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Generalizing deep learning electronic 
structure calculation to the plane-wave basis

Xiaoxun Gong1,2,3, Steven G. Louie    2,3  , Wenhui Duan    1,4,5   & 
Yong Xu    1,5,6 

Deep neural networks capable of representing the density functional theory 
(DFT) Hamiltonian as a function of material structure hold great promise for 
revolutionizing future electronic structure calculations. However, a notable 
limitation of previous neural networks is their compatibility solely with 
the atomic-orbital (AO) basis, excluding the widely used plane-wave (PW) 
basis. Here we overcome this critical limitation by proposing an accurate 
and efficient real-space reconstruction method for directly computing 
AO Hamiltonian matrices from PW DFT results. The reconstruction 
method is orders of magnitude faster than traditional projection-based 
methods to convert PW results to the AO basis, and the reconstructed 
Hamiltonian matrices can faithfully reproduce the PW electronic structure, 
thus bridging the longstanding gap between the AO basis deep learning 
electronic structure approach and PW DFT. Advantages of the PW 
methods, such as high accuracy, high flexibility and wide applicability, 
thus can be all integrated into deep learning electronic structure methods 
without sacrificing these methods’ inherent benefits. This allows for the 
construction of large-scale and high-fidelity training datasets with the 
help of PW DFT results towards the development of precise and broadly 
applicable deep learning electronic structure models.

Recent years have witnessed remarkable progress in the field of ab 
initio computation in combination with artificial intelligence1–4. For 
instance, neural-network force fields can facilitate ab initio molecular 
dynamics simulations at large length and time scales5–9 and have become 
almost indispensable in molecular dynamics simulations nowadays. 
There are also numerous deep learning models for studying various 
material properties10–13. Recently, fruitful progress has been achieved 
in the generalization of deep learning methods from atomic structure 
calculations to electronic structure calculations. For instance, machine 
learning offers a pathway for designing accurate density functionals14–18 
as well as for predicting electronic properties, such as charge density 
and local density of states19–31. Deep learning methods have also been 
proposed to bypass the iterative solution of the Kohn–Sham equation of 

density functional theory (DFT) by directly predicting the converged 
DFT Hamiltonian under the atomic-orbital (AO) basis32–43. All these meth-
ods substantially expand the scope of theoretical and computational 
materials research towards unprecedented accuracy and efficiency.

When compared with other approaches, the deep learning DFT 
Hamiltonian method has several benefits33,34. First, eigenvalues and 
wavefunctions can be easily obtained from a one-shot diagonalization 
of the predicted sparse AO Hamiltonian matrix, from which all the  
DFT-based physical properties of materials can be derived. Further-
more, the method scales linearly with system size, and can be trained 
by DFT results for small-size structures and generalize to study 
unseen large-size structures with ab initio accuracy. The reason for 
these properties is that the AO Hamiltonian is a local and nearsighted 
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once we have the PW Hamiltonian Hk(G,G′) = ⟨k + G| ̂H|k + G′⟩, we can 
always obtain the corresponding AO Hamiltonian Hiα, jβ = ⟨ϕiα| ̂H|ϕjβ⟩ 
by a change of basis, which can then be flexibly learned by current neu-
ral networks for AO Hamiltonians. However, there are several different 
ways of doing this. In Supplementary Section 3, we present a detailed 
review of the possible methods from literature as well as previous 
attempts at deep learning electronic structure calculation under the 
PW basis. Here we will briefly discuss three methods to convert PW 
Hamiltonians to the AO basis, and more details can be found in Methods.

We would naturally think of using the projection method, which 
is widely used to bridge the gap between PWs and AOs. The projection 
method was initially developed to evaluate the quality of the AO basis 
set46–48 and has been adapted for various purposes, such as to analyze 
charge distribution and to interpret chemical bonding49–55. The projec-
tion method can also be modified to directly convert a Hamiltonian 
from the PW basis to the AO basis:

Hiα, jβ = ∑
kGG′

⟨ϕiα|k + G⟩Hk(G,G′)⟨k + G′|ϕjβ⟩. (1)

Here the PW basis is normalized in the Born–von Kármán (BvK) 
supercell: ⟨r|k + G⟩ = exp(i(k + G) ⋅ r)/√NΩ , where k is a wavevector 
in the first Brillouin zone, G is a reciprocal lattice vector, N is the number 
of primitive unit cells forming the BvK supercell and Ω is the volume of 
the primitive unit cell. The AO basis function |ϕiα〉 is centered at atom 
i. There could be multiple basis functions (labeled by n) sharing the 
same angular momentum quantum number l and magnetic quantum 
number m. The index α is an abbreviation for n, l, m. Equation (1) will 
be referred to as the Hk(G, G′) projection method in this Brief 
Communication.

