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Short summary

Leaf mesophyll cells are often approximated by capsules and spheres to discuss structure-
function relationships. These assumptions allow an easy assessments based on widely
available 2D datasets of foliar tissue. However, this is a rough approximation of often
irregularly shaped spongy mesophyll cells. We suggest to use more rare 3D assessments to
provide corrections and functions to be used in 2D assessments, rather than scaling 2D

analysis to 3D structures based on the assumption of ideal shapes.

Abstract

Climate change-driven drought events are becoming unescapable in an increasing number of
areas worldwide. Understanding how plants are able to adapt to these changing
environmental conditions is a non-trivial challenge. Physiologically, improving a plant’s
intrinsic water use efficiency (WUE,) will be essential for plant survival in dry conditions.
Physically, plant adaptation and acclimatisation are constrained by a plant’s anatomy. In
other words, there is a strong link between anatomical structure and physiological function.
Former research predominantly focussed on using 2D anatomical measurements to
approximate 3D structures based on the assumption of ideal shapes, such as spherical
spongy mesophyll cells. As a result of increasing progress in 3D imaging technology, the
validity of these assumptions is being assessed, and recent research has indicated that these
approximations can contain significant errors. We suggest to invert the workflow and use
the less common 3D assessments to provide corrections and functions for the more widely
available 2D assessments. By combining these 3D and corrected 2D anatomical assessments
with physiological measurements of WUE,, our understanding of how a plant’s physical
adaptation affects its function will increase and greatly improve our ability to assess plant

survival.

Keywords:
functional plant anatomy, intercellular airspace, leaf anatomy, leaf functional traits, leaf

structure, mesophyll, structure-function relations, water use efficiency
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Introduction

An increasing number of climate change-driven drought events (IPCC, 2018) is pushing plant
species to the limits of their climatic tolerance (Fitzpatrick et al., 2008; Feeley et al., 2020).
This abiotic stressor is a major constraint for crop production, greatly affecting food security
(Fahad et al., 2017). Agriculture can attempt to breed more drought-tolerant cultivars, which
can be classified as a guided form of adaptation. Natural migration of wild plants to areas
with more favourable conditions might partially alleviate the impact of these abiotic
stressors. Still, numerous species are unable to keep pace with these imposed environmental
changes (e.g., Corlett & Westcott, 2013). Alternatively, plants under abiotic stress can try to
acclimate or adapt (Corlett & Westcott, 2013) to deal with these new hydrological

conditions.

Plant adaptation and acclimatisation can occur on different levels: genetic (Lauteri et
al., 1997; Roddy et al., 2020), anatomy (Théroux-Rancourt et al., 2021) and physiology (Shao
et al., 2008) (Fig. 1). These different levels can interact, with changes in genetics leading to
anatomical and physiological changes. If these anatomical and physiological changes are
favourable, they will result in higher survival rates (Maggio et al., 2001), relatively enriching
the genetic pool with these modifications, and so forth. If plants are unable to adjust or
migrate, they are pushed to extinction because of newly imposed climatic conditions (Corlett
& Westcott, 2013). Knowing which species are able to adjust and how these modifications

manifest is essential to assess plant survival rates under climate change.

Physically, these changes are constrained by a plant’s anatomy. In other words, there
is a strong link between structure and function or anatomy and physiology, respectively,
which amalgamates in the field of functional plant anatomy (Fig. 1). Mesophyll structure can
affect multiple important traits, e.g., leaf hydraulics and light perception (Théroux-Rancourt
& Gilbert, 2017; Théroux-Rancourt et al., 2023). This Perspective article focuses on the
construction of a leaf’s mesophyll tissue and how this structure affects mesophyll
conductance for water vapour and carbon dioxide out and into the leaf, respectively (Evans
et al., 2009; Earles et al., 2018). While plants have some capacity for anatomical adaptation,
the limits of these physical changes to improve carbon gain and reduce water loss during dry

conditions remain poorly understood.
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Carbon gained and water lost

