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Deep neural networks capable of representing the density functional theory
(DFT) Hamiltonian as a function of material structure hold great promise for
revolutionizing future electronic structure calculations. However, anotable
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limitation of previous neural networks is their compatibility solely with
the atomic-orbital (AO) basis, excluding the widely used plane-wave (PW)
basis. Here we overcome this critical limitation by proposing anaccurate
and efficient real-space reconstruction method for directly computing
AO Hamiltonian matrices from PW DFT results. The reconstruction
method is orders of magnitude faster than traditional projection-based
methods to convert PW results to the AO basis, and the reconstructed
Hamiltonian matrices can faithfully reproduce the PW electronic structure,
thus bridging the longstanding gap between the AO basis deep learning
electronic structure approach and PW DFT. Advantages of the PW
methods, such as high accuracy, high flexibility and wide applicability,
thus canbe allintegrated into deep learning electronic structure methods
without sacrificing these methods’ inherent benefits. This allows for the
construction of large-scale and high-fidelity training datasets with the
help of PW DFT results towards the development of precise and broadly
applicable deep learning electronic structure models.

Recent years have witnessed remarkable progress in the field of ab
initio computation in combination with artificial intelligence'*. For
instance, neural-network force fields can facilitate ab initio molecular
dynamics simulations at large length and time scales’® and have become
almost indispensable in molecular dynamics simulations nowadays.
There are also numerous deep learning models for studying various
material properties'® ™, Recently, fruitful progress has been achieved
inthe generalization of deep learning methods from atomic structure
calculations to electronic structure calculations. For instance, machine
learning offers a pathway for designing accurate density functionals ™'
as well as for predicting electronic properties, such as charge density
and local density of states'*'. Deep learning methods have also been
proposed tobypass the iterative solution of the Kohn-Sham equation of

density functional theory (DFT) by directly predicting the converged
DFT Hamiltonian under the atomic-orbital (AO) basis* *. All these meth-
ods substantially expand the scope of theoretical and computational
materials research towards unprecedented accuracy and efficiency.
When compared with other approaches, the deep learning DFT
Hamiltonian method has several benefits****. First, eigenvalues and
wavefunctions canbe easily obtained from aone-shot diagonalization
of the predicted sparse AO Hamiltonian matrix, from which all the
DFT-based physical properties of materials can be derived. Further-
more, the method scales linearly with system size, and can be trained
by DFT results for small-size structures and generalize to study
unseen large-size structures with ab initio accuracy. The reason for
these propertiesis that the AO Hamiltonian is alocal and nearsighted
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Fig.1|Idea of the deep learning DFT Hamiltonian under the PW basis and its
applications to twisted bilayer graphene. a, The PW basis offers high accuracy
and flexibility, but deep learning electronic structure calculation methods
require local basis sets. With the reconstruction method, local AO Hamiltonians
arereconstructed from PW DFT output, thus deep learning methods are now able
tointerface with PW DFT. b, Practical workflow of the method. PW DFT results on
aset of small, non-twisted structures are used to reconstruct Hamiltonians under
the AO basis. A neural network trained on these reconstructed Hamiltonians
canthen be generalized to predict the Hamiltonians of large, twisted structures.
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¢, Band structures of a perturbed 4 x 4 graphene supercellin the training set.
Those obtained from diagonalization of the reconstructed AO Hamiltonian are
compared with the PW DFT results. d, Band structure of twisted bilayer graphene
atthe magic twist angle 8 =1.08° with 11,164 atoms in the Moiré supercell. The
bands labeled PW-NN correspond to those predicted by the neural network
trained on Hamiltonians reconstructed from PW DFT results, and those labeled
AO-NN correspond to the prediction of the neural network trained on AO DFT
results fromref. 34. PW DFT results are fromref. 67.

physical quantity, which can be determined only by its nearby atomic
environment*** (also see Supplementary Sections 1and 2). Thus,
methods ofthiskind can be designed to break the accuracy-efficiency
dilemmainelectronic structure simulations and are particularly useful
for large-scale material simulations that would otherwise demand for-
midable computational resources. Similar to the role neural-network
force fields are playing in today’s molecular dynamics simulations, it
is highly possible that future electronic structure simulations will also
be primarily based on deep learning models of the DFT Hamiltonian.