If the eigenvalues εnk and wavefunctions |ψnk〉 of the PW Hamilto-
nian are obtained, equation (1) can be further written as

Hiα, jβ = ∑
nk
⟨ϕiα|ψnk⟩εnk⟨ψnk|ϕjβ⟩, (2)

where

⟨ϕiα|ψnk⟩ = ∑
G
⟨ϕiα|k + G⟩⟨k + G|ψnk⟩. (3)

In this Brief Communication equation (2) will be referred to as the ψnk(G) 
projection method.

physical quantity, which can be determined only by its nearby atomic 
environment44,45 (also see Supplementary Sections 1 and 2). Thus, 
methods of this kind can be designed to break the accuracy–efficiency 
dilemma in electronic structure simulations and are particularly useful 
for large-scale material simulations that would otherwise demand for-
midable computational resources. Similar to the role neural-network 
force fields are playing in today’s molecular dynamics simulations, it 
is highly possible that future electronic structure simulations will also 
be primarily based on deep learning models of the DFT Hamiltonian.

However, the deep learning DFT Hamiltonian method faces a 
critical issue related to basis functions. The Hamiltonian is a quantum 
mechanical operator, which can be expressed as a matrix if a particular 
basis set is chosen. Commonly used basis sets in DFT are plane waves 
(PWs) and AOs. Up to now, all neural-network methods for DFT Ham-
iltonians only support the AO basis, because PWs are spread over the 
entire space (Fig. 1a) and will destroy the aforementioned locality prop-
erty. Nevertheless, PW-based methods usually offer higher accuracy 
than those using AOs because the PW basis can usually achieve fuller 
completeness and is also easier to converge. It is also favorable over the 
AO basis in terms of its simplicity and flexibility. In fact, the majority of 
DFT calculations for solids are done using the PW basis. In this context, 
generalizing deep learning electronic structure calculation to the PW 
basis would be of critical importance to future development of the field.

In this work, we propose a real-space reconstruction method to 
reconstruct AO Hamiltonians based on PW DFT results. It is orders of 
magnitude faster than the traditional method of directly projecting 
the PW Hamiltonian or wavefunctions. Moreover, we show that the 
AO Hamiltonians generated using our method not only can faithfully 
reproduce the PW electronic structure but also can be very easily 
learned by neural-network models. Thus, the critical problem of the 
deep learning DFT Hamiltonian under the PW basis is solved (Fig. 1a). 
The high accuracy and efficiency of our method is beneficial for the 
construction of more versatile and accurate deep learning electronic 
structure calculation methods, which not only makes them accessible 
to a much broader scientific community, but also greatly enhances 
their suitability for general applications.

Results and discussion
Theory
The PW Hamiltonian and the AO Hamiltonian are actually the same 
physical quantity expressed under different basis sets. In principle, 
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Fig. 1 | Idea of the deep learning DFT Hamiltonian under the PW basis and its 
applications to twisted bilayer graphene. a, The PW basis offers high accuracy 
and flexibility, but deep learning electronic structure calculation methods 
require local basis sets. With the reconstruction method, local AO Hamiltonians 
are reconstructed from PW DFT output, thus deep learning methods are now able 
to interface with PW DFT. b, Practical workflow of the method. PW DFT results on 
a set of small, non-twisted structures are used to reconstruct Hamiltonians under 
the AO basis. A neural network trained on these reconstructed Hamiltonians 
can then be generalized to predict the Hamiltonians of large, twisted structures. 

c, Band structures of a perturbed 4 × 4 graphene supercell in the training set. 
Those obtained from diagonalization of the reconstructed AO Hamiltonian are 
compared with the PW DFT results. d, Band structure of twisted bilayer graphene 
at the magic twist angle θ = 1.08° with 11,164 atoms in the Moiré supercell. The 
bands labeled PW-NN correspond to those predicted by the neural network 
trained on Hamiltonians reconstructed from PW DFT results, and those labeled 
AO-NN correspond to the prediction of the neural network trained on AO DFT 
results from ref. 34. PW DFT results are from ref. 67.
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Although equations (1) and (2) offer straightforward ways of 
converting PW Hamiltonians to the AO basis, they suffer from low 
computational efficiency, and the reasons are as follows. Equation (1) 
involves two multiplications and summations over G, and the number 
of G vectors is usually very large. Equation (2) requires a large number 
of Bloch wavefunctions to converge. Moreover, they all scale cubically 
with respect to the number of atoms in the system (Methods), which 
limits their scope of applications.