As drought events increase in frequency and intensity (IPCC, 2018), improving a plant’s
intrinsic water use efficiency (WUE;; umol CO,.(mol H,0)*) will be essential to avoid harmful
water shortages (Hentschel et al., 2016). WUE,; is defined as the ratio of photosynthetic rate
(A; umol CO,.m2.s?) to stomatal conductance (g; mol H,0.m2s?) (Eq. 1) (Osmond et al.,
1980; Seibt et al., 2008), thus combining the carbon and water cycles through stomatal
conductance and the gaseous component of mesophyll conductance. In recent decades, the
potential of mesophyll conductance (g,,) to significantly affect carbon fixation and water loss
has been recognized (Warren, 2008; Evans et al., 2009; Bunce, 2016; Earles et al., 2019).
Furthermore, g,, is implicitly included in WUE; as A is a function of g, and g, (Eq. 1). While g,
determines how fast CO, can enter the leaf through stomata, g, determines how fast CO,

can move from stomata to the chloroplast where it can be fixed as sugars during

photosynthesis.
wog, <A [1950n:.) Eq. 1
9. flg,)

g, consists of the algebraic sum of its gaseous (g, Eq. 2) and liquid (g,,; Eq. 3)
components, the former denoting diffusion in the intercellular airspace (IAS) (Earles et al.,
2018). The effect of the IAS structure on gas diffusion in the IAS is approximated by diffusion
in a porous medium (Eq. 2) (Earles et al., 2018).

BIASDm
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where 0,6 is mesophyll porosity (m3.m=), D, is the diffusion coefficient of CO, in air
(m2.s?), 0.5L,, is half the mesophyll thickness (m), Tieqf is the tortuosity factor (m2.m2) and
)\leaf is lateral path lengthening (m.m1).

Eqg. 2 assumes that g, is a function of foliar structure, yet each element of the
equation does not depend on the same tissue or cell type. While g . and Tieqr AT€ 3 function
of mesophyll tissue, Aot is highly dependent on stomatal density (e.g. Earles et al., 2018;
Théroux-Rancourt et al., 2023), clearly linking the spatial organization of both stomata and
mesophyll cells to g,,; and WUE,.

In terms of functional plant anatomy, maximizing WUE,; entails an optimization

problem where both a reduction in g,,s for water vapor diffusion and an increase in g, for
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CO, diffusion are beneficial. As both pathways obviously overlap, it is unclear how a plant
will physically optimise at the tissue level for dry conditions. Based on the diffusion
coefficient of CO, and water vapor in air of 0.158 and 0.247 cm?.s* (at 20°C), respectively, it
can be hypothesized that reducing g, would be more beneficial as the diffusion coefficient
for water vapour is larger. This should result in a reduction of water loss that is more
pronounced than the reduction in carbon gain, thus increasing WUE,. However, if g,,s does
decrease, it is still unclear how different plant species would accomplish this. Is it more
beneficial to increase Tiear OF decrease stomatal density, thus increasing Aleaf? Should 0,16
increase or [,  decrease? These are non-trivial questions which rely on the interplay of
multiple variables. For example, sun leaves of Fagus sylvatica have been observed to have a
higher g,,s compared to shade leaves (Janova et al., 2024), while sun leaves of Vitis vinifera
indicated lower g . and higher I, _values compared to shade leaves, resulting in a lower g,
(Théroux-Rancourt et al., 2023). Different tendencies could result from differences in species
but could just as likely vary within the same species due to the interplay of multiple variables

such as light intensity and hydration.

Adding the third dimension
3D structure and WUE,

As WUE, is a function of g, structural features in mesophyll anatomy are expected to
correlate with a plant’s WUE.. In coniferous species this resulted in a significant correlation
between WUE, and the number of stomata per unit of mesophyll volume (Trueba et al.,
2022) (Fig. 2a), the number of stomata per unit of mesophyll surface area (Fig. 2b) and the
number of stomata per unit of mesophyll intercellular airspace (Fig. 2c), but not the
mesophyll surface area exposed to IAS per unit of total leaf area (S,,; Fig. 2d). While also
significant correlations between WUE, and vein-based variables were found (Trueba et al.,
2022), these observations suggest that stomatal density and variables based on mesophyll

area, volume and porosity could be some of the major drivers for WUE..