However, the deep learning DFT Hamiltonian method faces a
critical issue related to basis functions. The Hamiltonian is aquantum
mechanical operator, which canbe expressed as a matrix ifaparticular
basis set is chosen. Commonly used basis sets in DFT are plane waves
(PWs) and AOs. Up to now, all neural-network methods for DFT Ham-
iltonians only support the AO basis, because PWs are spread over the
entire space (Fig.1a) and will destroy the aforementioned locality prop-
erty. Nevertheless, PW-based methods usually offer higher accuracy
than those using AOs because the PW basis can usually achieve fuller
completeness and is also easier to converge. It is also favorable over the
AObasisinterms of its simplicity and flexibility. In fact, the majority of
DFT calculations for solids are done using the PW basis. In this context,
generalizing deep learning electronic structure calculation to the PW
basiswould be of criticalimportance to future development of the field.

In this work, we propose a real-space reconstruction method to
reconstruct AO Hamiltonians based on PW DFT results. It is orders of
magnitude faster than the traditional method of directly projecting
the PW Hamiltonian or wavefunctions. Moreover, we show that the
AO Hamiltonians generated using our method not only can faithfully
reproduce the PW electronic structure but also can be very easily
learned by neural-network models. Thus, the critical problem of the
deep learning DFT Hamiltonian under the PW basis is solved (Fig. 1a).
The high accuracy and efficiency of our method is beneficial for the
construction of more versatile and accurate deep learning electronic
structure calculation methods, which not only makes them accessible
to a much broader scientific community, but also greatly enhances
their suitability for general applications.

Results and discussion

Theory

The PW Hamiltonian and the AO Hamiltonian are actually the same
physical quantity expressed under different basis sets. In principle,

once we have the PW Hamiltonian Hy (G, G’) = (k + G|H|k + G'), wecan
always obtain the corresponding AO Hamiltonian H;, j5 = (@:|H|9;5)
by achange of basis, which canthenbe flexibly learned by current neu-
ral networks for AO Hamiltonians. However, there are several different
ways of doing this. In Supplementary Section 3, we present a detailed
review of the possible methods from literature as well as previous
attempts at deep learning electronic structure calculation under the
PW basis. Here we will briefly discuss three methods to convert PW
Hamiltonians to the AO basis, and more details can be found in Methods.

We would naturally think of using the projection method, which
iswidely used to bridge the gap between PWsand AOs. The projection
method was initially developed to evaluate the quality of the AO basis
set**"*8and has been adapted for various purposes, such as to analyze
charge distribution and to interpret chemical bonding*’~>. The projec-
tion method can also be modified to directly convert a Hamiltonian
from the PW basis to the AO basis:

Higjg = Y. (Pialk + G)Hy(G, G XK + G'|@jp). o)
kGG’

Here the PW basis is normalized in the Born-von Karman (BvK)
supercell: (r|k + G) = exp(i(k + G) - r)/\/m, where k is a wavevector
inthefirstBrillouinzone, Gisareciprocallattice vector, Nis the number
of primitive unit cells forming the BvK supercell and Qis the volume of
the primitive unit cell. The AO basis function |¢,,) is centered at atom
i. There could be multiple basis functions (labeled by n) sharing the
same angular momentum quantum number /and magnetic quantum
number m. The index a is an abbreviation for n, [, m. Equation (1) will
be referred to as the H, (G, G’) projection method in this Brief
Communication.

If the eigenvalues ¢, and wavefunctions |¢,,) of the PW Hamilto-
nian are obtained, equation (1) can be further written as

Hig,jg = D @ial Wni)Eni{ Wk | jp)» )
nk
where
(Pial®ni) = D (Pialk + GXK + Gty €)
G

Inthis Brief Communication equation (2) will be referred to as the ¢, (G)
projection method.
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Although equations (1) and (2) offer straightforward ways of
converting PW Hamiltonians to the AO basis, they suffer from low
computational efficiency, and the reasons are as follows. Equation (1)
involves two multiplications and summations over G, and the number
of Gvectorsisusually very large. Equation (2) requires alarge number
of Blochwavefunctions to converge. Moreover, they all scale cubically
with respect to the number of atoms in the system (Methods), which
limits their scope of applications.