In fact, we can leverage locality in real space to considerably speed 
up the calculation. The Hamiltonian H(r, r′) = ⟨r| ̂H|r′⟩  in real space 
under atomic units is56,57

H(r, r′) = − 1
2
∇2δ(r − r′) + [VHar(r) + Vxc(r) + Vloc(r)]δ(r − r′)

+Vnloc(r, r′),
(4)

where the various terms correspond to the kinetic energy, the Hartree 
potential, the exchange–correlation potential and the local and 
non-local parts of the pseudopotential, respectively. In this Brief Com-
munication we are only considering semilocal functionals for exchange 
and correlation. The three terms in the square bracket will be referred 
to as the total effective local potential: Veff(r) ≡ VHar(r) + Vxc(r) + Vloc(r), 
which is periodic over unit cells. Usually, PW DFT programs directly 
store Veff(r) or its Fourier transform Veff(G) in memory, and 
Vnloc(r, r′) = ⟨r| ̂Vnloc|r′⟩  can be read from pseudopotential files. Once 
we have H(r, r′), we can calculate the AO Hamiltonian directly in real 
space as follows:

Hiα, jβ = ⟨ϕiα|−
1
2
∇2|ϕjβ⟩ +∫d

3rϕ∗
iα(r)Veff(r)ϕjβ(r) + ⟨ϕiα| ̂Vnloc|ϕjβ⟩,

(5)

which will be referred to as the real-space reconstruction method in this 
Brief Communication. The first and last terms can be very efficiently 
calculated using two-center integral techniques58 (also see Methods). 
The most time-consuming part is the evaluation of the second term in 
the equation, which is integrated directly on an evenly spaced real-space 
grid. Since the AOs are local in real space, the integration region can be 
chosen such that both of the orbitals ϕiα(r) and ϕjβ(r) are non-zero. The 
number of grid points involved in the integration thus does not depend 
on the overall system size. Therefore, the time required to evaluate the 
above formula is proportional to the number of non-zero AO Hamiltonian 
matrix elements, which scales linearly with the number of atoms in the 
system. Although they are theoretically equivalent and will yield the same 
results when converged, the proposed real-space reconstruction method 
is much more efficient than the first two projection-based methods.

It is worth noticing that none of the three methods described in 
this Brief Communication depend on the specific form of the AO basis 
functions. They only need to be separable into radial and angular parts, 
and the radial function needs to go to zero after a certain cutoff radius. 
This degree of freedom allows us to systematically improve the qual-
ity of the reconstructed AO Hamiltonian by customizing the AO basis 
using modern techniques such as a numerical AO basis59–62. The most 
important design principle of the AO basis is that it must be compat-
ible with the pseudopotentials used in the PW calculation, otherwise 
it is difficult for the reconstructed Hamiltonian to give an accurate 
description of the band structure.

Application to twisted bilayer graphene
The real-space reconstruction method provides a very efficient way to 
calculate the Hamiltonian under an AO basis set from PW DFT results. 
The resulting AO Hamiltonian not only can accurately reproduce the 
PW electronic structure, but also can be learned by neural networks, 
thus enabling deep learning electronic structure calculations under the 
PW basis. The effectiveness of this workflow depends on two factors: 
the quality of the reconstructed AO Hamiltonian, and the compatibility 

of the reconstructed Hamiltonian with deep learning methods. In our 
tests, the first is measured by comparison of the band structures of 
the AO Hamiltonian with those from direct PW DFT calculations. The 
second can be evaluated through checking the quality of the band struc-
ture predicted by the neural networks that learn from reconstructed 
AO Hamiltonians. In all calculations reported in this Brief Communica-
tion, PW DFT calculations are performed with the Quantum ESPRESSO 
package63 using norm-conserving pseudopotentials64. The results of 
these PW calculations are used to reconstruct AO Hamiltonians, where 
the AO basis is the numerical AOs generated using the SIESTA code59 for 
the same set of pseudopotentials. Details of the convergence tests we 
have performed on the effect of the sizes of AO basis sets can be found 
in Supplementary Section 4.

