
Nonparametric Classification on Low Dimensional
Manifolds using Overparameterized

Convolutional Residual Networks
Kaiqi Zhang† Zixuan Zhang† Minshuo Chen Yuma Takeda

Mengdi Wang Tuo Zhao Yu-Xiang Wang∗

February 20, 2024

Abstract

Convolutional residual neural networks (ConvResNets), though overparametersized, can
achieve remarkable prediction performance in practice, which cannot be well explained by
conventional wisdom. To bridge this gap, we study the performance of ConvResNeXts trained
with weight decay, which cover ConvResNets as a special case, from the perspective of non-
parametric classification. Our analysis allows for infinitely many building blocks in ConvRes-
NeXts, and shows that weight decay implicitly enforces sparsity on these blocks. Specifically,
we consider a smooth target function supported on a low-dimensional manifold, then prove
that ConvResNeXts can adapt to the function smoothness and low-dimensional structures and
efficiently learn the function without suffering from the curse of dimensionality. Our findings
partially justify the advantage of overparameterized ConvResNeXts over conventional machine
learning models.

1 Introduction

Deep learning has achieved significant success in various real-world applications, such as com-
puter vision (Goodfellow et al., 2014; Krizhevsky et al., 2012; Long et al., 2015), natural language
processing (Bahdanau et al., 2014; Graves et al., 2013; Young et al., 2018), and robotics (Gu et al.,
2017). One notable example of this is in the field of image classification, where the winner of
the 2017 ImageNet challenge achieved a top-5 error rate of just 2.25% (Hu et al., 2018) using
Convolutational Residual Network (ConvResNets) on a training dataset of 1 million labeled high-
resolution images in 1000 categories.

Researchers have attributed the remarkable performance of deep learning to its great flexibil-
ity in modeling complex functions, which has motivated many works on investigating the repre-
sentation power of deep neural networks. For instance, early work such as Barron (1993); Cybenko
(1989); Kohler and Krzyżak (2005) initialized this line of research for simple feedforward neural
networks (FNNs). More recently, Suzuki (2018); Yarotsky (2017) gave more precise bounds on the
model sizes in terms of the approximation error, and Oono and Suzuki (2019) further established

∗† Equal contribution. Kaiqi Zhang and Yu-Xiang Wang are affiliated with Computer Science Department at
UC Santa Barbara; Zixuan Zhang and Tuo Zhao are affiliated with School of Industrial and Systems Engineering at
Georgia Tech; Minshuo Chen and Mengdi Wang are affiliated with Electrical and Computer Engineering at Prince-
ton University; Yuma Takeda is affiliated with University of Tokyo. Emails: kzhang70@ucsb.edu, {zzhang3105,
tourzhao}@gatech.edu, {mc0750, mengdiw}@princeton.edu, utklav1511@gmail.com, yuxiangw@cs.ucsb.edu.

1

ar
X

iv
:2

30
7.

01
64

9v
2

 [
cs

.L
G

]
 1

8
Fe

b
20

24

a bound for more advanced architectures – ConvResNets. Based on these function approximation
theories, one can further establish generalization bounds of deep neural networks with finite sam-
ples. Taking Oono and Suzuki (2019) as an example again, they showed that ConvResNets with
Õ(nD/(2α+D)) parameters can achieve a minimax optimal convergence rate Õ(n−2α/(2α+D)) while
approximating a Cα nonparametric regression function with n samples. Unfortunately, these the-
oretical results cannot well explain the empirical successes of deep learning well, as they require
the model size to be no larger than Õ(n) (the generalization bounds become vacuous otherwise).
However, in real applications, practical deep learning models are often overparameterized, that
is the model size can greatly exceeds the sample size.

1.1 Main Results

Overparameterization of neural networks has been considered as one of the most fundamental re-
search problems in deep learning theories. There has been substantial empirical evidence showing
that overparameterization can help fit the training data, ease the challenging nonconvex optimiza-
tion, and gain robustness. However, existing literature on deep learning theories under such an
overparameterized regime is very limited. To the best of our knowledge, we are only aware of
Zhang and Wang (2022), which attempts to analyze overparameterized neural networks trained
with weight decay. However, their work still suffers from two major restrictions: (1) They consider
parallel FNN, which is rarely used in practice. Whether similar results hold for more practical
architectures remains unclear; (2) Their generalization bound from the curse of dimensionality,
where the sample size is require to scale exponentially with the input dimension.

To address (1), we propose to develop a new theory for nonparametric classification using
overparameterized ConvResNeXts trained with weight decay (Xie et al., 2017). The ConvResNeXt
generalizes ConvResNets and includes them as a special case (Chen et al., 2017; He et al., 2016;
Szegedy et al., 2017; Zhang et al., 2017). Compared with FNNs, ConvResNeXts exhibit three
features: (i) Instead of using dense weight matrices, they use convolutional filters, which can nat-
urally investigate the underlying structures of the input data such as images and acoustic signals;
(ii) They are equipped with skip-layer connections, which divides the entire network into blocks.
The skip-layer connection can effectively address the vanishing gradient issue and therefore allow
the networks to be significantly deeper; (iii) They are equipped with parallel architectures, which
enable multiple “paths” within each block of the network, and allows the network to learn a more
diverse set of features. Figure 1(b) illustrates the structure of ConvResNeXts (detailed introduc-
tions of ConvResNeXts is deferred to Section 2.3). This architecture introduces a significantly
more complex nested function form, presenting us with the challenge of addressing novel issues
in bounding the metric entropy of the function class.

To address (2), our proposed theory considers the optimal classifier is supported on a d-
dimensional smooth manifoldM isometrically embedded in RD with d≪D. The low-dimensional
manifold assumption is highly practical, since it aligns with the inherent nature of many real-
world datasets. For example, images typically represent projections of 3-dimensional objects sub-
ject to various transformations like rotation, translation, and skeletal adjustments. Such a gener-
ating mechanism inherently involves a limited set of intrinsic parameters. More broadly, various
forms of data, including visual, acoustic, and textual, often exhibit low dimensional structures
due to rich local regularities, global symmetries, repetitive patterns, or redundant sampling. It is
reasonable to model these data as samples residing in proximity to a low dimensional manifold.

Our theoretical results can be summarized as follows:
• We prove that when ConvResNeXts are overparameterized, i.e., the number of blocks is

larger than the order of the sample size n, they can still achieve an asymptotic minimax rate for

2

learning Besov functions when trained with weight decay. That is, given that the target function
belongs to the Besov space Bαp,q(M)1, the risk of the estimator given by the ConvResNeXt class

converges to the optimal risk at the rate Õ(n−
α/d

2α/d+1 (1−o(1))) with n samples. Notably, the statistical
rate of convergence in our theory only depends on the intrinsic dimension d, which circumvents
the curse of dimensionality in Zhang and Wang (2022).

• Moreover, our theory shows that one can scale the number of “paths” M in each block with
the depth N as roughly MN ≳ n

1
2α/d+1 , which does not affect the convergence rate. This partially

justifies the flexibility of the ConvResNeXt architecture when designing the bottlenecks. More-
over, we can exchange the number of “paths” M and depth N as long as their product remains
the same. This further provides the architectural insight that we don’t necessarily need parallel
blocks when we have residual connections. To say it differently, we provide new insight into why
“residual connection” and ”parallel blocks” in ResNeXts are useful in both approximation and
generalization.

•Another technical highlight of our paper is bounding the covering number of weight-decayed
ConvResNeXts, which is essential for computing the critical radius of the local Gaussian complex-
ity. Specifically, we adopted a more advanced method that leverages the Dudley’s chaining of the
metric entropy (Bartlett et al., 2005). This technique provides a tighter bound than choosing a
single radius of the covering number as in Zhang and Wang (2022).

• To the best of our knowledge, our work is the first to develop approximation and statistical
theories for ConvResNeXts, as well as overparameterized ConvResNets.

1.2 Related Works

Our work is closely related to Liu et al. (2021), which studies nonparametric classification under
a similar setup – the optimal classifier belongs to the Besov space supported on a low dimensional
manifold. Despite they develop similar theoretical results to ours, their analysis does not allow
the model to be overparameterized, and therefore is not applicable to practical neural networks.
Moreover, they investigate ConvResNets, which is a special case of ConvResNeXt in our work.

Our work is closely related to the reproducing kernel methods, which are also often used for
nonparametric regression. However, existing literature has shown that the reproducing kernel
methods lack the adaptivity to handle the heterogeneous smoothness in estimating Besov space
functions, and only achieve suboptimal rate of convergence in statistical estimation Donoho et al.
(1990); Suzuki (2018).

Our work is closely related neural tangent kernel theories (Jacot et al., 2018; Allen-Zhu et al.,
2019), which study overparameterized neural networks. Specifically, under certain regularity
conditions, they establish the equivalence between overparameterized neural networks and repro-
ducing kernel methods, and therefore the generalization bounds of overparameterized networks
can be derived based on the associated reproducing kernel Hilbert space. Note that neural tan-
gent kernel theories can be viewed as special cases of the theories for general reproducing kernel
methods. Therefore, they also lack the adaptivity to be successful in the Besov space thus do not
capture the properties of overparameterized neural networks.

Roadmap. The rest of this paper is organized as follows: Section 2 briefly introduces some
preliminaries; Section 3 presents our theories; Section 4 presents the proof sketch of our main
results; Section 5 presents discussions and draws a brief conclusion.

1The Besov space includes functions with spatially heterogeneous smoothness and generalizes more elementary
function spaces such as Sobolev and Hölder spaces.

3

2 Preliminaries

In this section, we introduce some concepts on manifolds. Details can be found in (Tu, 2011) and
(Lee, 2006). Then we provide a detailed definition of the Besov space on smooth manifolds and
the ConvResNeXt architecture.

2.1 Smooth manifold

Firstly, we briefly introduce manifolds, the partition of unity and reach. Let M be a d-dimensional
Riemannian manifold isometrically embedded in RD with d much smaller than D.

Definition 1 (Chart). A chart on M is a pair (U,φ) such that U ⊂M is open and φ : U 7→ Rd , where
φ is a homeomorphism (i.e., bijective, φ and φ−1 are both continuous).