Infact, we canleverage locality in real space to considerably speed
up the calculation. The Hamiltonian H(r,r') = (r|H|r’') in real space
under atomic units is**’

H(r,r') = —%Vzé‘(r — 1)+ [Vigar(®) + Vie (1) + Vi (D]6(r — 1) @

+ anoc(n r,)’

where the various terms correspond to the kinetic energy, the Hartree
potential, the exchange-correlation potential and the local and
non-local parts of the pseudopotential, respectively. In this Brief Com-
municationwe are only considering semilocal functionals for exchange
and correlation. The three termsin the square bracket will be referred
to as the total effective local potential: V g (r) = Viy, (r) + Vi (r) + Vo (1),
which is periodic over unit cells. Usually, PW DFT programs directly
store V,(r) or its Fourier transform V,4(G) in memory, and
Vatoc(, 1) = (F|Vi0c|¥’) can be read from pseudopotential files. Once
we have H(r, r’), we can calculate the AO Hamiltonian directly in real
space as follows:

Hiy jp = <¢ia|_%vzl¢jﬂ> + / d3r¢fa(r)Veﬁ(r)¢jp(l') + (Pial Valoc [9j5)-
(5)

whichwillbereferredtoasthe real-spacereconstruction methodinthis
Brief Communication. The first and last terms can be very efficiently
calculated using two-center integral techniques®® (also see Methods).
The most time-consuming part is the evaluation of the second termin
the equation, whichisintegrated directly onan evenly spaced real-space
grid.Since the AOs arelocal inreal space, the integration region canbe
chosensuchthatboth of the orbitals ¢,,(r) and ¢,(r) are non-zero. The
number of grid pointsinvolvedin theintegration thus does notdepend
onthe overall systemsize. Therefore, the time required to evaluate the
above formulais proportional to the number of non-zero AO Hamiltonian
matrix elements, which scales linearly with the number of atomsin the
system. Although they are theoretically equivalent and will yield the same
results when converged, the proposedreal-space reconstruction method
ismuch more efficient than the first two projection-based methods.

It is worth noticing that none of the three methods described in
this Brief Communication depend on the specific form of the AO basis
functions. They only need to be separable into radial and angular parts,
and theradial function needs to go to zero after a certain cutoffradius.
This degree of freedom allows us to systematically improve the qual-
ity of the reconstructed AO Hamiltonian by customizing the AO basis
using modern techniques such as a numerical AO basis*’"*%. The most
important design principle of the AO basis is that it must be compat-
ible with the pseudopotentials used in the PW calculation, otherwise
it is difficult for the reconstructed Hamiltonian to give an accurate
description of the band structure.

Application to twisted bilayer graphene

Thereal-space reconstruction method provides avery efficient way to
calculate the Hamiltonian under an AO basis set from PW DFT results.
The resulting AO Hamiltonian not only can accurately reproduce the
PW electronic structure, but also can be learned by neural networks,
thus enabling deep learning electronic structure calculations under the
PW basis. The effectiveness of this workflow depends on two factors:
the quality of the reconstructed AO Hamiltonian, and the compatibility

ofthe reconstructed Hamiltonian with deep learning methods. In our
tests, the first is measured by comparison of the band structures of
the AO Hamiltonian with those from direct PW DFT calculations. The
second can be evaluated through checking the quality of the band struc-
ture predicted by the neural networks that learn from reconstructed
AO Hamiltonians. Inall calculations reported in this Brief Communica-
tion, PW DFT calculations are performed with the Quantum ESPRESSO
package® using norm-conserving pseudopotentials®*. The results of
these PW calculations are used to reconstruct AO Hamiltonians, where
the AO basisis the numerical AOs generated using the SIESTA code®’ for
the same set of pseudopotentials. Details of the convergence tests we
have performed on the effect of the sizes of AO basis sets can be found
inSupplementary Section 4.

