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Abstract

We study the generalization of two-layer ReLU neural networks in a univariate nonparametric
regression problem with noisy labels. This is a problem where kernels (e.g. NTK) are provably
sub-optimal and benign overfitting does not happen, thus disqualifying existing theory for
interpolating (0-loss, global optimal) solutions. We present a new theory of generalization for
local minima that gradient descent with a constant learning rate can stably converge to. We show
that gradient descent with a fixed learning rate 7 can only find local minima that represent smooth
functions with a certain weighted first order total variation bounded by 1/n—1/24O(c++vMSE)
where o is the label noise level, MSE is short for mean squared error against the ground truth,
and O(-) hides a logarithmic factor. Under mild assumptions, we also prove a nearly-optimal
MSE bound of 6(n’4/5) within the strict interior of the support of the n data points. Our
theoretical results are validated by extensive simulation that demonstrates large learning rate
training induces sparse linear spline fits. To the best of our knowledge, we are the first to obtain
generalization bound via minima stability in the non-interpolation case and the first to show
ReLU NNs without regularization can achieve near-optimal rates in nonparametric regression.
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1 Introduction

All functions representable
by Two-Layer ReLU NN

4 N

How do gradient descent-trained neural networks work? It is an
intriguing question that depends on model architecture, data distri-

bution, and optimization algorithms used for training [Zhang et al., GD with small 7
2021]. Specifically, in the overparameterized regime with specific ran-

dom initialization of the weights, it was shown that gradient descent . GD with
finds global optimal (0-loss or interpolating) solutions despite the vf}i’e‘r;:l‘)‘:ls large 7 'L% e

non-convex objective function |Jacot et al., 2018, Du et al., 2018, Liu
et al., 2022]. It was also shown that among the (many) global opti-
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mal solutions, the particular solutions that are selected by gradient
descent often do not overfit despite having 0 training error [Chizat
et al., 2019, Arora et al., 2019, Mei et al., 2019], sometimes even
if the data is noisy — a phenomenon known as “benign overfitting”
le.g., Belkin et al., 2019, Bartlett et al., 2020, Frei et al., 2022].

Figure 1: We show that
"Large step size selects simple
functions that generalize."

What is less well-known is that interpolating solutions do overfit for ReLU neural networks (ranging
from tempered to catastrophic) [Mallinar et al., 2022, Joshi et al., 2023, Haas et al., 2023] and
the generalization bounds in the kernel regime are provably suboptimal for certain univariate
nonparametric regression problems [Suzuki, 2018, Zhang and Wang, 2022|. These “exceptions’
significantly limit the abilities of the kernel theory or “benign overfitting” theory in predicting the
performance of an overparameterized neural network in practice.

)

In many learning problems with noisy data, the best solutions are simply not among those that
interpolate the data. For example, no interpolating solutions can be consistent in a fized-design
nonparametric regression problem. Even if interpolating solutions that satisfy benign overfitting can
be found, they could be undesirable due to their “spikiness” [Haas et al., 2023| and lack of robustness
[Hao and Zhang, 2024]. In addition, it was reported that when the label is noisy, it takes much
longer for gradient descent to overfit [Zhang et al., 2021]. Most practical NN training would have
entered the Edge-of-Stability regime [Cohen et al., 2020] or stopped before the interpolation regime
kicks in.

These observations motivate us to come up with an alternative theory for gradient-descent training
of overparameterized neural networks that do not require interpolation.

1.1 Summary of Contributions

In this paper, we present a new theory of generalization for solutions that gradient descent (GD)
with a fixed learning rate can stably converge to. Specifically:

1. We show that for 1D nonparametric regression (n data points with noisy labels), the solutions
that GD can stably converge to must be regular functions with small (weighted) first-order total
variation (Theorem 4.1 and Corollary 4.2), thus promoting sparsity in the number of linear pieces.
This generalizes the result of Mulayoff et al. [2021] by removing the “interpolation” assumption.
We also show that in the noisy case, there is no “flat” interpolating solution and gradient descent
cannot converge to them unless the learning rate is O(1/n?) no matter how overparameterized
the two-layer ReLU network is (Theorem 3.1).
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Figure 2: Empirical evidence of our claim. Constant step size gradient descent-trained two-layer
ReLU neural networks generalize because of minima stability. The left panel shows that with
increasing step size, gradient descent finds smoother solutions (linear splines) with a smaller number
of knots. The middle panel illustrates our theoretical result with a numerically accurate upper
bound using 1/n + O(1) of the curvature and TV1-complexity of the smooth solution. The right
panel shows that tuning n gives the classical U-shape bias-variance tradeoff for overparameterized
NN.

2. We show that such solutions (stable local minima that GD converges to) cannot overfit, in
the sense that the generalization gap vanishes as n — oo inside the strict interior of the data
support (Theorem 4.3). Moreover, under a mild additional assumption on gradient descent finding
solutions with training loss smaller than o2, we prove that these solutions achieve near-optimal
rate for estimating (the strict interior of) first-order bounded variation functions (Theorem 4.4)
— provably faster than any kernel ridge regression estimators, including neural networks in the
“kernel” regime.

3. We conduct extensive numerical experiments to demonstrate our theoretical predictions, validate
our technical assumptions, and illustrate the functional form of the ReLU NNs as well as the
learned basis functions that gradient descent finds with different step sizes. These results reveal
new insights into how gradient descent training aggressively learns representation and induces
implicit sparsity.

To the best of our knowledge, these results are new to this paper. We emphasize that (1) the
training objective function is not explicitly regularized; (2) we do not early-stop training in favor of
algorithmic-stability; and (3) the solutions that gradient descent converges to are not global optimal
(interpolating) solutions unless the label noise is 0. Our approach is new in that we directly analyze
the complexity of a superset of solutions that gradient descent can stably converge to, which enables
us to prove end-to-end generalization bounds that are near-optimal in nonparametric regression
tasks.

Our analysis for gradient descent-training is categorically different from those in the “kernel” (a.k.a.
“lazy”) regime about interpolating solutions. Instead, we rigorously prove (and empirically demon-
strate) that large step-size gradient descent do not behave this way and it does not converge to
interpolating solutions. Our results fall into the non-kernel regime of neural network learning known



as the “rich” (a.k.a. the “feature learning” or “sparse”) regime [Chizat et al., 2019, Woodworth et al.,
2020], in which the weights and biases can move arbitrarily far away from their initialization.

Technical novelty. The main technical innovation in our analysis is in handling the %Zz(yZ —
fo(2:)) V2 fo(z;) term that arises in the minima stability analysis when it was previously handled by
Mulayoff et al. [2021] using interpolation, i.e., y; = f(x;) V¢ € [n]. It turns out in the noisy-label
case, we can decompose the term into a certain Gaussian complexity measure and a self-bounding
style MSE of that fy. A non-trivial step is to bound the largest eigenvalue of V2 fy(-) by a constant
which results in a uniform bound of both the Gaussian complexity and the MSE. These bounds
themselves are vacuous in terms of the implied generalization error, but plugging them into the
function-space constraint imposed by the noisy minima stability bound restricts the learned ReLU
NN to be inside a weighted TV1 function class (Details in Theorem 4.1). This, in turn, allows us to
amplify a vacuous MSE bound into a new MSE bound that is nearly optimal in the strict interior
of the data support. The main technique in the last step involves bounding the metric entropy of
the weighted TV1 class and then carefully working out a self-bounding (square loss) version of the
Dudley’s chaining argument [Wainwright, 2019].

Disclaimers and limitations. It is important to note that while we analyze gradient descent
training of overparameterized neural networks, the computational claim is very different from those in
the kernel regime. The analysis in the kernel regime ensures that gradient descent finds interpolating
solutions efficiently. We do not have a comparable efficiency claim. While computational guarantees
on stationary point (and local minima) convergence in non-convex optimization problems are well-
understood |Ghadimi and Lan, 2013, Jin et al., 2017|, we do not have guarantees on whether the
solution that gradient descent finds satisfies our assumption on the training loss being “optimized”
(smaller than label noise o). Instead, our results provide a generalization gap bound for any stable
solutions (Theorem 4.3) and a near-optimal excess risk (MSE vs ground truth) bound (Theorem 4.4)
when the solution that GD finds happens to satisfy the assumption (empirically it does!). This is a
meaningful middle ground between classical learning theory which does not concern optimization at
all and modern theory that is fully optimization-dependent.

While we focus on (full batch) gradient descent for a clean presentation, the minima stability for
stochastic gradient descent is immediate under the stochastic definition of minima stability [Mulayoff
et al., 2021]. The same reason applies to us focusing on univariate nonparametric regression. Our
technique can be used to generalize the multivariate function space interpretation of minima stability
from Nacson et al. [2022] to the noisy case, but it will take substantial effort to formalize the
corresponding generalization bounds in the multivariate case, which we leave as a future work.

1.2 Related Work and Implications of Our Results

Generalization in Overparameterized NNs, Interpolation, and Benign Overfitting. Most
existing theoretical work on understanding the generalization of overparameterized neural networks
focuses on the interpolation regime [Cao and Gu, 2019, Frei et al., 2022, Kou et al., 2023, Buzaglo
et al., 2024]. Handling label noise either requires explicit regularization [Hu et al., 2020, Zhang
and Wang, 2022, algorithmic stability through early stopping |[Hardt et al., 2016, Richards and
Kuzborskij, 2021], or carefully crafted data distribution that leads to a phenomenon known as benign
overfitting [Bartlett et al., 2020, Frei et al., 2022, Kou et al., 2023]. Benign overfitting could happen
for nonparametric regression tasks [Belkin et al., 2019|, but there is well-documented empirical and



theoretical evidence that benign overfitting does not occur for regression tasks with ReLU activation
[Mallinar et al., 2022, Haas et al., 2023, Joshi et al., 2023| and that the excess risk is required to
be proportional to the standard deviation of the label noise [Kornowski et al., 2024]. We are the
first to go beyond the interpolation regime and show that gradient descent-trained neural networks
generalize in noisy regression tasks without explicit regularization.

Implicit bias of gradient descent. The implicit bias of gradient descent training of overparameter-
ized NN is well-studied. It was shown that among the many globally optimal (interpolating) solutions,
gradient descent finds the ones with the smallest norm in certain Hilbert spaces [Arora et al., 2019,
Mei et al., 2019], classifiers with largest-margin [Chizat and Bach, 2020], or the smoothest cubic
spline interpolation [Jin and Montufar, 2023]. None of these results, however, imply generalization
bounds when the labels are noisy. Interestingly, our results show that gradient descent with a large
step size induces an implicit bias that resembles sparse L1-regularization rather than the dense L2
regularization from gradient flow |Jin and Montuafar, 2023|.

Implicit bias of minima stability. The closest to our work is the line of work on the implicit
bias of minima stability [Ma and Ying, 2021, Mulayoff et al., 2021, Wu and Su, 2023]. We build
directly on top of the function-space interpretation of minima stability established by Mulayoff et al.
[2021]. However, these works critically rely on the minima interpolating the data, which makes their
results inapplicable to settings with label noise. Mulayoff et al. [2021] also did not establish formal
generalization bounds. Ma and Ying [2021], Wu and Su [2023] do have generalization bounds, but
(again) their results require interpolation and thus do not apply to our settings.

Flat /Sharp Minima and generalization. Our work is also connected to the body of work on the
hypothesis that “flat local minima generalize better”. Despite compelling empirical evidence [Hochre-
iter and Schmidhuber, 1997, Keskar et al., 2017, rigorous theoretical understanding of this hypothesis
is still lacking [see, e.g., Wu and Su, 2023, and the references therein|. Our work contributes to
this literature by formally proving that the hypothesis is real for two-layer ReLU NNs in a noisy
regression task.