Even though stomatal density is the major component of g, stomatal size also has a
significant impact on g,, and inversely on a plant’s estimated water use efficiency (Liu et al.,
2016). As stomatal density and stomatal size covary (Jordan et al., 2020), a simplified

assessment can be performed by investigating one of these parameters, but a stronger
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relationship is expected when using stomatal area fraction (Liu et al., 2016), defined as the
product of stomatal density and stomatal size, divided by leaf area. In terms of adaptation to
aridity, stomatal density appears to be the dominant factor over stomatal size (Liu et al.,
2016). When stomatal densities scaled by mesophyll variables decrease, WUE; increases (Fig.
2a-c). This could be the result of a decreased g, combined with a larger diffusion coefficient
for water vapor compared to CO, in air. However, based on these data it is unclear whether
stomatal density or mesophyll structure has the strongest influence on WUE,. Stomatal

density predominantly affects 2 with a decrease in stomatal density leading to an

leaf’
increase in )\Ieaf (Earles et al., 2018). However, mesophyll cell size has been linked to CO,
diffusion inside leaves (Théroux-Rancourt et al., 2021), suggesting that the interaction
between stomatal density and mesophyll structure is driving WUE,, as has been indicated by

Lundgren et al. (2019), and not one or the other.

Significant changes in mesophyll structure as a result of varying environmental
conditions, such as light and water availability (Théroux-Rancourt & Gilbert, 2017;
Momayyezi et al., 2022; Théroux-Rancourt et al., 2023), have been observed. Drought can

result in a decreased mesophyll cell volume, in turn causing an increase in 9. and g,

IAS
(Momayyezi et al., 2022). However, whether the effect of drought amplifies or reduces the
effect of increased light interception through interactive effects, such as reduced light
absorption due to drought (Momayyezi et al., 2022), remains unclear. Furthermore, as
structural variables are interlinked, different anatomical changes might result in the same
physiological optimum, e.g., (i) a decrease in 6,,s could alleviate the effect of a decrease in
L. and (ii) an increase in T or A can have similar effects with respect to g,,.. To add to this

complexity, some of these changes might rely on 3D directional structures (Harwood et al.,

2021) rather than single-leaf variables.

Errors based on 2D assessments

Palisade and spongy mesophyll cells have often been approximated by capsules and spheres,
respectively, to discuss structure-function relationships (Nobel, 2020). However, this is a
rough approximation as spongy cells are often irregularly shaped (Haberlandt, 1904;
Théroux-Rancourt et al., 2020b; Borsuk et al., 2022). These assumptions have been

advantageous as they allowed easy assessments based on widely available 2D datasets of
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foliar tissue and required low processing power. However, as we are entering a new era
where 3D observations are becoming more common and processing power is rarely limiting

for this type of research, the validity of 2D approximations for 3D traits such as g nd

145" Tleaf @

Aeaf should be investigated, especially with respect to the irregular cell shape of spongy
mesophyll. Furthermore, these traits can exhibit high spatial heterogeneity (Earles et al.,
2018), making Tieaf directional rather than encompassing (Harwood et al., 2021), and can

strongly influence g, (Earles et al., 2018).

During recent years, advances in methods for high-resolution 3D anatomical
observations, such as, confocal microscopy, multiphoton laser scanning microscopy (Wuyts
et al., 2010), serial block-face scanning electron microscopy (SBF-SEM) (Harwood et al.,
2020), nuclear magnetic resonance (NMR) and X-ray computed microtomography (microCT)
(Brodersen & Roddy, 2016; Earles et al., 2018, 2019; Mathers et al., 2018) combined with
full-stack tissue segmentations based on machine learning (Théroux-Rancourt et al., 2020a;
Rippner et al., 2022), specialized software (Barbier de Reuille et al., 2015) and other
pipelines (Wuyts et al., 2010), have bloomed leading to new insights and the unravelling of
errors based on former 2D approaches. This type of research has indicated that including 3D
data of Teof and Aeaf reduced the estimates of g,s based on anatomy, on average, by 37% in
bromeliad species (Earles et al., 2018). Furthermore, 2D leaf sections underestimated the
mesophyll surface area exposed to IAS per unit of total leaf area (S,,), in some cases leading
to errors of almost 50% compared to 3D microCT images (Théroux-Rancourt et al., 2017;
Mathers et al., 2018). This error can affect the assessment of other variables as S,, closely
correlates with A (Théroux-Rancourt et al., 2017) and g;, (Eq. 3) (Théroux-Rancourt et al.,
2021). Evans et al. (2009), for example, indicated that leaves with a large photosynthetic
capacity (P, ~ f(A) ~ f(WUE))) tend to increase g,, by increasing the surface area of chloroplast
exposed to IAS (S, ~ f(S,,)), clearly denoting the interlinkage between S, and other variables

and the possibility of cascading errors due to 2D assessments.

mes o “c
Vmes Sm Eg. 3
9iiq— — R
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where SA, .. is the mesophyll surface are exposed to IAS (m?), V s is the mesophyll
volume (m3) and R is a combination of different resistance components of the liquid diffusion
path through mesophyll cells (m? chlorplast.s.mol?), including diffusion through cell walls.