The most remarkable capability of the deep learning DFT Hamil-
tonian method is that neural-network models can be trained on small
structures and generalized to predict the Hamiltonians of much larger
structures. Inthe study of bilayer graphene, the training set consists of
3004 x 4 bilayer graphene supercells with different stackings and ran-
dom perturbation of each atom site. After we train the neural-network
model on the reconstructed AO Hamiltonians from PW DFT results
(Fig. 1b), we can use the model to systematically study Moiré twisted
superstructures with arbitrary twist angle. We first benchmark the
reconstructed Hamiltonian on one of the structures in the training
set by plotting its band structure alongside those calculated using
PWs. AsshowninFig. 1c, the two band structures agree very well. After
training the neural-network model, we use it to study the well-known
‘magic-angle’ twisted bilayer graphene at 8 =1.08° with 11,164 atomsin
aMoiré supercell. This systemis of substantial interest to researchers
because of the discovery of a series of correlated phenomena®®¢, but is
particularly challenging for electronic structure calculations because of
itslarge systemsize and large-scale corrugation patterns. However, with
the deep learning DFT Hamiltonian method available, the computa-
tional cost canbe greatly reduced* (also see Supplementary Section 5).
AsillustratedinFig. 1d, the neural network trained on the reconstructed
AO Hamiltonian manages to give very accurate predictions when
compared with the PW DFT benchmark®, with an error of only a few
millielectronvolts. Moreover, when the neural network is trained on
reconstructed AO Hamiltonians from PW DFT output, the predicted
band structure (PW-NN in Fig. 1d) has better agreement with the PW
DFT results by Lucignano et al.”” compared to the case where the neural
network is trained on Hamiltonians calculated by AO DFT** (AO-NNin
Fig. 1d). This shows that the deep learning Hamiltonian interfaced to
PW DFT canindeed give results that have higher accuracy. This high
accuracy, when combined with the flexibility and wide applicability of
the PW method, will greatly enhance the capability of deep learning
abinitio calculations and will be highly beneficial for future research.

Application to bilayer MoS2
Thethree previously discussed methods to obtain the AO Hamiltonian
from PW DFT results are equivalent when converged, but the real-space
reconstruction method (equation (5)) is the most efficient. Here we
compare these three methodsin the study of the bilayer MoS, system
(Fig.2a). First we tested the reconstruction method on the AB-stacked
bilayer unit cell consisting of six atoms, and the band structures
obtained from the reconstructed AO Hamiltonian agree well with PW
DFT results (Fig. 2b). We then plot the band structures given by the
three different methods, and the results are shownin Fig.2c. They are
almost the same, except that the band structure given by the ¢,,(G)
projection method s slightly different from the other two because we
are only using a finite number of bands in evaluation of equation (2).
We further compared the computation times of the three methods.
The systems we have studied here are bilayer MoS, structures with dif-
ferent numbers of atoms (unit cell with 6 atoms, 3 x 3 supercell with 54
atoms and Moiré twisted bilayer MoS, at 6 =13.17° and 9.43° with 114
and 222 atoms). The CPU times are shownin Fig. 2d along with the time
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Fig. 2| Application of the deep learning DFT Hamiltonian under the PW
basis to study twisted bilayer MoS,. a, Schematicillustration of bilayer MoS,
with AB stacking. b, Band structures of the AB-stacked bilayer MoS, unit cell.
Those obtained from diagonalization of the reconstructed AO Hamiltonian
are compared with PW DFT results. ¢, The band structures obtained from the
AO Hamiltonians constructed using three conversion methods are compared
with each other, and the results are almost the same. d, Comparison of the
computation times among different conversion methods when studying

bilayer MoS, structures including varying numbers of atoms per supercell. The
computation times of PW self-consistent field iterations until convergence
(PWSCF) are also displayed as a reference. The H(r) reconstruction method
scales linearly with system size and is much faster than the other two methods.
e, Band structure of the fully relaxed 6 = 6.01° twisted bilayer MoS, with 546
atoms in the Moiré supercell. The neural-network-predicted band structure lies
almost exactly on top of that diagonalized from the reconstructed Hamiltonian.

for PW self-consistent field calculation. Note that the time of diagonali-
zation for PW wavefunctions for the ¢, (G) projection method is also
included in the total CPU time for that method. As expected, the two
projection-based methods show roughly cubic scaling. They are even
more time consuming than the full self-consistent field calculation.
Conversely, thanks to the locality of the AO basis, the real-space recon-
struction method achieves linear scaling and can be several orders of
magnitude faster than the projection methods. This acceleration will
become more prominent when we investigate large-size materials.
Therefore, our method will be essential when we want to construct
large-scale training sets including various kinds of material and struc-
tures of different sizes to train accurate and versatile neural-network
models, whereas the projection methods would not be affordable for
this purpose in terms of computational cost.