Edge-of-Stability and Catapults. Empirical observations on how large learning rate training
of NN finds solutions with Hessian’s largest eigenvalue dancing around 2/7, i.e., “edge of stability”
regime [Cohen et al., 2020]; and that the loss may go up first before going down to a good solution
(“catapult”) [Lewkowycz et al., 2020]. Existing theoretical understanding of these curious behaviors
of GD training is still limited to toy-scale settings (e.g., Arora et al. [2022|, Ahn et al. [2023],
Kreisler et al. [2023]). Our work is complementary in that we provide generalization bound to
the final solution GD stabilizes on no matter how GD gets there. Outside the context of GD and
neural networks, “edge of stability” and the implicit bias of large step-size were observed for forward
stagewise regression [see, e.g. Tibshirani, 2015, 2014, Section 4.4 and Page 42| albeit only empirically.
Our results may provide a theoretical handle in formally analyzing these observations.

Optimal rates of NNs in nonparametric regression. Finally, it was previously known that
neural networks can achieve optimal rates for estimating TV1 functions [Suzuki, 2018, Liu et al.,
2021, Parhi and Nowak, 2021, Zhang and Wang, 2022]. Specifically, Savarese et al. [2019], Ongie
et al. [2020], Parhi and Nowak [2021], Zhang and Wang [2022] show that weight decay in ReLU
networks is connected to total variation regularization. However, these works assume one can solve
an appropriately constrained or regularized empirical risk minimization problem. Our work is the
first to show that the optimal rate is achievable with gradient descent without weight decay. In



fact, it was a pleasant surprise to us that both weight decay and large learning rate induce total
variation-like implicit regularization in the function space.

2 Notations and Problem Setup

Let us set up the problem formally. Throughout the paper, we use O(-), () to absorb constants
while O(-) suppresses logarithmic factors. Meanwhile, [n] = {1,2,--- ,n}.

Two-layer neural network. We consider two-layer (i.e. one-hidden-layer) univariate ReLU
networks,

k
F = {f:R—)R ’ f(x) :sz@gb <w§1):c+bz(~l)> +b(2)}7 (1)
=1

where the network consists of k£ hidden neurons and ¢(-) denotes the ReLLU activation function.

Training data and loss function. The training dataset is denoted by D = {(x;,v;) € RxR,i € [n]}.
{x;}_, is assumed to be supported by [—Zmax, Tmax| for some constant zmax > 0. We focus on

regression problems with square loss ((f, (z,y)) = 5(f(z) — y)?. The training loss is defined as

L(f) =4 3" (f(z:) — yi)*. Notice that f is parameterized by 6 := [wglli, bg,l, wf,i, b2 € R3k+1,

~ on

As a short hand, we define ¢;(0) := ¢(fg, (xi,y;)) and L(0) := %Zie[n] 4;(0).

Gradient descent. We focus on the Gradient descent (GD) learner, which iteratively updates
0:
0t+1 = Gt - 77V£(9t), t> O, (2)

where 77 > 0 is the step size (a.k.a. learning rate) and 6y is the initial parameter. Detailed calculation
of gradient for two-layer ReLU networks is deferred to Appendix D. Below we define stability for
local minima and discuss the conditions for a minimum to be stable.

Twice differentiable stable local minima. Similar to Mulayoff et al. [2021], we consider twice
differentiable minima. According to Taylor’s expansion around a twice differentiable minimum
0*,
1
L)~ LO%) + (0 — 6)TVLO*) + 50~ 0)I2L(6%)(0 — 6%), (3)

where V2L denotes the Hessian matrix and VL(6*) = 0. Therefore, as 6; gets close to §*, the
update rule for GD (2) can be approximated as 6¢1 ~ 6; —n (VL(0*) + V2L(6*)(6; — 6*)). Such
approximation motivates the definition of linear stability, which is first stated in Wu et al. [2018].

Definition 2.1 (Linear stability). With the update rule 6,41 = 6; —n (VL(6*) + V2L(6*)(0; — 6%)),
a twice differentiable local minimum 6* of L is said to be € linearly stable if for any 6y in the e-ball
B.(6%), it holds that limsup,_, . ||[0: — 0*|| <.

Note that different from previous works [Wu et al., 2018, Mulayoff et al., 2021], we remove the
expectation before ||0; — 0*| since under GD everything is deterministic. Intuitively speaking, linear
stability requires that once we have arrived at a distance of € from 6*, we end up staying in the
e-ball B.(0*). It is known that linear stability is connected to the flatness of the local minima.

Lemma 2.2. Consider the update rule in Definition 2.1, for any € > 0, a local minimum 0* is an €
linearly stable minimum of L if and only if Amax(V2L(0%)) < %



The implication is that the set of stable minima is equivalent to the set of flat local minima whose
largest eigenvalue of Hessian is smaller than 2/n. The proof is adapted from Mulayoff et al. [2021]
and we state the proof in Appendix B for completeness. When the result does not depend on € (as
above), we simply say “linearly stable”. Throughout the paper, we overload the notation by calling a
function f = fy linearly stable function if  is linearly stable.

“Edge of Stability” regime. Extensive empirical and theoretical evidence (Cohen et al. [2020],
Damian et al. [2024], and see Section 1.2) have shown that the threshold of linear stability (from
Lemma 2.2) is quite significant in GD dynamics: GD iterations initially tend to exhibit “progressive
sharpening”, where Apax(V2L(6;)) is increasing, until finally GD reaches the “Edge of Stability”,
where A\pnax(V2L(6;)) = 2/n. We capture this phenomenon with the following definition.

Definition 2.3 (Below Edge of Stability). We say that a sequence of parameters {6, };—1 2,... generated
by gradient descent with step-size 7 is e-approximately Below-Edge-of-Stability (BEoS) for € > 0 if
there exists t* > 0 such that Apax(VZL(6;)) < 2765 for all t > t*. Any 6, with ¢ > t* is referred to as
an e-BEoS solution.

The BEoS regime provides a strong justification for the connection between the step size 1 and the
largest eigenvalue of the Hessian matrix. It holds for all twice-differentiable solutions GD finds along
the way — even if the GD does not converge to a (local or global) minimum. Empirically, BEoS is
valid for both the “progressive sharpening” phase and the oscillating EoS phase for a small constant
€.

Our goal in this paper is to understand generalization for both (twice differentiable) stable local
minima (Definition 2.1) and any other solutions satisfying e-BEoS (Definition 2.3), which are both
subsets of

F(n,e,D) = {fa

9 2e€
huns(V2L(0)) < 2 } (4)

To simplify the presentation, we focus on the case with € = 0 w.l.o.g." and unless otherwise specified,
a “stable solution” refers to an element of F(n,0,D) in the remainder of the paper.

For the data generation process, we will consider two settings of interest: (1) the fixed design
nonparametric regression setting (with noisy labels) (2) the agnostic statistical learning setting.
They have different data assumptions and performance metrics to capture “generalization”.

Nonparametric Regression with Noisy labels. In this setting, we assume fixed input x1,--- , xp
and y; = fo(x;) + ¢ for i € [n], where fy: R — R is the ground-truth (target) function and {¢;}7",
are independent Gaussian noises A'(0,02). Our goal is find a ReLU NN f using the dataset to
minimize the mean squared error (MSE):

MSE(f) = 3 (f() — fola))?. o)

i=1

It is nonparametric because we do not require fy to be described by a smaller number of parameters,
but rather satisfy certain regularity conditions. Specifically, we focus on estimating target functions

€

'To handle the case when € > 0, just replace  with ne¢ in all bounds in the remainder of the paper.



inside the first order bounded variation class

Tmax

heBW”@i@;:&%}%m@mﬁﬁR %gfmﬂgﬂ/i UW@WxSG},

Tmax

where f” denotes the second-order weak derivative of f and we define a short hand TV (f) :=
ff;‘:;x | /() |dz, which we refer to as the TV() (semi)norm of f throughout the paper. We refer
readers to a recent paper [Hu et al., 2022, Section 1.2] for the historical importance and the challenges
in estimating the BV functions. The complexity of such function class is discussed in Appendix

C.

Agnostic statistical learning and generalization gap. In this setting, we assume the n data
points {(z;,y;)}1~; are drawn i.i.d. from an unknown distribution P defined on [—Zmax, Tmax] X
[—=D, D]. The expected performance on new data points is called “Risk”, R(f) = E(; )~p[l (f, (x,))].
We define the absolute difference between training loss and the risk:

Gen(f) := GeneralizationGap(f) = |R(f) — L(f)].

We say that f generalizes if GeneralizationGap(f) — 0 as n — oo with high probability.

3 Stable Solutions Cannot Interpolate Noisy Labels

A large portion of previous works studying minima stability assume the learned function interpolates
the data. However, for various optimization problems, it is unclear whether there exists such an
interpolating solution that is stable, especially when the number of samples n becomes large.

For the nonparametric regression problem with noisy labels, we design an example where any
interpolating function can not be stable. Before presenting the example, we first define the g
function, which will be the weight function of the weighted TV norm throughout the paper: for

T € [~Tmax, Tmax), 9(z) = min{g~ (z),¢" (x)} with

g (z) =P*(X < 2)Elz — X|X < z]\/1+ (E[X|X < x])2,
g (x) =P*(X > 2)E[X — z|X > z]/1+ (E[X|X > z])2,

(6)

where X is drawn from the empirical distribution of the data (a sample chosen uniformly from
{zi}).

For various distributions of training data (e.g. Gaussian distribution, uniform distribution), most of
g’s mass is located at the center while g decays towards the extreme data points. The same g(z) is
also applied as the weight function in Mulayoff et al. [2021], where they derived an upper bound
ff;i’;x |f"(x)]g(z)dx < % — 1 assuming f is linearly stable (Definition 2.1) and interpolating. We
generalize the same upper bound to all stable solutions in F(n,0,D) as in Theorem B.2. Below we
construct a counter-example, where we can prove a contradicting lower bound of [*™* | f"(z)|g(z)dz

Tmax
for any interpolating f, thus disproving the assumption of interpolation.

Counter-example. We fix x; = Qfl‘ial"i — (ntgﬂlmax for i € [n] and fo(x) = 0 for any x, which

implies that y;’s are independent random variables from N(0, 02).

10



Theorem 3.1. For the counter-example, with probability 1 — &, for any interpolating function f,

/_zm ()| g(x)dz = © <0n [n ~ 24log (;)D , (7)

where the randomness comes from the noises {€;}. Under this high-probability event, when n >

Q ( 0%7 log (%)), any stable solution f for GD with step size n will not interpolate the data, i.e.
F(n,0,D) N {f | flzi) =wi, Vi€ n]} =0. (8)

The proof of Theorem 3.1 is deferred to Appendix E due to space limit. This result, together with
Mulayoff et al. [2021, Theorem 1], implies that gradient descent cannot converge to interpolating
solutions unless = O(1/n?). Tt also implies (when combined with Theorem 4.1) an intriguing
geometric insight that all twice-differentiable interpolating solutions must be very sharp, i.e., its
largest eigenvalue is larger than Q(n?) (see details in Appendix I ). Moreover, we highlight that
the conclusion of Theorem 3.1 is consistent with our observation in Figure 2(a), where the learned
function tends to be smoother and would not interpolate the data as n becomes larger. Therefore, in
the following discussion, we consider the case without assuming interpolation.

4 Main Results

In this section, we present the main results about stable solutions for GD (functions in F(n,0,D))
from three aspects. Section 4.1 describes the implicit bias of stable solutions of gradient descent
with large learning rate in the function space. Section 4.2 and 4.3 derive concrete generalization
bounds that leverage the implicit biases in the distribution-free statistical learning setting and the
non-parametric regression setting respectively. An outline of the proof of our main theorems is given
in Section 5. The full proof details are deferred to the appendix.

4.1 Implicit Bias of Stable Solutions in the Function Space

We begin with characterizing the stable solutions for GD with step size n without the assumption
of interpolation (there can be i € [n] such that f(x;) # y;). Similar to the interpolating case, the
learned stable function f enjoys a (weighted) TV bound as below.

Theorem 4.1. For a function f = fg where the training (square) loss L is twice differentiable at 0,

[ 1ot < 2eTEO) 1. /e ©)

where g(x) is defined as (6). Moreover, if we assume y; = fo(x;) + € for independent noise
€ ~ N(0,02), then with probability 1 — & where the randomness is over the noises {¢;},

/ @)y < M — 540 (a . min {1, \/f }) 4 L VMSE().  (10)

ZTmax

In addition, if f = fy is a stable solution of GD with step size ) on dataset D, i.e., fo € F(n,0,D)
2
as in (4), then we can replace M with % in (9) and (10).