The most remarkable capability of the deep learning DFT Hamil-
tonian method is that neural-network models can be trained on small 
structures and generalized to predict the Hamiltonians of much larger 
structures. In the study of bilayer graphene, the training set consists of 
300 4 × 4 bilayer graphene supercells with different stackings and ran-
dom perturbation of each atom site. After we train the neural-network 
model on the reconstructed AO Hamiltonians from PW DFT results 
(Fig. 1b), we can use the model to systematically study Moiré twisted 
superstructures with arbitrary twist angle. We first benchmark the 
reconstructed Hamiltonian on one of the structures in the training 
set by plotting its band structure alongside those calculated using 
PWs. As shown in Fig. 1c, the two band structures agree very well. After 
training the neural-network model, we use it to study the well-known 
‘magic-angle’ twisted bilayer graphene at θ = 1.08° with 11,164 atoms in 
a Moiré supercell. This system is of substantial interest to researchers 
because of the discovery of a series of correlated phenomena65,66, but is 
particularly challenging for electronic structure calculations because of 
its large system size and large-scale corrugation patterns. However, with 
the deep learning DFT Hamiltonian method available, the computa-
tional cost can be greatly reduced34 (also see Supplementary Section 5).  
As illustrated in Fig. 1d, the neural network trained on the reconstructed 
AO Hamiltonian manages to give very accurate predictions when 
compared with the PW DFT benchmark67, with an error of only a few 
millielectronvolts. Moreover, when the neural network is trained on 
reconstructed AO Hamiltonians from PW DFT output, the predicted 
band structure (PW-NN in Fig. 1d) has better agreement with the PW 
DFT results by Lucignano et al.67 compared to the case where the neural 
network is trained on Hamiltonians calculated by AO DFT34 (AO-NN in 
Fig. 1d). This shows that the deep learning Hamiltonian interfaced to 
PW DFT can indeed give results that have higher accuracy. This high 
accuracy, when combined with the flexibility and wide applicability of 
the PW method, will greatly enhance the capability of deep learning 
ab initio calculations and will be highly beneficial for future research.

Application to bilayer MoS2
The three previously discussed methods to obtain the AO Hamiltonian 
from PW DFT results are equivalent when converged, but the real-space 
reconstruction method (equation (5)) is the most efficient. Here we 
compare these three methods in the study of the bilayer MoS2 system 
(Fig. 2a). First we tested the reconstruction method on the AB-stacked 
bilayer unit cell consisting of six atoms, and the band structures 
obtained from the reconstructed AO Hamiltonian agree well with PW 
DFT results (Fig. 2b). We then plot the band structures given by the 
three different methods, and the results are shown in Fig. 2c. They are 
almost the same, except that the band structure given by the ψnk(G) 
projection method is slightly different from the other two because we 
are only using a finite number of bands in evaluation of equation (2).

We further compared the computation times of the three methods. 
The systems we have studied here are bilayer MoS2 structures with dif-
ferent numbers of atoms (unit cell with 6 atoms, 3 × 3 supercell with 54 
atoms and Moiré twisted bilayer MoS2 at θ = 13.17° and 9.43° with 114 
and 222 atoms). The CPU times are shown in Fig. 2d along with the time 
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for PW self-consistent field calculation. Note that the time of diagonali-
zation for PW wavefunctions for the ψnk(G) projection method is also 
included in the total CPU time for that method. As expected, the two 
projection-based methods show roughly cubic scaling. They are even 
more time consuming than the full self-consistent field calculation. 
Conversely, thanks to the locality of the AO basis, the real-space recon-
struction method achieves linear scaling and can be several orders of 
magnitude faster than the projection methods. This acceleration will 
become more prominent when we investigate large-size materials. 
Therefore, our method will be essential when we want to construct 
large-scale training sets including various kinds of material and struc-
tures of different sizes to train accurate and versatile neural-network 
models, whereas the projection methods would not be affordable for 
this purpose in terms of computational cost.

Now, we follow the same workflow as illustrated in Fig. 1b and 
test the performance of the neural network on bilayer MoS2, which is 
a more challenging material system than bilayer graphene. PW DFT 
calculations are performed on 256 non-twisted 3 × 3 supercells of 
bilayer MoS2 with different stacking configurations and random per-
turbations of each atom site, and the neural-network model is trained 
on the reconstructed AO Hamiltonians. We test the generalizability of 
the neural network to a fully relaxed θ = 6.01° twisted bilayer MoS2 with 
546 atoms in the Moiré supercell. Since the neural network is trained 
on reconstructed AO Hamiltonians, the predicted bands are compared 
with the bands of the AO Hamiltonian, and results are shown in Fig. 2e. 
The absolute energy differences are as small as 0.30 and 2.22 meV for 
the highest valence band and the lowest conduction band, respectively, 
where errors are averaged along the high-symmetry k path Γ–K–M–Γ. 
This is remarkable considering that only small non-twisted structures 
are included in the training set.

Discussion
Our approach to reconstruct an AO Hamiltonian from PW DFT results 
facilitates deep learning electronic structure calculations based on 
PW DFT results and combines the advantages of the PW method and 
the deep learning approaches. One direct impact of our work is that 
it makes the deep learning electronic structure method applicable 
for those who are already familiar with the PW method but have less 
experience in AO DFT. Another promising future application of our 
method is to build universal deep learning models that can handle 
diverse families of materials and give accurate predictions of their 
electronic structure. The model can take advantage of the numerous 

materials databases that have already been set up. In fact, most of the 
materials databases of solids are built using the PW method, and they 
are thus made accessible through our reconstruction method. Moreo-
ver, the applicable scope of our method is not limited to PW DFT only. 
The spirit of the change of basis can also be generalized to apply to any 
kind of implementation of Kohn–Sham DFT and interface it with deep 
learning approaches. Further, the PW methods are even more widely 
used to implement advanced methods beyond the DFT level, such as 
the density functional perturbation theory to study electron–phonon 
interactions68, the many-body perturbation theory (such as GW and 
GW-BSE methods) and time-dependent DFT for excited-state phenom-
ena, and so on. Now, with our method to interface deep learning with PW 
methods, important generalizations of the deep learning approach to 
these advanced methods will become feasible in the foreseeable future.