Now, we follow the same workflow as illustrated in Fig. 1b and
test the performance of the neural network on bilayer MoS,, which is
a more challenging material system than bilayer graphene. PW DFT
calculations are performed on 256 non-twisted 3 x 3 supercells of
bilayer MoS, with different stacking configurations and random per-
turbations of each atomsite, and the neural-network modelis trained
onthereconstructed AO Hamiltonians. We test the generalizability of
the neural network to afully relaxed 8 = 6.01° twisted bilayer MoS, with
546 atoms in the Moiré supercell. Since the neural network is trained
onreconstructed AO Hamiltonians, the predicted bands are compared
with the bands of the AO Hamiltonian, and results are shownin Fig. 2e.
The absolute energy differences are as small as 0.30 and 2.22 meV for
the highest valence band and the lowest conductionband, respectively,
where errors are averaged along the high-symmetry k path '-K-M-T.
Thisisremarkable considering that only small non-twisted structures
areincludedinthe training set.

Discussion

Our approachtoreconstructan AO Hamiltonian from PW DFT results
facilitates deep learning electronic structure calculations based on
PW DFT results and combines the advantages of the PW method and
the deep learning approaches. One direct impact of our work is that
it makes the deep learning electronic structure method applicable
for those who are already familiar with the PW method but have less
experience in AO DFT. Another promising future application of our
method is to build universal deep learning models that can handle
diverse families of materials and give accurate predictions of their
electronic structure. The model can take advantage of the numerous

materials databases that have already been set up. In fact, most of the
materials databases of solids are built using the PW method, and they
arethus made accessible through our reconstruction method. Moreo-
ver, the applicable scope of our method is not limited to PW DFT only.
The spirit of the change of basis can also be generalized to apply to any
kind ofimplementation of Kohn-Sham DFT and interface it with deep
learning approaches. Further, the PW methods are even more widely
used to implement advanced methods beyond the DFT level, such as
the density functional perturbation theory to study electron-phonon
interactions®®, the many-body perturbation theory (such as GW and
GW-BSE methods) and time-dependent DFT for excited-state phenom-
ena,and so on. Now, withour method tointerface deep learning with PW
methods, important generalizations of the deep learning approachto
these advanced methods will become feasibleinthe foreseeable future.

Methods
Details of different ways to convert the PW Hamiltonian to the
AO basis
The DFT Hamiltonian operator we are considering in this Brief Com-
munication is given as equation (4) in the main text. Here, we will
explain the non-local part of the pseudopotential Voo (r, ¥') = (¥|Vyjoc|t')
in detail. It is constructed in a separable form known as the Kleinman
and Bylander projectors®’:

Vatoe = 2. 1Pia} Dias (Pis

iaf

(6)

where the summation over atom sites i is carried out over allatoms in
the whole BvK supercell, and this will apply to the remainder of this
section unless otherwise stated. The projector function |p,,) is centered
atatomiand can be separated into radial and angular parts:

(Flpi) = RO

(r:DYim(F2), 7)
where r;=r - R;and R, is the position of the ith atom. There could be
multiple projector functions (labeled by n) sharing the same /and m.
The matrix D,,zis non-zero only for « = fand is not system dependent
(thatis, unchanged in different atomic environments) if we only focus
onnorm-conserving pseudopotentials’®”.,

Here, we would like to discuss the locality of the Hamiltonian. The
Hamiltonian in equation (4) is non-local (that is, it is non-zero when
[r —r’| 2 0) because of the presence of the non-local projectors of the
pseudopotential. However, the pseudopotential projector functions
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|pi.) are, by construction, highly localized around each nucleus. There-
fore, we would expect that the non-local part V,,.(r, ') is non-zero
only within the core region. The nearsightedness of the Hamiltonian
is closely related to its locality but is a different concept, which is dis-
cussed in Supplementary Section 2.

Inpractical DFT calculations, two common choices of basis func-
tions for expanding the Hamiltonians and wavefunctions are PWs
and AOs. In the remainder of this section, we will first briefly review
the forms of the Hamiltonian matrix under both kinds of basis set.
Then, we will discuss in detail the three methods of transforming a PW
Hamiltonian to the AO basis mentioned in the main text. Finally, we will
discuss an extension of our method to the projector augmented-wave
(PAW) formalism’>”*, Details of the numerical techniques used to speed
up the calculations are deferred to the next section.

PW Hamiltonian. The PW basis we are using here is normalized in the
BvK supercell:

(rlkk+ G) =

1 exp(i(k + G) - 1). (8)
2

Under the PW representation, the Kohn-Sham equation is written as

2 (H(G,G) — eubee )¥ulG) = O, ©
G

where g, is the Kohn-Sham eigenvalue, |¢,, ) is the corresponding
eigenstate, H(G,G') = (k + G|H|k + G') is the PW Hamiltonian matrix
and ¢, (G) = (k + Gly,,) is the wavefunction.