W .l.o.g. we assume that Zmax > 1. If this does not hold, we can directly replace &max in the bounds by 1.

11



Theorem 4.1, which we prove in Appendix F, associates the local curvature of the loss landscape at 6
with the smoothness of the function fy it represents as measured in a weighted TV® norm. In short,
it says that flat solutions are simple. The result is a strict generalization of Theorem 1 in Mulayoff
et al. [2021] which requires interpolation, i.e., £(#) = 0. Observe that the number of neurons k
does not appear in (9) and have no effect in (10) when k& > n, thus the result applies to arbitrarily
overparameterized two-layer NNs. Under the standard nonparametric regression assumption, (10) is
a stronger bound that asymptotically matches the bound under interpolation [Mulayoff et al., 2021,
Theorem 1| when k = o(n) and MSE(fg) = o(1) as the number of data points n — co.

Another interesting observation when combining (10) with Theorem 3.1 is that for all interpolating
solutions (observe that MSE(fy) = O(c?) w.h.p.)

Amax(V2L(0)) > Q(n?c) — O(o).

To say it differently, all interpolating solutions are very sharp minima when the labels are noisy. This
provides theoretical explanation of the empirical observation that noisy labels are harder to overfit
using gradient training [Zhang et al., 2021].

Note that we leave the term £(#) (or MSE(f)) in the TV®) bound. Therefore, we can plug any
upper bound for these terms into Theorem 4.1 for a concrete result, and below we instantiate the
TV bound with a crude MSE bound under the assumption that f is “optimized”.

Corollary 4.2. In the nonparametric regression problem with ground-truth function fy, for a stable
solution f = fo of GD with step size n where L is twice differentiable at 0, assume that f is optimized,
i.e, the empirical loss of f is smaller than fy: ﬁ vy (fla) — yi)? < ﬁ Yoy (folxi) — yi)?, then

with probability 1 — 0, the function f satisfies

+ O (02max) , (11)

N

/ @) lg (@) < }7 -

Tmax

where the randomness is over the noises {¢;} and 9] suppresses logarithmic terms of n,1/4.

The assumption of optimized f is rather mild since, in practice, gradient-based optimizers are
commonly quite effective in loss minimization (see also our experiments). With such assumption, we
can derive an MSE upper bound (with high probability) of order O(¢?) (details in Lemma F.5), and
thus the TV() bound above.

In some cases, we can decrease the MSE upper bound we assumed in Corollary 4.2, and use this to
improve the resulting TV® bound (11). For instance, if the neural network is under-parameterized
(i.e. k is smaller than n), in Appendix F.2 we derive a (high-probability) bound for MSE of order
O(k/n), which implies that the last term in (11) becomes O(cmax+/k/n). The term vanishes if

n/k is large enough, where the TV® bound reduces to the noiseless and interpolating case.

4.2 GD on ReLU NN Does Not Overfit

Why would anyone care about the function space implications of stable solutions? The next theorem
shows that these solutions cannot overfit (in the strict interior of the data support) without making
strong assumptions on the shape of the data distribution.
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Theorem 4.3. Let P be a joint distribution of (z,y) supported on [—Tmax, Tmax] X [—D, D]. Assume
the dataset D ~ P" i.i.d. For any fized interval T C [—Zmax, Tmax| and a universal constant ¢ > 0
such that with probability 1 — 6/2, g(x) > ¢ for all x € Z, if the function f = fy is a stable solution
of GD with step size n such that L is twice differentiable at 6 and ||f|lco < D, with probability 1 — §
(randomness over the dataset), the generalization gap restricted to I satisfies

1 1
~ Tmax (7 -5+ 2xmaxD)
<0 |D? [ n 2

Bz (@) - 0] = = 2 (la) — wi)
r, €T

Genz(f) := 2 , (12)
7

where Bz means that (z,y) is a new sample from the data distribution conditioned on x € T and nz
18 the number of data points in D such that x; € L.

The proof of Theorem 4.3 is deferred to Appendix G. Briefly speaking, we show that in the strict
interior of the data support, the generalization gap will vanish as the number of data points n
increases. This vanishing generalization gap further implies that the expected performance on
new data points is close to the (observable) training loss, i.e., the output stable solutions do not
overfit.

Regarding our assumptions, in addition to standard boundedness assumptions, we focus on the strict
interior of the domain where g can be lower bounded (i.e. interval 7). This is because for extreme
data points, g(x) decays and thus imposes little constraint on the output function f. In Appendix
G.1, we show that if the marginal distribution of z is the uniform distribution on [—Zmax, Tmax),
when n is sufficiently large, Z can be chosen as [—21%, 230%] In this case, with high probability, Z
incorporates a large portion of the data points and nz = Q(n). More illustrations about the choice

of 7 under various data distributions are deferred to Appendix G.2.

Meanwhile, the generalization gap bound has dependence + on the learning rate 7. Therefore, as we
increase the learning rate (in a reasonable range), the learned stable solution tends to be smoother,
which further implies better generalization performances.

4.3 GD on ReLU NN Achieves Optimal Rate for Estimating BV (1) Func-
tions

Finally, we zoom into the nonparametric regression task that we described in Section 2 where
Ty, , Ty, are fixed and the noisy labels y; = fo(z;) +N(0, 0?) independently for i € [n] for a ground
truth function fj in the first order bounded variation class (see Section 2 for details). Similar to
Theorem 4.3, we focus on the strict interior Z of [—Zmax, Tmax], but instead of a generalization gap
bound, we prove an MSE bound against fy on Z that nearly matches the theoretical limit.

Theorem 4.4. Under the same conditions in Corollary 4.2, for any interval T C [—Zmax, Tmax)
and a universal constant ¢ > 0 such that g(x) > ¢ for all x € T and f is optimized over I, i.e.
Yower(f(zi) = yi)? < > eer(folzi) — yi)?, if the output stable solution 0 satisfies |0 < p (for
some constant p > 0) and the ground truth fo € BV (kp?, %6(% + 0Tmax)), then with probability
1 — 0 (over the random noises {€;}), the function f = fy satisfies

n n
IxieI T n

MSEZ(f) = 3 (#(e) — fola))? < O ((") (F ko, ) N
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where nz is the number of data points in D such that x; € T.

The proof of Theorem 4.4 is deferred to Appendix H. Below we discuss some interesting aspects of
the result. First of all, Theorem 4.4 focuses on an interval Z where g(z) can be lower bounded. In
this way, we ignore the extreme data points and derive an MSE upper bound (restricted to Z) of

order 6(71;4/ 5), which matches the minimax optimal rate for estimating BV® functions [see, e.g.,
Donoho and Johnstone, 1998, Theorem 1|. In contrast, it is well-known that neural networks in
the kernel regime (and any other “linear smoothers”) must incur a strictly suboptimal worst-case
MSE = Q(nz~%/3) [Donoho et al., 1990, Suzuki, 2018|. According to the discussions in Appendix
G.1, if the data follows a uniform distribution, the interval Z can incorporate most of the data points
where nz = Q(n).

Meanwhile, the MSE bound has dependence 772/ on the learning rate 1. Such dependence is
because with a larger learning rate, the learned function f will have smaller TV bound, and
therefore the set of possible output functions will contain fewer non-smooth functions, which implies
a tighter MSE bound. However, this does not mean that a larger learning rate is always better.
When 7 is too large, GD may diverge, and even if it does not, the set of stable solutions cannot
approximate the ground truth fy well if ffg‘;’;x |f§ (x)|dx > é + ZHmax thus failing to satisfy the
“optimized” assumption. In our experiments, we verify the “optimized” assumption numerically for a
wide range of  and demonstrate that by tuning learning rate n, we are adapting to the unknown

TV (fo).

Lastly, we remark that Theorem 4.4 holds for arbitrary k, even if the neural network is heavily

over-parameterized (k > n). The dependence % 4 0Zmax on 7 results from the TVD bound in
1

OZmax ’

Corollary 4.2, where the term % will dominate if n < which is the case if the step size is not

large. Furthermore, if 7 is sufficiently large, we can improve the TV® bound in Corollary 4.2 as in

4 2
Appendix F.2, and improve the mean squared error MSEz(f) to O ((g;) ° (‘”"T“‘x> * ) accordingly.
The assumptions and detailed statements for the improved MSE are deferred to Appendix H.1.

5 Proof Overview

In this section, we outline proof ideas for the main theorems in Section 4.

Proof overview of Theorem 4.1. According to direct calculation, the Hessian is given by

1 n n

VL) = - 3 (Voole) (Vofole)! + - > (folar) — ) VS (). (14)

i=1 i=1

Let v denote the unit eigenvector (|[v]l2 = 1) of L 3" | (Vg fo(x:))(Vafa(zi))T with respect to the
largest eigenvalue, then it holds that

Amax (V2L(0)) > 0T VEL(O)v

= Amax <111 Z(vefﬁ(xi))(vﬁfQ(CCi))T) + % > (folws) = yi)o" Vi f(mi)v. (15)

i=1 =1

~~

() (#)
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For the term (), we connect the maximal eigenvalue at 6 to the (weighted) TV norm of the
corresponding f = fy. Let g(x) be defined as (6), Mulayoff et al. [2021, Lemma 4] shows that (details
in Lemma F.1):

n Tmax

() = h (i Z(Vefe(:vz))(Vefe(xz))T> 12 [P @l (16)

=1 —ZTmax

For the term (#), we can bound it by the training loss £(#) using Cauchy-Schwarz inequality and a
somewhat surprising uniform upper bound of vTvg f(z;)v in Lemma D.1:

1 & s |1 2
Gy 5 2 Uoloa) =) 2D (0T VES(@i)0)” < 20/ 2L0). (17)
1= 1=
The first conclusion (9) of Theorem 4.1 is derived by combining the inequalities above. For the
second conclusion (10), note that the term (#) can be further decomposed as:

R 1 o
(#) = = S (o) — )" Vo + - S (o) — folw))o"V3f@)o.  (18)

i=1 i=1

(i) (i)

Similar to (#), the term |(i¢)| can be bounded by 2zmax\/MSE( fg) using Cauchy-Schwarz inequality.
Under the data-generating assumption y; — fo(z;) = ¢; ~ N(0,0?) i.i.d., |(i)| can be bounded by
a certain empirical Gaussian complezity term supy = =, €;hg(x;) with hgo(z;) = v V2 f(z;)v. The
proof is complete by Lemma F.2 which bounds this Gaussian complexity term (w.h.p.) in two

ways: (1) a dimension-free bound of O(0Zmax) and (2) O(0Zmax\/k/n) for the under-parameterized
case.

Proof overview of Theorem 4.3. Under the boundedness assumption in Theorem 4.3, we can
prove a constant upper bound for ff;‘;’;x |f"(x)|g(x)dz (Lemma G.1), which further implies another

constant upper bound for [|f”(z)|dz. Therefore, the metric entropy (logarithmic of e-covering
number N,) of the possible output function class is of order ¢~/2 (Details in Lemma G.2).

For a fixed e-cover of the possible output function class, according to Hoeffding’s inequality and a

union bound, the uniform upper bound of Genz(f) can be bounded by O(+/log N, /nz) = 6(6‘in; )
with high probability. Note that the approximation error is of order O(€), therefore Genz(f) can be
uniformly bounded over the possible output function class by

SIS

O(e) + O tng *) = Olny *). (19)

where € is chosen to minimize the bound. More details can be found in the proof of Theorem
G.3.

Proof overview of Theorem 4.4. Similar to Theorem 4.3, we can prove a constant upper bound
for [ |f"(x)|dz, which implies that the metric entropy of the possible output function class (4) is of

~ 2
order ¢ /2 (Details in Lemma H.2). Therefore, the critical radius r is of order O(n; *), which leads

~ _4
to a (high probability) MSE upper bound of order O(n; °) using a self-bounding technique. More
details about handling other parameters can be found in Appendix H.
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Figure 3: Highlights of our numerical simulation for large step size (n = 0.4, first row) and small
step size (n = 0.01, second row) gradient descent training of a univariate ReLU NN with n = 30
noisy observations and k& = 100 hidden neurons. From left to right, the three columns illustrate (a)
Trained NN function (b) Learning curves (c) Learned basis functions (each of the 100 neurons).