Methods
Details of different ways to convert the PW Hamiltonian to the 
AO basis
The DFT Hamiltonian operator we are considering in this Brief Com-
munication is given as equation (4) in the main text. Here, we will 
explain the non-local part of the pseudopotential Vnloc(r, r′) = ⟨r| ̂Vnloc|r′⟩ 
in detail. It is constructed in a separable form known as the Kleinman 
and Bylander projectors69:

̂Vnloc = ∑
iαβ

|piα⟩Diαβ ⟨piβ|| , (6)

where the summation over atom sites i is carried out over all atoms in 
the whole BvK supercell, and this will apply to the remainder of this 
section unless otherwise stated. The projector function |piα〉 is centered 
at atom i and can be separated into radial and angular parts:

⟨r|piα⟩ = Rproj

inl (|ri|)Ylm( ̂ri), (7)

where ri ≡ r − Ri and Ri is the position of the ith atom. There could be 
multiple projector functions (labeled by n) sharing the same l and m. 
The matrix Diαβ is non-zero only for α = β and is not system dependent 
(that is, unchanged in different atomic environments) if we only focus 
on norm-conserving pseudopotentials70,71.

Here, we would like to discuss the locality of the Hamiltonian. The 
Hamiltonian in equation (4) is non-local (that is, it is non-zero when 
|r − r′| ≠ 0) because of the presence of the non-local projectors of the 
pseudopotential. However, the pseudopotential projector functions 
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Those obtained from diagonalization of the reconstructed AO Hamiltonian 
are compared with PW DFT results. c, The band structures obtained from the 
AO Hamiltonians constructed using three conversion methods are compared 
with each other, and the results are almost the same. d, Comparison of the 
computation times among different conversion methods when studying 

bilayer MoS2 structures including varying numbers of atoms per supercell. The 
computation times of PW self-consistent field iterations until convergence  
(PW SCF) are also displayed as a reference. The H(r) reconstruction method 
scales linearly with system size and is much faster than the other two methods.  
e, Band structure of the fully relaxed θ = 6.01° twisted bilayer MoS2 with 546 
atoms in the Moiré supercell. The neural-network-predicted band structure lies 
almost exactly on top of that diagonalized from the reconstructed Hamiltonian.
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|piα〉 are, by construction, highly localized around each nucleus. There-
fore, we would expect that the non-local part Vnloc(r, r′) is non-zero 
only within the core region. The nearsightedness of the Hamiltonian 
is closely related to its locality but is a different concept, which is dis-
cussed in Supplementary Section 2.

In practical DFT calculations, two common choices of basis func-
tions for expanding the Hamiltonians and wavefunctions are PWs 
and AOs. In the remainder of this section, we will first briefly review 
the forms of the Hamiltonian matrix under both kinds of basis set. 
Then, we will discuss in detail the three methods of transforming a PW 
Hamiltonian to the AO basis mentioned in the main text. Finally, we will 
discuss an extension of our method to the projector augmented-wave 
(PAW) formalism72,73. Details of the numerical techniques used to speed 
up the calculations are deferred to the next section.

PW Hamiltonian. The PW basis we are using here is normalized in the 
BvK supercell:

⟨r|k + G⟩ = 1

√NΩ
exp(i(k + G) ⋅ r). (8)

Under the PW representation, the Kohn–Sham equation is written as

∑
G′
(Hk(G,G′) − εnkδGG′ )ψnk(G′) = 0, (9)

where εnk is the Kohn–Sham eigenvalue, |ψnk〉 is the corresponding 
eigenstate, Hk(G,G′) = ⟨k + G| ̂H|k + G′⟩  is the PW Hamiltonian matrix 
and ψnk(G) = 〈k + G∣ψnk〉 is the wavefunction.

The Hamiltonian can be written under the PW basis56 as

Hk(G,G′) = 1
2
|k + G|2δGG′ + Veff(G − G′) + Vnloc,k(G,G′), (10)

where

Veff(G) =
1
Ω
∫

Ω

d
3r Veff(r) exp(−iG ⋅ r), (11)

and the integral is carried out within the primitive unit cell. Because 
Veff(r) is periodic over unit cells, it is convenient to discretize it on 
evenly spaced grid points in real space, and the Fourier transform can 
be efficiently calculated using the fast Fourier transform.