The Hamiltonian can be written under the PW basis® as

1
Hy(G,G") = §|k +G[26¢6 + Ver(G — G') + Vioc k (G, G), (10)

where
Verl©) = & / A r V(1) exp(~iG - 1), a
(93

and the integral is carried out within the primitive unit cell. Because
V.«(r) is periodic over unit cells, it is convenient to discretize it on
evenly spaced grid pointsinreal space, and the Fourier transform can
be efficiently calculated using the fast Fourier transform.

Thelast terminequation (10) is

Vatoe k(6. 6) = Y (K + G|pia)Diap( piplk + G'), 12)

iaf

where the Fourier transform (k + Glp,,) can be calculated efficiently
using an algorithm described in the next subsection.

Finally, we would like to point out that the total effective local
potentialis the only terminequation (10) thatis system dependent and
needsto be obtained from self-consistent field iterations. The kinetic
energy termis trivial, and the non-local pseudopotential term can be
built from dataread from the pseudopotentialfile. In practice, most of
the PWDFT codes store the quantity V,(G) or V,«(r) instead of the full
Hamiltonian matrix, which substantially saves memory.

AO Hamiltonian. The AO basis functions are centered on atomic sites
and are separatedintoradial and angular parts, similar to the projector
function defined in equation (7):

F1@ia) = Pia(1) = Riny([t; )Yy (F1), (13)
where the radial function R;,(r) can, in principle, take any arbitrary

form and still be compatible with our reconstruction method, which
will be described in a later section. It only needs to be local, which

means that it goes to zero after a certain cutoff radius. This degree of
freedom allows us to systematically improve the quality of the recon-
structed AO Hamiltonian by customizing the AO basis using modern
techniques such as a numerical AO basis® %% The most important
design principle of the AO basis is that it must be compatible with the
pseudopotential used in the PW calculation, otherwise it is difficult
for the reconstructed Hamiltonian to give an accurate description of
the band structure.
The Kohn-Sham equation under the AO basis is written as

> (Hia, jg — EnkSia, jg) ¥k, jg = 0, (14)
JB

where Hi,, js = (@i,|H9;s) is the Hamiltonian matrix, and S, ;5= (@il @)
isthe overlap matrix. Notice that we have to include the overlap matrix
here because the AO basis functions are typically not orthonormal.

Reconstruction of AO Hamiltonian. In the main text, two projection-
based methods are discussed: the H,(G, G’) projection method (equa-
tion (1)) and the ¢, (G) projection method (equation (2)). Bothmethods
scale cubically with system size, and here we will discuss the scaling of
these two methodsin detail. Equation (1) involves summations over two
Gvectors, and the summations are performed over all AO pairs (ia, jf).
Thenumber of Gvectorsis usually very large, and is proportional tothe
system size. The number of orbital pairs (ia,j#) within a certain cutoff
radius is also proportional to the system size. Thus the projection
has a scaling of O(N®), where Nis the number of atoms in the unit cell.
According to our tests, the typical calculation time for equation (1) is
sometimes longer than that for a full self-consistent DFT calculation.
The second method, using equation (2), involves the evaluation of
equation (3), which also scales as A%, because number of AOs, number
of G vectors and number of wavefunctions are all proportional to sys-
tem size. Because equation (3) only involves one summation over G,
thismethodis usually moreefficient than the first one using equation (1).
However, to converge the calculation of equation (2), we have to choose
arelatively large n, which means we have to diagonalize the PW Hamil-
tonian for alarge number of bands, including high-energy unoccupied
bands that are typically not calculated by standard PW codes. There-
fore, neither of the methods above is satisfactory in terms of efficiency.