6 Experiments

In this section, we empirically validate our claims by training a two-layer fully connected neural
network with ReLU activation using gradient descent (GD) with varying step sizes. We focus on
fitting a mildly overparameterized ReLLU network to a simple nonparametric regression problem. The
input dataset comprises of 30 equally spaced fixed design points {z;}}" ;, where each x; € [-0.5,0.5]
(n = 30). Label y; = fo(x;)+N(0,0?) with ¢ = 0.5 and fo(x) = (2z+1)1(z < 0)+(—22+1)1(x > 0).
The two-layer ReLU network is parameterized by € (see Section 2) with & = 100 neurons per layer.
The network uses standard parameterization (scale factor of 1) and parameters are initialized
randomly (see Figure 7 for the initial basis functions).

Figure 2 (in the introduction) illustrates how changing the learning rate affects the learned ReL.U
NN that GD-training stabilizes on. The main take-aways are (a) large learning rate learns flatter
minima which represent more regular functions (in TV™); (b) Our bound from Theorem 4.1 is
a very accurate description of the curvature of the Hessian as well as a valid upper bound of the
TV®-(pseudo) norm; (¢) When we tune learning rate 7, it is implicitly regularizing the complexity,
which provides a satisfying variance tradeoff explanation to how GD-training works.

Figure 3 provides further details on the learning curves and representation learning. We note that
the learned representation is very different from the initialization, thus our experiments are clearly
describing phenomena not covered by the “kernel” regime. In addition, it seems that all solutions
that GD finds after a small number of iterations satisfy the “optimized” assumption as required in
Theorem 4.4. In the appendix (Figure 8), we provide empirical justification for the other assumption
we make about the twice-differentiability of the solutions. More experiments can be found in the
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appendix with more learning rate choices, as well as a discussion on the catastrophic and tempered
overfitting of interpolating solutions when we adjust k.

7 Conclusion

In this paper, we took a new look into how gradient descent-trained two-layer ReLLU neural networks
generalize from a lens of minima stability (and the closely related Edge-of-Stability phenomena). We
focused on univariate inputs with noisy labels and showed GD with typical choice of learning rate
cannot interpolate the data. We also established that local smoothness of the training loss functions
implies a first order total variation constraint on the function the neural network represents, hence
proving that all such solutions have a vanishing generalization gap inside the strict interior of the
data support. In addition, under a mild assumption, we prove that these stable solutions achieve
near-optimal rate for estimating first-order bounded variation functions. Future work includes
generalization beyond 1D input, two-hidden layers, and understanding the choice of optimization
algorithms.
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A Full Experimental Results

A.1 Stable Minima GD Converges to and Learning Curves
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Figure 4: Illustration of the solutions gradient descent with learning rate n converges to (Part I). As
n decreases, the fitted function goes from simple to complex. Any line below the ¢ line satisfies
the “optimized” assumption from Corollary 4.2 and Theorem 4.4.
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Figure 5: Illustration of the solutions gradient descent with learning rate 7 converges to (Part II).
As 1 decreases further, the fitted function starts to overfit to the noisy label.
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A.2 Interpolating Solutions as the Number of Hidden Neurons Increases

In this section, we illustrate a sequence of interpolating solutions that are the global optimal solutions,
which is also the kernel limit in the “lazy” regime. The results are obtained by randomly initializing
the weights, but solve the minimum norm solution by directly solving the least square problem

(optimizing only the second layer weights.)

Interpolating Solution k = 30

Interpolating Solution k = 60
T

1.5 —— True Function 1.5 —— True Function
—— Fitted function —— Fitted function
Noisy Labels Noisy Labels
1.01 . Fitted Labels 1.01 - Fitted Labels
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0.0 A 0.0
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-04  -0.2 0.0 02 0.4 04  -02 0.0 02 04
Interpolating Solution k = 100 Interpolating Solution k = 200
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0.5 1 0.5 1
0.0 0.01
—0.51 —0.5 1
04 02 0.0 0.2 0.4 04  -02 0.0 02 0.4
Figure 6: Examples of global optimal (interpolating) solutions (fitting only second layer weights).

Notice that the number of data points n = 30. When the model is barely able to interpolate (k = 30),
the fitted function experiences the catastrophic overfitting. When the number of neurons k increases
the interpolation solution becomes smoother and enters the tempered overfitting regime.
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A.3 Representation Learning of Large Learning Rate: Visualizing Learned Basis
Functions.

In this section, we visualize the basis functions at initialization and after training with different
learning rate.

Learned basis functions (n=0.4)

Random basis functions at initialization Learned basis functions (7=0.5)
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Figure 7: Illustration of the learned basis function with learning rate . It is clear from the figures
that there were substantial representation learning and the number of active basis functions gets
smaller as the learning rate n gets bigger.

We make several observations about Figure 7. First, the learned basis functions are very different
from the initialization, so a lot of representation learning is happening, in comparison to the “kernel”
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regime in which nearly no representation learning is happening. Second, as 1 gets smaller, the
number of learned basis functions increases, hence increasing the number of knots in the fitted
function. Third, the learned basis function displays a strong “clustering” effect in the sense that
despite overparameterization, many learned basis functions end up being the same on the data
support. Interestingly, they are not the same on R, we verified that they are still different outside
the data support, e.g., one of the learned basis function has a knot at x < —800.

A.4 Knots of the Learned ReLU NN (aka Linear Splines) and Their Coeffi-
cients

Recall that a linear spline is a continuous piecewise linear function and a two-layer ReLU NN with
k neurons span the class of all linear splines with at most k£ knots. In Figure 8, we visualize the
locations of the knots of the linear spline that the learned ReLLU neural networks represent.

Quantiles of the Learned knots Sparsity of the learned coefficients Learned knots to the closest input knot
—— 0.05 quant?le 4007 Ly-norm 100 —e— Minimum
5 0.25 quan.tlle 350 L, norm p=0.5 1st percentile
—— 0.5 quantile —— Lynormp=0.2 10-1 —e— Median

—— 0.75 quantile
—— 0.95 quantile

w
o
o

N
o
o
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—
S
o

location on input axis
o
Sparsity
N
w
o

=
o
o

Distance to the closest input x

NS

10! 102 10! 102 10! 102
1/n 1/n 1/n

Figure 8: Illustration of the learned (steady-state) ReLU NN with different learning rate. Recall
that all ReLU NNs are linear splines, therefore the location of the knots (i.e., the change points of
the linear pieces) describes the representation learning that happens. Each basis function is a ReLU
function at the knot. The final ReLU NN is a linear combination of these learned basis functions. In
the first panel, we plot the quantiles of the locations of the learned knots as the function of 1/5. In
the second panel, we plot the sparsity of the learned coefficients in sparse L; and L, norm as the
function of 1/n. The third panel plots the distance of the learned knots from the closest input data
points. This empirically verifies that the solution that gradient descent finds at the end
is a twice differentiable function w.r.t. the parameters in the sense that not a single learned
knot is exactly at the input data point, thus ensuring the applicability of our theorems.

In the first panel of Figure 8, we find for large learning rate, most of the location of the learned
knot is actually outside the data support on [—0.5,0.5]. This is a somewhat surprising finding in
that the mechanism of neural network learning may actually be “pushing the knot outside the data
support” so they become inactive on the training data (and only the ReLU truncated Os are active).
This is a new (and very interesting) way to understand how sparsity arrives in gradient descent
learning.

The second panel describes the sparsification effect of the implicit biases from large learning rate,
which again, indicates that the weighted TV1 constraint is indeed making the learned function sparse
(in the coefficient vector). The third panel shows that despite that the learning rate gets as small
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as le — 2, none of the learned basis function actually have knots coinciding with any of the input
data, thus empirically justifying our assumptions on the twice-differentiability of the solutions GD
finds.

B Some Optimization Results

Lemma B.1 (Restate Lemma 2.2). Consider the update rule in Definition 2.1, for any € >0, a
local minimum 0* is an € linearly stable minimum of L if and only if Amax(V2L(0*)) < %
Proof of Lemma B.1. It holds that
O — 0% =0, — 0" —n (VL") + V2L(0")(6; — 07))
= 0; — 0* — nV2L(6%)(6; — 6) (20)
— (1= nV2L(67) (6 — 6%,

where the first equation is from the update rule in Definition 2.1. The second equation holds because
6* is a local minimum and therefore VL(6*) = 0. As a result,

0, — 0" = (I —qv2L(6%))" (6p — 6%). (21)
On one hand, if Apax(VZL(0%)) < %, it holds that

* NIk * *
16: — 0%l < ([T =nV2LE), - 10 — 0[] < [160 — "], (22)

where the second inequality is because all the eigenvalues of I — nV2L(6*) is bounded between
[—1,1]. Therefore, 0* is € linearly stable for any e.

On the other hand, if 6* is € linearly stable, we choose 6y such that % is the top eigenvector of
V2L(6%) and [|fy — 6*|| = €. Then we have

16; — 6% = |1 — PAmax (V2L(07))]| - €, (23)

which implies that limsup;_, |1 — nAmax (VZL(6*)) ‘t < 1, and therefore Apax (V2L(0*)) < %, which
finishes the proof. O
The following Theorem B.2 is an extension of the main result in Mulayoff et al. [2021]. Recall that

stable solutions refer to the functions in F(n,0,D) as defined in Section 2.

Theorem B.2 (Extension of Theorem 1 in Mulayoff et al. [2021]). Let f = fy be a stable solution
for GD with step size n where the training loss L(f) = 0 and L is twice differentiable at 6. Then

Tmax 11
| r@lstes < 5 -5, (24)

where g(x) = min{g~ (z), g"(z)} for * € [~Tmax, Tmax| With

(

-
g (

P?(X < 2)Elz — X|X < z]\/1+ (BE[X|X < x])2,

P*(X > 2)E[X — 2|X > z]/1+ (E[X|X > z])2. (25)

x) =
x) =
Here X is drawn from the empirical distribution of the data (a sample chosen uniformly from {x;}).
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Proof of Theorem B.2. The proof of Theorem 1 in Mulayoff et al. [2021] first proves that

Amax (V2L(9)) < % according to the assumption that f is linearly stable, and then proves the
conclusion above. Therefore, the same conclusion directly follows for the stable solutions f = fy in
F(n,0,D) satisfying Amax(VZL(0)) < % O

Some discussions about the result. Mulayoff et al. [2021] studied the problem assuming that
the optimization converges to a global minimum and the learned function interpolates the training
data, i.e. £L(f) = 0. In this way, they link the Hessian matrix to properties of the learned function f
and show that stable solutions of GD correspond to functions whose second order derivative has a
bounded weighted norm. Moreover, as the learning rate increases, the set of stable solutions contains
less and less non-smooth functions. For a fixed learning rate, according to the curve of g(z), stable
solutions tend to be smoother for instances near the center of the data distribution, and less smooth
for instances near the edges. More discussions can be found in Mulayoff et al. [2021].

C Bounded Variation Function Class and its Metric entropy

In this section, we first define the Besov function class. Then we recall the definition of bounded
variation function class and discuss the connection between these two classes. Finally we bound the
metric entropy of bounded variation function class using analysis about Besov class.

C.1 Definition of Besov Class

Let © be the domain of the function class (which we omit in the definition) and || - ||, denote the £,
norm. We first define the modulus of smoothness.

Definition C.1. For a function f € LP(Q) where 1 < p < oo, the r-th modulus of smoothness is
defined by

wrp(f,t) = sup  [AL(F)ps (26)
heR<:||hl|l2<t

where A is defined as

J

AL(f) = (27)

0, otherwise.

Then the norm of Besov space is defined as below.