In a chart (U,φ), U is called a coordinate neighborhood, and φ is a coordinate system on U .
Essentially, a chart is a local coordinate system onM. A collection of charts that coversM is called
an atlas of M.

Definition 2 (Ck Atlas). ACk atlas forM is a collection of charts {(Ui ,φi)}i∈A which satisfies
S
i∈AUi =

M, and are pairwise Ck compatible:

φi ◦φ−1
β : φβ(Ui ∩Uβ) → φi(Ui ∩Uβ) and φβ ◦φ−1

i : φi(Ui ∩Uβ) → φβ(Ui ∩Uβ)

are both Ck for any i,β ∈ A. An atlas is called finite if it contains finitely many charts.

Definition 3 (Smooth Manifold). A smooth manifold is a manifold M together with a C∞ atlas.

Classical examples of smooth manifolds are the Euclidean space, the torus, and the unit
sphere. Furthermore, we define Cs functions on a smooth manifold M as follows:

Definition 4 (Cs functions on M). Let M be a smooth manifold and f : M→ R be a function on M.
A function f : M → R is Cs if for any chart (U,φ) on M, the composition f ◦φ−1 : φ(U) → R is a
continuously differentiable up to order s.

We next define the C∞ partition of unity, which is an important tool for studying functions on
manifolds.

Definition 5 (Partition of Unity, Definition 13.4 in Tu (2011)). A C∞ partition of unity on a manifold
M is a collection of C∞ functions {ρi}i∈A with ρi : M→ [0,1] such that for any x ∈M,

1. there is a neighbourhood of x where only a finite number of the functions in {ρi}i∈A are nonzero;

2.
X
i∈A
ρi(x) = 1.

An open cover of a manifold M is called locally finite if every x ∈M has a neighborhood that
intersects with a finite number of sets in the cover. The following proposition shows that a C∞

partition of unity for a smooth manifold always exists.

Proposition 1 (Existence of a C∞ partition of unity, Theorem 13.7 in Tu (2011)). Let {Ui}i∈A be a
locally finite cover of a smooth manifold M. Then there is a C∞ partition of unity {ρi}∞i=1 where every
ρi has a compact support such that supp(ρi) ⊂Ui .

4

Let {(Ui ,φi)}i∈A be a C∞ atlas of M. Proposition 1 guarantees the existence of a partition of
unity {ρi}i∈A such that ρi is supported on Ui . To characterize the curvature of a manifold, we
adopt the geometric concept: reach.

Definition 6 (Reach (Federer, 1959; Niyogi et al., 2008)). Denote

G =
�
x ∈ RD : ∃ p , q ∈M such that ∥x −p∥2 = ∥x −q∥2 = inf

y∈M
∥x − y∥2

�
.

as the set of points with at least two nearest neighbors on M. The closure of G is called the medial axis
of M. Then the reach of M is defined as

τ = inf
x∈M

inf
y∈G

∥x − y∥2.

Reach has a simple geometrical interpretation: for every point x ∈ M, the osculating circle’s
radius is at least τ . A large reach for M indicates that the manifold changes slowly.

2.2 Besov functions on a smooth manifold

We next define the Besov function space on the smooth manifold M, which generalizes more el-
ementary function spaces such as the Sobolev and Hölder spaces. Roughly speaking, functions
in the Besov space are only required to have weak derivatives with bounded total variation. No-
tably, this includes functions with spatially heterogeneous smoothness, which requires more lo-
cally adaptive methods to achieve optimal estimation errors Donoho et al. (1998). Examples of
Besov class functions include piecewise linear functions and piecewise quadratic functions that
are smoother in some regions and more wiggly in other regions; see e.g., Figure 2 and Figure 4 of
Mammen and van de Geer (1997).

To define Besov functions rigorously, we first introduce the modulus of smoothness.

Definition 7 (Modulus of Smoothness (DeVore and Lorentz, 1993; Suzuki, 2018)). Let Ω ⊂ RD .
For a function f : RD → R be in Lp(Ω) for p > 0, the r-th modulus of smoothness of f is defined by

wr,p(f , t) = sup
∥h∥2≤t

∥∆rh(f)∥Lp , where

∆rh(f)(x) =


rP
j=0

�r
j

�
(−1)r−jf (x+ jh) if x,x+ rh ∈Ω,

0 otherwise.

Definition 8 (Besov Space Bαp,q(Ω)). For 0 < p,q ≤∞,α > 0, r = ⌊α⌋+ 1, define the seminorm | · |Bαp,q as

|f |Bαp,q(Ω) :=


 Z ∞

0
(t−αwr,p(f , t))

q dt
t

! 1
q

if q <∞,

supt>0 t
−αwr,p(f , t) if q = ∞.

The norm of the Besov space Bsp,q(Ω) is defined as ∥f ∥Bαp,q(Ω) := ∥f ∥Lp(Ω) + |f |Bαp,q(Ω). Then the Besov space
is defined as Bαp,q(Ω) = {f ∈ Lp(Ω)|∥f ∥Bαp,q <∞}.

Moreover, we show that functions in the Besov space can be decomposed using B-spline basis
functions in the following proposition.

5

Proposition 2 (Decomposition of Besov functions). Any function f in the Besov space Bαp,q,α > d/p
can be decomposed using B-spline of order m,m > α: for any x ∈ Rd , we have

f (x) =
∞X
k=0

X
s∈J(k)

ck,s(f)Mm,k,s(x), (1)

where J(k) := {2−ks : s ∈ [−m,2k +m]d ⊂ Zd}, Mm,k,s(x) :=Mm(2k(x − s)), and Mk(x) =
Qd
i=1Mk(xi) is

the cardinal B-spline basis function which can be expressed as a polynomial:

Mm(z) =
1
m!

m+1X
j=1

(−1)j

m+ 1
j

!
(z − j)m+ . (2)

We next define Bαp,q functions on M.

Definition 9 (Bαp,q Functions on M (Geller and Pesenson, 2011; Tribel, 1992)). Let M be a compact

smooth manifold of dimension d. Let {(Ui ,φi)}
CM
i=1 be a finite atlas on M and {ρi}

CM
i=1 be a partition of

unity on M such that supp(ρi) ⊂Ui . A function f : M→ R is in Bαp,q(M) if

∥f ∥Bαp,q(M) :=
CMX
i=1

∥(f ρi) ◦φ−1
i ∥Bαp,q(Rd) <∞. (3)

Since ρi is supported on Ui , the function (f ρi) ◦ φ−1
i is supported on φ(Ui). We can extend

(f ρi) ◦φ−1
i from φ(Ui) to Rd by setting the function to be 0 on Rd \φ(Ui). The extended function

lies in the Besov space Bsp,q(Rd) (Tribel, 1992, Chapter 7).

2.3 Architecture of ConvResNeXt

We introduce the architecture of ConvResNeXts. ConvResNeXts have three main features: convo-
lution kernel, residual connections, and parallel architecture.

Consider one-sided stride-one convolution in our network. Let W = {Wj,k,l} ∈ Rw′×K×w be a
convolution kernel with output channel size w′, kernel size K and input channel size w. For
z ∈ RD×w, the convolution of W with z gives y ∈ RD×w′ such that

y = W ⋆ z, yi,j =
KX
k=1

wX
l=1

Wj,k,lzi+k−1,l , (4)

where 1 ≤ i ≤D,1 ≤ j ≤ w′ and we set zi+k−1,l = 0 for i + k − 1 > D, as demonstrated in Figure 1(a).
The building blocks of ConvResNeXts are residual blocks. Given an input x, each residual

block computes x + F(x), where F is a subnetwork called bottleneck, consisting of convolutional
layers.

In ConvResNeXts, a parallel architecture is introduced to each building block, which enables
multiple “paths” in each block. In this paper, we study the ConvResNeXts with rectified linear
unit (ReLU) activation function, i.e., σ (z) = max{z,0}. We next provide the detailed definition of
ConvResNeXts as follows:

Definition 10. Let the neural network comprise N residual blocks, each residual block has a parallel
architecture withM building blocks, and each building block contains L layers. The number of channels

6

(a)

x

+
+

+

f (x)

id

id

id f1,1
. . . f1,M

fN,1

. . .

fN,M

. . .

(b)

Figure 1: (a) Demonstration of the convolution operation W ∗ z, where the input is z ∈ RD×w,
and the output is W ∗ z ∈ RD×w′ . Here Wj,:,: is a D × w matrix for the j-th output channel. (b)
Demonstration of the ConvResNeXt. f1,1 . . . fN,M are the building blocks, each building block is a
convolution neural network.

is w, and the convolution kernel size is K . Given an input x ∈ RD , a ConvResNeXt with ReLU activation
function can be represented as

f (x) = Wout

 MX
m=1

fN,m + id
!
◦ · · · ◦

 MX
m=1

f1,m + id
!
◦ P (x),

fn,m = W(n,m)
L ⋆ σ

�
W(n,m)
L−1 ⋆ · · · ⋆ σ

�
W(n,m)

1 ⋆ x
��
,

(5)

where id is the identity operator, P : RD → RD×w0 is the padding operator satisfying P (x) = [x, 0 . . . 0] ∈
RD×w, {W(n,m)

l }Ll=1 is a collection of convolution kernels for n = 1, . . . ,N ,m = 1, . . . ,M, Wout ∈ RwL de-
notes the linear operator for the last layer, and ⋆ is the convolution operation defined in (4).

The structure of ConvResNeXts is shown in Figure 1(b). When M = 1, the ConvResNeXt
defined in (5) reduces to a ConvResNet. For notational simplicity, we omit biases in the neural
network structure by extending the input dimension and padding the input with a scalar 1 (See
Proposition 9 for more details). The channel with 0’s is used to accumulate the output.

3 Theory

In this section, we study a binary classification problem onM⊆ [−1,1]D . Specifically, we are given
i.i.d. samples {xi , yi}ni=1 ∼ D where xi ∈M and yi ∈ {0,1} is the label. The label y ∈ {0,1} follows the
Bernoulli-type distribution

P(y|x) =
exp(yf ∗(x))

1 + exp(f ∗(x))

for some f ∗ : M → R belonging to the Besov space. More specifically, we make the following
assumption on f ∗.