The last term in equation (10) is

Vnloc,k(G,G′) = ∑
iαβ
⟨k + G|piα⟩Diαβ⟨ piβ|k + G′⟩, (12)

where the Fourier transform 〈k + G∣piα〉 can be calculated efficiently 
using an algorithm described in the next subsection.

Finally, we would like to point out that the total effective local 
potential is the only term in equation (10) that is system dependent and 
needs to be obtained from self-consistent field iterations. The kinetic 
energy term is trivial, and the non-local pseudopotential term can be 
built from data read from the pseudopotential file. In practice, most of 
the PW DFT codes store the quantity Veff(G) or Veff(r) instead of the full 
Hamiltonian matrix, which substantially saves memory.

AO Hamiltonian. The AO basis functions are centered on atomic sites 
and are separated into radial and angular parts, similar to the projector 
function defined in equation (7):

⟨r|ϕiα⟩ = ϕiα(r) = Rinl(|ri|)Ylm( ̂ri), (13)

where the radial function Rinl(r) can, in principle, take any arbitrary 
form and still be compatible with our reconstruction method, which 
will be described in a later section. It only needs to be local, which 

means that it goes to zero after a certain cutoff radius. This degree of 
freedom allows us to systematically improve the quality of the recon-
structed AO Hamiltonian by customizing the AO basis using modern 
techniques such as a numerical AO basis59–62. The most important 
design principle of the AO basis is that it must be compatible with the 
pseudopotential used in the PW calculation, otherwise it is difficult 
for the reconstructed Hamiltonian to give an accurate description of 
the band structure.

The Kohn–Sham equation under the AO basis is written as

∑
jβ
(Hiα, jβ − εnkSiα, jβ)ψnk, jβ = 0, (14)

where Hiα, jβ = ⟨ϕiα| ̂H|ϕjβ⟩ is the Hamiltonian matrix, and Siα, jβ = 〈ϕiα∣ϕjβ〉 
is the overlap matrix. Notice that we have to include the overlap matrix 
here because the AO basis functions are typically not orthonormal.

Reconstruction of AO Hamiltonian. In the main text, two projection- 
based methods are discussed: the Hk(G, G′) projection method (equa-
tion (1)) and the ψnk(G) projection method (equation (2)). Both methods 
scale cubically with system size, and here we will discuss the scaling of 
these two methods in detail. Equation (1) involves summations over two 
G vectors, and the summations are performed over all AO pairs (iα, jβ).  
The number of G vectors is usually very large, and is proportional to the 
system size. The number of orbital pairs (iα, jβ) within a certain cutoff 
radius is also proportional to the system size. Thus the projection 
has a scaling of O(N3), where N is the number of atoms in the unit cell. 
According to our tests, the typical calculation time for equation (1) is 
sometimes longer than that for a full self-consistent DFT calculation. 
The second method, using equation (2), involves the evaluation of 
equation (3), which also scales as N3, because number of AOs, number 
of G vectors and number of wavefunctions are all proportional to sys-
tem size. Because equation (3) only involves one summation over G,  
this method is usually more efficient than the first one using equation (1).  
However, to converge the calculation of equation (2), we have to choose 
a relatively large n, which means we have to diagonalize the PW Hamil-
tonian for a large number of bands, including high-energy unoccupied 
bands that are typically not calculated by standard PW codes. There-
fore, neither of the methods above is satisfactory in terms of efficiency.

In the main text, an efficient method is proposed to calculate the 
AO Hamiltonian directly in real space as equation (5). It can also be 
written as

Hiα, jβ = ⟨ϕiα|−
1
2
∇2|ϕjβ⟩ +∫d

3rϕ∗
iα(r)Veff(r)ϕjβ(r)

+∑aγδ⟨ϕiα|paγ⟩Daγδ⟨paδ|ϕjβ⟩,
(15)

where the terms 〈ϕiα|−½∇2|ϕjβ〉 and 〈ϕiα∣paγ〉 can be calculated very 
efficiently using the two-center integral technique58, which will be 
described in the next subsection. The second term in the equation can 
be calculated directly on an evenly spaced real-space grid, and the 
integration region can be chosen such that both of the orbitals ϕiα(r) 
and ϕjβ(r) are non-zero in the integration region. The number of grid 
points involved in the integration thus does not depend on the over-
all system size. Therefore, the time required to evaluate the above 
formula scales linearly with the system size. Here, we would like to 
note that sometimes we can not directly obtain Veff(r) from a PW DFT 
code, but have to convert Veff(G) to real space using the inverse of 
equation (11). This involves the fast Fourier transform, which scales 
as O(N log N), but we only have to do it once, and the pre-factor is so 
small that the time is negligible when compared with those of other 
parts of the real-space reconstruction method, at least up to a few 
thousand atoms.