Definition C.2. For 1 < p,q < oo, a >0, r := [a] + 1, define

|flBg, = <f:; (t~wrp(f, 1)) dtt> ' ; q < o0, 28)

SUpysot~ “wrp(f, 1), q = oo.
Then the norm of Besov space is defined as:
If1IBg, = lfllp +1f1Bg,- (29)

Finally, a function f is in the Besov class By if || f| Bg, 1s finite. For more discussions and properties
of Besov class, we refer interesting readers to Edmunds and Triebel [1996].
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C.2 Definition of Bounded Variation Class and the Connection

For the same domain 2, recall that the bounded variation function class is defined as

BV()(B,C,) = {f QSR ‘ max |f(z)] < B,/

—ZTmax

|f"(z)|dx < Cn} : (30)

According to DeVore and Lorentz [1993], bounded total variation class is closely connected to the
Besov class. Specifically, for any constant B, C,,, it holds that

BVW(B,C,) C B} ... (31)

C.3 Metric Entropy of Bounded Total Variation Function Class

Now we bound the complexity of BV(I)(l, 1), which will be helpful for bounding the complexity of
BV(B, C,) in the future. We first define the metric entropy of a metric space (T, p).

Definition C.3. For a set T with a corresponding metric p(-, ), let N (e, T, p) denote the e-covering
number of T under metric p. Then the metric entropy of T with respect to p is log N (e, T, p).

More details and examples about covering and metric entropy can be found in Chapter 5 of Wainwright
[2019]. Next we bound the metric entropy of a bounded subset of BV (1). Note that the {o, metric
over domain Q is po(f, 9) = sup,cq | f(x) — g(z)|, which we denote by || - ||c for short.

Lemma C.4. Assume the set Ty = < f:[-1,1] = R

S @) de < 1, | f(2)] < 1} and the
metric is the o distance || - |00, then there exists a universal constant Cy > 0 such that for any
€ > 0, the metric entropy of (T1, || - |lec) satisfies

1

log N(e, T, || - [|oo) < Cre™ 2. (32)

Proof of Lemma C.4. First of all, the domain © = [—1, 1] is a bounded set in R. Moreover, according
to DeVore and Lorentz [1993], we have BV (1) C B .. Therefore, T is a bounded subset of B} , (€2)
with both Bioo and {~, norm bounded by a universal constant.

Therefore, the metric space (T4, || - ||oo) satisfies the assumptions in (the second point) of Corollary 2
in Nickl and Pétscher [2007] with 7 = 0o, d =1, s = 2. Then combining the conclusion of Corollary
2 in Nickl and Potscher [2007] and the fact that the metric entropy is upper bounded by bracketing
metric entropy (Definition 4 in Nickl and Pétscher [2007]), we finish the proof. O

Remark C.5. For our purpose of bounding the metric entropy of BV(1), we only consider the case
where (2 is bounded. For more results regarding the metric entropy of (weighted) Besov space, please
refer to Nickl and Pétscher [2007].

D Calculation of Gradient and Hessian Matrix

In this section, we calculate the gradient and Hessian matrix of fy(x) with respect to 6. Re-
call that fy(z) = Zle w?)gi) <w§1)m+b§1)> + b@? where ¢(z) = max{z,0}. We denote =
I O ORI I S R
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D.1 Calculation of Gradient

According to direct calculation, for a given & € [—Zmax, Tmax] We have
V,mfolz) = zw1 (wz(l)a; +oY > O) , Vie[k]
Vi folz) = w1 (wgl)a: + b > O) , Vielk
Vo) = 6 (ufV + o) = (wVa-40)
Vi folz) =1

]
(33)
1 (wVz 8" >0), ¥ie k]

D.2 Calculation of the Hessian Matrix

2
In this part, we calculate V§f9($) for a given & € [—Zmax, Tmax|- Below we calculate %ef%(:)
i00;

First of all, if 6; = b3 or 6; = b2, %29{%(05? = 0. Then it remains to calculate %29{%(0? where 7, j € [k]

and 6,0 € {w® M w@}. Tt is obvious that if i # 7, %Zf%(gi) = 0. Therefore, we only calculate the
case when j = 4. Let d denote the Dirac function, it holds that:

(_%fo(@)  _ ()25 (w(% + b(l)) , Vi€ [K]

8w(1)8w§1) W

2 folx 82 fo(x 2 1 1 .
i = i ==l (a i), vie

Ot — w5 (wz ), Vie
ruPoe® = 0 Vi€ Al

2fy(x) _ 2folx) 1) (1) .
8w§1)08(w§2) - 811)1(2)98(11)1)(1) =zl <’LUZ x + bz > O) s Vi S []C]

9 f _ _OF _ (1) (1) -
s = A 1 (e 2 20) Vi
The gradient is generally not well-defined according to the existence of the Dirac function. However,
under the assumption that fp is twice differentiable with respect to 6 (i.e. the knots of f do not
coincide with ), all the Dirac functions take the value 0. In this case,

92 .
r(lﬁfgﬁl) =0, Vi€ k]

) 2
Pfo(z) _ 0 folx) _ :
pullonT = g = 0 Vi€ K] (35)

o? .
8b(1{(;(;)1> =0, Vielk]

D.3 Upper Bound of Operator Norm

In this part, we upper bound the operator norm of the Hessian matrix. Equivalently, we upper
bound |07 V2 fy(2)v| under the constraint that [|v[2 = 1. We have the following lemma.

Lemma D.1. Assume that fo(x) is twice differentiable with respect to 6 and x € [—Zmax, Tmax], for
any v such that ||v||2 = 1, it holds that

|UTV2f9(x)fu‘ < 2max{Zmax, 1}. (36)
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Proof of Lemma D.1. Assume v = (a1, -+, B1, 5 Brs V1, > Yes 1)L € R3¥F L such that Z,’f:l(ozf—{—
B2 +72) + 12 = 1. Note that the Hessian matrix V2 fp(x) follows the structure:

Apmwn Ay Aymee Ay

V2 () = jbu)w(l) ﬁbu)b(l) jb(l)w@) jbmb(z) (37)
w@w®)  Ap@p  Ap@ee  Aup@pe
Ay Apep) Ay Ay

kxk kx1
where A, 1), Aypm s Ap@) s Appms Ay@pe € RV A o, Apnpes Ay@pe € R,
Ap@) ) Ap@p) s Ap@ @ € Rk and Ap)p2) € R are all zero matrices. Meanwhile,
A w@ s Ap) @ Ay@,0) s Ap@p) € RE*k are all diagonal matrices whose non-zero elements are
between [— max{Zmax, 1}, max{zmax, 1}]. Therefore, it holds that:

k
[0V fo(x)v] < 2max{zmax, 1} Z (leivil + 1Bivil)
i=1

k k k k
< 2max{Tmax, 1} Za? . Z’ylg + 2@2 Z’Y?
i=1 i=1 i=1 i=1

< 2max{Tmax, 1},

(38)

where the second inequality holds because of Cauchy-Schwarz inequality. The last inequality results

from z(1 — z) < 1. O

E Proof for the Counter-Example (Theorem 3.1)

Theorem E.1 (Restate Theorem 3.1). For the counter-ezample, with probability 1 — 6, for any
interpolating function f,

/_ @) () de = O <Jn [n _ 92410g (;)D , (39)

Tmax

where the randomness comes from the noises {€;}. Under this high-probability event, when n >

Q ( 0%7 log (%)), any stable solution f for GD with step size n will not interpolate the data, i.e.
F(m,0,D) N {f | f(xi) =i, Vi€ [n]} =0. (40)

Proof of Theorem E.1. Consider any three consecutive points x;, z;t1, Z;j+2 where j € [n — 2], note
that their corresponding y’s are y;, yj+1,y;+2 which are i.i.d. Gaussian random variables N (0, a?).
Then according to Mean Value Theorem, there exists a € [z;,z;11] and b € [z;41, z 2] such that

Fla)= Y179 _ n—1 F(b) = Y2 Yt n—1

— =), o — Yitl). 41
Tt —T;  2max (yj+1 — v5) (Yj+2 — Yj+1) (41)

Tj42 — Tj+1 B 2Zmax
Therefore, it holds that

Tj+2 9 , , n—1 n—
|f"(x)|dx > [f'(b) — f'(a)| = [Yj+2 = 2y541 + y5| ~

; 2T max

L IN(0,602)|, (42)

2T max

31



where the last equation means that y;4o — 2y;+1 + y; follows the distribution N (0, 652).

We focus on the interval in the middle. For any x € [z, /4, Z3y,/4], we have

1 max
P2(X < z) > —, [E[g;—)(|X<:c]zm ,
]P>2(X>a;)>E E[X — z|X > z] > 0o

Together with the definition of g(z) (6), we have for any = € [z,,/4, ¥3,,/4], g(x) > Fg2=. Therefore,
for any interpolating solutions f, it holds that

n/6

Z Gil, (44)

Tmax Tmax

Tmax T3n/4
z)|g(z)dr > a; x)lde > —— a; .
f/l d glzx fl/ d max
Tn /4

where Gy’s are i.i.d samples from N(0, 602).
Assume the median of [N'(0,1)| is ¢ > 0, which is a universal constant. For any i € [§], define

H — { \/6007 if |Gl| > \/660-7

0, otherwise.

(45)

Then we have H; = v/6co with probability % In addition, |G;| > H;. According to Lemma J.1, with
probability at least 1 — ¢,

n/6

Tmax n—1 n—1 n 1 , 1
>N > : A (=) = —24log (=) ],
/_xmx |f"(x)|g(z)dx > o5 2 g 6co (24 og <5>> don <n og <5

- (46)

for some universal constant ¢'.

Together with the conclusion in Theorem B.2, for any interpolating and stable solution f, with

which does not hold when n > € (/L 1og (3)). 0

F Proof for the TVY Bound (Theorem 4.1)
We begin by calculating the gradient of empirical loss £ at 6:
1 n
VeL(0) = > (folai) = yi) Ve folwi), (48)
i=1
where the detailed calculation of Vg fp(x) can be found in Appendix D. Then the Hessian is given
by
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VIE0) = S (Vofo(w)) (Vafole)” + + > (folai) — 1) Vi (o), (19)

i=1 i=1

where V2f(z) is calculated in Appendix D. Let v denote the unit eigenvector ([|v[s = 1) of
LS ((Vofo(z:))(Vofo(x;))T with respect to the largest eigenvalue, it holds that

Amax (V2L(0)) > vTVEL(O)v

= max( > (Vofo(wi)(Vofo(x:)) >+
(%) (2)

=1
f@ xz — fo HEZ))U \ f(xl)

=1

(fo(wi) — yi)v" Vi f(xi)v

S|
i

() (#)

Z v@f@ Ly )(VGfO(xz T) + Z fO $z yz)v Vef(%) (5())

i=1 =1

3
3

S|
S

~.
.

~~

3

3\'—‘

(i7)

For term (%), we connect the maximal eigenvalue at 6 to the (weighted) TV norm of the corre-
sponding f = fp. Let the weight function g(x) be defined as (6), then the lemma below holds.
Lemma F.1. Assume L is twice differentiable at 0 and the corresponding function of € is f, then
1 n Tmax
A <n Z(Vefe(l‘i))(vefe(%))T) 212 [ @l (51)
=1 —ZTmax
where g(x) is defined as (6).
Proof of Lemma F.1. The proof of Lemma 4 in Mulayoff et al. [2021] directly proves the result for

Amax (2301 (Vo fo(x:)) (Vo fo(xi)T), which is the Amax(V3L) in Lemma 4 of Mulayoff et al. [2021]
when f is an interpolating solution. O

For the first inequality of Theorem 4.1, we directly handle the term (#) as below.

n

@) < J =S (falw) — yi)?- J Y T3 @)0)? < 20macy/2L0), (52

i=1 =1

where the first inequality results from Cauchy-Schwarz inequality. The second inequality is because
of the uniform upper bound of v V3 f(z;)v (Lemma D.1).