Assumption 1. Let 0 < p,q ≤ ∞, d/p < α < ∞. Assume f ∗ ∈ Bαp,q(M) and ∥f ∗∥Bαp,q(M) ≤ CF for some
constant CF > 0.

7

To learn f ∗, we minimize the empirical logistic risk over the training data:

f̂ = argmin
f ∈F Conv

1
n

nX
i=1

h
yi log(1 + exp(−f (xi))) + (1− yi) log(1 + exp(f (xi)))

i
, (6)

where F Conv is some neural network class specified later. For notational simplicity, we denote the
empirical logistic risk function in (6) as Ln(f), and denote the population logistic risk as

ED[L(f)] = E(x,y)∼D
h
y log(1 + exp(−f (x))) + (1− y) log(1 + exp(f (x)))

i
.

We next specify the class of ConvResNeXts for learning f ∗:

F Conv(N,M,L,K,w,Bres,Bout) =
�
f | f is in the form of (5) with N residual blocks. Every residual

block hasM building blocks, with each building block

containing L layers. Each layer has kernel size bounded by K,

number of channels bounded by w,
NX
n=1

MX
m=1

LX
ℓ=1

∥W(n,m)
ℓ ∥2

F ≤ Bres,

∥Wout∥2
F ≤ Bout, f (x) ∈ [0,1] for any x ∈M.

�
.

Note that the hyperparameters of F Conv will be specified in our theoretical analysis later.
As can be seen, F Conv contains the Frobenius norm constraints of the weights. For the sake

of computational convenience in practice, such constraints can be replaced with weight decay
regularization the residual blocks and the last fully connected layer separately. More specifically,
we can use the following alternative formulation:

f̃ = argmin
f ∈F Conv(N,M,L,K,w,∞,∞)

Ln(f) +λ1

NX
n=1

MX
m=1

LX
ℓ=1

∥W(n,m)
ℓ ∥2

F +λ2∥Wout∥2
F,

where λ1,λ2 > 0 are properly chosen regularization parameters.

3.1 Approximation theory

In this section, we provide a universal approximation theory of ConvResNeXts for Besov functions
on a smooth manifold:

Theorem 1. For any Besov function f0 on a smooth manifold satisfying p,q ≥ 1,α − d/p > 1,

∥f0∥Bαp,q(M) ≤ CF,

for any P > 0 and any ConvResNeXt class F Conv(N,M,L,K,w,Bres,Bout) satisfying L = L′ +L0−1,L′ ≥
3, where L0 = ⌈ D

K−1⌉, and

MN ≥ CMP , w ≥ C1(dm+D), Bres ≤ C2L/K, Bout ≤ C3C
2
F((dm+D)LK)L(CMP)L−2/p, (7)

there exists f ∈ F Conv(N,M,L,K,w,Bres,Bout) such that

∥f − f0∥∞ ≤ CFCM
�
C4P

−α/d +C5 exp(−C6L
′ logP)

�
, (8)

where C1,C2,C3 are universal constants and C4,C5,C6 are constants that only depends on d and m, d
is the intrinsic dimension of the manifold and m is an integer satisfying 0 < α <min(m,m− 1 + 1/p).

8

The approximation error of the network is bounded by the sum of two terms. The first term
is a polynomial decay term that decreases with the size of the neural network and represents the
trailing term of the B-spline approximation. The second term reflects the approximation error of
neural networks to piecewise polynomials, decreasing exponentially with the number of layers.
The proof is deferred to Section 4.1 and the appendix.

3.2 Estimation theory

Theorem 2. Suppose Assumption 1 holds. Set L = L′ +L0 − 1,L′ ≥ 3, where L0 = ⌈ D
K−1⌉, and

MN ≥ CMP , P =O(n
1−2/L

2α/d(1−1/L)+1−2/pL), w ≥ C1(dm+D).

Let f̂ be the global minimizer given in (6) with the function class F = F Conv(N,M,L,K,w,Bres,Bout).
Then we have

ED[L(f̂ (x), y)] ≤ ED[L(f ∗(x), y)] +C7

�K− 2
L−2w

3L−4
L−2 L

3L−2
L−2

n

� α/d(1−2/L)
2α/d(1−1/L)+1−2/(pL)

+C8 exp(−C6L
′),

where the logarithmic terms are omitted. C1 is the constant defined in Theorem 1, C7,C8 are constants
that depend on CF,CM,d,m, K is the size of the convolution kernel.

We would like to make the following remarks about the results:
• Strong adaptivity: By setting the width of the neural network tow = 2C1D, the model can adapt
to any Besov functions on any smooth manifold, provided that dm ≤D. This remarkable flexibility
can be achieved simply by tuning the regularization parameter. The cost of overestimating the
width is a slight increase in the estimation error. Considering the immense advantages of this
more adaptive approach, this mild price is well worth paying.
• No curse of dimensionality: the above error rate only depends polynomially on the ambient
dimension D and exponentially on the hidden dimension d. Since in real data, the hidden dimen-
sion d can be much smaller than the ambient dimension D, this result shows that neural networks
can explore the low-dimension structure of data to overcome the curse of dimensionality.
• Overparameterization is fine: the number of building blocks in a ConvResNeXt does not influ-
ence the estimation error as long as it is large enough. In other words, this matches the empirical
observations that neural networks generalize well despite overparameterization.
• Close to minimax rate: The lower bound of the 1-Lipschitz error for any estimator θ is

min
θ

max
f ∗∈Bαp,q

L(θ(D), f ∗) ≳ n−
α/d

2α/d+1 .

where ≳ notation hides a factor of constant. The proof can be found in Appendix E. Comparing
to the minimax rate, we can see that as L→∞, the above error rate converges to the minimax rate
up to a constant term. In other words, overparameterized ConvResNeXt can achieve close to the
minimax rate in estimating functions in Besov class. In comparison, all kernel ridge regression
including any NTKs will have a suboptimal rate lower bounded by 2α−d

2α , which is suboptimal.
• Deeper is better: with larger L, the error rate decays faster with n and get closer to the minimax
rate. This indicates that deeper model can achieve better performance than shallower models
when the training set is large enough.
• Tradeoff between width and depth: With a fixed budget in the number of parameters, the
tradeoff between width and depth is crucial for achieving the best performance, and this often
requires repeated, time-consuming experiments. On the other hand, our results suggests that

9

such a tradeoff less important in a ResNeXt. The lower bound of error does not depend on the
arrangements of the residual blocks M and N , as long as their product is large enough. This can
partly explain the benefit of ResNeXt over other architecture.

By choosing L =O(log(n)), the second term in the error can be merged with the first term, and
close to the minimax rate can be achieved:

Corollary 1. Given the conditions in Theorem 2, set the depth of each block is L = O(log(n)) and then
the estimation error of the empirical risk minimizer f̂ satisfies

ED[L(f̂ (x), y)] ≤ ED[L(f ∗)] + Õ(n−
α/d

2α/d+1 (1−o(1))),

where Õ(·) omits the logarithmic term.

The proof of Theorem 2 is deferred to Section 4.2 and Section D.2. The key technique is
computing the critical radius of the local Gaussian complexity by bounding the covering number
of weight-decayed ConvResNeXts. This technique provides a tighter bound than choosing a single
radius of the covering number as in Suzuki (2018); Zhang and Wang (2022), for example. The
covering number of an overparameterized ConvResNeXt with norm constraint (Lemma 1) is one
of our key contributions.

4 Proof overview

4.1 Approximation error

We follow the method in Liu et al. (2021) to construct a neural network that achieves the approx-
imation error we claim. It is divided into the following steps:
• Step 1: Decompose the target function into the sum of locally supported functions. In this
work, we adopt a similar approach to (Liu et al., 2021) and partition M using a finite number of
open balls on RD . Specifically, we define B(ci , r) as the set of unit balls with center ci and radius
r such that their union covers the manifold of interest, i.e., M ⊆ ∪CMi=1B(ci , r). This allows us to
partition the manifold into subregionsUi = B(ci , r)∩M, and further decompose a smooth function
on the manifold into the sum of locally supported smooth functions with linear projections. The
existence of function decomposition is guaranteed by the existence of partition of unity stated in
Proposition 1. See Section C.1 for the detail.
• Step 2: Locally approximate the decomposed functions using cardinal B-spline basis func-
tions. In the second step, we decompose the locally supported Besov functions achieved in the
first step using B-spline basis functions. The existence of the decomposition was proven by Dũng
(2011), and was applied in a series of works (Zhang and Wang, 2022; Suzuki, 2018; Liu et al.,
2021). The difference between our result and previous work is that we define a norm on the coef-
ficients and bound this norm, instead of bounding the maximum value. The detail is deferred to
Section C.2.
• Step 3: Approximate the polynomial functions using neural networks. In this section, we fol-
low the method in Zhang and Wang (2022); Suzuki (2018); Liu et al. (2021) and show that neural
networks can be used to approximate polynomial functions, including B-spline basis functions
and the distance function. The key technique is to use a neural network to approximate square
function and multiply function (Barron, 1993). The detail is deferred to the appendix. Specifi-
cally, Lemma 5 proves that a neural network with width w =O(dm) and depth L can approximate
B-spline basis functions, and the error decreases exponentially with L; Similarly, Proposition 4

10

shows that a neural network with width w = O(D) can approximately calculate the distance be-
tween two points d2(x;c), with precision decreasing exponentially with the depth.
• Step 4: Use a ConvResNeXt to Approximate the target function. Using the results above, the
target function can be (approximately) decomposed as

CMX
i=1

PX
j=1

ai,kj ,sjMm,kj ,sj ◦φi × 1(x ∈ B(ci , r)). (9)

We first demonstrate that a ReLU neural network taking two scalars a,b as the input, denoted as
a×̃b, can approximate

y × 1(x ∈ Br,i),
where ×̃ satisfy that y×̃1 = y for all y, and y×̃x̃ = 0 if any of x or y is 0, and the soft indicator
function 1̃(x ∈ Br,i) satisfy 1̃(x ∈ Br,i) = 1 when x ∈ Br,i , and 1̃(x ∈ Br,i) = 0 when x < Br+∆,i . The
detail is deferred to Section C.3.