As pointed out before, Veff(r) or Veff(G) is the only term in the Ham-
iltonian that requires self-consistent field calculations. The quantities 
∣paγ〉 and Daγδ can be directly read from pseudopotential files. Therefore, 
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for any material structure we are interested in, we only need to calculate 
Veff(r) with the PW DFT codes to use equation (5) to construct the AO 
Hamiltonian. Obtaining this quantity is also convenient because most 
PW DFT codes directly store Veff(r) or Veff(G) in memory.

Extension to the PAW method. Under the PAW formalism72,73, the 
all-electron wavefunction |Ψ〉 is connected to the smooth pseudo- 
wavefunction ||Ψ̃⟩ by a linear transformation: |Ψ⟩ = 𝒯𝒯 ||Ψ̃⟩ . Since the 
wavefunctions are changed by a linear transformation, any operator 
̂A in the PAW formalism is also changed according to the rule ̃A = 𝒯𝒯† ̂A𝒯𝒯. 

The Kohn–Sham equation still takes the same form:

(H̃ − εnk ̃S) ||ψ̃nk⟩ = 0, (16)

where the Hamiltonian operator is

H̃(r, r′) = (− 1
2
∇2 + ̃Veff(r))δ(r − r′) + ̃Vnloc(r, r′), (17)

with

̃Vnloc = ∑
iαβ

|| ̃piα⟩ D̃iαβ ⟨ ̃piβ|| , (18)

and the overlap operator is

̃S = 1 +∑
iαβ

|| ̃piα⟩ Q̃iαβ ⟨ ̃piβ|| . (19)

Comparing equations (4) and (6) with equations (17) and (18), we 
can see that the PAW Hamiltonian takes exactly the same form as in  
the case where the norm-conserving pseudopotential is used, so  
equation (15) can still be used. The process of evaluating the terms in 
equation (17) will be different for the DFT codes, but this is beyond the 
scope of this Brief Communication. The only thing we have to be careful 
of here is that the matrix D̃iαβ is now system dependent and needs to be 
obtained self-consistently. Thus, apart from obtaining ̃Veff(r), we also 
need the matrix D̃iαβ from the DFT code when we convert the PW Ham-
iltonian to the AO basis.

Numerical techniques
Fourier transform of orbitals. Here we consider the Fourier transform 
of orbitals that can be separated into radial and angular parts: 
ϕiα(r) = Rinl(|r|)Ylm( ̂r). This will be useful when computing the Fourier 
transform of projector functions 〈k + G∣piα〉 or AOs 〈k + G∣ϕiα〉. Using 
the identity

eik⋅r = 4π
∞
∑
l=0

l
∑
m=−l

iljl(kr)Ylm(k̂)Y∗lm( ̂r), (20)

where r ≡ |r|, k ≡ |k|, ̂r ≡ r/r, k̂ ≡ k/k and jl is the spherical Bessel function 
of order l, we can rewrite the Fourier transform as

ϕiα(k) ≡ ∫d
3r e−ik⋅rϕiα(r) = (−i)lRinl(|k|)Ylm(k̂), (21)

where the radial part can be obtained using a spherical Bessel 
transformation

Rinl(k) = 4π∫
∞

0

dr r2jl(kr)Rinl(r). (22)

In practice, Rinl(k) can be computed on a radial grid up to certain energy 
cutoff. Then all three-dimensional Fourier transforms of the orbital 
can be calculated easily and very efficiently using spline interpola-
tion. If the orbital is not centered at the origin, we only need to add an 
additional phase factor.

It is also worth mentioning the inverse transformation here:

Rinl(r) =
1

2π2
∫

∞

0

dk k2jl(kr)Rinl(k). (23)

Two-center integrals. Integrals of the product of two orbitals centered 
at two different positions are used frequently in AO calculations. Here 
we discuss a very efficient way to calculate this kind of integral, follow-
ing Sankey and Niklewski58. Consider two orbitals ϕiα(r) and ϕjβ(r) with 
α = (n1l1m1), β = (n2l2m2); their overlap integral is defined as

S(R) ≡ ∫d
3rϕ∗

iα(r)ϕjβ(r − R). (24)

This integral in real space can be converted to the integral in Fourier 
space:

S(R) = ∫ d
3k

(2π)3
ϕ∗
iα(k)ϕjβ(k)e

−ik⋅R. (25)