For the second inequality of Theorem 4.1, we bound the two terms (i) and (ii). We begin with
(i) = |37 vT V2 f(zi)v - €|, which is a weighted sum of noises {e;}.
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Lemma F.2. Assume ¢;’s are independently sampled from N'(0,0?) for some o > 0, with probability
at least 1 — &, uniformly over all 0,v such that L is twice differentiable at 6 and ||v]|2 =1,

4 klog (132)
< o max{®max, 1} - min 4“10g n 14“ g

Proof of Lemma F.2. For the first part, according to Lemma D.1, we have

ZvTV fzi)v-€

1 n
- Y 0"Vt (@i e

=1

< 2max{Tmax, 1} - max{|€;|}. (54)

Since ¢;’s are independently sampled from Gaussian distribution A'(0, 02), according to concentration
of Gaussian distribution and a union bound, with probability 1 — g, it holds that:

max{fel} < 20 [log <45”> (55)

< 4o max{@max, 1} log <45”> (56)

For the second part, we bound the complexity of {vTV f(z; v} . Notice that 6 is a function of
the dataset, thus not independent to ¢;. Also, v is a function of the dataset and 6. Our strategy is
to apply an e-net argument for both v and V3 5f(x;) for i =1,

Under this high-probability event, we have

@)= |5 S VB«

i=1

We begin with considering the possibilities of {V f(zi)}. According to the detailed form of Ve fo(zx)

n,k
in Appendix D, we have the set {V3f(z;)}?, is fully determined by { (w( )xl b(l) > 0)}

J ij=1,1

Therefore it suffices to cover all the possibilities of {]l (wj( )1:1- + bg ) > 0) }n ) for all j € [k]. Without
1=
n
loss of generality, we can assume that 1 < z2 < --- < x,, and then {w](-l):ri + b(-l)}l . is also
1=
n
monotonic, which implies that there are 2(n + 1) possibilities of {]1 (w(l)uvZ + b( ) > )} ) in
7

ok -
total. As a result, the product space {]1 <w( V2 + b(l) > O)} . (and also {V3f(x;)}" ) has
7]

Ny = (2n + 2)* possibilities.

For a fixed matrix M = V3 f(x) for some 0,z and v, v’ such that |[v]js < 1,[|v[]2 < 1, [|v —v'[|]2 <€
with € € (0,1), it holds that

‘UTMU—(U/)TMU/} SQ’(’U TMU’-I—l )T M (v — )’
<2[jv —'[|2| M ||2[|v[|2 + llv — o2 | M [l2]Jv — v[|2 (57)
<4 max{Tmax, 1 }€ + 2 max{Tmax, 1}62

<6 max{Tmax, 1 }€,
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where the third inequality results from the upper bound of operator norm of M (Lemma D.1).
Therefore, the exact covering set of {V32f(z;)}" ; and an W;maxl}—covering set of the unit
Euclidean Ball with dimension 3k 4+ 1 (which is exactly the domain of v) together provides an
e-cover of { (vI'V2f(zi)v ) _, } with respect to || - loo. Meanwhile, an Fmax e 1] -cover with respect
to || - ||2 of the unit Euclidean Ball with dimension 3k + 1 has cardinality bounded by Ny =

3k+1
<1 + w> according to Lemma J.2. Combining the two covering arguments, the
e-covering set of {( T2 f (i) ) 1} with respect to || - || has cardinality N satisfying:

13n max{Zmax, 1} )
. .

log N < log N1 4 log Ny < 4klog ( (58)

Consider a fixed stream (a;)}_, in the covering set, we have |a;| < 2max{@max, 1} for all i € [n].
Then according to the concentration result of Gaussian distribution, with probability 1 — &,

log(2/6) .

n

n

%Zaiq

=1

< 4o max{Tmax, 1} (59)

With a union bound over the e-covering set of {( Tv? 5f () ) 1} and conditioned on the high
probability event of (55), with probability 1 — 4, unlformly over all possible ||v[|2 = 1 and 6,

log(4N,./d
< 20€ log —|— 40 max{Tmax, 1 } M
\/ n

| ZUTVGf TV - €

; . (60)
13nmax Tmax,l
An, 4k log e )
<20¢4/log 5 + 40 max{Tmax, 1 }

Finally, by choosing € = %, we have

1 < klog (13n

' Z vIV2f(x)v - € < 140 max{Tmax, 1} ﬁ. (61)

n n

i=1
O

Remark F.3. According to the Lemma F.2 above, there are two cases. When the neural network is
over-parameterized, we can derive a constant upper bound for term (i). Meanwhile, if the number of
neurons is smaller than the sample complexity, we can derive a tighter bound for (i) by covering
{UTV flx)v } .—y- For k,n such that k is polynomially smaller than n (e.g. k = n'=® for some
positive a), the term (i) will vanish if n converges to infinity.

Meanwhile, the term (ii) can be bounded by the mean squared error MSE( fy) using Cauchy-Schwarz
inequality and the uniform upper bound of v7' V2 5f(x;)v (Lemma D.1).

n n

|(i1)] < %Z(fmi) — folw:))? - ;Z (VTV3 f(2:)v)* < 2max{emax, 1}V/MSE(fy).  (62)

=1 i=1
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Combining the results above, we state the following weighted TV® bound of the learned function.
We leave the training loss and mean squared error (MSE) in the bound, which will be handled
later.

Theorem F.4 (Restate Theorem 4.1). For a function f = fg where the training (square) loss L is
twice differentiable at 0,

[ i @latee < AVl O) Lo /22H) (63)

—Zmax

where g(x) is defined as (6). Moreover, if we assume y; = fo(x;) + € for independent noise
€ ~ N(0,02), then with probability 1 — & where the randomness is over the noises {¢;},

[ i @lses < 2O 2 g <az min {1, a }) + i /NSE(). (64)

In addition, if f = fy is a stable solution of GD with step size ) on dataset D, i.e., fy € F(n,0,D)

as in (4), then we can replace w with % in (9) and (10).

Proof of Theorem F.J. The first inequality results from plugging Lemma F.1 and (52) into (50). The
second inequality holds by plugging Lemma F.1, Lemma F.2 and inequality (62) into (50). For the
instantiation of Amax(V2L(0)), the replacement holds due to the definition of F(n,0,D) in (4). O

F.1 A Crude Bound for MSE and the Instantiated TV(Y)) Bound (Corollary
4.2)

Now we prove a crude upper bound for MSE, which could instantiate a weighted TV® bound.
Lemma F.5. Assume that the function f is optimized, then with probability 1 — §, we have
MSE(f) = 137 (7(e) — foloi))? < 1602 log (2 (65
_"i_l i o())” < 1607 log { — | .
Proof of Lemma F.5. According to the assumption that f is optimized, it holds that
n n n
Z (f(xi) —wi)? < Z (fo(z:) — yi)* = Zﬁf (66)
i=1 i=1 i=1
Then since (a + b)? < 2a? + 2b? always holds (AM-GM inequality), we have

n n

1

% (f (i) = folw)? = gZ(f(l‘z‘) —yi+ i — folz:))?
i=1 i=1
§% Z (f(zi) —wi)* + Z (folxi) — yi)? (67)
i=1 i=1
S% z": 612 < 4maxe
i=1 !
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Recall that ¢;’s are independently sampled from A(0,0?), then according to the concentration of
Gaussian distribution and a union bound, with probability 1 — 9,

2
max e < 402 log <:> . (68)
7

Combining the two results, with probability 1 — § where the randomness is over the noises {¢;},

n

MSE(f) = £ 3 (7(0:) — folei) < 160710 (). (69)

i=1
O

Finally, Corollary 4.2 results from directly plugging Lemma F.5 into Theorem 4.1.

F.2 An Improved MSE Bound and the Corresponding TV Bound

In this part, we provide an improved upper bound of the mean squared error MSE( fy) and also the
term (ii). We first make the assumption below that the parameters are from a bounded space.

Assumption F.6. There exists some constant p > 0 such that gradient descent converges to some
local minimum 6 with [|0]lcc < p. In addition, we assume that || fo|lco < D where D > 0 is some
universal constant satisfying that D < kp?(zmax + 1).

Assumption F.6 ensures that the parameter space is bounded while the ground truth function fy
can be approximated well by some possible output function. The assumption will surely hold for
some large enough constants p, D, which is without loss of generality. In the following analysis,
we will replace D with its upper bound kp?(Zmax + 1) to reduce the parameters in the logarithmic
terms.

To handle the mean squared error MSE( fy), we begin with an analysis on the complexity of the
function class of two-layer ReLU networks with bounded parameters

F, = {f : [~Tmax, Tmax] — R ' flx) = Ele wZ@)gb (wzmx + b£1)> + b2, 10]]c0 < p}. Note that

here we assume that the input is from [—Zpax, Tmax] and there exists an upper bound p > 0

on the parameter 6 = (wgl), e ,w,(:), bgl), e ,b,(cl), w§2), e ,w,(f), bONT ¢ R3k+L,
Lemma F.7. The e-covering number Ne of function class F, with respect to || - || satisfies

11 masc, 1 e p?
logN€§4k:log< max{Tmax, Lkp )
€

Proof of Lemma F.7. We consider the discrete function class below

_ Nk =2 () 7)) 7(2)
. = - N N R Fle)=327 w; ¢<“’i z+b; >+b 1
F: {f [ Tmax, Tma: ] - ‘ s.t. 0;€8ZN[—ppl, ¥ jE[3k+1] ) (7 )

where 0; is the j-th element of (wf), e ,w,(j), l_)gl), e ,l_),(fl), wgz), .- ,u_),(f), 5(2))T eR3*+l and e-Z
is the set {€-4, i € Z}. Since for each element, the number of choices is bounded by 2?” + 1, the

o - ) 3k+1
total cardinality of F= is bounded by (?p + 1)
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For each function f € F, with corresponding parameter 6 (|||l < p), we choose function f from
F: with corresponding parameter 6 such that |0; — 0] is minimized for all j € [3k +1]. According to
our definition of Fz, we have for all j € [3k + 1], |§; — 6,| < & Therefore, it holds that

If - fHoo<ZHw (w Yo 40 —w§2)¢<w§1)x+égl))Hm+‘b@)—5(2)‘

~ w9 (Ve + o) |
=1 (72)

k
+3° Hu‘;z@)(p (e +67) 0o (wVz + 3 H +e
1 oo
<ké- p(max + 1) + kp(Tmax + 1)e+ €
<5 max{Tmax, 1 }kpe < e,

where the last inequality is by choosing € = m.

Therefore, the e-covering number N of function class F, with respect to || - ||o satisfies
10 1 k o\ 3k+1
N, < (1 | 10max{Tmax, 1kp ) , (73)
€
which implies that
11 & 1}kp?
log N, < 4k log ( max{ Tmax, Lkp ) . (74)
€
O

Now we provide an upper bound of MSE( fy) under the assumption that 6 is optimized, which means
that the empirical error of fy is smaller than that of fy, .e.

>~ (oles) =)’ < 53 Ul ). (75)
= i=1

1
2n

Below we state the improved upper bound of mean squared error under such assumptions.

Lemma F.8. Assume ¢;’s are independently sampled from N(0,02) for some o > 0, if Assumption
F.6 holds and fg € F, is optimized, then with probability at least 1 — 0, it holds that

o2k log (w>

MSE(fy) <O - (76)
Proof of Lemma F.8. Since 5= > | (fo(z;) — yi)? < =3 (folzi) — y;)?, we have
SMSE(fy) = o= S (ole) — fo(e)* < =3 ei (folai) — fola). ()
i=1 i=1
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For the optimized function fg, we choose a function f from the e-covering set in Lemma F.7 such that
Ilf — follso < €. Due to identical analysis as (55), with probability 1 — %, max;{|¢;|} < 204 /log (42).
Under this high-probability event, it holds that

%Z € (fo(x:) — fo(zs)) < %Z & (f(zi) — fo(zi)) + 20€q [log <4n> (78)

, ; 0
=1 =1

According to Lemma F.7, the e-covering number N, of function class F, with respect to || - [loo

2
satisfies log N, < 4k log (11 max{@max.1} ko ) Due to the concentration of Gaussian distribution and a

€

union bound over the covering set, with probability 1 — %, for all f in the covering set,

S e (Flai) = folw) <20, S (Flxi) — folw:))? - log <4Nf). (79)

; ; 1)
=1 =1

Combining the two high-probability events, with probability 1 — §, we have

n

%MSE(fg) < %Z & (f(x:) — fo(zi)) + 20¢€, [log (?)