Then, we show that it is possible to constructMN = CMP number of building blocks, such that
each building block is a feedforward neural network with width C1(md +D) and depth L, where
m is an integer satisfying 0 < α < min(m,m− 1 + 1/p). The k-th building block (the position of the
block does not matter) approximates

ai,kj ,sjMm,kj ,sj ◦φi × 1(x ∈ B(ci , r)),

where i = ceiling(k/N), j = rem(k,N). Each building block has where a sub-block with width D
and depth L − 1 approximates the chart selection, a sub-block with width md and depth L − 1
approximates the B-spline function, and the last layer approximates the multiply function. The
norm of this block is bounded by

LX
ℓ=1

∥W(i,j)
ℓ ∥2

F ≤O(22k/LdmL+DL). (10)

Making use of the 1-homogeneous property of the ReLU function, by scaling all the weights in the
neural network, these building blocks can be combined into a neural network with residual con-
nections, that approximate the target function and satisfy our constraint on the norm of weights.
See Section C.4 for the detail.

By applying Lemma 3, which shows that any L-layer feedforward neural network can be refor-
mulated as an L+L0 − 1-layer convolution neural network, the neural network constructed above
can be converted into a ConvResNeXt that satisfies the conditions in Theorem 1.

4.2 Estimation error

We first prove the covering number of an overparameterized ConvResNeXt with norm-constraint
as in Lemma 1, then compute the critical radius of this function class using the covering number
as in Corollary 2. The critical radius can be used to bound the estimation error as in Theorem
14.20 in Wainwright (2019). The proof is deferred to Section D.2.

Lemma 1. Consider a neural network defined in Definition 10. Let the last layer of this neural network
is a single linear layer with norm ∥Wout∥2

F ≤ Bout. Let the input of this neural network satisfy ∥x∥2 ≤
1,∀x, and is concatenated with 1 before feeding into this neural network so that part of the weight plays
the role of the bias. The covering number of this neural network is bounded by

logN (·,δ) ≲ w2LB
1

1−2/L
res K

2−2/L
1−2/L

�
B1/2

out exp((KBres/L)L/2)
� 2/L

1−2/L δ−
2/L

1−2/L , (11)

11

where the logarithmic term is omitted.

The key idea of the proof is to split the building block into two types (“small blocks” and “large
blocks”) depending on whether the total norm of the weights in the building block is smaller than
ϵ or not. By properly choosing ϵ, we prove that if all the “small blocks” in this neural network are
removed, the perturbation to the output for any input ∥x∥ ≤ 1 is no more than δ/2, so the covering
number of the ConvResNeXt is only determined by the number of “large blocks”, which is no
more than Bres/ϵ.

Proof. Using the inequality of arithmetic and geometric means, from Proposition 10, Proposi-
tion 12 and Proposition 13, if any residual block is removed, the perturbation to the output is no
more than

(KBm/L)L/2B1/2
out exp((KBres/L)L/2),

where Bm is the total norm of parameters in this block. Because of that, the residual blocks can be
divided into two kinds depending on the norm of the weights Bm < ϵ (“small blocks”) and Bm ≥ ϵ
(“large blocks”). If all the “small blocks” are removed, the perturbation to the output for any
input ∥x∥2 ≤ 1 is no more than

exp((KBres/L)L/2)B1/2
out

X
m:Bm<ϵ

(KBm/L)L/2 ≤ exp((KBres/L)L/2)B1/2
out

X
m:Bm<ϵ

(KBm/L)(Kϵ/L)L/2−1

≤ exp((KBres/L)L/2)KL/2BresB
1/2
out(ϵ/L)L/2−1/L.

Choosing ϵ = L
�

δL
2exp((Bres/L)L/2)KL/2BresB

1/2
out

� 1
L/2−1

, the perturbation above is no more than δ/2. The

covering number can be determined by the number of the “large blocks” in the neural network,
which is no more than Bres/ϵ.

As for any block, BinLpost ≤ B1/2
out exp((KBres/L)L/2), taking our chosen ϵ finishes the proof, where

Bin is the upper bound of the input to this block defined in Proposition 6, and Lpost is the Lipschitz
constant of all the layers following the block.

Remark 1. The proof of Lemma 1 shows that under weight decay, the building blocks in a ConvResNeXt
are sparse, i.e. only a finite number of blocks contribute non-trivially to the network even though the
model can be overparameterized. This explains why a ConvResNeXt can generalize well despite over-
parameterization, and provide a new perspective in explaining why residual connections improve the
performance of deep neural networks.

5 Discussions

We compare the Besov space with the Hölder and Sobolev spaces, which are also popular in ex-
isting literature. The Hölder space Hs,α requires the functions to be differentiable everywhere up
to the s-th order. The Sobolev space slightly generalizes the Hölder space, but still requires high
order (weak) differentiability. In contrast, the Besov space Bsp,q does not require weak differentia-
bility, and therefore is more general and desirable than the Hölder and Sobolev spaces. Existing
work has shown that the Besov space can capture important features, such as edges in image pro-
cessing (Jaffard et al., 2001). In particular, the Hölder and Sobolev spaces are special cases of the
Besov space:

Hs,α =W s+α,∞ ⊆ Bs+α∞,∞ ⊆ Bs+αp,q

12

for any 0 < p,q ≤∞, s ∈ N and α ∈ (0,1]. Due to the generality of the Besov space, existing literature
has been shown that that kernel ridge estimators, including neural tangent kernel only attain a
sub-optimal rate for learning Besov functions (Suzuki and Nitanda, 2021), which is worse than
deep neural networks such as ConvResNeXts.

References

Allen-Zhu, Z., Li, Y. and Song, Z. (2019). A convergence theory for deep learning via over-
parameterization. In International conference on machine learning. PMLR.

Bahdanau, D., Cho, K. and Bengio, Y. (2014). Neural machine translation by jointly learning to
align and translate. arXiv preprint arXiv:1409.0473.

Barron, A. R. (1993). Universal approximation bounds for superpositions of a sigmoidal function.
IEEE Transactions on Information theory, 39 930–945.

Bartlett, P. L., Bousquet, O. andMendelson, S. (2005). Local rademacher complexities.

Chen, L.-C., Papandreou, G., Kokkinos, I.,Murphy, K. and Yuille, A. L. (2017). Deeplab: Seman-
tic image segmentation with deep convolutional nets, atrous convolution, and fully connected
crfs. IEEE transactions on pattern analysis and machine intelligence, 40 834–848.

Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. Mathematics of
control, signals and systems, 2 303–314.

DeVore, R. A. and Lorentz, G. G. (1993). Constructive approximation, vol. 303. Springer Science
& Business Media.

Donoho, D. L., Johnstone, I. M. et al. (1998). Minimax estimation via wavelet shrinkage. The
annals of Statistics, 26 879–921.

Donoho, D. L., Liu, R. C. and MacGibbon, B. (1990). Minimax risk over hyperrectangles, and
implications. The Annals of Statistics 1416–1437.

Dũng, D. (2011). Optimal adaptive sampling recovery. Advances in Computational Mathematics,
34 1–41.

Federer, H. (1959). Curvature measures. Transactions of the American Mathematical Society, 93
418–491.

Geller, D. and Pesenson, I. Z. (2011). Band-limited localized parseval frames and besov spaces
on compact homogeneous manifolds. Journal of Geometric Analysis, 21 334–371.

Goodfellow, I., Pouget-Abadie, J.,Mirza, M., Xu, B.,Warde-Farley, D., Ozair, S., Courville, A.
and Bengio, Y. (2014). Generative adversarial nets. In Advances in neural information processing
systems.

Graves, A., Mohamed, A.-r. and Hinton, G. (2013). Speech recognition with deep recurrent
neural networks. In 2013 IEEE international conference on acoustics, speech and signal processing.
IEEE.

13

Gu, S., Holly, E., Lillicrap, T. and Levine, S. (2017). Deep reinforcement learning for robotic
manipulation with asynchronous off-policy updates. In 2017 IEEE international conference on
robotics and automation (ICRA). IEEE.

He, K., Zhang, X., Ren, S. and Sun, J. (2016). Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition.

Hu, J., Shen, L. and Sun, G. (2018). Squeeze-and-excitation networks. In Proceedings of the IEEE
conference on computer vision and pattern recognition.

Jacot, A., Gabriel, F. and Hongler, C. (2018). Neural tangent kernel: Convergence and general-
ization in neural networks. Advances in neural information processing systems, 31.

Jaffard, S.,Meyer, Y. and Ryan, R. D. (2001). Wavelets: tools for science and technology. SIAM.

Kohler, M. and Krzyżak, A. (2005). Adaptive regression estimation with multilayer feedforward
neural networks. Nonparametric Statistics, 17 891–913.

Krizhevsky, A., Sutskever, I. and Hinton, G. E. (2012). Imagenet classification with deep convo-
lutional neural networks. In Advances in neural information processing systems.

Lee, J. M. (2006). Riemannian manifolds: an introduction to curvature, vol. 176. Springer Science &
Business Media.

Liu, H., Chen, M., Zhao, T. and Liao, W. (2021). Besov function approximation and binary classi-
fication on low-dimensional manifolds using convolutional residual networks. In International
Conference on Machine Learning. PMLR.

Long, J., Shelhamer, E. and Darrell, T. (2015). Fully convolutional networks for semantic seg-
mentation. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

Mammen, E. and van de Geer, S. (1997). Locally adaptive regression splines. The Annals of
Statistics, 25 387–413.

Niyogi, P., Smale, S. andWeinberger, S. (2008). Finding the homology of submanifolds with high
confidence from random samples. Discrete & Computational Geometry, 39 419–441.

Oono, K. and Suzuki, T. (2019). Approximation and non-parametric estimation of resnet-type
convolutional neural networks. In International conference on machine learning. PMLR.