In the main text, an efficient method is proposed to calculate the
AO Hamiltonian directly in real space as equation (5). It can also be
written as

Hiq,jp = <¢ia|_%vzl¢jﬂ> + / d3’¢fa(l‘)Vefr(l‘)¢jp(l‘) 15)

+ Zay§<¢iu |pay>Day6<pa6 ‘ ¢j[5>s

where the terms (@,,|-V2V?|¢;5) and (¢,,Ip,,) can be calculated very
efficiently using the two-center integral technique’®, which will be
describedin the nextsubsection. The second termin the equation can
be calculated directly on an evenly spaced real-space grid, and the
integration region can be chosen such that both of the orbitals ¢,,(r)
and @,,(r) are non-zero in the integration region. The number of grid
pointsinvolved in the integration thus does not depend on the over-
all system size. Therefore, the time required to evaluate the above
formula scales linearly with the system size. Here, we would like to
note that sometimes we can not directly obtain V «(r) fromaPW DFT
code, but have to convert V.4(G) to real space using the inverse of
equation (11). This involves the fast Fourier transform, which scales
as O(Nlog N), but we only have to do it once, and the pre-factor is so
small that the time is negligible when compared with those of other
parts of the real-space reconstruction method, at least up to a few
thousand atoms.

Aspointed out before, V,«(r) or V,(G) isthe only termin the Ham-
iltonian that requires self-consistent field calculations. The quantities
Ipy,) and D, s canbe directly read from pseudopotentialfiles. Therefore,
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forany material structure we are interested in, we only need to calculate
V,(r) with the PW DFT codes to use equation (5) to construct the AO
Hamiltonian. Obtaining this quantity is also convenient because most
PWDFT codes directly store V«(r) or V,(G) in memory.

Extension to the PAW method. Under the PAW formalism’”, the
all-electron wavefunction |¥) is connected to the smooth pseudo-
wavefunction |¥) by a linear transformation: |W) = 7 |¥). Since the
wavefunctions are changed by a linear transformation, any operator
Ainthe PAW formalismis also changed accordingtotherule 4 = 77A7.
The Kohn-Sham equation still takes the same form:

(H — £uS) [dpy) = O, (16)
where the Hamiltonian operator is
H(r,¥') = (—%VZ + Veﬁ(r)> S0 —1') + Vyoe(1, 1), (17)
with
l~/nloc = 2 |p~[a>Diaﬂ <ﬁ,‘ﬂ| B (18)
iaf
and the overlap operator is
(19)

S=1+ Z |Pia) Qiaﬁ <’5iﬂ| .
ioaf

Comparingequations (4) and (6) with equations (17) and (18), we
can see that the PAW Hamiltonian takes exactly the same form as in
the case where the norm-conserving pseudopotential is used, so
equation (15) can still be used. The process of evaluating the terms in
equation (17) will be different for the DFT codes, but thisis beyond the
scope of this Brief Communication. The only thing we have to be careful
of hereis that the matrix D, is now system dependentand needs tobe
obtained self-consistently. Thus, apart from obtaining V.z(r), we also
need the matrix D;,s fromthe DFT code when we convert the PW Ham-
iltonian to the AO basis.

Numerical techniques

Fourier transform of orbitals. Here we consider the Fourier transform
of orbitals that can be separated into radial and angular parts:
Pia(®) = Ri([¥])Yin(®). This will be useful when computing the Fourier
transform of projector functions (k + Glp,) or AOs (k + Glg,,). Using
theidentity

o
ekt =4m Yy > dykn)Ym )Y (@), (20)

=0 m=-1

wherer = |r|, k = K|, # = r/r,k = k/kand}j,is the spherical Bessel function
of order [, we canrewrite the Fourier transform as

Pk = f Pre e, () = (<) Ruu(KDYim(K). @

where the radial part can be obtained using a spherical Bessel
transformation

Rin(K) = 411 f dr kDR (P) 22)
0

Inpractice, R,,(k) canbe computed onaradial grid up to certain energy
cutoff. Then all three-dimensional Fourier transforms of the orbital
can be calculated easily and very efficiently using spline interpola-
tion. If the orbital is not centered at the origin, we only need to add an
additional phase factor.

Itis also worth mentioning the inverse transformation here:

R = 53 f K2 KPR (K). 23)
0

Two-center integrals. Integrals of the product of two orbitals centered
attwo different positions are used frequently in AO calculations. Here
we discuss a very efficient way to calculate this kind of integral, follow-
ing Sankey and Niklewski**. Consider two orbitals ¢,,(r) and ¢5(r) with
a=(nlimy), B = (n,l,m,); their overlap integral is defined as

S(R) = / d’re: (N@;s(r —R). (24)

This integral in real space can be converted to the integral in Fourier
space:

k. iR
SR) = / K 5r dopyke®. 25)
(2m)
Plugging in equations (20) and (21), we have
2Umax L R
SR =D, > GumytymimSIIRDYim(R), (26)
=0 m=-1

with [, = max{l,, [}, Gaunt coefficients G, 1, m, m defined as

) 2n
Gumtmn = [ sin6d8 [ dp¥;, ©6.0n 0.0, 000 @7
0 0

and

bt
2m?