=1

n

<> Z(fm)—fo(mi))’log(4?€>”“ log@)

=1

n

S%U Z (f(2) — fo(xi))2 - 4k log <11max{$max’ 1}kp2) + 20¢, [ log <4(;L>

, €d
i=1

20
n

!Z (fo(zi) — folx:))? 4 10nkp? max{Tmax, 1}6] 4l log (11 max{Tmax, 1}kp2>

, €
=1

4
+ 20¢€4 | log <;)
max{xmax,l}kp)

max{Zmax, 1 }€ - log :
<0 (a\/klog (max{a:max,l}kp> . MSE(fg)) 20| okp ( )

€l n n

0 (oeyfon (D))

where the forth inequality results from Assumption F.6. Selecting € =
the second order inequality, it holds that

(80)

1
k2 p?n? max{Tmax,1}

and solving

max{Tmax,1}kn,
o2k log (W)

n

MSE(fy) <O (81)
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Plugging in the upper bound for MSE (Lemma F.8) to Theorem 4.1, we have the corollary below.

Corollary F.9 (Improved version of Corollary 4.2). For a stable solution f = fy of GD with step
size 11 where L is twice differentiable at 0, assume Assumption F.6 holds and f € F, is optimized,
with probability 1 — 0, the function f satisfies

T 11 klog (el Line)
/ |f (l’)‘g(a?)dx < 5 - 5 + O | 0Zmax : (82)

n

Tmax

where the randomness is over the noises {€;} and g(z) is defined as (6).
n

Remark F.10. The additional term here O (U:Umax \/Z > improves over the constant additional

term in Corollary 4.2 if k£ < n. In addition, if 7 converges to infinity (e.g. k = n'= for some o > 0
and n is sufficiently large), the additional term could vanish.

G Proof for the Generalization Gap Bound (Theorem 4.3)

Recall that the generalization gap of function f is defined as

E|(f(2) - 9)’] - :LZ (f (i) = y)”

Gen(f) := , (83)

where (z,y) is a new sample from the data distribution. The generalization gap measures the
difference of the expected testing error and the training loss, and a small generalization gap implies
that the model is not overfitting.

For a stable solution f = fy of GD with step size n where L is twice differentiable at 8, we first
derive a corresponding analysis for the weighted TV® bound. Recall that the empirical loss is still
defined as L(f) = 5 "1, (f(2;) — y;)*>. Then using the same calculation as (50), we have

~on

2 h(VHE(O) 2 0 V300
=Amax (TlL Z(Vefe(xi))(vefe(ffi))T> + % > (folzi) —ya)o" Vi f(wi)v
i=1 i=1 (84)

> Amax (i Z(Vefe(xi))(vefe(xi))T> - % > (folwi) —yi)?- % Y (WTVif(@i)v)?,
=1 =1 =1

() (#)

where the last inequality results from Cauchy-Schwarz inequality.
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According to Lemma F.1, the term (%) satisfies

() = A (iZ(Vafe(:vi))(Vefe(xi))T> 142 [P @l (85)
i=1 ~Tmasx
In addition, the term (#) satisfies (w.l.0.g, we assume Zpax > 1)
) < 2man | S (o) — i) (56)

i=1

Under the assumption that the learned function f = fy satisfies ||f||oc < D and |y;| < D for all
i € [n], it further implies that
[(#)| < 4amaxD. (87)

Combining the results, the following TV® bound holds.

Lemma G.1. Assume the data distribution satisfies that for all possible (x,y) from the distribution,
|2| < Zmax and |y| < D, if the function f = fp is a stable solution of GD with step size 1 such that
L is twice differentiable at 0 and || f|lco < D, then it holds that

Tmax 1 1
/ |f"(z)]g(x)dx < 5 ~3 + 2T max D, (88)

where g(x) is defined as (6).

Note that we assume there exists some interval Z C [—Zmax, Tmax] and a universal constant ¢ > 0
such that with probability 1 — §/2 (randomness over the dataset), g(x) > ¢ for all z € Z (w.l.o.g. we
assume ¢ < 1), which further implies that

1/1 1
"z)|de < = | = — = + 2omaxD | . 89
J1r@ds < ¢ (5= 5+ 20m (59)
We base on the high-probability event above in the following discussions. Next we bound the metric
entropy of the possible output function class.
Lemma G.2. Define the set T3 = {f IR flle <D, [71f"(x)|dx <L <% — 1+ 2xmaxD> },
then the metric entropy with respect to || - || satisfies that

Lmax <% - % + 2$maxD>
log N(e, T3, || - o) <O : (90)

€

where O also absorbs the constant c.

Proof of Lemma G.2. Define the set Ty as:

x 1/1 1
Ty = {f ¢ [~ Zmaxs Tmax] — R | I flloo < D, |f" (x)|dx < p (77 —-3 + 2$maXD> } . (91)

—Zmax
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Note that the metric entropy of Ty is bounded by that of Ty, therefore we directly prove the upper
bound of log N (¢, T4, || - ||oc)-

Let the set Ty = q f: [-1,1] = R ’ f,ll |7 (x)|de <1, |f(z)] < 1} (as in Lemma C.4). For a fixed
€
%(%*%“szmaxl))wmax

to || - [|oo, denoted as {h;(z)};c[n], whose cardinality N satisfies

€ > 0, according to Lemma C.4, there exists a -covering set of Ty with respect

% (% — % + 2l'ma,XD> fL'maX

logN < (92)

€

c\n
[~ Tmax, Tmax|. Obviously, we have {g;(z)};c[n) also has cardinality N.

We define g;(z) = 1 (l - % + 2xmaXD> xmaxhi(ﬁ) for all ¢ € [N]. Then g;’s are all defined on

For any f(x) € T4, we define g(z) = 1 f(z - Tmax) which is defined on [—1,1]. We
%(%}_%"I‘meaxD)xmax
now show that g(z) € Ty. First of all, for any « € [—Zmax, Tmax], We have
D
9@ < —— <1 (93)
< (ﬁ -5+ 2xmaxD> Lmax

Meanwhile, it holds that

1 1
1
/ 9" () |dx _/ 1(1 1 T (@ Tinax) | d
-1 -1 P (E -3 + meaxD) Tmax

1 Tmax "
< / " (2)|dz < 1.
- (* - E + 2mmaXD) —Zmax

(94)

c\"

Combining the two results, we have g € T;. Therefore, there exists some h; such that ||g — hillco <
T 100 S@ = £ (5~ 4 2maeD) rmana ().

-3 +2Zmax D n Tmax

c\n

1/1 1
o = Floe = 3 (5 = 5+ 20D ) Sl = gl < .

In conclusion, {g;};cn] is an e-covering of Ty with respect to || - [|oc. Moreover, the cardinality of
{9i}iein) is N, which finishes the proof. O

Now we provide our main result about the generalization gap (restricted to Z). Below we define the
generalization gap restricted to Z:

1
Genz(f) := |Ez [(f(l‘) - y)ﬂ == > (fla) —w)?|, (95)
nz x, €L
where E7 means that (x,y) is a new sample from the data distribution conditioned on = € Z and nz

is the number of data points in D such that x; € Z.
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Theorem G.3 (Restate Theorem 4.3). Let P be a joint distribution of (x,y) supported on
[—Tmax, Tmax] X [—D, D]. Assume the dataset D ~ P™ i.i.d. For any fived interval T C [—Tmax, Tmax)
and a universal constant ¢ > 0 such that with probability 1 — 6/2, g(x) > ¢ for all x € I, if the
function f = fy is a stable solution of GD with step size  such that L is twice differentiable at 6 and
I fllco < D, with probability 1 — § (randomness over the dataset), the generalization gap restricted to
I satisfies

Genz(f) :=

Bz [(70) — )] - - 3 () )’ 2 ,

1
11 5
~ Tmax (7 D) + Q-ImaxD)
<0 | D3 [ n 2 (96)
nz

where Bz means that (z,y) is a new sample from the data distribution conditioned on x € T and nz
s the number of data points in D such that x; € T.

Proof of Theorem G.3. We base on the following event that holds with probability 1 — §/2:

/ |f"(x)|dx < 1 (717 — % + 2:17maXD> . (97)
T

Cc

Then the output function f € T3 defined in Lemma G.2.

For a fixed € > 0, according to Lemma G.2, there exists an e-covering set of T3 (with respect to
|| - [[oo) whose cardinality N satisfies that

Tmax (% - % + 2$maxD>
logN <O

(98)

€

For a fixed function f in the covering set, since the data set {(z;, i) }z;ez is still i.i.d. from the data
distribution conditioned on = € Z, Hoeffding’s inequality (Lemma J.3) implies that with probability
1 — 4, it holds that

Ez [(f(ﬂﬁ) - Z/)Q] - nlz Z (fai) — yi)2 <4D?. logfi/é)- (99)
x; €L

Together with a union bound over the covering set, we have with probability 1 — /2, for all f in the
covering set,

B2 [(70)—0)"] - - 3 (e — w)?| < 407
z, €T

log(4N/0)
ng
(100)
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Under such high probability event, for any f € Ts, let f be a function in the covering set such that
lf — fllo < €. Then it holds that

1
N2l 4 N2
Bz (/) =0’ = - 2 () — )
x, €L
— 2 ]_ —
< |Ez [(F@) = 9)°] = = > (F(@:) = w)*| + O(De)
z x, €L
L i 1 (101)
9 |:xmax (E ) + 2xmaxD):| 10g(1/5)§
<O(De)+ O | D*- -
n%el
9 | Tmax (% - % + 2$maxD) 10g(1/5)2
nz
where the last inequality results from selecting the e that minimizes the objective. O

G.1 Choice of the Interval Under Uniform Distribution

In this part, we discuss the choice of the interval Z under the case that the marginal distribution of
x is the uniform distribution on [—Zmax, Tmax). For simplicity, we assume that zpax = 1.

Lemma G.4. Assume that x ~ Unif([—1,1]), then we can choose T to be [—%,2]. In this way, with
probability 1 — 24e~ 56, for any x € Z, it holds that

1
g(xz) > 390" (102)

As a result, when n > 96 log (%), we can choose T = [—%, %] and ¢ = 1355

Proof of Lemma G.J. Let the intervals A; be defined as below: for all i € [12],

AP:F_7i_6} (103)

6 6
For a fixed n, let P; denote the number of data points in A;, which follows Binomial distribution
with p = &. Then for a fixed i € [12], according to Multiplicative Chernoff bound (Lemma J.4),
with probability 1 — 267%, it holds that
n

<P <2. 104
<P <25 (104)

N | =
el=

Then according to a union bound, with probability 1 — 24”56, the above inequality holds for all
€ [12]. Under the case above, we prove that g(z) = min{g~(z), g" ()} > 5355 for all z € T.

44



Recall that ¢~ (z) = P?(X < 2)E[z — X|X < z]\/1+ (E[X|X < 2])2 where X is drawn from the
empirical distribution of the data (a sample chosen uniformly from {z;}). Then for any = > —%7

Pi+P\?_ 1
P2(X<x)z( (s 2)

1 (105)

Combining the inequalities, we have g~ (z) > ﬁ for all x € Z. The result for g™ (z) can be proven
similarly, which implies that with probability 1 — 24e~ 36, g(z) > Flm for all x € 7.

The implication can be proven by direct calculation. O

Remark G.5. We only consider the case where the data is sampled from uniform distribution,
while we remark that for various distributions that are not heavy-tailed (e.g. Gaussian distribution,
Laplace distribution), a similar result can be derived. Some empirical illustrations are shown in
Appendix G.2 below.

G.2 More Illustrations of the Choice of the Interval

In this part, we consider the choice of Z and ¢ under different data distributions. More specifically,
we consider the following four distributions of .

Uniform distribution: = ~ Unif([—1, 1]).
Normal distribution: x ~ N(0,1).
Laplace distribution: = ~ Laplace(0, 1).