Suzuki, T. (2018). Adaptivity of deep relu network for learning in besov and mixed smooth besov
spaces: optimal rate and curse of dimensionality. arXiv preprint arXiv:1810.08033.

Suzuki, T. andNitanda, A. (2021). Deep learning is adaptive to intrinsic dimensionality of model
smoothness in anisotropic besov space. Advances in Neural Information Processing Systems, 34
3609–3621.

Szegedy, C., Ioffe, S., Vanhoucke, V. and Alemi, A. (2017). Inception-v4, inception-resnet and
the impact of residual connections on learning. In Proceedings of the AAAI conference on artificial
intelligence, vol. 31.

Tribel, H. (1992). Theory of function space ii. Monographs in Mathematics, 78.

Tu, L. W. (2011). Manifolds. In An Introduction to Manifolds. Springer, 47–83.

14

Wainwright, M. J. (2019). High-Dimensional Statistics: A Non-Asymptotic Viewpoint. Cambridge
Series in Statistical and Probabilistic Mathematics, Cambridge University Press.

Xie, S., Girshick, R., Dollár, P., Tu, Z. and He, K. (2017). Aggregated residual transformations
for deep neural networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition.

Yarotsky, D. (2017). Error bounds for approximations with deep relu networks. Neural Networks,
94 103–114.

Young, T., Hazarika, D., Poria, S. and Cambria, E. (2018). Recent trends in deep learning based
natural language processing. ieee Computational intelligenCe magazine, 13 55–75.

Zhang, K. and Wang, Y.-X. (2022). Deep learning meets nonparametric regression: Are weight-
decayed dnns locally adaptive? arXiv preprint arXiv:2204.09664.

Zhang, Q., Cui, Z., Niu, X., Geng, S. and Qiao, Y. (2017). Image segmentation with pyramid
dilated convolution based on resnet and u-net. In Neural Information Processing: 24th Interna-
tional Conference, ICONIP 2017, Guangzhou, China, November 14-18, 2017, Proceedings, Part II
24. Springer.

15

A Why Besov Classes?

In this section, we discuss why we choose to consider the Besov class of functions and why this
makes our results particularly interesting.

To see this, we need to first define two smaller function classes: the Holder class and the
Sobolev class. Instead of giving fully general definitions for these function classes let us illustrate
their main differences using univariate functions defined on [0,1]. We also introduce the so-called
Total Variation class — which is sandwiched in between Besov(p = 1,q = 1) and Besov(p = 1,q =
∞).

• Holder class functions satisfy |f (α)(x)| < C for all x.

• Sobolev class functions satisfy
R

[0,1] |f
(α)(x)|2dx < C

• Total Variation class functions satisfy
R

[0,1] |f
(α)(x)|dx < C

The L1-norm used in defining total variation class makes it the most flexible of the three. It allows
functions with αth order derivative f (α)(x) to be very large at some places, e.g., Dirac delta func-
tions, while Holder and Sobolev class functions cannot contain such spikes (no longer integrable
in Sobolev norm above).

Generically speaking under the appropriate scaling: Holder ⊂ Sobolev ⊂ Besov. The Besov
space contains functions with heterogeneous smoothness while Holder and Sobolev classes con-
tain functions with homogeneous smoothness. Despite the Besov space being larger, it has the
same minimax rate of n−(2α)/(2α+d) as the smaller Holder and Sobolev class.

A new perspective on overparameterized NN. We study the adaptivity of deep networks in
overparameterized regimes. The most popular method for understanding overparameterization is
through the neural tangent kernel (NTK) regime. However, based on the classical linear smoother
lower-bound for estimating functions in Besov classes with p = 1 Donoho et al. (1990, 1998), all
kernel ridge regression including any NTKs will have a suboptimal rate lower bounded by n−

2α−d
2α .

To say it differently, there is a formal separation between NTKs and the optimal method. The
same separation does not exist in smaller function classes such as Sobolev and Holders because
they are more homogeneously smooth.

In summary, in order to study what neural networks can achieve that is not achievable by
kernels, e.g., NTK; we had to define and approximate Besov class functions. Our results show
that ConvResNeXT not only overcomes the curse of dimensionality of the ambient space, but also
has nearly optimal dependence in the intrinsic dimension d — in contrast to the kernel-based
approaches.

We believe this offers a new perspective to understand overparameterization and is more fine-
grained that of NTK.

B Numerical Simulation

In this section, we validate our theoretical findings with numerical experiments. We focus on
nonparametric regression problems for simplicity and consider the following function f0 : RD →
R:

f0(x) = f̃0(Ux) = f̃0(x̃)

16

where U ∈ RD×D is a randomly-chosen rotation matrix and x̃ =Ux ∈ RD satisfies that for t ∈ [0,1],
the first three coordinates

x̃1 = t sin(4πt), x̃2 = t cos(4πt), x̃3 = t(1− t),

and the remaining coordinates of x̃ are irrelevant features iid sampled from a uniform distri-
bution. Note that the first three coordinates of x̃ are completely determined by a scalar t, and
the corresponding label y is determined by t via a piecewise linear function, i.e., for a bag of
t1, ..., tn ∈ [0,1], we can generate a labeled dataset by yi = g0(ti) +N (0,1). An illustration of the
function f0 is given in Figure 2 where colors indicate the value.

Figure 2: Illustration of a Besov function on 1-dimensional manifold embedded in a 3-
dimensional ambient space.

Role of irrelevant features and rotation. The purpose of irrelevant features and rotation is to
make the problem harder and more interesting.

xi,1 = ti sin(4πti), xi,2 = ti cos(4πti), xi,3 = ti(1− ti),

where ti , i = 1, . . . ,n are evenly spaced over [0,1]. This process generates a 1-dimensional manifold
in R3 which does not intersect with itself, as shown in Figure 2.

Baseline methods To estimate the underlying function on a manifold, we conducted experi-
ments with ConvResNeXts (this paper), as well as a mix of popular off-the-shelf methods includ-
ing kernel ridge regression, XGBoost, Decision tree, Lasso regression, and Gaussian Processes.

Hyperparameter choices. In all the experiments the following architecture was used for PNN:
w = 6, L = 10,M = 4, batch size = 128, learning rate = 1e− 3

In all the experiments the following architecture was used for ConvResNeXt: w = 8, L = 6,
K = 6,M = 2, N = 2. Batch size and learning rate were adjusted for each task.

For off-the-shelf methods, their hyperparameters are either tuned automatically or avoided
using tools provided from the package, e.g., GP. For GP, a Matern kernel is used, and for ridge
regression, the standard Gaussian RBF kernel is used.

17

Figure 3: MSE as a function of the effective degree of freedom (dof) of different methods.

Figure 4: MSE as a function of dimension D. Figure 5: MSE as function of sample size n.

Results. Our results are reported in Figure 3, 4, 5 which reports the mean square error (MSE)
as a function of the effective degree-of-freedom of each method, ambient dimension D and also
the number of data points n respectively.

As we can see in Figure 3, ConvResNeXt is able to achieve the lowest MSE at a relatively
smaller degree of freedom. It outperforms the competing methods with notable margins despite
using a simpler hypothesis.

Figure 4 illustrates that standard non-parametric methods such as kernel ridge regression and
Gaussian processes deteriorate quickly as the ambient dimension gets bigger. On the contrary,
ConvResNeXt and PNN obtain results that are almost dimension-independent due to the repre-
sentation learning that helps identify the low-dimensional manifold.

Finally, the log-log plot in Figure 5 demonstrates that there is a substantially different rate
of convergence between our methods and kernel ridge regression and GPs, indicating the same
formal separation that we have established in the theoretical part — kernels must be suboptimal
for estimating Besov classes while the neural architectures we considered can be locally adaptive
and nearly optimal for Besov classes.

18

C Proof of the approximation theory

C.1 Decompose the target function into the sum of locally supported functions.

Lemma 2. Approximating Besov function on a smooth manifold using B-spline: Let f ∈ Bαp,q(M). There
exists a decomposition of f :

f (x) =
CMX
i=1

f̃i ◦φi(x)× 1(x ∈ B(ci , r)),

and f̃i = f · ρi ∈ Bαp,q,
PCM
i=1 ∥f̃i∥Bαp,q ≤ C∥f ∥Bαp,q(M), φi : M→ Rd are linear projections, B(ci , r) denotes

the unit ball with radius r and center ci .

The lemma is inferred by the existence of the partition of unity, which is given in Proposition
1.

C.2 Locally approximate the decomposed functions using cardinal B-spline basis
functions.

Proposition 3. For any function in the Besov space on a compact smooth manifold f ∗ ∈ Bsp,q(M), any
N ≥ 0, there exists an approximated to f ∗ using cardinal B-spline basis functions:

f̃ =
CMX
i=1

PX
j=1

ai,kj ,sjMm,kj ,sj ◦φi × 1(x ∈ B(ci , r)),

where m is the integer satisfying 0 < α < min(m,m− 1 + 1/p), Mm,k,s =Mm(2k(· − s)),Mm denotes the
B-spline basis function defined in (2), the approximation error is bounded by

∥f − f̃ ∥∞ ≤ C9CMP
−α/d

and the coefficients satisfy
∥{2kjai,kj ,sj }i,j∥p ≤ C10∥f ∥Bαp,q(M)

for some constant C9,C10 that only depends on α.

As will be shown below, the scaled coefficients 2kjai,kj ,sj corresponds to the total norm of the
parameters in the neural network to approximate the B-spline basis function, so this lemma is the
key to get the bound of norm of parameters in (12).

Proof. From the definition of Bαp,q(M), and applying Proposition 1, there exists a decomposition
of f ∗ as

f ∗ =
CMX
i=1

(fi) =
CMX
i=1

(fi ◦φ−1
i) ◦φi × 1Ui ,

where fi := f ∗ ·ρi , ρi satisfy the condition in Definition 5, and fi ◦φ−1
i ∈ Bαp,q. Using Proposition 8,

for any i, one can approximate fi ◦φ−1
i with f̄i :

f̄i =
PX
j=1

ai,kj ,sjMm,kj ,sj

19

such that ∥fi ◦φ−1
i ∥∞ ≤ C1M

−α/d , and the coefficients satisfy

∥{2kjakj ,sj }j∥p ≤ C10∥fi ◦φ−1
i ∥Bαp,q .

