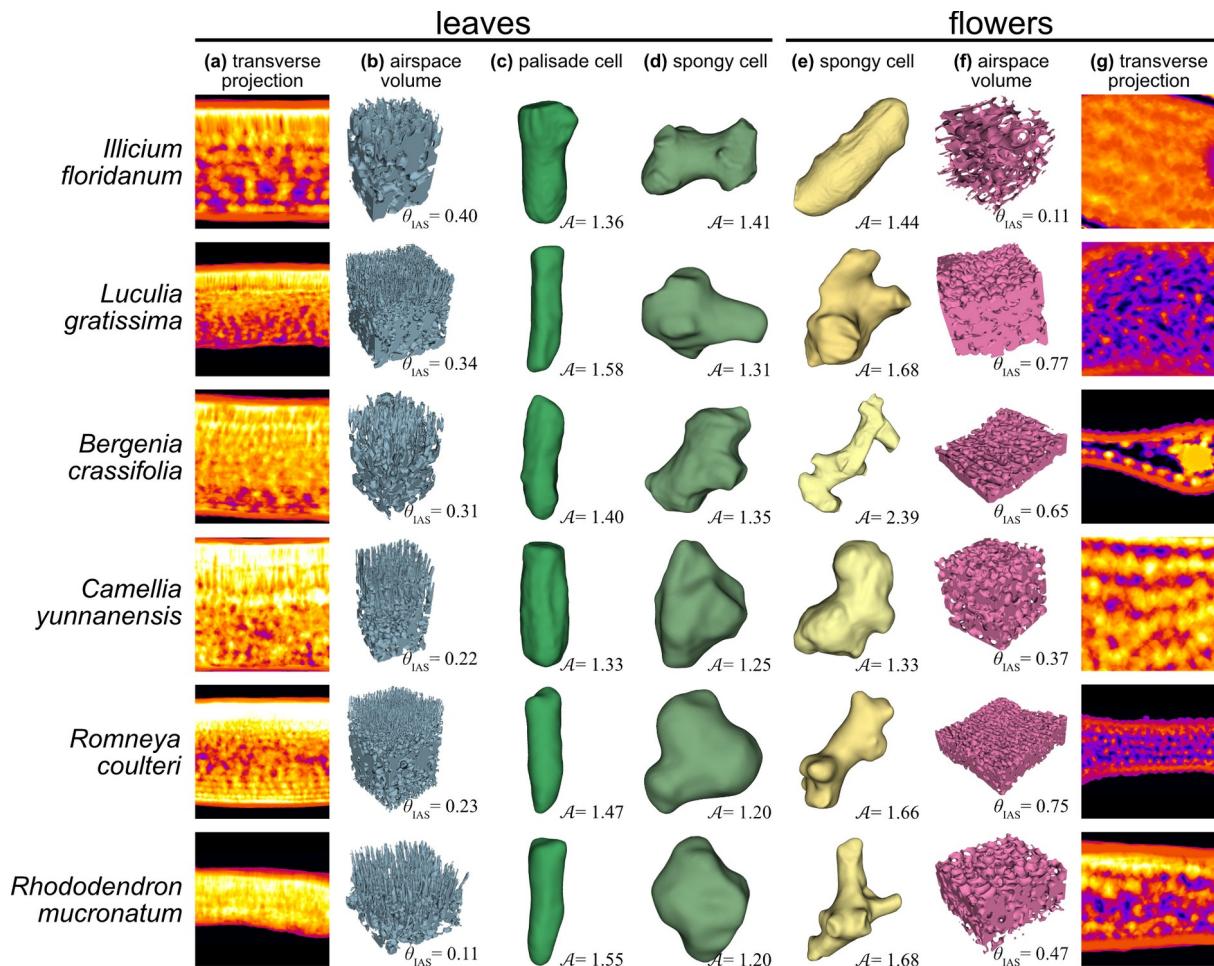

591

592 Table 2. Symbols and abbreviations with their units and description

Symbol	Unit	Description
\mathcal{A}	-	Asphericity
A	mm^2	Cell surface area
D_m	$\text{mm}^2 \text{ s}^{-1}$	Diffusion coefficient
D_s	stomata mm^{-2}	Stomatal density
g_{IAS}	mm s^{-1}	Intercellular airspace conductance
LA	mm^2	Projected surface area
L_{Euc}	mm	Euclidean path length
L_{epi}	mm	Epidermal path length
L_{geo}	mm	Geodesic path length or the actual path length
L_{mes}	mm	Mesophyll thickness
S_m	mm^2	Mesophyll surface area per projected leaf or petal surface area
SA_{mes}	mm^2	Surface area of mesophyll cells exposed to the intercellular airspace
V	mm^3	Cell volume
V_{cell}	mm^3	Volume of mesophyll cells
V_{IAS}	mm^3	Volume of mesophyll intercellular airspace
VLA	mm mm^{-2}	Vein density, or vein length per area
V_{mes}	mm^3	Volume of mesophyll
V_{vein}	mm^3	Vein volume
θ_{IAS}	$\text{mm}^3 \text{ mm}^{-3}$	Mesophyll porosity
λ	mm mm^{-1}	Lateral path lengthening
τ	$\text{mm}^2 \text{ mm}^{-2}$	Tortuosity factor


593

594 Figure legends


595

596 Fig. 1 Anatomical traits related to veins for the six species studied. For flowers (red) and
 597 leaves (green), vein density (VLA; mm mm^{-2}), mesophyll surface area exposed to the IAS per
 598 unit of vein volume ($\text{SA}_{\text{mes}}/\text{V}_{\text{vein}}$; $\text{mm}^2 \text{mm}^{-3}$), vein diameter (mm) and mesophyll volume per
 599 unit of vein volume ($\text{V}_{\text{mes}}/\text{V}_{\text{vein}}$; $\text{mm}^3 \text{mm}^{-3}$) are shown. * and ** displayed in plots indicate
 600 significant differences with $p < 0.10$ and $p < 0.05$, respectively.