Plugging in equations (20) and (21), we have

S(R) =
2lmax

∑
l=0

l
∑
m=−l

Gl1m1 ,l2m2 ,lmSl(|R|)Ylm(R̂), (26)

with lmax = max{l1, l2}, Gaunt coefficients Gl1m1 ,l2m2 ,lm defined as

Gl1m1 ,l2m2 ,lm = ∫
π

0

sinθdθ∫
2π

0

dφY∗l1m1
(θ,φ)Yl2m2

(θ,φ)Y∗lm(θ,φ), (27)

and

Sl(R) =
il1−l2−l
2π2

∫
∞

0

dk k2jl(kR)R∗in1 l1 (k)Rjn2 l2 (k). (28)

In our calculations, Sl(R) is computed on a radial grid, so that all 
overlap integrals S(R) can be computed very efficiently using spline 
interpolation.

The above technique can be extended to calculate kinetic matrix 
elements

T(R) ≡ ∫d
3rϕ∗

iα(r)(−
1
2
∇2)ϕjβ(r − R), (29)

with slight modifications to equation (28):

Tl(R) =
il1−l2−l
4π2

∫
∞

0

dk k4jl(kR)R∗in1 l1 (k)Rjn2 l2 (k). (30)

Preparation of datasets
Bilayer graphene dataset. The structures in the training set are the 
same as those used in ref. 33. There are 300 bilayer graphene 4 × 4 
supercells with different interlayer stackings and random perturba-
tions to atomic positions. The perturbations are uniformly distributed 
within ±0.1 Å along three Cartesian directions. The interlayer distance 
follows a normal distribution with mean 3.41 Å and s.d. 0.05 Å. The 
thickness of the unit cell along the non-periodic direction is chosen 
to be 20 Å. The PW DFT calculations are performed using the Perdew–
Burke–Ernzerhof functional74 with the Quantum ESPRESSO package63 
and norm-conserving Vanderbilt pseudopotential64. Energy cutoffs are 
80 Ry for the wavefunctions and 320 Ry for the charge density. A 3 × 3 
grid is used for the k sampling of the supercell. The double-zeta plus 
polarization (DZP) basis for the carbon atom with nodes is generated 
using SIESTA59, which includes two orbitals in the 2s shell, two orbitals in 
the 2p shell and one orbital in the 3d shell polarized from the 2p orbital.
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Bilayer MoS2. PW DFT simulations are all performed with the Quantum 
ESPRESSO package using the Perdew–Burke–Ernzerhof functional 
with wavefunction cutoff 60 Ry and charge density cutoff 240 Ry. The 
unit cell is calculated using a 6 × 6 k sampling, and the mesh sizes are 
reduced for the supercells corresponding to the supercell sizes. The 
thickness of the unit cell along the non-periodic direction is chosen to 
be 20 Å. There are 256 3 × 3 supercells in the training set with different 
interlayer stackings and random perturbations to atomic positions. 
The perturbations are uniformly distributed within ±0.1 Å along three 
Cartesian directions. The average distance between the two Mo layers 
is 6.49 Å and the s.d. is 0.05 Å. The twisted structures are relaxed using 
the Perdew–Burke–Ernzerhof functional plus van der Waals interaction 
energy corrected using the DFT-D3 method75. The AOs are the standard 
split-norm DZP basis for Mo and S atoms generated by SIESTA. The 
orbitals for the Mo atom include one orbital in the 4s shell, one orbital 
in the 4p shell, two orbitals in the 4d shell, two orbitals in the 5s shell 
and one orbital in the 5p shell polarized from the 5s shell. The orbitals 
for the S atom include two orbitals in the 3s shell, two orbitals in the 3p 
shell and one orbital in the 3d shell polarized from the 3p orbital. One 
additional diffusion orbital in the 4s shell with cutoff distance 8.0 a.u. 
is added to the S atom to capture the interlayer hybridization.

Reconstruction from PW Hamiltonian to AO basis. The cutoffs for 
equation (5) of the two-center integrals are taken to be the same as 
the wavefunction cutoff used in the PW calculations. The sizes of the 
real-space grid for the real-space integrals in equation (5) are also 
taken to be the same as the size of the fast Fourier transform grid in 
the PW calculations. These are the same for all calculations in this Brief 
Communication.

Data availability
The data used in the current study are available at Zenodo76. PW DFT 
calculations in this study are performed with the Quantum ESPRESSO 
package (https://www.quantum-espresso.org/). AO basis functions 
are generated using the SIESTA package (https://siesta-project.org/
siesta/index.html). Source Data for Figures 1 and 2 are available with 
this manuscript.

Code availability
The source code used in the current study is available at Zenodo77, at 
GitHub (https://github.com/Xiaoxun-Gong/HPRO) and as Supplemen-
tary Software along with the manuscript. A demo of how to use it is also 
provided alongside the code.
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