Define

f̄ =
CMX
i=1

f̄i ◦φi × 1Ui .

one can verify that ∥f − f̃ ∥∞ ≤ C9CMN
−α/d . On the other hand, using triangular inequality (and

padding the vectors with 0),

∥{2kjai,kj ,sj }i,j∥p ≤
CMX
i=1

∥{2kjai,kj ,sj }j∥p ≤
CMX
i=1

C10∥fi ◦φ−1
i ∥Bαp,q = C10∥f ∗∥Bαp,q(M),

which finishes the proof.

C.3 Neural network for chart selection

In this section, we demonstrate that a feedforward neural network can approximate the chart
selection function z × 1(x ∈ B(ci , r)), and it is error-free as long as z = 0 when r < d(x,ci) < R. We
start by proving the following supporting lemma:

Proposition 4. Fix some constant B > 0. For any x,c ∈ RD satisfying |xi | ≤ B and |ci | ≤ B for i =
1, . . . ,D, there exists an L-layer neural network d̃(x;c) with widthw =O(d) that approximates d2(x;c) =PD
i=1(xi − ci)2 such that |d̃2(x;c)−d2(x;c)| ≤ 8DB2 exp(−C11L) with an absolute constant C11 > 0 when

d(x;c) < τ , and d̃2(x;c) ≥ τ2 when d(x;c) ≥ τ , and the norm of the neural network is bounded by

LX
ℓ=1

∥Wℓ∥2
F + ∥bℓ∥2

2 ≤ C12DL.

Proof. The proof is given by construction. By Proposition 2 in Yarotsky(2017), the function f (x) =
x2 on the segment [0,2B] can be approximated with any error ϵ > 0 by a ReLU network g having
depth and the number of neurons and weight parameters no more than c log(4B2/ϵ) with an ab-
solute constant c. The width of the network g is an absolute constant. We also consider a single
layer ReLU neural network h(t) = σ (t)− σ (−t), which is equal to the absolute value of the input.

Now we consider a neural network G(x;c) =
PD
i=1 g ◦h(xi − ci). Then for any x,c ∈ RD satisfying

|xi | ≤ B and |ci | ≤ B for i = 1, . . . ,D, we have

|G(x;c)− d2(x;c)| ≤

�������
DX
i=1

g ◦ h(xi − ci)−
DX
i=1

(xi − ci)2

�������
≤

DX
i=1

���g ◦ h(xi − ci)− (xi − ci)2
���

≤Dϵ.

Moreover, define another neural network

F(x;c) = −σ (τ2 −Dϵ −G(x;c)) + τ2

=

G(x;c) +Dϵ if G(x;c) < τ2 −Dϵ,
τ2 if G(x;c) ≥ τ2 −Dϵ,

20

which has depth and the number of neurons no more than c′ log(4B2/ϵ) with an absolute constant
c′. The weight parameters of G are upper bounded by max{τ2,Dϵ,c log(4B2/ϵ)} and the width of
G is O(D).

If d2(x;c) < τ2, we have

|F(x;c)− d2(x;c)| = | − σ (τ2 −Dϵ −G(x;c)) + τ2 − d2(x;c)|

=

|G(x;c)− d2(x;c) +Dϵ| if G(x;c) < τ2 −Dϵ,
τ2 − d2(x;c) if G(x;c) ≥ τ2 −Dϵ.

For the first case when G(x;c) < τ2−Dϵ, |F(x;c)−d2(x;c)| ≤ 2Dϵ since d2(x;c) can be approximated
by G(x;c) up to an error ϵ. For the second case when G(x;c) ≥ τ2 −Dϵ, we have d2(x;c) ≥ G(x;c)−
Dϵ ≥ τ2 − 2Dϵ and . Thereby we also have |F(x;c)− d2(x;c)| ≤ 2Dϵ.

If d2(x;c) ≥ τ2 instead, we will obtain G(x;c) ≥ d2(x;c)−Dϵ ≥ τ2 −Dϵ. This gives that F(x;c) =
τ2 in this case.

Finally, we take ϵ = 4B2 exp(−L/c′). Then F(x;c) is an L-layer neural network with O(L) neu-
rons. The weight parameters of G are upper bounded by max{τ2,4DB2 exp(−L/c′), cL/c′} and the
width of G is O(D). Moreover, F(x;c) satisfies |F(x;c) − d2(x;c)| < 8DB2 exp(−L/c′) if d2(x;c) ≤ τ2

and F(x;c) = τ2 if d2(x;c) ≥ τ2.

Proposition 5. There exists a single layer ReLU neural network that approximates ×̃, such that for all
0 ≤ x ≤ C,y ∈ {0,1}, x×̃y = x when y = 1, and x×̃y = 0 when either x = 0 or y = 0.

Proof. Consider a single layer neural network g(x, y) := A2σ (A1(x, y)⊤) with no bias, where

A1 =
"
− 1
C 1

0 1

#
, A2 =

"
−C
C

#
.

Then we can rewrite the neural network g as g(x,y) = −Cσ (−x/C+y)+Cσ (y). If y = 1, we will have
g(x,y) = −Cσ (−x/C + 1) +C = x, since x ≤ C. If y = 0, we will have g(x,y) = −Cσ (−x/C) = 0, since
x ≥ 0. Thereby we can conclude the proof.

By adding a single linear layer

y =
1

R− r − 2∆
(σ (R−∆− x)− σ (r +∆− x))

after the one shown in Proposition 4, where∆ = 8DB2 exp(−CL) denotes the error in Proposition 4,
one can approximate the indicator function 1(x ∈ B(ci , r)) such that it is error-free when d(x,ci) ≤ r
or ≥ R. Choosing R ≤ τ/2, r < R − 2∆, and combining with Proposition 5, the proof is finished.
Considering that fi is locally supported on B(ci , r) for all i by our method of construction, the
chart selection part does not incur any error in the output.

C.4 Constructing the neural network to Approximate the target function

In this section, we focus on the neural network with the same architecture as a ResNeXt in Defi-
nition 10 but replacing each building block with a feedforward neural network, and prove that it
can achieve the same approximation error as in Theorem 1. For technical simplicity, we assume
that the target function f ∗ ∈ [0,1] without loss of generality. Then our analysis automatically holds
for any bounded function.

21

Theorem 3. For any f ∗ under the same condition as Theorem 1, any neural network architecture with
residual connections containingN number of residual blocks and each residual block containsM number
of feedforward neural networks in parallel, where the depth of each feedforward neural networks is L,
width is w:

f = Wout ·

1 +
MX
m=1

fN,m

 ◦ · · · ◦
1 +

MX
m=1

f1,m


fn,m = W(n,m)

L σ (W(n,m)
L−1 . . .σ (W(n,m)

1 x)) ◦ P (x),

where P (x) = [xT ,1,0]T is the padding operation, satisfying

MN ≥ CMP , w ≥ C1(dm+D),

Bres :=
NX
n=1

MX
m=1

LX
ℓ=1

∥W(n,m)
ℓ ∥2

F ≤ C2L,

Bout := ∥Wout∥2
F ≤ C3C

2
F((dm+D)L)L(CMP)L−2/p,

(12)

there exists an instance f of this ResNeXt class, such that

∥f − f ∗∥∞ ≤ CFCM
�
C4P

−α/d +C5 exp(−C6L logP)
�
, (13)

where C1,C2,C3,C4,C5,C6 are the same constants as in Theorem 1.

Proof. We first construct a parallel neural network to approximate the target function, then scale
the weights to meet the norm constraint while keeping the model equivalent to the one con-
structed in the first step, and finally transform this parallel neural network into the ConvResNeXt
as claimed.

Combining Lemma 5, Proposition 4 and Proposition 5, by putting the neural network in
Lemma 5 and Proposition 4 in parallel and adding the one in Proposition 5 after them, one can
construct a feedforward neural network with bias with depth L, width w = O(d) +O(D) = O(d),
that approximatesMm,kj ,sj (x)× 1(x ∈ B(ci , r)) for any i, j.

To construct the neural network with residual connections that approximates f ∗, we follow
the method in Oono and Suzuki (2019); Liu et al. (2021). This network uses separate channels for
the inputs and outputs. Let the input to one residual layer be [x1, y1], the output is [x1, y1 + f (x1)].
As a result, if one scale the outputs of all the building blocks by any scalar a, then the last channel
of the output of the entire network is also scaled by a. This property allows us to scale the weights
in each building block while keeping the model equivalent. To compensate for the bias term,
Proposition 9 can be applied. This only increases the total norm of each building block by no
larger than a constant term that depends only L, which is no more than a factor of constant.

Let the neural network constructed above has parameter W̃(i,j)
1 , b̃

(i,j)
1 , . . . ,W̃(i,j)

L ,b
(i,j)
L in each

layer, one can construct a building block without bias as

W(i,j)
1 =

"
W̃(i,j)

1 b̃
(i,j)
1 0

0 1 0

#
, W(i,j)

ℓ =
"
W̃(i,j)
ℓ b̃

(i,j)
ℓ

0 1

#
W(i,j)
L =


0 0
0 0

W̃(i,j)
L b̃

(i,j)
L

 .
Remind that the input is padded with the scalar 1 before feeding into the neural network, the

above construction provide an equivalent representation to the neural network including the bias,
and route the output to the last channel. From Lemma 5, it can be seen that the total square norm
of this block is bounded by (10).

22

Finally, we scale the weights in the each block, including the “1” terms to meet the norm con-
straint. Thanks to the 1-homogeneous property of ReLU layer, and considering that the network
we construct use separate channels for the inputs and outputs, the model is equivalent after scal-
ing. Actually the property above allows the tradeoff between Bres and Bout. If all the weights in
the residual blocks are scaled by an arbitrary positive constant c, and the weight in the last layer
Wout is scaled by c−L, the model is still equivalent. We only need to scale the all the weights in
this block with |ai,kj ,sj |

1/L, setting the sign of the weight in the last layer as sign(ai,kj ,sj), and place
CMP number of these building blocks in this neural network with residual connections. Since
this block always output 0 in the first D + 1 channels, the order and the placement of the building
blocks does not change the output. The last fully connected layer can be simply set to

Wout = [0, . . . ,0,1],bout = 0.