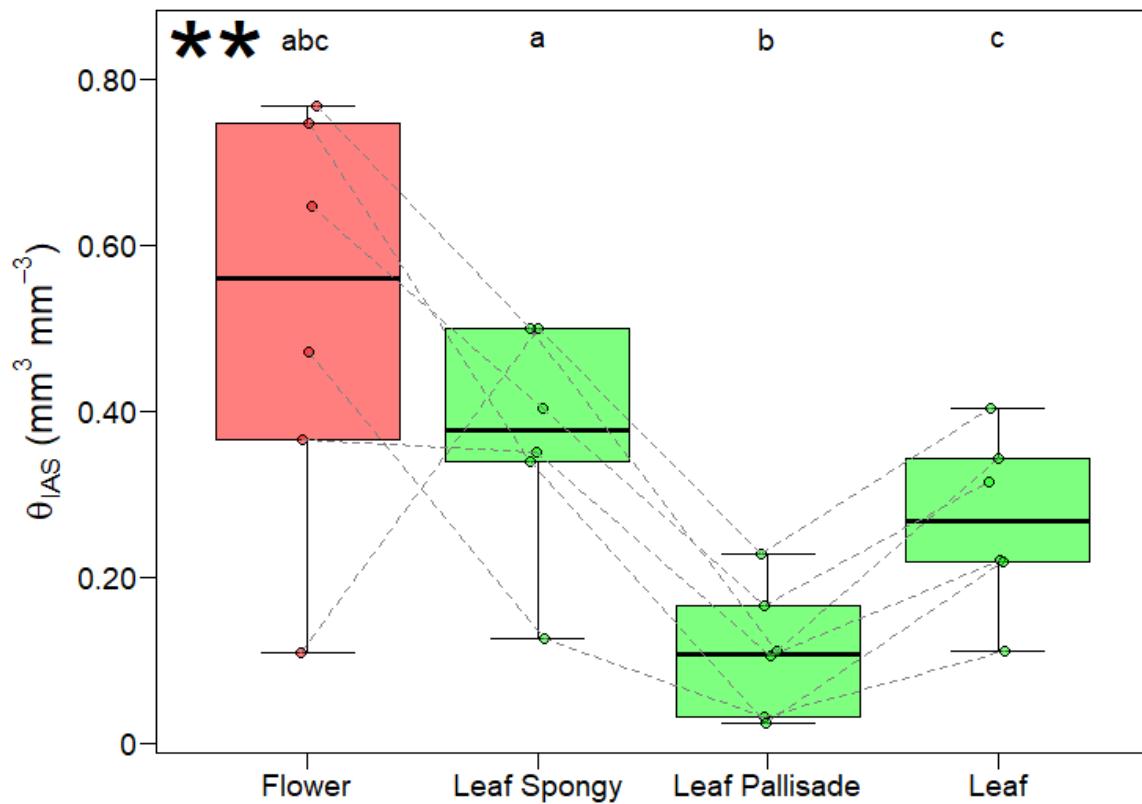
601

602 Fig. 2 Anatomical traits related to mesophyll tissue for the six species studied. For flowers
 603 (red) and leaves (green), mesophyll thickness (L_{mes} ; mm), mesophyll volume per unit of leaf
 604 area (V_{mes}/LA ; $\text{mm}^3 \text{ mm}^{-2}$), mesophyll porosity (θ_{IAS} ; $\text{mm}^3 \text{ mm}^{-3}$), mesophyll surface area per
 605 projected area (S_m ; $\text{mm}^2 \text{ mm}^{-2}$), intercellular airspace volume per unit of leaf area (V_{IAS}/LA ;
 606 $\text{mm}^3 \text{ mm}^{-2}$) and mesophyll surface area exposed to the IAS per unit of intercellular airspace
 607 volume (SA_{mes}/V_{IAS} ; $\text{mm}^2 \text{ mm}^{-3}$) are shown. * displayed in plots indicate significant
 608 differences with $p < 0.10$.