While a lot of variation exists in the relation between S. and S,, (Fig. S1), an errorin S,
will not directly affect S. S, as this term is generally estimated as a ratio, e.g. 0.73 = 0.01
(mean * SE; Fig. S1). However, S is SA. .. scaled per unit of leaf area (LA). As a consequence,
errors in S, will result in errors of SA,,../V....- Based on the 3D dataset available in Trueba et
al., (2022), a significant (p < 0.001) logarithmic relation between S, and SA, ./V,.. can be
observed (Fig. 3). This makes sense as SA, /LA ~ SA, ./V.. corresponds to 1/LA ~ 1/V,,...
However, when using 2D data from Hogan et al. (1994) and Vyas et al. (2007), no significant
trend could be found. It is important to note that sample sizes are small and that the 2D
dataset is based on broadleaved species, while the 3D dataset is based on coniferous
species. As such, part of the observed difference could thus be ascribed to statistical errors
and species diversity; however, it is expected that a significant amount of difference

originated from errors in 2D anatomical assessments of 3D structures.

A way forward

Despite its increasing use in publications, 3D methods are still not universally available. The
main goal of 3D methods should be to provide corrections and adaptations for the more
widely available 2D methods. One such adaptation is determining the number of 2D slices
needed to make an acceptable approximation of S, (Théroux-Rancourt et al., 2017), or
providing an equation that encompasses the 3D reality of leaves but uses readily available
2D data (Earles et al., 2018). Furthermore, knowledge gained from 3D anatomical
assessments must eventually be shaped in a way that allows the use of lower dimensional

data for upscaling, e.g., from 2D leaves to canopy-level models (Earles et al., 2019).

We suggest to use 3D assessments to provide corrections and functions to be used in
2D assessments rather than scaling 2D analysis to 3D structures based on the assumption of
ideal shapes such as spherical spongy mesophyll cells. Furthermore, by improvements in
computational power and advancements in 3D structural assessment methods, the potential
for new avenues in the field of functional plant anatomy is increasing drastically. By

combining corrected 3D anatomical assessment with physiological measurements, our
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240 greatly improve our ability to assess plant survival.
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Figure legends
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Fig. 1 Three main fields of plant sciences that can assess different aspects of plant
adaptation: genetics, anatomy and physiology. The interaction of these fields creates
subfields. In this Perspective, the subfield of functional plant anatomy is being proposed as a

promising way forward to better understand plant adaptations.
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368 Fig. 2 Physiological leaf traits as a function of intrinsic water use efficiency (WUE)). (a)
369 Number of stomata per unit of mesophyll volume (stomata/V ,.); (b) Number of stomata per
370 unit of mesophyll surface area (stomata/SA,...); (c) Number of stomata per unit of mesophyll
371 intercellular airspace volume (stomata/V,,); (d) Mesophyll surface area per unit of total leaf
372 area (S,). Solid blue regression lines and SE (shaded areas) are included. Coefficients of
373 determination are included. All fits have a p-value < 0.05. Pinus species from the subgenera
374  Pinus (green) and Strobus (yellow), along with other conifer species (purple), are indicated.
375 Species bearing flat leaves (square), flattened needle leaves (triangles), and needle-like
376 leaves (circles) are also identified (data from the supplement of Trueba et al. (2022)). Grey

377 circles represent data from other references (see supplementary information).
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378
379 Fig.3 Ratio of the mesophyll surface area exposed to IAS to the mesophyll volume

380 (SA,../V.e) as a function of mesophyll surface area exposed to the intercellular air space per
381 unit of total leaf area (S,,). 3D data (in colour) based on X-ray microCT imaging (Trueba et al.,
382 2022), 2D data based on light microscopy (grey circles: Hogan et al. (1994); grey squares:
383 Vyas et al. (2007)). Blue line indicates a logarithmic fit to 3D colour data with the shaded

384 area visualizing the standard error of the fit (p < 0.001).
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