Combining Proposition 8 and Lemma 4, the norm of this ResNeXt we construct satisfy

B̄res ≤
CMX
i=1

PX
j=1

a2/L
i,kj ,sj

(22k/LC14dmL+C12DL)

≤
CMX
i=1

PX
j=1

(2kai,kj ,sj)
2/L(C14dmL+C12DL)

≤ (CMP)1−2/(pL)∥{2kai,kj ,sj }∥
2/L
p (C14dmL+C12DL)

≤ (C10CF)2/L(CMP)1−2/(pL)(C14dmL+C12DL),

B̄out ≤ 1.

By scaling all the weights in the residual blocks by B̄−1/2
res , and scaling the output layer by B̄L/2res , the

network that satisfy (12) can be constructed.

Notice that the chart selection part does not introduce error by our way of construction, we
only need to sum over the error in Section 4.1 and Section 4.1, and notice that for any x, for any
linear projection φi , the number of B-spline basis functionsMm,k,s that is nonzero on x is no more
than md logP , the approximation error of the constructed neural network can be proved.

C.5 Constructing a convolution neural network to approximate the target function

In this section, we prove that any feedforward neural network can be realized by a convolution
neural network with similar size and norm of parameters. The proof is similar to Theorem 5 in
(Oono and Suzuki, 2019).

Lemma 3. For any feedforward neural network with depth L′, width w′, input dimension h and output
dimension h′, for any kernel size K > 1, there exists a convolution neural network with depth L =
L′ +L0 − 1, where L0 = ⌈ h−1

K−1⌉ number of channels w = 4w′, and the first dimension of the output equals
the output of the feedforward neural network for all inputs, and the norm of the convolution neural
network is bounded as

LX
ℓ=1

∥Wℓ∥2
F ≤ 4

L′X
ℓ=1

∥W′
ℓ∥

2
F + 4w′L0,

where W′
1 ∈ Rw′×h′ ;W′

ℓ ∈ Rw′×w′ , ℓ = 2, . . . ,L′ − 1;W′
L′ ∈ Rh′×w′ are the weights in the feedforward

neural network, and W1 ∈ RK×w×h,Wℓ ∈ RK×w×w, ℓ = 2, . . . ,L − 1;WL ∈ RK×h×w are the weights in the
convolution neural network.

23

Proof. We follow the same method as Oono and Suzuki (2019) to construct the CNN that is equiv-
alent to the feedforward neural network. By combining Oono and Suzuki (2019) lemma 1 and
lemma 2, for any linear transformation, one can construct a convolution neural network with at
most L0 = ⌈ h−1

K−1⌉ convolution layers and 4 channels, where h is the dimension of input, which
equals D + 1 in our case, such that the first dimension in the output equals the linear transforma-
tion, and the norm of all the weights is no more than

L0X
ℓ=1

∥Wℓ∥2
F ≤ 4L0, (14)

where Wℓ is the weight of the linear transformation. Putting w number of such convolution
neural networks in parallel, a convolution neural network with L0 layers and 4w channels can be
constructed to implement the first layer in the feedforward neural network.

To implement the remaining layers, one choose the convolution kernel

Wℓ+L0−1[:, i, j] = [0, . . . ,W′[i, j], . . . ,0], ∀1 ≤ i, j ≤ w,

and pad the remaining parts with 0, such that this convolution layer is equivalent to the linear
layer applied on the dimension of channels. Noticing that this conversion does not change the
norm of the parameters in each layer. Adding both sides of (14) by the norm of the 2−L′-th layer
in both models finishes the proof.

D Proof of the estimation theory

D.1 Covering number of a neural network block

Proposition 6. If the input to a ReLU neural network is bounded by ∥x∥2 ≤ Bin, the covering number
of the ReLU neural network defined in Proposition 10 is bounded by

N (FNN ,δ,∥ · ∥2) ≤

Bin(B/L)L/2wL

δ

!w2L

.

Proof. Similar to Proposition 10, we only consider the case ∥Wℓ∥F ≤
√
B/L. For any 1 ≤ ℓ ≤ L, for

any W1, . . .Wℓ−1,Wℓ,W
′
ℓ ,Wℓ+1, . . .WL that satisfy the above constraint and ∥Wℓ −W ′

ℓ∥F ≤ ϵ, define
g(. . . ;W1, . . .WL) as the neural network with parametersW1, . . .WL, we can see

∥g(x;W1, . . .Wℓ−1,Wℓ,Wℓ+1, . . .WL)− g(x;W1, . . .Wℓ−1,Wℓ,Wℓ+1, . . .WL)∥2

≤ (B/L)(L−ℓ)/2∥Wℓ −W ′
ℓ∥2∥ReLU (Wℓ−1 . . .ReLU (W1(x)))∥2

≤ (B/L)(L−1)/2Binϵ.

Choosing ϵ = δ
L(B/L)(L−1)/2 , the above inequality is no larger than δ/L. Taking the sum over ℓ, we can

see that for anyW1,W
′
1, . . . ,WL,W

′
L such that ∥Wℓ −W ′

ℓ∥F ≤ ϵ,

∥g(x;W1, . . .WL)− g(x;W ′
1, . . .W

′
L))∥2 ≤ δ.

Finally, observe that the covering number ofWℓ is bounded by

N ({W : ∥W ∥F ≤ B},ϵ,∥ · ∥F) ≤
�2Bw
ϵ

�w2

. (15)

Substituting B and ϵ and taking the product over ℓ finishes the proof.

24

Proposition 7. If the input to a ReLU convolution neural network is bounded by ∥x∥2 ≤ Bin, the cover-
ing number of the ReLU neural network defined in (5) is bounded by

N (FNN,δ,∥ · ∥2) ≤

Bin(BK/L)L/2wL

δ

!w2KL

.

Proof. Similar to Proposition 6, for any 1 ≤ ℓ ≤ L, for any W1, . . .Wℓ−1,Wℓ,W
′
ℓ ,Wℓ+1, . . .WL that

satisfy the above constraint and ∥Wℓ−W ′
ℓ∥F ≤ ϵ, define g(. . . ;W1, . . .WL) as the neural network with

parametersW1, . . .WL, we can see

∥g(x;W1, . . .Wℓ−1,Wℓ,Wℓ+1, . . .WL)− g(x;W1, . . .Wℓ−1,Wℓ,Wℓ+1, . . .WL)∥2

≤ KL/2(B/L)(L−ℓ)/2∥Wℓ −W ′
ℓ∥2∥ReLU (Wℓ−1 . . .ReLU (W1(x)))∥2

≤ KL/2(B/L)(L−1)/2Binϵ,

where the first inequality comes from Proposition 14. Choosing ϵ = δ
KL/2BinL(B/L)(L−1)/2 , the above

inequality is no larger than δ/L. Taking this into (15) finishes the proof.

D.2 Proof of Theorem 2

Define f̃ = argminf ED[L(f)]. From Theorem 14.20 in Wainwright (2019), for any function class

∂F that is star-shaped around f̃ , the empirical risk minimizer f̂ = argminf ∈F Ln(f) satisfy

ED[L(f̂)] ≤ ED[L(f̃)] + 10δn(2 + δn) (16)

with probability at least 1 − c1 exp(−c2nδ2
n) for any δn that satisfy (20), where c1, c2 are universal

constants.
The function of neural networks is not star-shaped, but can be covered by a star-shaped func-

tion class. Specifically, let {f − f̃ : f ∈ F Conv} ⊂ {f1 − f2 : f1, f2 ∈ F Conv} := ∂F .
Any function in ∂F can be represented using a ResNeXt: one can put two neural networks of

the same structure in parallel, adjusting the sign of parameters in one of the neural networks and
summing up the result, which increases M,Bres and Bout by a factor of 2. This only increases the
log covering number in (11) by a factor of constant (remind that Bres =O(1) by assumption).

Taking the log covering number of the ResNeXt (11), the sufficient condition for the critical
radius as in (20) is

n−1/2wL1/2B
1

2−4/L
res K

1−1/L
1−2/L

�
B1/2

out exp((KBres/L)L/2)
� 1/L

1−2/L δ
1−3/L
1−2/L
n ≲

δ2
n

4
,

δn ≳ K(w2L)
1−2/L
2−2/LB

1
2−2/L
res

�
B1/2

out exp((KBres/L)L/2)
� 1/L

1−1/Ln−
1−2/L
2−2/L ,

(17)

where ≲ hides the logarithmic term.
Because L is 1-Lipschitz, we have

L(f) ≤ L(f̃) + ∥f − f̃ ∥∞.

Choosing

P =O


K− 2

L−2w
3L−4
L−2 L

3L−2
L−2

n

−
1−2/L

2α/d(1−1/L)+1−2/pL

 ,
and taking Theorem 1 and (17) into (16) finishes the proof.

25

E Lower bound of error

In this section, we study the minimax lower bound of any estimator for Besov functions on a d-
dimensional manifold. It suffices to consider the manifold M as a d-dimensional hypersurface.
Without the loss of generalization, assume that ∂L(y)

∂y ≥ 0.5 for −ϵ ≤ y ≤ ϵ. Define the function
space

F =

f =
sX

j1,...,jd=1

± ϵ
sα

×M(m)((x − j)/s)

 , (18)

whereM(m) denotes the Cardinal B-spline basis function that is supported on (0,1)d ,j = [j1, . . . , jd].
The support of each B-spline basis function splits the space into sd number of blocks, where the
target function in each block has two choices (positive or negative), so the total number of different
functions in this function class is |F | = 2s

d
. Using Dũng (2011, Theorm 2.2), we can see that for

any f ∈ F ,

∥f ∥Bαp,q ≤
ϵ
sα
sα−d/psd/p = ϵ.