609

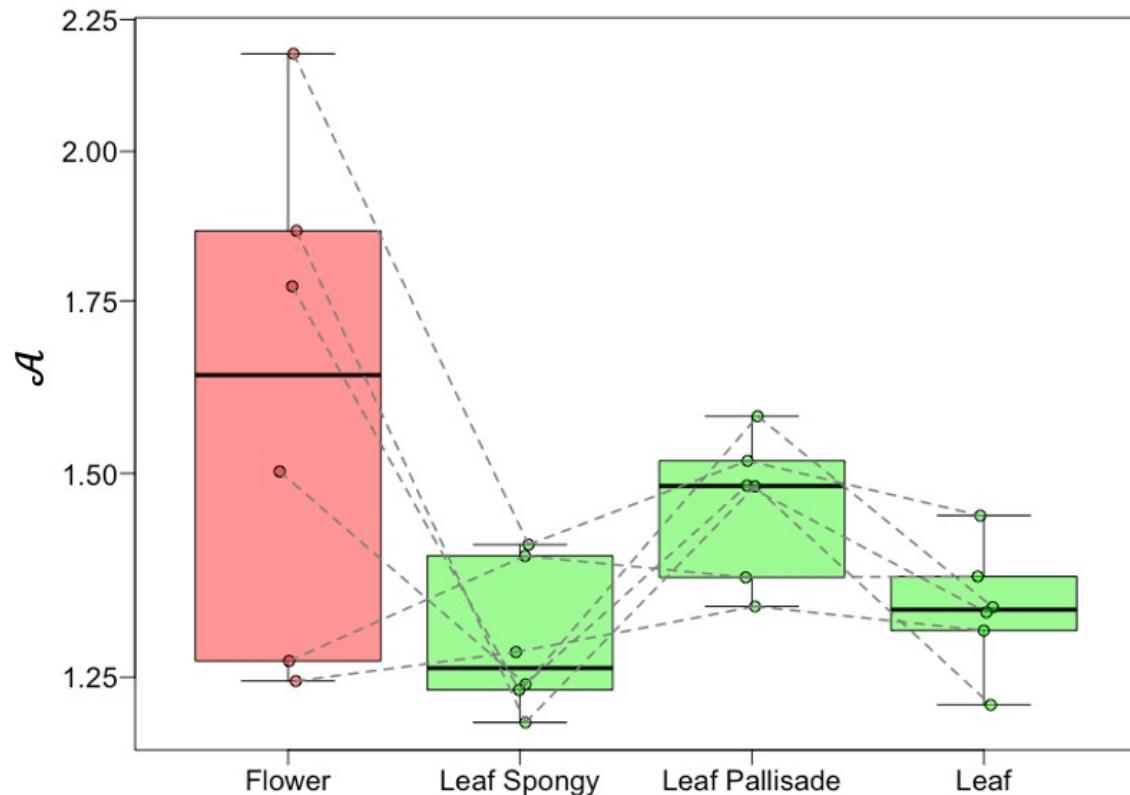
610 Fig. 3 Cell and tissue trait diversity among (a-d) leaves and (e-g) flowers. (a) Average cross-
 611 sectional mesophyll porosity (θ_{IAS} ; $\text{mm}^3 \text{ mm}^{-3}$) for leaves, visualized by averaging across the
 612 depth of the microCT scan. Lighter colors indicate more cell material, and darker colors
 613 indicate more airspace. (b) 3D volume rendering of the intercellular airspace of leaves.
 614 Height (thickness) varies depending on the species. Numbers indicate the porosity (θ_{IAS}) of
 615 the tissue. (c) 3D volume rendering of one leaf palisade mesophyll cell from a leaf of each
 616 species. Numbers indicate the asphericity (\mathcal{A}) of the cell. (d) 3D volume rendering of one
 617 spongy mesophyll cell from a leaf of each species. Numbers indicate the asphericity (\mathcal{A}) of
 618 the cell. (e) 3D volume rendering of one spongy mesophyll cell from a flower of each
 619 species. Numbers indicate the asphericity (\mathcal{A}) of the cell. (f) 3D volume rendering of the
 620 intercellular airspace of flowers. Height (thickness) varies depending on the species.
 621 Numbers indicate the porosity (θ_{IAS}) of the tissue. (g) Average cross-sectional mesophyll
 622 porosity (θ_{IAS} ; $\text{mm}^3 \text{ mm}^{-3}$) for flowers, visualized by averaging across the depth of the
 623 microCT scan. Lighter colors indicate more cell material, and darker colors indicate more

101


102 Structural mesophyll differences

624 airspace. Note that in panels (a, g) the width and height are each 600 μm , and the tissue
625 dimensions in panels (b,f) are 600 $\mu\text{m} \times 600 \mu\text{m}$ in the paradermal plane with variable height
626 (thickness) depending on the sample. Cells displayed in panels (c-f) are visualized at
627 different scales.