SIR) = (R, 1, (K. (28)

f | GKRGKROR;, |
In our calculations, S,(R) is computed on a radial grid, so that all
overlap integrals S(R) can be computed very efficiently using spline
interpolation.

The above technique can be extended to calculate kinetic matrix
elements

TR = [ Erage-370,0 - R (29)
with slight modifications to equation (28):
ih—bL—1 ©
T(R) = ’4? f gk K4 KRR, | (R, (K. (30)

Preparation of datasets

Bilayer graphene dataset. The structures in the training set are the
same as those used in ref. 33. There are 300 bilayer graphene 4 x 4
supercells with different interlayer stackings and random perturba-
tions to atomic positions. The perturbations are uniformly distributed
within £0.1 A along three Cartesian directions. The interlayer distance
follows a normal distribution with mean 3.41 A and s.d. 0.05 A. The
thickness of the unit cell along the non-periodic direction is chosen
tobe20 A.The PW DFT calculations are performed using the Perdew-
Burke-Ernzerhof functional™ with the Quantum ESPRESSO package®
and norm-conserving Vanderbilt pseudopotential®*. Energy cutoffs are
80 Ry for the wavefunctions and 320 Ry for the charge density. A3 x 3
grid is used for the k sampling of the supercell. The double-zeta plus
polarization (DZP) basis for the carbon atom with nodes is generated
using SIESTA*’, which includes two orbitalsin the 2s shell, two orbitalsin
the 2p shelland one orbitalin the 3d shell polarized fromthe 2p orbital.
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Bilayer MoS,. PW DFT simulations are all performed with the Quantum
ESPRESSO package using the Perdew-Burke-Ernzerhof functional
with wavefunction cutoff 60 Ry and charge density cutoff240 Ry. The
unit cellis calculated using a 6 x 6 k sampling, and the mesh sizes are
reduced for the supercells corresponding to the supercell sizes. The
thickness of the unit cell along the non-periodic direction is chosen to
be 20 A.Thereare 256 3 x 3supercellsin the training set with different
interlayer stackings and random perturbations to atomic positions.
The perturbations are uniformly distributed within +0.1 A along three
Cartesiandirections. The average distance between the two Mo layers
is6.49 Aandthes.d.is 0.05 A. The twisted structures are relaxed using
the Perdew-Burke-Ernzerhof functional plus van der Waals interaction
energy corrected using the DFT-D3 method”. The AOs are the standard
split-norm DZP basis for Mo and S atoms generated by SIESTA. The
orbitals for the Mo atominclude one orbital in the 4s shell, one orbital
in the 4p shell, two orbitals in the 4d shell, two orbitals in the 5s shell
and one orbital inthe 5p shell polarized from the 5sshell. The orbitals
for the Satominclude two orbitalsinthe 3sshell, two orbitalsinthe 3p
shell and one orbital in the 3d shell polarized from the 3p orbital. One
additional diffusion orbital in the 4s shell with cutoff distance 8.0 a.u.
isadded to the S atom to capture the interlayer hybridization.

Reconstruction from PW Hamiltonian to AO basis. The cutoffs for
equation (5) of the two-center integrals are taken to be the same as
the wavefunction cutoff used in the PW calculations. The sizes of the
real-space grid for the real-space integrals in equation (5) are also
taken to be the same as the size of the fast Fourier transform grid in
the PW calculations. These are the same for all calculations in this Brief
Communication.

Data availability

The data used in the current study are available at Zenodo™. PW DFT
calculationsin this study are performed with the Quantum ESPRESSO
package (https://www.quantum-espresso.org/). AO basis functions
are generated using the SIESTA package (https://siesta-project.org/
siesta/index.html). Source Data for Figures 1and 2 are available with
this manuscript.

Code availability

The source code used in the current study is available at Zenodo”’, at
GitHub (https://github.com/Xiaoxun-Gong/HPRO) and as Supplemen-
tary Software along with the manuscript. Ademo of how to useitis also
provided alongside the code.
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