N(—0.5,0.25)  with probability 3,

Gaussian mixture distribution: = ~ 1
N(0.5,0.25) with probability 5.

Note that the distributions above are widely applied in Differential Privacy (DP) |Zhao et al.,
2022, Qiao and Wang, 2023b,a]. For each distribution, we sample n = 1000 data points from the
distribution (conditional on = € [—1, 1]) and construct the g(x) function. Then we choose the interval
Z and the corresponding lower bound ¢ of g(z) over Z. From Figure 9, we find that for all of the
four distributions, with a constant ¢ > 0.002, the interval Z can be chosen to incorporate a large
portion of the data (nz > 0.65n).

H Proof for the Refined MSE Bound (Theorem 4.4)

In this part, we base on the same conditions in Corollary 4.2, which is the weighted TV up-
per bound. For an output stable solution f satisfying the conclusion of Corollary 4.2, we have
[ () |g(x)de < % — 2+ O(0Zmax) and we denote the right-hand side by S. In addition,

—ZTmax

according to the assumption that g(x) > ¢ for any « € Z, we further have [, |f"(z)|dx < % Now
we bound the complexity of the possible output function class.
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Figure 9: Illustration of the choice of interval Z and the corresponding lower bound ¢ for g(z).

According to the definition of two-layer ReLU network and our assumption that ||6]|s < p, it holds

that: i
PO = |3 w6 (oV) + 62| < kp? + p. (106)
=1
k
HOUEDY ’w§2)w§1)’ < kp®. (107)
=1

Define the set T = {f:Z = R | [f(0)| < kp? + p, |£/(0)| < kp?, [;|f"(z)|dz < 2}. According to
the inequalities above, the possible output function (if restricted to Z) belongs to T. We begin with
an analysis of the metric entropy of the intermediate function set Ts.

—ZTmax

Lemma H.1. Assume the set Ty = {f t [~ Zmax, Tmax] = R | £(0) = f/(0) =0, ["m |f"(z)|dx < Cg}

for some constant Cy > 0, and the metric is L distance || - ||, then there exists a universal constant
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Cy > 0 such that for any € > 0, the metric entropy of (Ta, | - ||ec) satisfies

C2Zmax
log N (e, T2, | - [loc) < Cryf =2, (108)

where C1 can be chosen as the same Cy in Lemma C.4.

Proof of Lemma H.1. Let the set Ty = {f [-1,1] =R ’ f_ll |f"(x)|dz < 1, |f(2)] < 1} (as in

Lemma C.4). For a fixed € > 0, according to Lemma C.4, there exists a Cmeax -covering set of T
with respect to || - [|oo, denoted as {h;(z)}ic[n], whose cardinality N satisfies

CoTmax

log N < C (109)

€

We define g;(r) = CoTmaxhi(5—) for all i € [N]. Then g;’s are all defined on [~Zmax, Tmax]-
Obviously, we have {g;(7) }ic|n] ‘also has cardinality N.

For any f(z) € Ts, we define g(z) = & — f(2 - Zmax) which is defined on [-1,1]. We now show
that g(x) € Ty. First of all, for any x € [—Zmax, Tmax|, We have |f/(z)| < frgi’; |f"(z)|dx < Cs.

Therefore, for any = € [—Zmax, Tmax), |f(2)] < CaZmax, which implies that |g(z)] < 1 for any
€ [—1,1]. Meanwhile, it holds that

1 1
1
[ g @de = [ o b vl

1 Tmax

<
=0,

(110)
F(@)lde < 1.

—Zmax

Combining the two results, we have g € Ty. Therefore, there exists some h; such that ||g — h;l|co <

sz . Since f( ) C2xrnaxg( ) Hgl - f”oo = 02$max||hi - g”oo <e.

Tmax
In conclusion, {9i}ie[n) is an e-covering of Ty with respect to || - ||. Moreover, the cardinality of
{gi}ie;n) is N, which finishes the proof. O

With Lemma H.1, we are ready to bound the metric entropy of T.

Lemma H.2. Assume the metric is ~, distance || ||, then the metric entropy of (T, || |lco) satisfies

€

log N(e, T, | - [loc) < O < xmaxs) , (111)

where S is the right-hand side of Corollary 4.2 and O also absorbs the constant c.

Proof of Lemma H.2. For any function f € T, it can be written as below:

f(z) = f(0) + f(0)z + g(), (112)
where g(z) = f(x) — f(0) — f/(0)z satisfies that ¢(0) = ¢’(0) = 0 and ¢”(x) = f”(x). Therefore,
to cover T to € accuracy, it suffices to cover the three parts to § accuracy with respect to || - ||,

respectively.
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For f(0), since |f(0)| < kp? + p, the covering number is bounded by

6(kp® +p) _ 8kp®

N < (113)
€ €
For f/(0)x, since |f'(0)] < kp?, the covering number is bounded by
2
Ny < M (114)

€

Finally, for g(z), since g(x) € Ty with Cy = % (g is extended linearly beyond the interval Z), the
covering number is bounded according to Lemma H.1 above.

3TmaxS
log N3 < O/ 22max> (115)
ce
Combining the three parts, the metric entropy is bounded by
S
log N(e, T,| - ||oo) < log N1 + log Ny + log N3 < O ( Tmax ) , (116)
€

where O also absorbs ¢, which is the constant lower bound of g(z). O

According to the metric entropy above, we are ready to provide a refined (high probability) bound
for mean squared error (restricted to Z). Note that we assume that the ground-truth function fy € T,
which is necessary for the mean squared error to vanish.

Lemma H.3. Under the same conditions in Corollary 4.2, for any interval T C [—Zmax, Tmax]
and a universal constant ¢ > 0 such that g(x) > ¢ for all € Z and f is optimized over L, i.e.

>wer(f(mi) — yi)? < > wer(folzi) — yi)?, if the output stable solution 6 satisfies ||0]|oo < p and the
ground truth fo € T, then with probability 1 — § (over the random noises {€;}), the function f = fy
satisfies

MSEz(f) = == 3 (f(w) — fole)? < 0 ((") ()’ 10g (;)) o aw)

n n
z T, €L z

where ng is the number of data points in D such that x; € L.

Proof of Lemma H.3. According to the assumption that f is optimized over Z, we have
S (f@) =) <> (folwi) — i) (118)
z, €T z, €L
Similar to the calculation in Lemma F.8, it holds that
1 1 1
§MSEI(f) = (f(z:) — fo(z:))* < g Z & (f(xi) — folzs))- (119)
z, €T

2
T z, €T

It is obvious that the function class T is convex, together with the assumption that fo € T, we have
the function set T* := T — { fo} is star-shaped (details in Section 13 of Wainwright [2019]).
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Note that the metric entropy of T satisfies that log N (¢, T, || - [loo) < O < xm‘“‘s> According to

€

Corollary 13.7 of Wainwright [2019], the critical radius r satisfies that

2 <0 ((i)g (TmaxS) ) . (120)

Finally, according to Theorem 13.5 of Wainwright [2019], we have with probability 1 — 4,

MSEz(f) < O ((;) (o)  log (;)) , (121)

which finishes the proof. O

[SIN]

Finally, Theorem 4.4 is derived by plugging in the definition of S.

Theorem H.4 (Restate Theorem 4.4). Under the same conditions in Corollary 4.2, for any interval
T C [~Tmax, Tmax] and a universal constant ¢ > 0 such that g(x) > ¢ for all x € Z and f is optimized
over Z, i.e. » . r(f(xi) — yi)? < > wer(fol@i) — vi)?, if the output stable solution 6 satisfies
10]loc < p (for some constant p > 0) and the ground truth fo € BV (kp?, %5(% + 0%Tmax)), then
with probability 1 — § (over the random noises {€;}), the function f = fy satisfies

MSEz(f) = — 37 () — fo(wi))? < O (("Qf (222 4o ) L)

n n
z x, €L z n

where nz is the number of data points in D such that x; € T.

Proof of Theorem H.j. Note that BV (kp?, %5(% + 0Zmax)) is a subset of T. Then the proof
directly results from Lemma H.3 and S = O (% + Jl‘max). O

H.1 The Improved Results for the Under-parameterized Case
We assume that n/k is large enough such that the additional term in the TV® bound vanishes.

Assumption H.5. We assume that % is large enough such that the last term in (82) O(0Tmaxr/k /1) <

3, which further implies that ffg‘;’;x |/ (x)|g(z)dx < %, where g(z) is defined as (6).

Assumption H.5 requires that 7 is larger than some constant, which naturally holds if k& = nl—o
for some a > 0 and n is sufficiently large. Under such assumption, we improve the MSE upper

bound.

Theorem H.6. Under the same conditions in Corollary F.9, assume that Assumption H.5 holds. For
any interval T C [—Zmax, Tmax] and a universal constant ¢ > 0 such that g(x) > ¢ for all x € T and
[ is optimized over T, i.e. Y, o7 (f(xi) —yi)* < 2, ex(folxi) — wi)?, if the output stable solution 6
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satisfies ||0]|oo < p (for some constant p > 0) and the ground truth fo € BV (kp?, é), then with
probability 1 — § (over the random noises {€;}), the function f = fo satisfies

MSEz(/) = - 3 (e~ folen* < 0 ((i) (xj;) ) , (123)

where nz is the number of data points in D such that x; € T.
Proof of Theorem H.6. The proof is identical to Theorem H.4, with S replaced by % 0l

Remark H.7. Compared to Theorem 4.4, Theorem H.6 is better on the dependence of 7 by removing
the additional term ox2,,. Such improvement results from the improved T V® bound (Corollary

F.9) and the fact that n/k is sufficiently large.

I Twice-Differentiable Interpolating Solution with Noisy Labels must
be “Sharp”

— 2omaxi _ (A DTmax o o [n] and fo(x) = 0 for any

n—1 n—1
x, which implies that y;’s are independent random variables from A (0, o?).

Recall that in the counter-example, we fix x;

Proposition 1.1. In the example above, assume f = fg is an interpolating solution where L is twice
differentiable at 0, then with probability 1 — &, we have

1
Amax(V2L(0)) = Q (Jn [n — 24 log <5>}) . (124)
Proof of Proposition 1.1. According to Theorem 3.1, with probability 1 — §, we have

[ 1@ late)is = 2 (n [0 205 (5)] ). o

where g(x) is defined in (6). Meanwhile, note that fy is an interpolating solution, and therefore

n n

VL0) = S (Vofolw)) (Vofole) + = S (folae) — y) Vi o)
i=1 i=1
o (126)
= ;(Vefe(%))(vefe(%))T-
Finally, combining the results and applying Lemma F'.1, it holds that
Amax (VFL(0)) = Amax (i Z(Vefe(wi))(vefe(xi))T)
i=1 (127)
>1+ 2/ o |fe (2)|g(z)dx > Q <an [n — 241og <<1$)]> ,

which finishes the proof. O
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J Technical Lemmas

Lemma J.1 (Lemma F.4 in Dann et al. [2017]). Let F; fori=1,--- be a filtration and X1, -, X,
be a sequence of Bernoulli random variables with P(X; = 1|F;_1) = P; with P; being F;_1-measurable
and X; being F; measurable. It holds that

n n
Pl3n:> X <> B/2-W|<e ™.
t=1 t=1

Lemma J.2 (Covering Number of Euclidean Ball [Wainwright, 2019]|). For any € > 0, the e-covering
number of the Buclidean ball in R with radius R > 0 is upper bounded by (1 + %)d.

Lemma J.3 (Hoeffding’s inequality [Sridharan, 2002]). Suppose X1, Xa,--- , X, are a sequence
of independent, identically distributed (i.i.d.) random variables with mean 0. Let X = %Z?:l X;.
Suppose that X; € [—b,b] with probability 1, then with probability 1 — ¢,

X| < by 21082/0) (128)

n

Lemma J.4 (Multiplicative Chernoff bound [Chernoff, 1952|). Let X be a Binomial random variable
with parameters p,n. Then for any 6 € [0, 1], it holds that:

62pn

PX > (14+0)pn] <e 3, (129)

§2pn

PX <(1—0)pn] <e 2 .

(130)
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