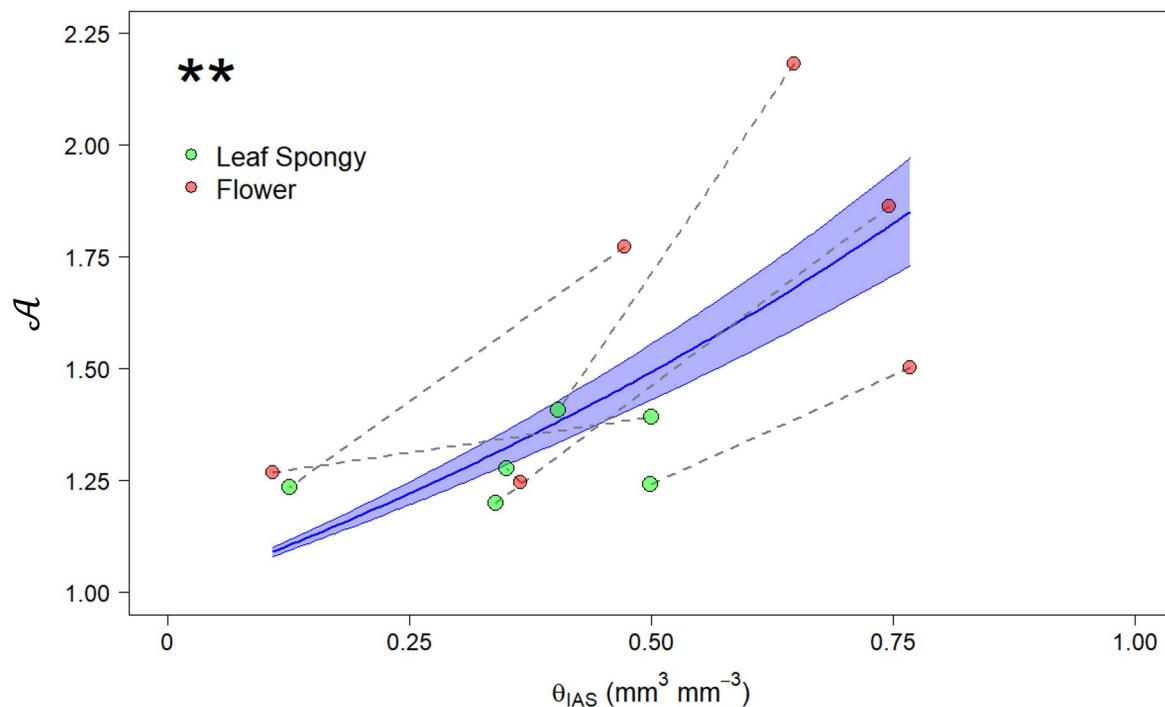
628


103

104

629

630 Fig. 4 Mesophyll porosity (θ_{IAS} ; $\text{mm}^3 \text{ mm}^{-3}$) for the six species studied, displayed for flowers,
 631 leaf spongy mesophyll, leaf palisade mesophyll and full leaves. Letters indicate significant
 632 differences with $p < 0.05$.