For a fixed f ∗ ∈ F , let D = {(xi , yi)}ni=1 be a set of noisy observations with yi = f ∗(xi) + ϵi ,ϵi ∼
SubGaussian(0,σ2I). Further assume that xi are evenly distributed in (0,1)d such that in all re-
gions as defined in (18), the number of samples is nj :=O(n/sd). Using Le Cam’s inequality, we get
that in any region, any estimator θ satisfy

sup
f ∗∈F

ED[∥θ(D)− f ∗∥j] ≥
Cmϵ
16sα

as long as (ϵ
σsα)2 ≲ sd

n , where ∥ · ∥j := 1
ni

P
s(x−j)∈[0,1]d |f (x)| denotes the norm defined in the block

indexed by i, Cm is a constant that depends only on m. Choosing s =O(n
1

2α+d), we get

sup
f ∗∈F

ED[∥θ(D)− f ∗∥j] ≥ n−
α

2α+d .

Observing 1
n

Pn
i=1L((̂f (xi))) ≥ 0.5

Pn
i=1 |f (xi)− f ∗(xi)|≂ 1

sd
P
j∈[s]d ∥f̂ − f ∗∥j finishes the proof.

F Supporting theorem

Lemma 4. [Lemma 14 in Zhang and Wang (2022)] For any a ∈ RM̄ , 0 < p′ < p, it holds that:

∥a∥p
′

p′ ≤ M̄
1−p′/p∥a∥p

′

p .

Proposition 8 (Proposition 7 in Zhang and Wang (2022)). Let α − d/p > 1, r > 0. For any function
in Besov space f ∗ ∈ Bαp,q and any positive integer M̄, there is an M̄-sparse approximation using B-spline

basis of order m satisfying 0 < α <min(m,m− 1 + 1/p): f̌M̄ =
PM̄
i=1 aki ,siMm,ki ,si for any positive integer

M̄ such that the approximation error is bounded as ∥f̌M̄ − f ∗∥r ≲ M̄−α/d∥f ∗∥Bαp,q , and the coefficients
satisfy

∥{2kiaki ,si }ki ,si∥p ≲ ∥f ∗∥Bαp,q .

Lemma 5 (Lemma 11 in (Zhang and Wang, 2022)). Let Mm,k,s be the B-spline of order m with scale
2−k in each dimension and position s ∈ Rd : Mm,k,s(x) := Mm(2k(x − s)), Mm is defined in (2). There

26

exists a neural network with d-dimensional input and one output, with width wd,m =O(dm) and depth
L ≲ log(C13/ϵ) for some constant C13 that depends only on m and d, approximates the B spline basis
functionMm,k,s(x) :=Mm(2k(x − s)). This neural network, denoted as M̃m,k,s(x),x ∈ Rd , satisfy

• |M̃m,k,s(x)−Mm,k,s(x)| ≤ ϵ, if 0 ≤ 2k(xi − si) ≤m+ 1,∀i ∈ [d],

• M̃m,k,s(x) = 0, otherwise.

• The total square norm of the weights is bounded by 22k/LC14dmL for some universal constant C14.

Proposition 9. For any feedforward neural network f with width w and depth L with bias, there exists
a feedforward neural network f ′ with width w′ = w + 1 and depth L′ = L, such that for any x, f (x) =
f ′([xT ,1]T)

Proof. Proof by construction: let the weights in the ℓ-th layer in f be Wℓ, and the bias be bℓ, and
choose the weight in the corresponding layer in f ′ be

W′
ℓ =

"
W̃ℓ b̃ℓ
0 1

#
, ∀ℓ < L; W′

L = [W̃L b̃L].

The constructed neural network gives the same output as the original one.

Corollary 2 (Corollary 13.7 and Corollary 14.3 in Wainwright (2019)). Let

Gn(δ,F) = Ewi

 sup
g∈F ,∥g∥n≤δ

�������1n
nX
i=1

wig(xi)

�������
 ,Rn(δ,F) = Eϵi

 sup
g∈F ,∥g∥n≤δ

�������1n
nX
i=1

ϵig(xi)

�������
 ,

denotes the local Gaussian complexity and local Rademacher complexity respectively, wherewi ∼N (0,1)
are the i.i.d. Gaussian random variables, and ϵi ∼ uniform{−1,1} are the Rademacher random variables.
Suppose that the function class F is star-shaped, for any σ > 0, any δ ∈ (0,σ] such that

16
√
n

Z δn

δ2
n/4σ

q
logN (F ,µ,∥ · ∥∞)dµ ≤ δ

2
n

4σ

satisfies

Gn(δ,F) ≤ δ
2

2σ
. (19)

Furthermore, if F is uniformly bounded by b, i.e. ∀f ∈ F ,x|f (x)| ≤ b any δ > 0 such that

64
√
n

Z δn

δ2
n/2b4σ

q
logN (F ,µ,∥ · ∥∞)dµ ≤ δ

2
n

b
.

satisfies

Rn(δ,F) ≤ δ
2

b
. (20)

Proposition 10. An L-layer ReLU neural network with no bias and bounded norm

LX
ℓ=1

∥Wℓ∥2
F ≤ B

is Lipschitz continuous with Lipschitz constant (B/L)L/2

27

Proof. Notice that ReLU function is 1-homogeneous, similar to Proposition 4 in (Zhang and Wang,
2022), for any neural network there exists an equivalent model satisfying ∥Wℓ∥F = ∥Wℓ′∥F for any
ℓ,ℓ′, and its total norm of parameters is no larger than the original model. Because of that, it
suffices to consider the neural network satisfying ∥Wℓ∥F ≤

√
B/L for all ℓ. The Lipschitz constant

of such linear layer is ∥Wℓ |∥2 ≤ ∥Wℓ |∥F ≤
√
B/L, and the Lipschitz constant of ReLU layer is 1.

Taking the product over all layers finishes the proof.

Proposition 11. An L-layer ReLU convolution neural network with convolution kernel size K , no bias
and bounded norm

LX
ℓ=1

∥Wℓ∥2
F ≤ B.

is Lipschitz continuous with Lipschitz constant (KB/L)L/2

This proposition can be proved by taking Proposition 14 into the proof of Proposition 10.

Proposition 12. Let f = fpost ◦ (1 + fNN + fother) ◦ fpre be a ResNeXt, where 1 + fNN + fother denotes a
residual block, fpre and fpost denotes the part of the neural network before and after this residual block,
respectively. fNN denotes one of the building block in this residual block and fother denotes the other
residual blocks. Assume fpre, fNN, fpost are Lipschitz continuous with Lipschitz constant Lpre,LNN,Lpost
respectively. Let the input be x, if the residual block is removed, the perturbation to the output is no
more than LpreLNNLpost∥x∥

Proof.
|fpost ◦ (1 + fNN + fother) ◦ fpre(x)− fpost ◦ (1 + fother) ◦ fpre(x)|
≤ Lpost|(1 + fNN + fother) ◦ fpre(x)− (1 + fother) ◦ fpre(x)|
= Lpost|fNN ◦ fpre(x)|
≤ LpreLNNLpost∥x∥.

Proposition 13. The neural network defined in Lemma 1 with arbitrary number of blocks has Lipschitz
constant exp((KBres/L)L/2), where K = 1 when the feedforward neural network is the building blocks
and K is the size of the convolution kernel when the convolution neural network is the building blocks.

Proof. Note that the m-th block in the neural network defined in Lemma 1 can be represented as
y = fm(x;ωm) + x, where fm is an L-layer feedforward neural network with no bias. By Propo-
sition 10 and Proposition 11, such block is Lipschitz continuous with Lipschitz constant 1 +

(KBm/L)L/2, where the weight parameters of the m-th block satisfy that
PL
ℓ=1 ∥W

(m)
ℓ ∥2

F ≤ Bm andPM
m=1Bm ≤ Bres.

Since the neural network defined in Lemma 1 is a composition ofM blocks, it is Lipschitz with
Lipschitz constant Lres. We have

Lres ≤
MY
m=1

1 +

�KBm
L

�L/2!
≤ exp

 MX
m=1

�KBm
L

�L/2 ,
where we use the inequality 1+z ≤ exp(x) for any x ∈ R. Furthermore, notice that

PM
m=1(KBm/L)L/2

is convex with respect to (B1,B2, . . . ,BM) when L > 2. Since
PM
m=1Bm ≤ Bres and Bm ≥ 0, then we

have
PM
m=1(KBm/L)L/2 ≤ (KBres/L)L/2 by convexity. Therefore, we obtain that Lres ≤ exp((KBres/L)L/2).

28

Proposition 14. For any x ∈ Rd ,w ∈ RK ,K ≤ d, ∥Conv(x,w)∥2 ≤
√
K∥x∥2∥w∥2.

Proof. For simplicity, denote xi = 0 for i ≤ 0 or i > d.

∥Conv(x,w)∥2
2 =

Pd
i=1⟨x[i − K−1

2 : i + K−1
2],w⟩2

≤
Pd
i=1 ∥x[i − K−1

2 : i + K−1
2]∥2

2∥w∥
2
2

≤ K∥x∥2
2∥w∥

2
2,

where the second line comes from Cauchy-Schwarz inequality, the third line comes by expanding
∥x[i − K−1

2 : i + K−1
2]∥2

2 by definition and observing that each element in x appears at most K times.

29

	Introduction
	Main Results
	Related Works

	Preliminaries
	Smooth manifold
	Besov functions on a smooth manifold
	Architecture of ConvResNeXt

	Theory
	Approximation theory
	Estimation theory

	Proof overview
	Approximation error
	Estimation error

	Discussions
	Why Besov Classes?
	Numerical Simulation
	Proof of the approximation theory
	Decompose the target function into the sum of locally supported functions.
	Locally approximate the decomposed functions using cardinal B-spline basis functions.
	Neural network for chart selection
	Constructing the neural network to Approximate the target function
	Constructing a convolution neural network to approximate the target function

	Proof of the estimation theory
	Covering number of a neural network block
	Proof of Theorem 2

	Lower bound of error
	Supporting theorem