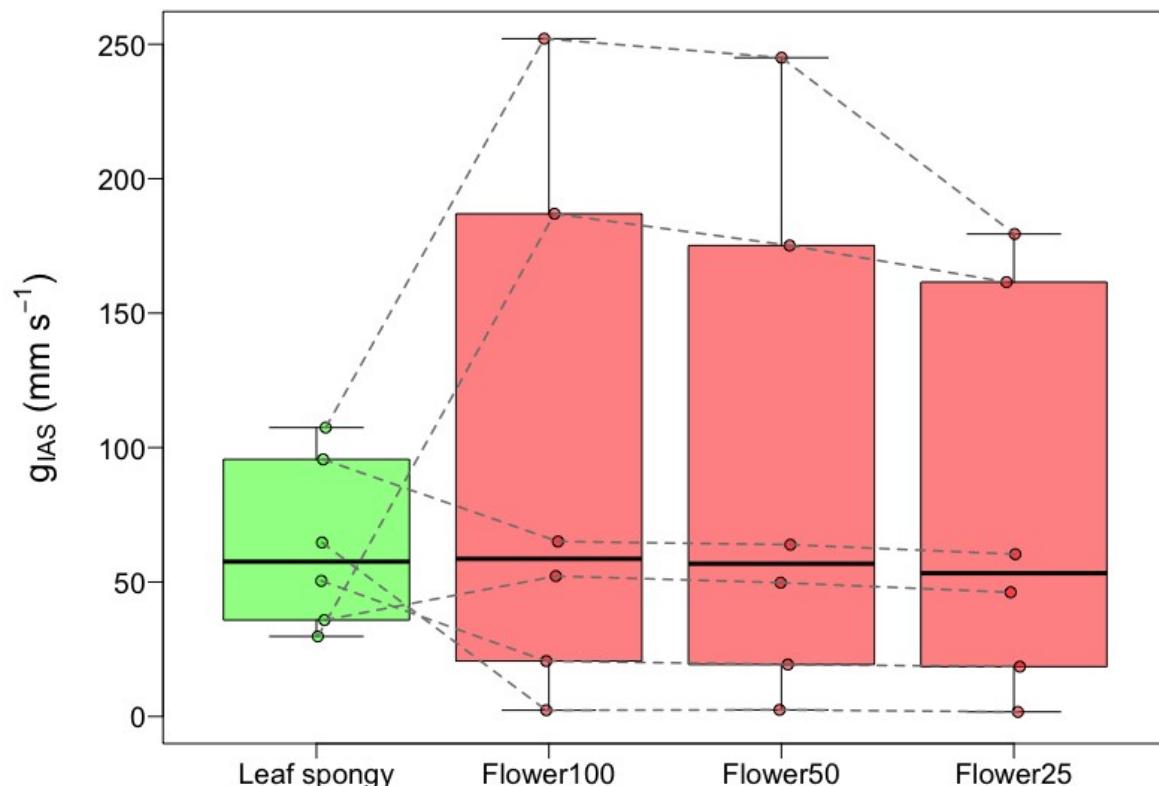
633

634 Fig. 5 Asphericity (\mathcal{A}) for the six species studied, displayed for flowers, leaf spongy
 635 mesophyll, leaf palisade mesophyll and full leaves.

636

637

638


639 Fig. 6 Asphericity (\mathcal{A}) as a function of mesophyll porosity (θ_{IAS} ; $\text{mm}^3 \text{ mm}^{-3}$) for the six
 640 species studied, displayed for flowers and leaf spongy mesophyll. Shaded red and green are
 641 models of the form $A = a^{\theta_{IAS}}$ for flowers and leaf spongy mesophyll, respectively. Both the
 642 model for the flowers and the leaf spongy mesophyll were significant ($p < 0.05$) with values
 643 for a of 2.35 and 1.89, respectively.

644

645 Fig. 7 Lateral path lengthening (λ ; mm mm⁻¹) for the six species studied, displayed for
 646 leaves and flowers with imposed stomata similar to 100% (Flower100), 50% (Flower50) and
 647 25% (Flower25) of the stomatal density of conspecific leaves.

648

649

650 Fig. 8 Conductance of the intercellular airspace (g_{IAS} ; mm s^{-1}) for the six species studied,
 651 displayed for leaf spongy mesophyll and flowers with imposed stomata similar to 100%
 652 (Flower100), 50% (Flower50) and 25% (Flower25) of the stomatal density of conspecific
 653 leaves.

654 **Supplementary data**

655 Table S1 Phylogenetic paired t-test results for each trait

656

657 Table S2 Imposed floral and measured leaf stomatal density

658

659 Fig. S1 Workflow used for manual cell segmentation

660

661 Fig. S2 Pores observed in the epidermis of petals of *Romneya coulteri*.

662

663 Fig. S3 Vein diameter (mm) for the six species studied for flowers and leaves.

664

665 Fig. S4 The tortuosity factor (τ ; mm mm⁻¹) for the six species studied, displayed for leaves
666 and flowers with imposed stomata.

667

668 Fig. S5 The tortuosity factor (τ ; mm mm⁻¹) and lateral path lengthening (λ ; mm mm⁻¹) as a
669 function of mesophyll porosity (θ_{IAS} ; mm³ mm⁻³) for the six species studied, displayed for
670 leaves and flowers with imposed stomata.

671

672 Fig. S6 Conductance of the intercellular airspace (g_{IAS} ; mm s⁻¹) for the six species studied,
673 displayed for leaves and flowers with imposed stomata.

674

675 Fig S7. Larger versions of the transverse projections in Figure 3.